1 /* Convert string representing a number to float value, using given locale.
2 Copyright (C) 1997,1998,2002,2004,2005,2006,2007,2008,2009
3 Free Software Foundation, Inc.
4 This file is part of the GNU C Library.
5 Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Lesser General Public License for more details.
17 You should have received a copy of the GNU Lesser General Public
18 License along with the GNU C Library; if not, write to the Free
19 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
24 extern double ____strtod_l_internal (const char *, char **, int, __locale_t
);
25 extern unsigned long long int ____strtoull_l_internal (const char *, char **,
26 int, int, __locale_t
);
28 /* Configuration part. These macros are defined by `strtold.c',
29 `strtof.c', `wcstod.c', `wcstold.c', and `wcstof.c' to produce the
30 `long double' and `float' versions of the reader. */
32 # include <math_ldbl_opt.h>
36 # define STRTOF wcstod_l
37 # define __STRTOF __wcstod_l
39 # define STRTOF strtod_l
40 # define __STRTOF __strtod_l
42 # define MPN2FLOAT __mpn_construct_double
43 # define FLOAT_HUGE_VAL HUGE_VAL
44 # define SET_MANTISSA(flt, mant) \
45 do { union ieee754_double u; \
47 if ((mant & 0xfffffffffffffULL) == 0) \
48 mant = 0x8000000000000ULL; \
49 u.ieee.mantissa0 = ((mant) >> 32) & 0xfffff; \
50 u.ieee.mantissa1 = (mant) & 0xffffffff; \
54 /* End of configuration part. */
60 #include "../locale/localeinfo.h"
66 /* The gmp headers need some configuration frobs. */
69 /* Include gmp-mparam.h first, such that definitions of _SHORT_LIMB
70 and _LONG_LONG_LIMB in it can take effect into gmp.h. */
71 #include <gmp-mparam.h>
75 #include "fpioconst.h"
81 /* We use this code for the extended locale handling where the
82 function gets as an additional argument the locale which has to be
83 used. To access the values we have to redefine the _NL_CURRENT and
84 _NL_CURRENT_WORD macros. */
86 #define _NL_CURRENT(category, item) \
87 (current->values[_NL_ITEM_INDEX (item)].string)
88 #undef _NL_CURRENT_WORD
89 #define _NL_CURRENT_WORD(category, item) \
90 ((uint32_t) current->values[_NL_ITEM_INDEX (item)].word)
92 #if defined _LIBC || defined HAVE_WCHAR_H
98 # define STRING_TYPE wchar_t
99 # define CHAR_TYPE wint_t
100 # define L_(Ch) L##Ch
101 # define ISSPACE(Ch) __iswspace_l ((Ch), loc)
102 # define ISDIGIT(Ch) __iswdigit_l ((Ch), loc)
103 # define ISXDIGIT(Ch) __iswxdigit_l ((Ch), loc)
104 # define TOLOWER(Ch) __towlower_l ((Ch), loc)
105 # define TOLOWER_C(Ch) __towlower_l ((Ch), _nl_C_locobj_ptr)
106 # define STRNCASECMP(S1, S2, N) \
107 __wcsncasecmp_l ((S1), (S2), (N), _nl_C_locobj_ptr)
108 # define STRTOULL(S, E, B) ____wcstoull_l_internal ((S), (E), (B), 0, loc)
110 # define STRING_TYPE char
111 # define CHAR_TYPE char
113 # define ISSPACE(Ch) __isspace_l ((Ch), loc)
114 # define ISDIGIT(Ch) __isdigit_l ((Ch), loc)
115 # define ISXDIGIT(Ch) __isxdigit_l ((Ch), loc)
116 # define TOLOWER(Ch) __tolower_l ((Ch), loc)
117 # define TOLOWER_C(Ch) __tolower_l ((Ch), _nl_C_locobj_ptr)
118 # define STRNCASECMP(S1, S2, N) \
119 __strncasecmp_l ((S1), (S2), (N), _nl_C_locobj_ptr)
120 # define STRTOULL(S, E, B) ____strtoull_l_internal ((S), (E), (B), 0, loc)
124 /* Constants we need from float.h; select the set for the FLOAT precision. */
125 #define MANT_DIG PASTE(FLT,_MANT_DIG)
126 #define DIG PASTE(FLT,_DIG)
127 #define MAX_EXP PASTE(FLT,_MAX_EXP)
128 #define MIN_EXP PASTE(FLT,_MIN_EXP)
129 #define MAX_10_EXP PASTE(FLT,_MAX_10_EXP)
130 #define MIN_10_EXP PASTE(FLT,_MIN_10_EXP)
132 /* Extra macros required to get FLT expanded before the pasting. */
133 #define PASTE(a,b) PASTE1(a,b)
134 #define PASTE1(a,b) a##b
136 /* Function to construct a floating point number from an MP integer
137 containing the fraction bits, a base 2 exponent, and a sign flag. */
138 extern FLOAT
MPN2FLOAT (mp_srcptr mpn
, int exponent
, int negative
);
140 /* Definitions according to limb size used. */
141 #if BITS_PER_MP_LIMB == 32
142 # define MAX_DIG_PER_LIMB 9
143 # define MAX_FAC_PER_LIMB 1000000000UL
144 #elif BITS_PER_MP_LIMB == 64
145 # define MAX_DIG_PER_LIMB 19
146 # define MAX_FAC_PER_LIMB 10000000000000000000ULL
148 # error "mp_limb_t size " BITS_PER_MP_LIMB "not accounted for"
151 extern const mp_limb_t _tens_in_limb
[MAX_DIG_PER_LIMB
+ 1];
154 #define howmany(x,y) (((x)+((y)-1))/(y))
156 #define SWAP(x, y) ({ typeof(x) _tmp = x; x = y; y = _tmp; })
158 #define NDIG (MAX_10_EXP - MIN_10_EXP + 2 * MANT_DIG)
159 #define HEXNDIG ((MAX_EXP - MIN_EXP + 7) / 8 + 2 * MANT_DIG)
160 #define RETURN_LIMB_SIZE howmany (MANT_DIG, BITS_PER_MP_LIMB)
162 #define RETURN(val,end) \
163 do { if (endptr != NULL) *endptr = (STRING_TYPE *) (end); \
164 return val; } while (0)
166 /* Maximum size necessary for mpn integers to hold floating point numbers. */
167 #define MPNSIZE (howmany (MAX_EXP + 2 * MANT_DIG, BITS_PER_MP_LIMB) \
169 /* Declare an mpn integer variable that big. */
170 #define MPN_VAR(name) mp_limb_t name[MPNSIZE]; mp_size_t name##size
171 /* Copy an mpn integer value. */
172 #define MPN_ASSIGN(dst, src) \
173 memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t))
176 /* Return a floating point number of the needed type according to the given
177 multi-precision number after possible rounding. */
179 round_and_return (mp_limb_t
*retval
, int exponent
, int negative
,
180 mp_limb_t round_limb
, mp_size_t round_bit
, int more_bits
)
182 if (exponent
< MIN_EXP
- 1)
184 mp_size_t shift
= MIN_EXP
- 1 - exponent
;
186 if (shift
> MANT_DIG
)
192 more_bits
|= (round_limb
& ((((mp_limb_t
) 1) << round_bit
) - 1)) != 0;
193 if (shift
== MANT_DIG
)
194 /* This is a special case to handle the very seldom case where
195 the mantissa will be empty after the shift. */
199 round_limb
= retval
[RETURN_LIMB_SIZE
- 1];
200 round_bit
= (MANT_DIG
- 1) % BITS_PER_MP_LIMB
;
201 for (i
= 0; i
< RETURN_LIMB_SIZE
; ++i
)
202 more_bits
|= retval
[i
] != 0;
203 MPN_ZERO (retval
, RETURN_LIMB_SIZE
);
205 else if (shift
>= BITS_PER_MP_LIMB
)
209 round_limb
= retval
[(shift
- 1) / BITS_PER_MP_LIMB
];
210 round_bit
= (shift
- 1) % BITS_PER_MP_LIMB
;
211 for (i
= 0; i
< (shift
- 1) / BITS_PER_MP_LIMB
; ++i
)
212 more_bits
|= retval
[i
] != 0;
213 more_bits
|= ((round_limb
& ((((mp_limb_t
) 1) << round_bit
) - 1))
216 (void) __mpn_rshift (retval
, &retval
[shift
/ BITS_PER_MP_LIMB
],
217 RETURN_LIMB_SIZE
- (shift
/ BITS_PER_MP_LIMB
),
218 shift
% BITS_PER_MP_LIMB
);
219 MPN_ZERO (&retval
[RETURN_LIMB_SIZE
- (shift
/ BITS_PER_MP_LIMB
)],
220 shift
/ BITS_PER_MP_LIMB
);
224 round_limb
= retval
[0];
225 round_bit
= shift
- 1;
226 (void) __mpn_rshift (retval
, retval
, RETURN_LIMB_SIZE
, shift
);
228 /* This is a hook for the m68k long double format, where the
229 exponent bias is the same for normalized and denormalized
232 # define DENORM_EXP (MIN_EXP - 2)
234 exponent
= DENORM_EXP
;
235 __set_errno (ERANGE
);
238 if ((round_limb
& (((mp_limb_t
) 1) << round_bit
)) != 0
239 && (more_bits
|| (retval
[0] & 1) != 0
240 || (round_limb
& ((((mp_limb_t
) 1) << round_bit
) - 1)) != 0))
242 mp_limb_t cy
= __mpn_add_1 (retval
, retval
, RETURN_LIMB_SIZE
, 1);
244 if (((MANT_DIG
% BITS_PER_MP_LIMB
) == 0 && cy
) ||
245 ((MANT_DIG
% BITS_PER_MP_LIMB
) != 0 &&
246 (retval
[RETURN_LIMB_SIZE
- 1]
247 & (((mp_limb_t
) 1) << (MANT_DIG
% BITS_PER_MP_LIMB
))) != 0))
250 (void) __mpn_rshift (retval
, retval
, RETURN_LIMB_SIZE
, 1);
251 retval
[RETURN_LIMB_SIZE
- 1]
252 |= ((mp_limb_t
) 1) << ((MANT_DIG
- 1) % BITS_PER_MP_LIMB
);
254 else if (exponent
== DENORM_EXP
255 && (retval
[RETURN_LIMB_SIZE
- 1]
256 & (((mp_limb_t
) 1) << ((MANT_DIG
- 1) % BITS_PER_MP_LIMB
)))
258 /* The number was denormalized but now normalized. */
259 exponent
= MIN_EXP
- 1;
262 if (exponent
> MAX_EXP
)
263 return negative
? -FLOAT_HUGE_VAL
: FLOAT_HUGE_VAL
;
265 return MPN2FLOAT (retval
, exponent
, negative
);
269 /* Read a multi-precision integer starting at STR with exactly DIGCNT digits
270 into N. Return the size of the number limbs in NSIZE at the first
271 character od the string that is not part of the integer as the function
272 value. If the EXPONENT is small enough to be taken as an additional
273 factor for the resulting number (see code) multiply by it. */
274 static const STRING_TYPE
*
275 str_to_mpn (const STRING_TYPE
*str
, int digcnt
, mp_limb_t
*n
, mp_size_t
*nsize
,
277 #ifndef USE_WIDE_CHAR
278 , const char *decimal
, size_t decimal_len
, const char *thousands
283 /* Number of digits for actual limb. */
292 if (cnt
== MAX_DIG_PER_LIMB
)
302 cy
= __mpn_mul_1 (n
, n
, *nsize
, MAX_FAC_PER_LIMB
);
303 cy
+= __mpn_add_1 (n
, n
, *nsize
, low
);
314 /* There might be thousands separators or radix characters in
315 the string. But these all can be ignored because we know the
316 format of the number is correct and we have an exact number
317 of characters to read. */
319 if (*str
< L
'0' || *str
> L
'9')
322 if (*str
< '0' || *str
> '9')
325 if (thousands
!= NULL
&& *str
== *thousands
326 && ({ for (inner
= 1; thousands
[inner
] != '\0'; ++inner
)
327 if (thousands
[inner
] != str
[inner
])
329 thousands
[inner
] == '\0'; }))
335 low
= low
* 10 + *str
++ - L_('0');
338 while (--digcnt
> 0);
340 if (*exponent
> 0 && cnt
+ *exponent
<= MAX_DIG_PER_LIMB
)
342 low
*= _tens_in_limb
[*exponent
];
343 start
= _tens_in_limb
[cnt
+ *exponent
];
347 start
= _tens_in_limb
[cnt
];
357 cy
= __mpn_mul_1 (n
, n
, *nsize
, start
);
358 cy
+= __mpn_add_1 (n
, n
, *nsize
, low
);
367 /* Shift {PTR, SIZE} COUNT bits to the left, and fill the vacated bits
368 with the COUNT most significant bits of LIMB.
370 Tege doesn't like this function so I have to write it here myself. :)
373 __attribute ((always_inline
))
374 __mpn_lshift_1 (mp_limb_t
*ptr
, mp_size_t size
, unsigned int count
,
377 if (__builtin_constant_p (count
) && count
== BITS_PER_MP_LIMB
)
379 /* Optimize the case of shifting by exactly a word:
380 just copy words, with no actual bit-shifting. */
382 for (i
= size
- 1; i
> 0; --i
)
388 (void) __mpn_lshift (ptr
, ptr
, size
, count
);
389 ptr
[0] |= limb
>> (BITS_PER_MP_LIMB
- count
);
394 #define INTERNAL(x) INTERNAL1(x)
395 #define INTERNAL1(x) __##x##_internal
396 #ifndef ____STRTOF_INTERNAL
397 # define ____STRTOF_INTERNAL INTERNAL (__STRTOF)
400 /* This file defines a function to check for correct grouping. */
401 #include "grouping.h"
404 /* Return a floating point number with the value of the given string NPTR.
405 Set *ENDPTR to the character after the last used one. If the number is
406 smaller than the smallest representable number, set `errno' to ERANGE and
407 return 0.0. If the number is too big to be represented, set `errno' to
408 ERANGE and return HUGE_VAL with the appropriate sign. */
410 ____STRTOF_INTERNAL (nptr
, endptr
, group
, loc
)
411 const STRING_TYPE
*nptr
;
412 STRING_TYPE
**endptr
;
416 int negative
; /* The sign of the number. */
417 MPN_VAR (num
); /* MP representation of the number. */
418 int exponent
; /* Exponent of the number. */
420 /* Numbers starting `0X' or `0x' have to be processed with base 16. */
423 /* When we have to compute fractional digits we form a fraction with a
424 second multi-precision number (and we sometimes need a second for
425 temporary results). */
428 /* Representation for the return value. */
429 mp_limb_t retval
[RETURN_LIMB_SIZE
];
430 /* Number of bits currently in result value. */
433 /* Running pointer after the last character processed in the string. */
434 const STRING_TYPE
*cp
, *tp
;
435 /* Start of significant part of the number. */
436 const STRING_TYPE
*startp
, *start_of_digits
;
437 /* Points at the character following the integer and fractional digits. */
438 const STRING_TYPE
*expp
;
439 /* Total number of digit and number of digits in integer part. */
440 int dig_no
, int_no
, lead_zero
;
441 /* Contains the last character read. */
444 /* We should get wint_t from <stddef.h>, but not all GCC versions define it
445 there. So define it ourselves if it remains undefined. */
447 typedef unsigned int wint_t;
449 /* The radix character of the current locale. */
456 /* The thousands character of the current locale. */
458 wchar_t thousands
= L
'\0';
460 const char *thousands
= NULL
;
462 /* The numeric grouping specification of the current locale,
463 in the format described in <locale.h>. */
464 const char *grouping
;
465 /* Used in several places. */
468 struct locale_data
*current
= loc
->__locales
[LC_NUMERIC
];
470 if (__builtin_expect (group
, 0))
472 grouping
= _NL_CURRENT (LC_NUMERIC
, GROUPING
);
473 if (*grouping
<= 0 || *grouping
== CHAR_MAX
)
477 /* Figure out the thousands separator character. */
479 thousands
= _NL_CURRENT_WORD (LC_NUMERIC
,
480 _NL_NUMERIC_THOUSANDS_SEP_WC
);
481 if (thousands
== L
'\0')
484 thousands
= _NL_CURRENT (LC_NUMERIC
, THOUSANDS_SEP
);
485 if (*thousands
== '\0')
496 /* Find the locale's decimal point character. */
498 decimal
= _NL_CURRENT_WORD (LC_NUMERIC
, _NL_NUMERIC_DECIMAL_POINT_WC
);
499 assert (decimal
!= L
'\0');
500 # define decimal_len 1
502 decimal
= _NL_CURRENT (LC_NUMERIC
, DECIMAL_POINT
);
503 decimal_len
= strlen (decimal
);
504 assert (decimal_len
> 0);
507 /* Prepare number representation. */
512 /* Parse string to get maximal legal prefix. We need the number of
513 characters of the integer part, the fractional part and the exponent. */
515 /* Ignore leading white space. */
520 /* Get sign of the result. */
526 else if (c
== L_('+'))
529 /* Return 0.0 if no legal string is found.
530 No character is used even if a sign was found. */
532 if (c
== (wint_t) decimal
533 && (wint_t) cp
[1] >= L
'0' && (wint_t) cp
[1] <= L
'9')
535 /* We accept it. This funny construct is here only to indent
536 the code correctly. */
539 for (cnt
= 0; decimal
[cnt
] != '\0'; ++cnt
)
540 if (cp
[cnt
] != decimal
[cnt
])
542 if (decimal
[cnt
] == '\0' && cp
[cnt
] >= '0' && cp
[cnt
] <= '9')
544 /* We accept it. This funny construct is here only to indent
545 the code correctly. */
548 else if (c
< L_('0') || c
> L_('9'))
550 /* Check for `INF' or `INFINITY'. */
551 CHAR_TYPE lowc
= TOLOWER_C (c
);
553 if (lowc
== L_('i') && STRNCASECMP (cp
, L_("inf"), 3) == 0)
555 /* Return +/- infinity. */
557 *endptr
= (STRING_TYPE
*)
558 (cp
+ (STRNCASECMP (cp
+ 3, L_("inity"), 5) == 0
561 return negative
? -FLOAT_HUGE_VAL
: FLOAT_HUGE_VAL
;
564 if (lowc
== L_('n') && STRNCASECMP (cp
, L_("nan"), 3) == 0)
571 /* Match `(n-char-sequence-digit)'. */
574 const STRING_TYPE
*startp
= cp
;
577 while ((*cp
>= L_('0') && *cp
<= L_('9'))
578 || ({ CHAR_TYPE lo
= TOLOWER (*cp
);
579 lo
>= L_('a') && lo
<= L_('z'); })
583 /* The closing brace is missing. Only match the NAN
588 /* This is a system-dependent way to specify the
589 bitmask used for the NaN. We expect it to be
590 a number which is put in the mantissa of the
593 unsigned long long int mant
;
595 mant
= STRTOULL (startp
+ 1, &endp
, 0);
597 SET_MANTISSA (retval
, mant
);
599 /* Consume the closing brace. */
605 *endptr
= (STRING_TYPE
*) cp
;
610 /* It is really a text we do not recognize. */
614 /* First look whether we are faced with a hexadecimal number. */
615 if (c
== L_('0') && TOLOWER (cp
[1]) == L_('x'))
617 /* Okay, it is a hexa-decimal number. Remember this and skip
618 the characters. BTW: hexadecimal numbers must not be
626 /* Record the start of the digits, in case we will check their grouping. */
627 start_of_digits
= startp
= cp
;
629 /* Ignore leading zeroes. This helps us to avoid useless computations. */
631 while (c
== L
'0' || ((wint_t) thousands
!= L
'\0' && c
== (wint_t) thousands
))
634 if (__builtin_expect (thousands
== NULL
, 1))
639 /* We also have the multibyte thousands string. */
644 for (cnt
= 0; thousands
[cnt
] != '\0'; ++cnt
)
645 if (thousands
[cnt
] != cp
[cnt
])
647 if (thousands
[cnt
] != '\0')
656 /* If no other digit but a '0' is found the result is 0.0.
657 Return current read pointer. */
658 CHAR_TYPE lowc
= TOLOWER (c
);
659 if (!((c
>= L_('0') && c
<= L_('9'))
660 || (base
== 16 && lowc
>= L_('a') && lowc
<= L_('f'))
663 c
== (wint_t) decimal
665 ({ for (cnt
= 0; decimal
[cnt
] != '\0'; ++cnt
)
666 if (decimal
[cnt
] != cp
[cnt
])
668 decimal
[cnt
] == '\0'; })
670 /* '0x.' alone is not a valid hexadecimal number.
671 '.' alone is not valid either, but that has been checked
674 || cp
!= start_of_digits
675 || (cp
[decimal_len
] >= L_('0') && cp
[decimal_len
] <= L_('9'))
676 || ({ CHAR_TYPE lo
= TOLOWER (cp
[decimal_len
]);
677 lo
>= L_('a') && lo
<= L_('f'); })))
678 || (base
== 16 && (cp
!= start_of_digits
680 || (base
!= 16 && lowc
== L_('e'))))
683 tp
= __correctly_grouped_prefixwc (start_of_digits
, cp
, thousands
,
686 tp
= __correctly_grouped_prefixmb (start_of_digits
, cp
, thousands
,
689 /* If TP is at the start of the digits, there was no correctly
690 grouped prefix of the string; so no number found. */
691 RETURN (negative
? -0.0 : 0.0,
692 tp
== start_of_digits
? (base
== 16 ? cp
- 1 : nptr
) : tp
);
695 /* Remember first significant digit and read following characters until the
696 decimal point, exponent character or any non-FP number character. */
701 if ((c
>= L_('0') && c
<= L_('9'))
703 && ({ CHAR_TYPE lo
= TOLOWER (c
);
704 lo
>= L_('a') && lo
<= L_('f'); })))
709 if (__builtin_expect ((wint_t) thousands
== L
'\0', 1)
710 || c
!= (wint_t) thousands
)
711 /* Not a digit or separator: end of the integer part. */
714 if (__builtin_expect (thousands
== NULL
, 1))
718 for (cnt
= 0; thousands
[cnt
] != '\0'; ++cnt
)
719 if (thousands
[cnt
] != cp
[cnt
])
721 if (thousands
[cnt
] != '\0')
730 if (__builtin_expect (grouping
!= NULL
, 0) && cp
> start_of_digits
)
732 /* Check the grouping of the digits. */
734 tp
= __correctly_grouped_prefixwc (start_of_digits
, cp
, thousands
,
737 tp
= __correctly_grouped_prefixmb (start_of_digits
, cp
, thousands
,
742 /* Less than the entire string was correctly grouped. */
744 if (tp
== start_of_digits
)
745 /* No valid group of numbers at all: no valid number. */
749 /* The number is validly grouped, but consists
750 only of zeroes. The whole value is zero. */
751 RETURN (negative
? -0.0 : 0.0, tp
);
753 /* Recompute DIG_NO so we won't read more digits than
754 are properly grouped. */
757 for (tp
= startp
; tp
< cp
; ++tp
)
758 if (*tp
>= L_('0') && *tp
<= L_('9'))
768 /* We have the number of digits in the integer part. Whether these
769 are all or any is really a fractional digit will be decided
772 lead_zero
= int_no
== 0 ? -1 : 0;
774 /* Read the fractional digits. A special case are the 'american
775 style' numbers like `16.' i.e. with decimal point but without
779 c
== (wint_t) decimal
781 ({ for (cnt
= 0; decimal
[cnt
] != '\0'; ++cnt
)
782 if (decimal
[cnt
] != cp
[cnt
])
784 decimal
[cnt
] == '\0'; })
790 while ((c
>= L_('0') && c
<= L_('9')) ||
791 (base
== 16 && ({ CHAR_TYPE lo
= TOLOWER (c
);
792 lo
>= L_('a') && lo
<= L_('f'); })))
794 if (c
!= L_('0') && lead_zero
== -1)
795 lead_zero
= dig_no
- int_no
;
801 /* Remember start of exponent (if any). */
806 if ((base
== 16 && lowc
== L_('p'))
807 || (base
!= 16 && lowc
== L_('e')))
809 int exp_negative
= 0;
817 else if (c
== L_('+'))
820 if (c
>= L_('0') && c
<= L_('9'))
824 /* Get the exponent limit. */
826 exp_limit
= (exp_negative
?
827 -MIN_EXP
+ MANT_DIG
+ 4 * int_no
:
828 MAX_EXP
- 4 * int_no
+ 4 * lead_zero
+ 3);
830 exp_limit
= (exp_negative
?
831 -MIN_10_EXP
+ MANT_DIG
+ int_no
:
832 MAX_10_EXP
- int_no
+ lead_zero
+ 1);
837 exponent
+= c
- L_('0');
839 if (__builtin_expect (exponent
> exp_limit
, 0))
840 /* The exponent is too large/small to represent a valid
845 /* We have to take care for special situation: a joker
846 might have written "0.0e100000" which is in fact
849 result
= negative
? -0.0 : 0.0;
852 /* Overflow or underflow. */
853 __set_errno (ERANGE
);
854 result
= (exp_negative
? (negative
? -0.0 : 0.0) :
855 negative
? -FLOAT_HUGE_VAL
: FLOAT_HUGE_VAL
);
858 /* Accept all following digits as part of the exponent. */
861 while (*cp
>= L_('0') && *cp
<= L_('9'));
869 while (c
>= L_('0') && c
<= L_('9'));
872 exponent
= -exponent
;
878 /* We don't want to have to work with trailing zeroes after the radix. */
881 while (expp
[-1] == L_('0'))
886 assert (dig_no
>= int_no
);
889 if (dig_no
== int_no
&& dig_no
> 0 && exponent
< 0)
892 while (! (base
== 16 ? ISXDIGIT (expp
[-1]) : ISDIGIT (expp
[-1])))
895 if (expp
[-1] != L_('0'))
901 exponent
+= base
== 16 ? 4 : 1;
903 while (dig_no
> 0 && exponent
< 0);
907 /* The whole string is parsed. Store the address of the next character. */
909 *endptr
= (STRING_TYPE
*) cp
;
912 return negative
? -0.0 : 0.0;
916 /* Find the decimal point */
918 while (*startp
!= decimal
)
923 if (*startp
== decimal
[0])
925 for (cnt
= 1; decimal
[cnt
] != '\0'; ++cnt
)
926 if (decimal
[cnt
] != startp
[cnt
])
928 if (decimal
[cnt
] == '\0')
934 startp
+= lead_zero
+ decimal_len
;
935 exponent
-= base
== 16 ? 4 * lead_zero
: lead_zero
;
939 /* If the BASE is 16 we can use a simpler algorithm. */
942 static const int nbits
[16] = { 0, 1, 2, 2, 3, 3, 3, 3,
943 4, 4, 4, 4, 4, 4, 4, 4 };
944 int idx
= (MANT_DIG
- 1) / BITS_PER_MP_LIMB
;
945 int pos
= (MANT_DIG
- 1) % BITS_PER_MP_LIMB
;
948 while (!ISXDIGIT (*startp
))
950 while (*startp
== L_('0'))
952 if (ISDIGIT (*startp
))
953 val
= *startp
++ - L_('0');
955 val
= 10 + TOLOWER (*startp
++) - L_('a');
957 /* We cannot have a leading zero. */
960 if (pos
+ 1 >= 4 || pos
+ 1 >= bits
)
962 /* We don't have to care for wrapping. This is the normal
963 case so we add the first clause in the `if' expression as
964 an optimization. It is a compile-time constant and so does
965 not cost anything. */
966 retval
[idx
] = val
<< (pos
- bits
+ 1);
971 retval
[idx
--] = val
>> (bits
- pos
- 1);
972 retval
[idx
] = val
<< (BITS_PER_MP_LIMB
- (bits
- pos
- 1));
973 pos
= BITS_PER_MP_LIMB
- 1 - (bits
- pos
- 1);
976 /* Adjust the exponent for the bits we are shifting in. */
977 exponent
+= bits
- 1 + (int_no
- 1) * 4;
979 while (--dig_no
> 0 && idx
>= 0)
981 if (!ISXDIGIT (*startp
))
982 startp
+= decimal_len
;
983 if (ISDIGIT (*startp
))
984 val
= *startp
++ - L_('0');
986 val
= 10 + TOLOWER (*startp
++) - L_('a');
990 retval
[idx
] |= val
<< (pos
- 4 + 1);
995 retval
[idx
--] |= val
>> (4 - pos
- 1);
996 val
<<= BITS_PER_MP_LIMB
- (4 - pos
- 1);
998 return round_and_return (retval
, exponent
, negative
, val
,
999 BITS_PER_MP_LIMB
- 1, dig_no
> 0);
1002 pos
= BITS_PER_MP_LIMB
- 1 - (4 - pos
- 1);
1006 /* We ran out of digits. */
1007 MPN_ZERO (retval
, idx
);
1009 return round_and_return (retval
, exponent
, negative
, 0, 0, 0);
1012 /* Now we have the number of digits in total and the integer digits as well
1013 as the exponent and its sign. We can decide whether the read digits are
1014 really integer digits or belong to the fractional part; i.e. we normalize
1017 register int incr
= (exponent
< 0 ? MAX (-int_no
, exponent
)
1018 : MIN (dig_no
- int_no
, exponent
));
1023 if (__builtin_expect (int_no
+ exponent
> MAX_10_EXP
+ 1, 0))
1025 __set_errno (ERANGE
);
1026 return negative
? -FLOAT_HUGE_VAL
: FLOAT_HUGE_VAL
;
1029 if (__builtin_expect (exponent
< MIN_10_EXP
- (DIG
+ 1), 0))
1031 __set_errno (ERANGE
);
1032 return negative
? -0.0 : 0.0;
1037 /* Read the integer part as a multi-precision number to NUM. */
1038 startp
= str_to_mpn (startp
, int_no
, num
, &numsize
, &exponent
1039 #ifndef USE_WIDE_CHAR
1040 , decimal
, decimal_len
, thousands
1046 /* We now multiply the gained number by the given power of ten. */
1047 mp_limb_t
*psrc
= num
;
1048 mp_limb_t
*pdest
= den
;
1050 const struct mp_power
*ttab
= &_fpioconst_pow10
[0];
1054 if ((exponent
& expbit
) != 0)
1056 size_t size
= ttab
->arraysize
- _FPIO_CONST_OFFSET
;
1060 /* FIXME: not the whole multiplication has to be
1061 done. If we have the needed number of bits we
1062 only need the information whether more non-zero
1064 if (numsize
>= ttab
->arraysize
- _FPIO_CONST_OFFSET
)
1065 cy
= __mpn_mul (pdest
, psrc
, numsize
,
1066 &__tens
[ttab
->arrayoff
1067 + _FPIO_CONST_OFFSET
],
1070 cy
= __mpn_mul (pdest
, &__tens
[ttab
->arrayoff
1071 + _FPIO_CONST_OFFSET
],
1072 size
, psrc
, numsize
);
1076 (void) SWAP (psrc
, pdest
);
1081 while (exponent
!= 0);
1084 memcpy (num
, den
, numsize
* sizeof (mp_limb_t
));
1087 /* Determine how many bits of the result we already have. */
1088 count_leading_zeros (bits
, num
[numsize
- 1]);
1089 bits
= numsize
* BITS_PER_MP_LIMB
- bits
;
1091 /* Now we know the exponent of the number in base two.
1092 Check it against the maximum possible exponent. */
1093 if (__builtin_expect (bits
> MAX_EXP
, 0))
1095 __set_errno (ERANGE
);
1096 return negative
? -FLOAT_HUGE_VAL
: FLOAT_HUGE_VAL
;
1099 /* We have already the first BITS bits of the result. Together with
1100 the information whether more non-zero bits follow this is enough
1101 to determine the result. */
1102 if (bits
> MANT_DIG
)
1105 const mp_size_t least_idx
= (bits
- MANT_DIG
) / BITS_PER_MP_LIMB
;
1106 const mp_size_t least_bit
= (bits
- MANT_DIG
) % BITS_PER_MP_LIMB
;
1107 const mp_size_t round_idx
= least_bit
== 0 ? least_idx
- 1
1109 const mp_size_t round_bit
= least_bit
== 0 ? BITS_PER_MP_LIMB
- 1
1113 memcpy (retval
, &num
[least_idx
],
1114 RETURN_LIMB_SIZE
* sizeof (mp_limb_t
));
1117 for (i
= least_idx
; i
< numsize
- 1; ++i
)
1118 retval
[i
- least_idx
] = (num
[i
] >> least_bit
)
1120 << (BITS_PER_MP_LIMB
- least_bit
));
1121 if (i
- least_idx
< RETURN_LIMB_SIZE
)
1122 retval
[RETURN_LIMB_SIZE
- 1] = num
[i
] >> least_bit
;
1125 /* Check whether any limb beside the ones in RETVAL are non-zero. */
1126 for (i
= 0; num
[i
] == 0; ++i
)
1129 return round_and_return (retval
, bits
- 1, negative
,
1130 num
[round_idx
], round_bit
,
1131 int_no
< dig_no
|| i
< round_idx
);
1134 else if (dig_no
== int_no
)
1136 const mp_size_t target_bit
= (MANT_DIG
- 1) % BITS_PER_MP_LIMB
;
1137 const mp_size_t is_bit
= (bits
- 1) % BITS_PER_MP_LIMB
;
1139 if (target_bit
== is_bit
)
1141 memcpy (&retval
[RETURN_LIMB_SIZE
- numsize
], num
,
1142 numsize
* sizeof (mp_limb_t
));
1143 /* FIXME: the following loop can be avoided if we assume a
1144 maximal MANT_DIG value. */
1145 MPN_ZERO (retval
, RETURN_LIMB_SIZE
- numsize
);
1147 else if (target_bit
> is_bit
)
1149 (void) __mpn_lshift (&retval
[RETURN_LIMB_SIZE
- numsize
],
1150 num
, numsize
, target_bit
- is_bit
);
1151 /* FIXME: the following loop can be avoided if we assume a
1152 maximal MANT_DIG value. */
1153 MPN_ZERO (retval
, RETURN_LIMB_SIZE
- numsize
);
1158 assert (numsize
< RETURN_LIMB_SIZE
);
1160 cy
= __mpn_rshift (&retval
[RETURN_LIMB_SIZE
- numsize
],
1161 num
, numsize
, is_bit
- target_bit
);
1162 retval
[RETURN_LIMB_SIZE
- numsize
- 1] = cy
;
1163 /* FIXME: the following loop can be avoided if we assume a
1164 maximal MANT_DIG value. */
1165 MPN_ZERO (retval
, RETURN_LIMB_SIZE
- numsize
- 1);
1168 return round_and_return (retval
, bits
- 1, negative
, 0, 0, 0);
1172 /* Store the bits we already have. */
1173 memcpy (retval
, num
, numsize
* sizeof (mp_limb_t
));
1174 #if RETURN_LIMB_SIZE > 1
1175 if (numsize
< RETURN_LIMB_SIZE
)
1176 # if RETURN_LIMB_SIZE == 2
1177 retval
[numsize
] = 0;
1179 MPN_ZERO (retval
+ numsize
, RETURN_LIMB_SIZE
- numsize
);
1184 /* We have to compute at least some of the fractional digits. */
1186 /* We construct a fraction and the result of the division gives us
1187 the needed digits. The denominator is 1.0 multiplied by the
1188 exponent of the lowest digit; i.e. 0.123 gives 123 / 1000 and
1189 123e-6 gives 123 / 1000000. */
1195 mp_limb_t
*psrc
= den
;
1196 mp_limb_t
*pdest
= num
;
1197 const struct mp_power
*ttab
= &_fpioconst_pow10
[0];
1199 assert (dig_no
> int_no
&& exponent
<= 0);
1202 /* For the fractional part we need not process too many digits. One
1203 decimal digits gives us log_2(10) ~ 3.32 bits. If we now compute
1205 digits we should have enough bits for the result. The remaining
1206 decimal digits give us the information that more bits are following.
1207 This can be used while rounding. (Two added as a safety margin.) */
1208 if (dig_no
- int_no
> (MANT_DIG
- bits
+ 2) / 3 + 2)
1210 dig_no
= int_no
+ (MANT_DIG
- bits
+ 2) / 3 + 2;
1216 neg_exp
= dig_no
- int_no
- exponent
;
1218 /* Construct the denominator. */
1223 if ((neg_exp
& expbit
) != 0)
1230 densize
= ttab
->arraysize
- _FPIO_CONST_OFFSET
;
1231 memcpy (psrc
, &__tens
[ttab
->arrayoff
+ _FPIO_CONST_OFFSET
],
1232 densize
* sizeof (mp_limb_t
));
1236 cy
= __mpn_mul (pdest
, &__tens
[ttab
->arrayoff
1237 + _FPIO_CONST_OFFSET
],
1238 ttab
->arraysize
- _FPIO_CONST_OFFSET
,
1240 densize
+= ttab
->arraysize
- _FPIO_CONST_OFFSET
;
1243 (void) SWAP (psrc
, pdest
);
1249 while (neg_exp
!= 0);
1252 memcpy (den
, num
, densize
* sizeof (mp_limb_t
));
1254 /* Read the fractional digits from the string. */
1255 (void) str_to_mpn (startp
, dig_no
- int_no
, num
, &numsize
, &exponent
1256 #ifndef USE_WIDE_CHAR
1257 , decimal
, decimal_len
, thousands
1261 /* We now have to shift both numbers so that the highest bit in the
1262 denominator is set. In the same process we copy the numerator to
1263 a high place in the array so that the division constructs the wanted
1264 digits. This is done by a "quasi fix point" number representation.
1266 num: ddddddddddd . 0000000000000000000000
1268 den: ddddddddddd n >= m
1272 count_leading_zeros (cnt
, den
[densize
- 1]);
1276 /* Don't call `mpn_shift' with a count of zero since the specification
1277 does not allow this. */
1278 (void) __mpn_lshift (den
, den
, densize
, cnt
);
1279 cy
= __mpn_lshift (num
, num
, numsize
, cnt
);
1281 num
[numsize
++] = cy
;
1284 /* Now we are ready for the division. But it is not necessary to
1285 do a full multi-precision division because we only need a small
1286 number of bits for the result. So we do not use __mpn_divmod
1287 here but instead do the division here by hand and stop whenever
1288 the needed number of bits is reached. The code itself comes
1289 from the GNU MP Library by Torbj\"orn Granlund. */
1297 mp_limb_t d
, n
, quot
;
1302 assert (numsize
== 1 && n
< d
);
1306 udiv_qrnnd (quot
, n
, n
, 0, d
);
1313 cnt = BITS_PER_MP_LIMB; \
1315 count_leading_zeros (cnt, quot); \
1317 if (BITS_PER_MP_LIMB - cnt > MANT_DIG) \
1319 used = MANT_DIG + cnt; \
1320 retval[0] = quot >> (BITS_PER_MP_LIMB - used); \
1321 bits = MANT_DIG + 1; \
1325 /* Note that we only clear the second element. */ \
1326 /* The conditional is determined at compile time. */ \
1327 if (RETURN_LIMB_SIZE > 1) \
1333 else if (bits + BITS_PER_MP_LIMB <= MANT_DIG) \
1334 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, BITS_PER_MP_LIMB, \
1338 used = MANT_DIG - bits; \
1340 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, quot); \
1342 bits += BITS_PER_MP_LIMB
1346 while (bits
<= MANT_DIG
);
1348 return round_and_return (retval
, exponent
- 1, negative
,
1349 quot
, BITS_PER_MP_LIMB
- 1 - used
,
1350 more_bits
|| n
!= 0);
1354 mp_limb_t d0
, d1
, n0
, n1
;
1361 if (numsize
< densize
)
1365 /* The numerator of the number occupies fewer bits than
1366 the denominator but the one limb is bigger than the
1367 high limb of the numerator. */
1374 exponent
-= BITS_PER_MP_LIMB
;
1377 if (bits
+ BITS_PER_MP_LIMB
<= MANT_DIG
)
1378 __mpn_lshift_1 (retval
, RETURN_LIMB_SIZE
,
1379 BITS_PER_MP_LIMB
, 0);
1382 used
= MANT_DIG
- bits
;
1384 __mpn_lshift_1 (retval
, RETURN_LIMB_SIZE
, used
, 0);
1386 bits
+= BITS_PER_MP_LIMB
;
1398 while (bits
<= MANT_DIG
)
1404 /* QUOT should be either 111..111 or 111..110. We need
1405 special treatment of this rare case as normal division
1406 would give overflow. */
1407 quot
= ~(mp_limb_t
) 0;
1410 if (r
< d1
) /* Carry in the addition? */
1412 add_ssaaaa (n1
, n0
, r
- d0
, 0, 0, d0
);
1415 n1
= d0
- (d0
!= 0);
1420 udiv_qrnnd (quot
, r
, n1
, n0
, d1
);
1421 umul_ppmm (n1
, n0
, d0
, quot
);
1425 if (n1
> r
|| (n1
== r
&& n0
> 0))
1427 /* The estimated QUOT was too large. */
1430 sub_ddmmss (n1
, n0
, n1
, n0
, 0, d0
);
1432 if (r
>= d1
) /* If not carry, test QUOT again. */
1435 sub_ddmmss (n1
, n0
, r
, 0, n1
, n0
);
1441 return round_and_return (retval
, exponent
- 1, negative
,
1442 quot
, BITS_PER_MP_LIMB
- 1 - used
,
1443 more_bits
|| n1
!= 0 || n0
!= 0);
1448 mp_limb_t cy
, dX
, d1
, n0
, n1
;
1452 dX
= den
[densize
- 1];
1453 d1
= den
[densize
- 2];
1455 /* The division does not work if the upper limb of the two-limb
1456 numerator is greater than the denominator. */
1457 if (__mpn_cmp (num
, &den
[densize
- numsize
], numsize
) > 0)
1460 if (numsize
< densize
)
1462 mp_size_t empty
= densize
- numsize
;
1466 exponent
-= empty
* BITS_PER_MP_LIMB
;
1469 if (bits
+ empty
* BITS_PER_MP_LIMB
<= MANT_DIG
)
1471 /* We make a difference here because the compiler
1472 cannot optimize the `else' case that good and
1473 this reflects all currently used FLOAT types
1474 and GMP implementations. */
1475 #if RETURN_LIMB_SIZE <= 2
1476 assert (empty
== 1);
1477 __mpn_lshift_1 (retval
, RETURN_LIMB_SIZE
,
1478 BITS_PER_MP_LIMB
, 0);
1480 for (i
= RETURN_LIMB_SIZE
- 1; i
>= empty
; --i
)
1481 retval
[i
] = retval
[i
- empty
];
1488 used
= MANT_DIG
- bits
;
1489 if (used
>= BITS_PER_MP_LIMB
)
1492 (void) __mpn_lshift (&retval
[used
1493 / BITS_PER_MP_LIMB
],
1494 retval
, RETURN_LIMB_SIZE
,
1495 used
% BITS_PER_MP_LIMB
);
1496 for (i
= used
/ BITS_PER_MP_LIMB
- 1; i
>= 0; --i
)
1500 __mpn_lshift_1 (retval
, RETURN_LIMB_SIZE
, used
, 0);
1502 bits
+= empty
* BITS_PER_MP_LIMB
;
1504 for (i
= numsize
; i
> 0; --i
)
1505 num
[i
+ empty
] = num
[i
- 1];
1506 MPN_ZERO (num
, empty
+ 1);
1511 assert (numsize
== densize
);
1512 for (i
= numsize
; i
> 0; --i
)
1513 num
[i
] = num
[i
- 1];
1519 while (bits
<= MANT_DIG
)
1522 /* This might over-estimate QUOT, but it's probably not
1523 worth the extra code here to find out. */
1524 quot
= ~(mp_limb_t
) 0;
1529 udiv_qrnnd (quot
, r
, n0
, num
[densize
- 1], dX
);
1530 umul_ppmm (n1
, n0
, d1
, quot
);
1532 while (n1
> r
|| (n1
== r
&& n0
> num
[densize
- 2]))
1536 if (r
< dX
) /* I.e. "carry in previous addition?" */
1543 /* Possible optimization: We already have (q * n0) and (1 * n1)
1544 after the calculation of QUOT. Taking advantage of this, we
1545 could make this loop make two iterations less. */
1547 cy
= __mpn_submul_1 (num
, den
, densize
+ 1, quot
);
1549 if (num
[densize
] != cy
)
1551 cy
= __mpn_add_n (num
, num
, den
, densize
);
1555 n0
= num
[densize
] = num
[densize
- 1];
1556 for (i
= densize
- 1; i
> 0; --i
)
1557 num
[i
] = num
[i
- 1];
1562 for (i
= densize
; num
[i
] == 0 && i
>= 0; --i
)
1564 return round_and_return (retval
, exponent
- 1, negative
,
1565 quot
, BITS_PER_MP_LIMB
- 1 - used
,
1566 more_bits
|| i
>= 0);
1573 #if defined _LIBC && !defined USE_WIDE_CHAR
1574 libc_hidden_def (____STRTOF_INTERNAL
)
1577 /* External user entry point. */
1580 #ifdef weak_function
1583 __STRTOF (nptr
, endptr
, loc
)
1584 const STRING_TYPE
*nptr
;
1585 STRING_TYPE
**endptr
;
1588 return ____STRTOF_INTERNAL (nptr
, endptr
, 0, loc
);
1591 libc_hidden_def (__STRTOF
)
1592 libc_hidden_ver (__STRTOF
, STRTOF
)
1594 weak_alias (__STRTOF
, STRTOF
)
1596 #ifdef LONG_DOUBLE_COMPAT
1597 # if LONG_DOUBLE_COMPAT(libc, GLIBC_2_1)
1598 # ifdef USE_WIDE_CHAR
1599 compat_symbol (libc
, __wcstod_l
, __wcstold_l
, GLIBC_2_1
);
1601 compat_symbol (libc
, __strtod_l
, __strtold_l
, GLIBC_2_1
);
1604 # if LONG_DOUBLE_COMPAT(libc, GLIBC_2_3)
1605 # ifdef USE_WIDE_CHAR
1606 compat_symbol (libc
, wcstod_l
, wcstold_l
, GLIBC_2_3
);
1608 compat_symbol (libc
, strtod_l
, strtold_l
, GLIBC_2_3
);