1 /* Convert string representing a number to float value, using given locale.
2 Copyright (C) 1997,1998,2002,2004,2005,2006,2007,2008
3 Free Software Foundation, Inc.
4 This file is part of the GNU C Library.
5 Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Lesser General Public License for more details.
17 You should have received a copy of the GNU Lesser General Public
18 License along with the GNU C Library; if not, write to the Free
19 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
24 extern double ____strtod_l_internal (const char *, char **, int, __locale_t
);
25 extern unsigned long long int ____strtoull_l_internal (const char *, char **,
26 int, int, __locale_t
);
28 /* Configuration part. These macros are defined by `strtold.c',
29 `strtof.c', `wcstod.c', `wcstold.c', and `wcstof.c' to produce the
30 `long double' and `float' versions of the reader. */
32 # include <math_ldbl_opt.h>
36 # define STRTOF wcstod_l
37 # define __STRTOF __wcstod_l
39 # define STRTOF strtod_l
40 # define __STRTOF __strtod_l
42 # define MPN2FLOAT __mpn_construct_double
43 # define FLOAT_HUGE_VAL HUGE_VAL
44 # define SET_MANTISSA(flt, mant) \
45 do { union ieee754_double u; \
47 if ((mant & 0xfffffffffffffULL) == 0) \
48 mant = 0x8000000000000ULL; \
49 u.ieee.mantissa0 = ((mant) >> 32) & 0xfffff; \
50 u.ieee.mantissa1 = (mant) & 0xffffffff; \
54 /* End of configuration part. */
60 #include "../locale/localeinfo.h"
66 /* The gmp headers need some configuration frobs. */
69 /* Include gmp-mparam.h first, such that definitions of _SHORT_LIMB
70 and _LONG_LONG_LIMB in it can take effect into gmp.h. */
71 #include <gmp-mparam.h>
75 #include "fpioconst.h"
81 /* We use this code for the extended locale handling where the
82 function gets as an additional argument the locale which has to be
83 used. To access the values we have to redefine the _NL_CURRENT and
84 _NL_CURRENT_WORD macros. */
86 #define _NL_CURRENT(category, item) \
87 (current->values[_NL_ITEM_INDEX (item)].string)
88 #undef _NL_CURRENT_WORD
89 #define _NL_CURRENT_WORD(category, item) \
90 ((uint32_t) current->values[_NL_ITEM_INDEX (item)].word)
92 #if defined _LIBC || defined HAVE_WCHAR_H
98 # define STRING_TYPE wchar_t
99 # define CHAR_TYPE wint_t
100 # define L_(Ch) L##Ch
101 # define ISSPACE(Ch) __iswspace_l ((Ch), loc)
102 # define ISDIGIT(Ch) __iswdigit_l ((Ch), loc)
103 # define ISXDIGIT(Ch) __iswxdigit_l ((Ch), loc)
104 # define TOLOWER(Ch) __towlower_l ((Ch), loc)
105 # define TOLOWER_C(Ch) __towlower_l ((Ch), _nl_C_locobj_ptr)
106 # define STRNCASECMP(S1, S2, N) \
107 __wcsncasecmp_l ((S1), (S2), (N), _nl_C_locobj_ptr)
108 # define STRTOULL(S, E, B) ____wcstoull_l_internal ((S), (E), (B), 0, loc)
110 # define STRING_TYPE char
111 # define CHAR_TYPE char
113 # define ISSPACE(Ch) __isspace_l ((Ch), loc)
114 # define ISDIGIT(Ch) __isdigit_l ((Ch), loc)
115 # define ISXDIGIT(Ch) __isxdigit_l ((Ch), loc)
116 # define TOLOWER(Ch) __tolower_l ((Ch), loc)
117 # define TOLOWER_C(Ch) __tolower_l ((Ch), _nl_C_locobj_ptr)
118 # define STRNCASECMP(S1, S2, N) \
119 __strncasecmp_l ((S1), (S2), (N), _nl_C_locobj_ptr)
120 # define STRTOULL(S, E, B) ____strtoull_l_internal ((S), (E), (B), 0, loc)
124 /* Constants we need from float.h; select the set for the FLOAT precision. */
125 #define MANT_DIG PASTE(FLT,_MANT_DIG)
126 #define DIG PASTE(FLT,_DIG)
127 #define MAX_EXP PASTE(FLT,_MAX_EXP)
128 #define MIN_EXP PASTE(FLT,_MIN_EXP)
129 #define MAX_10_EXP PASTE(FLT,_MAX_10_EXP)
130 #define MIN_10_EXP PASTE(FLT,_MIN_10_EXP)
132 /* Extra macros required to get FLT expanded before the pasting. */
133 #define PASTE(a,b) PASTE1(a,b)
134 #define PASTE1(a,b) a##b
136 /* Function to construct a floating point number from an MP integer
137 containing the fraction bits, a base 2 exponent, and a sign flag. */
138 extern FLOAT
MPN2FLOAT (mp_srcptr mpn
, int exponent
, int negative
);
140 /* Definitions according to limb size used. */
141 #if BITS_PER_MP_LIMB == 32
142 # define MAX_DIG_PER_LIMB 9
143 # define MAX_FAC_PER_LIMB 1000000000UL
144 #elif BITS_PER_MP_LIMB == 64
145 # define MAX_DIG_PER_LIMB 19
146 # define MAX_FAC_PER_LIMB 10000000000000000000ULL
148 # error "mp_limb_t size " BITS_PER_MP_LIMB "not accounted for"
151 extern const mp_limb_t _tens_in_limb
[MAX_DIG_PER_LIMB
+ 1];
154 #define howmany(x,y) (((x)+((y)-1))/(y))
156 #define SWAP(x, y) ({ typeof(x) _tmp = x; x = y; y = _tmp; })
158 #define NDIG (MAX_10_EXP - MIN_10_EXP + 2 * MANT_DIG)
159 #define HEXNDIG ((MAX_EXP - MIN_EXP + 7) / 8 + 2 * MANT_DIG)
160 #define RETURN_LIMB_SIZE howmany (MANT_DIG, BITS_PER_MP_LIMB)
162 #define RETURN(val,end) \
163 do { if (endptr != NULL) *endptr = (STRING_TYPE *) (end); \
164 return val; } while (0)
166 /* Maximum size necessary for mpn integers to hold floating point numbers. */
167 #define MPNSIZE (howmany (MAX_EXP + 2 * MANT_DIG, BITS_PER_MP_LIMB) \
169 /* Declare an mpn integer variable that big. */
170 #define MPN_VAR(name) mp_limb_t name[MPNSIZE]; mp_size_t name##size
171 /* Copy an mpn integer value. */
172 #define MPN_ASSIGN(dst, src) \
173 memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t))
176 /* Return a floating point number of the needed type according to the given
177 multi-precision number after possible rounding. */
179 round_and_return (mp_limb_t
*retval
, int exponent
, int negative
,
180 mp_limb_t round_limb
, mp_size_t round_bit
, int more_bits
)
182 if (exponent
< MIN_EXP
- 1)
184 mp_size_t shift
= MIN_EXP
- 1 - exponent
;
186 if (shift
> MANT_DIG
)
192 more_bits
|= (round_limb
& ((((mp_limb_t
) 1) << round_bit
) - 1)) != 0;
193 if (shift
== MANT_DIG
)
194 /* This is a special case to handle the very seldom case where
195 the mantissa will be empty after the shift. */
199 round_limb
= retval
[RETURN_LIMB_SIZE
- 1];
200 round_bit
= (MANT_DIG
- 1) % BITS_PER_MP_LIMB
;
201 for (i
= 0; i
< RETURN_LIMB_SIZE
; ++i
)
202 more_bits
|= retval
[i
] != 0;
203 MPN_ZERO (retval
, RETURN_LIMB_SIZE
);
205 else if (shift
>= BITS_PER_MP_LIMB
)
209 round_limb
= retval
[(shift
- 1) / BITS_PER_MP_LIMB
];
210 round_bit
= (shift
- 1) % BITS_PER_MP_LIMB
;
211 for (i
= 0; i
< (shift
- 1) / BITS_PER_MP_LIMB
; ++i
)
212 more_bits
|= retval
[i
] != 0;
213 more_bits
|= ((round_limb
& ((((mp_limb_t
) 1) << round_bit
) - 1))
216 (void) __mpn_rshift (retval
, &retval
[shift
/ BITS_PER_MP_LIMB
],
217 RETURN_LIMB_SIZE
- (shift
/ BITS_PER_MP_LIMB
),
218 shift
% BITS_PER_MP_LIMB
);
219 MPN_ZERO (&retval
[RETURN_LIMB_SIZE
- (shift
/ BITS_PER_MP_LIMB
)],
220 shift
/ BITS_PER_MP_LIMB
);
224 round_limb
= retval
[0];
225 round_bit
= shift
- 1;
226 (void) __mpn_rshift (retval
, retval
, RETURN_LIMB_SIZE
, shift
);
228 /* This is a hook for the m68k long double format, where the
229 exponent bias is the same for normalized and denormalized
232 # define DENORM_EXP (MIN_EXP - 2)
234 exponent
= DENORM_EXP
;
237 if ((round_limb
& (((mp_limb_t
) 1) << round_bit
)) != 0
238 && (more_bits
|| (retval
[0] & 1) != 0
239 || (round_limb
& ((((mp_limb_t
) 1) << round_bit
) - 1)) != 0))
241 mp_limb_t cy
= __mpn_add_1 (retval
, retval
, RETURN_LIMB_SIZE
, 1);
243 if (((MANT_DIG
% BITS_PER_MP_LIMB
) == 0 && cy
) ||
244 ((MANT_DIG
% BITS_PER_MP_LIMB
) != 0 &&
245 (retval
[RETURN_LIMB_SIZE
- 1]
246 & (((mp_limb_t
) 1) << (MANT_DIG
% BITS_PER_MP_LIMB
))) != 0))
249 (void) __mpn_rshift (retval
, retval
, RETURN_LIMB_SIZE
, 1);
250 retval
[RETURN_LIMB_SIZE
- 1]
251 |= ((mp_limb_t
) 1) << ((MANT_DIG
- 1) % BITS_PER_MP_LIMB
);
253 else if (exponent
== DENORM_EXP
254 && (retval
[RETURN_LIMB_SIZE
- 1]
255 & (((mp_limb_t
) 1) << ((MANT_DIG
- 1) % BITS_PER_MP_LIMB
)))
257 /* The number was denormalized but now normalized. */
258 exponent
= MIN_EXP
- 1;
261 if (exponent
> MAX_EXP
)
262 return negative
? -FLOAT_HUGE_VAL
: FLOAT_HUGE_VAL
;
264 return MPN2FLOAT (retval
, exponent
, negative
);
268 /* Read a multi-precision integer starting at STR with exactly DIGCNT digits
269 into N. Return the size of the number limbs in NSIZE at the first
270 character od the string that is not part of the integer as the function
271 value. If the EXPONENT is small enough to be taken as an additional
272 factor for the resulting number (see code) multiply by it. */
273 static const STRING_TYPE
*
274 str_to_mpn (const STRING_TYPE
*str
, int digcnt
, mp_limb_t
*n
, mp_size_t
*nsize
,
276 #ifndef USE_WIDE_CHAR
277 , const char *decimal
, size_t decimal_len
, const char *thousands
282 /* Number of digits for actual limb. */
291 if (cnt
== MAX_DIG_PER_LIMB
)
301 cy
= __mpn_mul_1 (n
, n
, *nsize
, MAX_FAC_PER_LIMB
);
302 cy
+= __mpn_add_1 (n
, n
, *nsize
, low
);
313 /* There might be thousands separators or radix characters in
314 the string. But these all can be ignored because we know the
315 format of the number is correct and we have an exact number
316 of characters to read. */
318 if (*str
< L
'0' || *str
> L
'9')
321 if (*str
< '0' || *str
> '9')
324 if (thousands
!= NULL
&& *str
== *thousands
325 && ({ for (inner
= 1; thousands
[inner
] != '\0'; ++inner
)
326 if (thousands
[inner
] != str
[inner
])
328 thousands
[inner
] == '\0'; }))
334 low
= low
* 10 + *str
++ - L_('0');
337 while (--digcnt
> 0);
339 if (*exponent
> 0 && cnt
+ *exponent
<= MAX_DIG_PER_LIMB
)
341 low
*= _tens_in_limb
[*exponent
];
342 start
= _tens_in_limb
[cnt
+ *exponent
];
346 start
= _tens_in_limb
[cnt
];
356 cy
= __mpn_mul_1 (n
, n
, *nsize
, start
);
357 cy
+= __mpn_add_1 (n
, n
, *nsize
, low
);
366 /* Shift {PTR, SIZE} COUNT bits to the left, and fill the vacated bits
367 with the COUNT most significant bits of LIMB.
369 Tege doesn't like this function so I have to write it here myself. :)
372 __attribute ((always_inline
))
373 __mpn_lshift_1 (mp_limb_t
*ptr
, mp_size_t size
, unsigned int count
,
376 if (__builtin_constant_p (count
) && count
== BITS_PER_MP_LIMB
)
378 /* Optimize the case of shifting by exactly a word:
379 just copy words, with no actual bit-shifting. */
381 for (i
= size
- 1; i
> 0; --i
)
387 (void) __mpn_lshift (ptr
, ptr
, size
, count
);
388 ptr
[0] |= limb
>> (BITS_PER_MP_LIMB
- count
);
393 #define INTERNAL(x) INTERNAL1(x)
394 #define INTERNAL1(x) __##x##_internal
395 #ifndef ____STRTOF_INTERNAL
396 # define ____STRTOF_INTERNAL INTERNAL (__STRTOF)
399 /* This file defines a function to check for correct grouping. */
400 #include "grouping.h"
403 /* Return a floating point number with the value of the given string NPTR.
404 Set *ENDPTR to the character after the last used one. If the number is
405 smaller than the smallest representable number, set `errno' to ERANGE and
406 return 0.0. If the number is too big to be represented, set `errno' to
407 ERANGE and return HUGE_VAL with the appropriate sign. */
409 ____STRTOF_INTERNAL (nptr
, endptr
, group
, loc
)
410 const STRING_TYPE
*nptr
;
411 STRING_TYPE
**endptr
;
415 int negative
; /* The sign of the number. */
416 MPN_VAR (num
); /* MP representation of the number. */
417 int exponent
; /* Exponent of the number. */
419 /* Numbers starting `0X' or `0x' have to be processed with base 16. */
422 /* When we have to compute fractional digits we form a fraction with a
423 second multi-precision number (and we sometimes need a second for
424 temporary results). */
427 /* Representation for the return value. */
428 mp_limb_t retval
[RETURN_LIMB_SIZE
];
429 /* Number of bits currently in result value. */
432 /* Running pointer after the last character processed in the string. */
433 const STRING_TYPE
*cp
, *tp
;
434 /* Start of significant part of the number. */
435 const STRING_TYPE
*startp
, *start_of_digits
;
436 /* Points at the character following the integer and fractional digits. */
437 const STRING_TYPE
*expp
;
438 /* Total number of digit and number of digits in integer part. */
439 int dig_no
, int_no
, lead_zero
;
440 /* Contains the last character read. */
443 /* We should get wint_t from <stddef.h>, but not all GCC versions define it
444 there. So define it ourselves if it remains undefined. */
446 typedef unsigned int wint_t;
448 /* The radix character of the current locale. */
455 /* The thousands character of the current locale. */
457 wchar_t thousands
= L
'\0';
459 const char *thousands
= NULL
;
461 /* The numeric grouping specification of the current locale,
462 in the format described in <locale.h>. */
463 const char *grouping
;
464 /* Used in several places. */
467 struct locale_data
*current
= loc
->__locales
[LC_NUMERIC
];
469 if (__builtin_expect (group
, 0))
471 grouping
= _NL_CURRENT (LC_NUMERIC
, GROUPING
);
472 if (*grouping
<= 0 || *grouping
== CHAR_MAX
)
476 /* Figure out the thousands separator character. */
478 thousands
= _NL_CURRENT_WORD (LC_NUMERIC
,
479 _NL_NUMERIC_THOUSANDS_SEP_WC
);
480 if (thousands
== L
'\0')
483 thousands
= _NL_CURRENT (LC_NUMERIC
, THOUSANDS_SEP
);
484 if (*thousands
== '\0')
495 /* Find the locale's decimal point character. */
497 decimal
= _NL_CURRENT_WORD (LC_NUMERIC
, _NL_NUMERIC_DECIMAL_POINT_WC
);
498 assert (decimal
!= L
'\0');
499 # define decimal_len 1
501 decimal
= _NL_CURRENT (LC_NUMERIC
, DECIMAL_POINT
);
502 decimal_len
= strlen (decimal
);
503 assert (decimal_len
> 0);
506 /* Prepare number representation. */
511 /* Parse string to get maximal legal prefix. We need the number of
512 characters of the integer part, the fractional part and the exponent. */
514 /* Ignore leading white space. */
519 /* Get sign of the result. */
525 else if (c
== L_('+'))
528 /* Return 0.0 if no legal string is found.
529 No character is used even if a sign was found. */
531 if (c
== (wint_t) decimal
532 && (wint_t) cp
[1] >= L
'0' && (wint_t) cp
[1] <= L
'9')
534 /* We accept it. This funny construct is here only to indent
535 the code correctly. */
538 for (cnt
= 0; decimal
[cnt
] != '\0'; ++cnt
)
539 if (cp
[cnt
] != decimal
[cnt
])
541 if (decimal
[cnt
] == '\0' && cp
[cnt
] >= '0' && cp
[cnt
] <= '9')
543 /* We accept it. This funny construct is here only to indent
544 the code correctly. */
547 else if (c
< L_('0') || c
> L_('9'))
549 /* Check for `INF' or `INFINITY'. */
550 CHAR_TYPE lowc
= TOLOWER_C (c
);
552 if (lowc
== L_('i') && STRNCASECMP (cp
, L_("inf"), 3) == 0)
554 /* Return +/- infinity. */
556 *endptr
= (STRING_TYPE
*)
557 (cp
+ (STRNCASECMP (cp
+ 3, L_("inity"), 5) == 0
560 return negative
? -FLOAT_HUGE_VAL
: FLOAT_HUGE_VAL
;
563 if (lowc
== L_('n') && STRNCASECMP (cp
, L_("nan"), 3) == 0)
570 /* Match `(n-char-sequence-digit)'. */
573 const STRING_TYPE
*startp
= cp
;
576 while ((*cp
>= L_('0') && *cp
<= L_('9'))
577 || ({ CHAR_TYPE lo
= TOLOWER (*cp
);
578 lo
>= L_('a') && lo
<= L_('z'); })
582 /* The closing brace is missing. Only match the NAN
587 /* This is a system-dependent way to specify the
588 bitmask used for the NaN. We expect it to be
589 a number which is put in the mantissa of the
592 unsigned long long int mant
;
594 mant
= STRTOULL (startp
+ 1, &endp
, 0);
596 SET_MANTISSA (retval
, mant
);
598 /* Consume the closing brace. */
604 *endptr
= (STRING_TYPE
*) cp
;
609 /* It is really a text we do not recognize. */
613 /* First look whether we are faced with a hexadecimal number. */
614 if (c
== L_('0') && TOLOWER (cp
[1]) == L_('x'))
616 /* Okay, it is a hexa-decimal number. Remember this and skip
617 the characters. BTW: hexadecimal numbers must not be
625 /* Record the start of the digits, in case we will check their grouping. */
626 start_of_digits
= startp
= cp
;
628 /* Ignore leading zeroes. This helps us to avoid useless computations. */
630 while (c
== L
'0' || ((wint_t) thousands
!= L
'\0' && c
== (wint_t) thousands
))
633 if (__builtin_expect (thousands
== NULL
, 1))
638 /* We also have the multibyte thousands string. */
643 for (cnt
= 0; thousands
[cnt
] != '\0'; ++cnt
)
644 if (thousands
[cnt
] != cp
[cnt
])
646 if (thousands
[cnt
] != '\0')
655 /* If no other digit but a '0' is found the result is 0.0.
656 Return current read pointer. */
657 CHAR_TYPE lowc
= TOLOWER (c
);
658 if (!((c
>= L_('0') && c
<= L_('9'))
659 || (base
== 16 && lowc
>= L_('a') && lowc
<= L_('f'))
662 c
== (wint_t) decimal
664 ({ for (cnt
= 0; decimal
[cnt
] != '\0'; ++cnt
)
665 if (decimal
[cnt
] != cp
[cnt
])
667 decimal
[cnt
] == '\0'; })
669 /* '0x.' alone is not a valid hexadecimal number.
670 '.' alone is not valid either, but that has been checked
673 || cp
!= start_of_digits
674 || (cp
[decimal_len
] >= L_('0') && cp
[decimal_len
] <= L_('9'))
675 || ({ CHAR_TYPE lo
= TOLOWER (cp
[decimal_len
]);
676 lo
>= L_('a') && lo
<= L_('f'); })))
677 || (base
== 16 && (cp
!= start_of_digits
679 || (base
!= 16 && lowc
== L_('e'))))
682 tp
= __correctly_grouped_prefixwc (start_of_digits
, cp
, thousands
,
685 tp
= __correctly_grouped_prefixmb (start_of_digits
, cp
, thousands
,
688 /* If TP is at the start of the digits, there was no correctly
689 grouped prefix of the string; so no number found. */
690 RETURN (negative
? -0.0 : 0.0,
691 tp
== start_of_digits
? (base
== 16 ? cp
- 1 : nptr
) : tp
);
694 /* Remember first significant digit and read following characters until the
695 decimal point, exponent character or any non-FP number character. */
700 if ((c
>= L_('0') && c
<= L_('9'))
702 && ({ CHAR_TYPE lo
= TOLOWER (c
);
703 lo
>= L_('a') && lo
<= L_('f'); })))
708 if (__builtin_expect ((wint_t) thousands
== L
'\0', 1)
709 || c
!= (wint_t) thousands
)
710 /* Not a digit or separator: end of the integer part. */
713 if (__builtin_expect (thousands
== NULL
, 1))
717 for (cnt
= 0; thousands
[cnt
] != '\0'; ++cnt
)
718 if (thousands
[cnt
] != cp
[cnt
])
720 if (thousands
[cnt
] != '\0')
729 if (__builtin_expect (grouping
!= NULL
, 0) && cp
> start_of_digits
)
731 /* Check the grouping of the digits. */
733 tp
= __correctly_grouped_prefixwc (start_of_digits
, cp
, thousands
,
736 tp
= __correctly_grouped_prefixmb (start_of_digits
, cp
, thousands
,
741 /* Less than the entire string was correctly grouped. */
743 if (tp
== start_of_digits
)
744 /* No valid group of numbers at all: no valid number. */
748 /* The number is validly grouped, but consists
749 only of zeroes. The whole value is zero. */
750 RETURN (negative
? -0.0 : 0.0, tp
);
752 /* Recompute DIG_NO so we won't read more digits than
753 are properly grouped. */
756 for (tp
= startp
; tp
< cp
; ++tp
)
757 if (*tp
>= L_('0') && *tp
<= L_('9'))
767 /* We have the number of digits in the integer part. Whether these
768 are all or any is really a fractional digit will be decided
771 lead_zero
= int_no
== 0 ? -1 : 0;
773 /* Read the fractional digits. A special case are the 'american
774 style' numbers like `16.' i.e. with decimal point but without
778 c
== (wint_t) decimal
780 ({ for (cnt
= 0; decimal
[cnt
] != '\0'; ++cnt
)
781 if (decimal
[cnt
] != cp
[cnt
])
783 decimal
[cnt
] == '\0'; })
789 while ((c
>= L_('0') && c
<= L_('9')) ||
790 (base
== 16 && ({ CHAR_TYPE lo
= TOLOWER (c
);
791 lo
>= L_('a') && lo
<= L_('f'); })))
793 if (c
!= L_('0') && lead_zero
== -1)
794 lead_zero
= dig_no
- int_no
;
800 /* Remember start of exponent (if any). */
805 if ((base
== 16 && lowc
== L_('p'))
806 || (base
!= 16 && lowc
== L_('e')))
808 int exp_negative
= 0;
816 else if (c
== L_('+'))
819 if (c
>= L_('0') && c
<= L_('9'))
823 /* Get the exponent limit. */
825 exp_limit
= (exp_negative
?
826 -MIN_EXP
+ MANT_DIG
+ 4 * int_no
:
827 MAX_EXP
- 4 * int_no
+ 4 * lead_zero
+ 3);
829 exp_limit
= (exp_negative
?
830 -MIN_10_EXP
+ MANT_DIG
+ int_no
:
831 MAX_10_EXP
- int_no
+ lead_zero
+ 1);
836 exponent
+= c
- L_('0');
838 if (__builtin_expect (exponent
> exp_limit
, 0))
839 /* The exponent is too large/small to represent a valid
844 /* We have to take care for special situation: a joker
845 might have written "0.0e100000" which is in fact
848 result
= negative
? -0.0 : 0.0;
851 /* Overflow or underflow. */
852 __set_errno (ERANGE
);
853 result
= (exp_negative
? (negative
? -0.0 : 0.0) :
854 negative
? -FLOAT_HUGE_VAL
: FLOAT_HUGE_VAL
);
857 /* Accept all following digits as part of the exponent. */
860 while (*cp
>= L_('0') && *cp
<= L_('9'));
868 while (c
>= L_('0') && c
<= L_('9'));
871 exponent
= -exponent
;
877 /* We don't want to have to work with trailing zeroes after the radix. */
880 while (expp
[-1] == L_('0'))
885 assert (dig_no
>= int_no
);
888 if (dig_no
== int_no
&& dig_no
> 0 && exponent
< 0)
891 while (! (base
== 16 ? ISXDIGIT (expp
[-1]) : ISDIGIT (expp
[-1])))
894 if (expp
[-1] != L_('0'))
900 exponent
+= base
== 16 ? 4 : 1;
902 while (dig_no
> 0 && exponent
< 0);
906 /* The whole string is parsed. Store the address of the next character. */
908 *endptr
= (STRING_TYPE
*) cp
;
911 return negative
? -0.0 : 0.0;
915 /* Find the decimal point */
917 while (*startp
!= decimal
)
922 if (*startp
== decimal
[0])
924 for (cnt
= 1; decimal
[cnt
] != '\0'; ++cnt
)
925 if (decimal
[cnt
] != startp
[cnt
])
927 if (decimal
[cnt
] == '\0')
933 startp
+= lead_zero
+ decimal_len
;
934 exponent
-= base
== 16 ? 4 * lead_zero
: lead_zero
;
938 /* If the BASE is 16 we can use a simpler algorithm. */
941 static const int nbits
[16] = { 0, 1, 2, 2, 3, 3, 3, 3,
942 4, 4, 4, 4, 4, 4, 4, 4 };
943 int idx
= (MANT_DIG
- 1) / BITS_PER_MP_LIMB
;
944 int pos
= (MANT_DIG
- 1) % BITS_PER_MP_LIMB
;
947 while (!ISXDIGIT (*startp
))
949 while (*startp
== L_('0'))
951 if (ISDIGIT (*startp
))
952 val
= *startp
++ - L_('0');
954 val
= 10 + TOLOWER (*startp
++) - L_('a');
956 /* We cannot have a leading zero. */
959 if (pos
+ 1 >= 4 || pos
+ 1 >= bits
)
961 /* We don't have to care for wrapping. This is the normal
962 case so we add the first clause in the `if' expression as
963 an optimization. It is a compile-time constant and so does
964 not cost anything. */
965 retval
[idx
] = val
<< (pos
- bits
+ 1);
970 retval
[idx
--] = val
>> (bits
- pos
- 1);
971 retval
[idx
] = val
<< (BITS_PER_MP_LIMB
- (bits
- pos
- 1));
972 pos
= BITS_PER_MP_LIMB
- 1 - (bits
- pos
- 1);
975 /* Adjust the exponent for the bits we are shifting in. */
976 exponent
+= bits
- 1 + (int_no
- 1) * 4;
978 while (--dig_no
> 0 && idx
>= 0)
980 if (!ISXDIGIT (*startp
))
981 startp
+= decimal_len
;
982 if (ISDIGIT (*startp
))
983 val
= *startp
++ - L_('0');
985 val
= 10 + TOLOWER (*startp
++) - L_('a');
989 retval
[idx
] |= val
<< (pos
- 4 + 1);
994 retval
[idx
--] |= val
>> (4 - pos
- 1);
995 val
<<= BITS_PER_MP_LIMB
- (4 - pos
- 1);
997 return round_and_return (retval
, exponent
, negative
, val
,
998 BITS_PER_MP_LIMB
- 1, dig_no
> 0);
1001 pos
= BITS_PER_MP_LIMB
- 1 - (4 - pos
- 1);
1005 /* We ran out of digits. */
1006 MPN_ZERO (retval
, idx
);
1008 return round_and_return (retval
, exponent
, negative
, 0, 0, 0);
1011 /* Now we have the number of digits in total and the integer digits as well
1012 as the exponent and its sign. We can decide whether the read digits are
1013 really integer digits or belong to the fractional part; i.e. we normalize
1016 register int incr
= (exponent
< 0 ? MAX (-int_no
, exponent
)
1017 : MIN (dig_no
- int_no
, exponent
));
1022 if (__builtin_expect (int_no
+ exponent
> MAX_10_EXP
+ 1, 0))
1024 __set_errno (ERANGE
);
1025 return negative
? -FLOAT_HUGE_VAL
: FLOAT_HUGE_VAL
;
1028 if (__builtin_expect (exponent
< MIN_10_EXP
- (DIG
+ 1), 0))
1030 __set_errno (ERANGE
);
1031 return negative
? -0.0 : 0.0;
1036 /* Read the integer part as a multi-precision number to NUM. */
1037 startp
= str_to_mpn (startp
, int_no
, num
, &numsize
, &exponent
1038 #ifndef USE_WIDE_CHAR
1039 , decimal
, decimal_len
, thousands
1045 /* We now multiply the gained number by the given power of ten. */
1046 mp_limb_t
*psrc
= num
;
1047 mp_limb_t
*pdest
= den
;
1049 const struct mp_power
*ttab
= &_fpioconst_pow10
[0];
1053 if ((exponent
& expbit
) != 0)
1055 size_t size
= ttab
->arraysize
- _FPIO_CONST_OFFSET
;
1059 /* FIXME: not the whole multiplication has to be
1060 done. If we have the needed number of bits we
1061 only need the information whether more non-zero
1063 if (numsize
>= ttab
->arraysize
- _FPIO_CONST_OFFSET
)
1064 cy
= __mpn_mul (pdest
, psrc
, numsize
,
1065 &__tens
[ttab
->arrayoff
1066 + _FPIO_CONST_OFFSET
],
1069 cy
= __mpn_mul (pdest
, &__tens
[ttab
->arrayoff
1070 + _FPIO_CONST_OFFSET
],
1071 size
, psrc
, numsize
);
1075 (void) SWAP (psrc
, pdest
);
1080 while (exponent
!= 0);
1083 memcpy (num
, den
, numsize
* sizeof (mp_limb_t
));
1086 /* Determine how many bits of the result we already have. */
1087 count_leading_zeros (bits
, num
[numsize
- 1]);
1088 bits
= numsize
* BITS_PER_MP_LIMB
- bits
;
1090 /* Now we know the exponent of the number in base two.
1091 Check it against the maximum possible exponent. */
1092 if (__builtin_expect (bits
> MAX_EXP
, 0))
1094 __set_errno (ERANGE
);
1095 return negative
? -FLOAT_HUGE_VAL
: FLOAT_HUGE_VAL
;
1098 /* We have already the first BITS bits of the result. Together with
1099 the information whether more non-zero bits follow this is enough
1100 to determine the result. */
1101 if (bits
> MANT_DIG
)
1104 const mp_size_t least_idx
= (bits
- MANT_DIG
) / BITS_PER_MP_LIMB
;
1105 const mp_size_t least_bit
= (bits
- MANT_DIG
) % BITS_PER_MP_LIMB
;
1106 const mp_size_t round_idx
= least_bit
== 0 ? least_idx
- 1
1108 const mp_size_t round_bit
= least_bit
== 0 ? BITS_PER_MP_LIMB
- 1
1112 memcpy (retval
, &num
[least_idx
],
1113 RETURN_LIMB_SIZE
* sizeof (mp_limb_t
));
1116 for (i
= least_idx
; i
< numsize
- 1; ++i
)
1117 retval
[i
- least_idx
] = (num
[i
] >> least_bit
)
1119 << (BITS_PER_MP_LIMB
- least_bit
));
1120 if (i
- least_idx
< RETURN_LIMB_SIZE
)
1121 retval
[RETURN_LIMB_SIZE
- 1] = num
[i
] >> least_bit
;
1124 /* Check whether any limb beside the ones in RETVAL are non-zero. */
1125 for (i
= 0; num
[i
] == 0; ++i
)
1128 return round_and_return (retval
, bits
- 1, negative
,
1129 num
[round_idx
], round_bit
,
1130 int_no
< dig_no
|| i
< round_idx
);
1133 else if (dig_no
== int_no
)
1135 const mp_size_t target_bit
= (MANT_DIG
- 1) % BITS_PER_MP_LIMB
;
1136 const mp_size_t is_bit
= (bits
- 1) % BITS_PER_MP_LIMB
;
1138 if (target_bit
== is_bit
)
1140 memcpy (&retval
[RETURN_LIMB_SIZE
- numsize
], num
,
1141 numsize
* sizeof (mp_limb_t
));
1142 /* FIXME: the following loop can be avoided if we assume a
1143 maximal MANT_DIG value. */
1144 MPN_ZERO (retval
, RETURN_LIMB_SIZE
- numsize
);
1146 else if (target_bit
> is_bit
)
1148 (void) __mpn_lshift (&retval
[RETURN_LIMB_SIZE
- numsize
],
1149 num
, numsize
, target_bit
- is_bit
);
1150 /* FIXME: the following loop can be avoided if we assume a
1151 maximal MANT_DIG value. */
1152 MPN_ZERO (retval
, RETURN_LIMB_SIZE
- numsize
);
1157 assert (numsize
< RETURN_LIMB_SIZE
);
1159 cy
= __mpn_rshift (&retval
[RETURN_LIMB_SIZE
- numsize
],
1160 num
, numsize
, is_bit
- target_bit
);
1161 retval
[RETURN_LIMB_SIZE
- numsize
- 1] = cy
;
1162 /* FIXME: the following loop can be avoided if we assume a
1163 maximal MANT_DIG value. */
1164 MPN_ZERO (retval
, RETURN_LIMB_SIZE
- numsize
- 1);
1167 return round_and_return (retval
, bits
- 1, negative
, 0, 0, 0);
1171 /* Store the bits we already have. */
1172 memcpy (retval
, num
, numsize
* sizeof (mp_limb_t
));
1173 #if RETURN_LIMB_SIZE > 1
1174 if (numsize
< RETURN_LIMB_SIZE
)
1175 # if RETURN_LIMB_SIZE == 2
1176 retval
[numsize
] = 0;
1178 MPN_ZERO (retval
+ numsize
, RETURN_LIMB_SIZE
- numsize
);
1183 /* We have to compute at least some of the fractional digits. */
1185 /* We construct a fraction and the result of the division gives us
1186 the needed digits. The denominator is 1.0 multiplied by the
1187 exponent of the lowest digit; i.e. 0.123 gives 123 / 1000 and
1188 123e-6 gives 123 / 1000000. */
1194 mp_limb_t
*psrc
= den
;
1195 mp_limb_t
*pdest
= num
;
1196 const struct mp_power
*ttab
= &_fpioconst_pow10
[0];
1198 assert (dig_no
> int_no
&& exponent
<= 0);
1201 /* For the fractional part we need not process too many digits. One
1202 decimal digits gives us log_2(10) ~ 3.32 bits. If we now compute
1204 digits we should have enough bits for the result. The remaining
1205 decimal digits give us the information that more bits are following.
1206 This can be used while rounding. (Two added as a safety margin.) */
1207 if (dig_no
- int_no
> (MANT_DIG
- bits
+ 2) / 3 + 2)
1209 dig_no
= int_no
+ (MANT_DIG
- bits
+ 2) / 3 + 2;
1215 neg_exp
= dig_no
- int_no
- exponent
;
1217 /* Construct the denominator. */
1222 if ((neg_exp
& expbit
) != 0)
1229 densize
= ttab
->arraysize
- _FPIO_CONST_OFFSET
;
1230 memcpy (psrc
, &__tens
[ttab
->arrayoff
+ _FPIO_CONST_OFFSET
],
1231 densize
* sizeof (mp_limb_t
));
1235 cy
= __mpn_mul (pdest
, &__tens
[ttab
->arrayoff
1236 + _FPIO_CONST_OFFSET
],
1237 ttab
->arraysize
- _FPIO_CONST_OFFSET
,
1239 densize
+= ttab
->arraysize
- _FPIO_CONST_OFFSET
;
1242 (void) SWAP (psrc
, pdest
);
1248 while (neg_exp
!= 0);
1251 memcpy (den
, num
, densize
* sizeof (mp_limb_t
));
1253 /* Read the fractional digits from the string. */
1254 (void) str_to_mpn (startp
, dig_no
- int_no
, num
, &numsize
, &exponent
1255 #ifndef USE_WIDE_CHAR
1256 , decimal
, decimal_len
, thousands
1260 /* We now have to shift both numbers so that the highest bit in the
1261 denominator is set. In the same process we copy the numerator to
1262 a high place in the array so that the division constructs the wanted
1263 digits. This is done by a "quasi fix point" number representation.
1265 num: ddddddddddd . 0000000000000000000000
1267 den: ddddddddddd n >= m
1271 count_leading_zeros (cnt
, den
[densize
- 1]);
1275 /* Don't call `mpn_shift' with a count of zero since the specification
1276 does not allow this. */
1277 (void) __mpn_lshift (den
, den
, densize
, cnt
);
1278 cy
= __mpn_lshift (num
, num
, numsize
, cnt
);
1280 num
[numsize
++] = cy
;
1283 /* Now we are ready for the division. But it is not necessary to
1284 do a full multi-precision division because we only need a small
1285 number of bits for the result. So we do not use __mpn_divmod
1286 here but instead do the division here by hand and stop whenever
1287 the needed number of bits is reached. The code itself comes
1288 from the GNU MP Library by Torbj\"orn Granlund. */
1296 mp_limb_t d
, n
, quot
;
1301 assert (numsize
== 1 && n
< d
);
1305 udiv_qrnnd (quot
, n
, n
, 0, d
);
1312 cnt = BITS_PER_MP_LIMB; \
1314 count_leading_zeros (cnt, quot); \
1316 if (BITS_PER_MP_LIMB - cnt > MANT_DIG) \
1318 used = MANT_DIG + cnt; \
1319 retval[0] = quot >> (BITS_PER_MP_LIMB - used); \
1320 bits = MANT_DIG + 1; \
1324 /* Note that we only clear the second element. */ \
1325 /* The conditional is determined at compile time. */ \
1326 if (RETURN_LIMB_SIZE > 1) \
1332 else if (bits + BITS_PER_MP_LIMB <= MANT_DIG) \
1333 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, BITS_PER_MP_LIMB, \
1337 used = MANT_DIG - bits; \
1339 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, quot); \
1341 bits += BITS_PER_MP_LIMB
1345 while (bits
<= MANT_DIG
);
1347 return round_and_return (retval
, exponent
- 1, negative
,
1348 quot
, BITS_PER_MP_LIMB
- 1 - used
,
1349 more_bits
|| n
!= 0);
1353 mp_limb_t d0
, d1
, n0
, n1
;
1360 if (numsize
< densize
)
1364 /* The numerator of the number occupies fewer bits than
1365 the denominator but the one limb is bigger than the
1366 high limb of the numerator. */
1373 exponent
-= BITS_PER_MP_LIMB
;
1376 if (bits
+ BITS_PER_MP_LIMB
<= MANT_DIG
)
1377 __mpn_lshift_1 (retval
, RETURN_LIMB_SIZE
,
1378 BITS_PER_MP_LIMB
, 0);
1381 used
= MANT_DIG
- bits
;
1383 __mpn_lshift_1 (retval
, RETURN_LIMB_SIZE
, used
, 0);
1385 bits
+= BITS_PER_MP_LIMB
;
1397 while (bits
<= MANT_DIG
)
1403 /* QUOT should be either 111..111 or 111..110. We need
1404 special treatment of this rare case as normal division
1405 would give overflow. */
1406 quot
= ~(mp_limb_t
) 0;
1409 if (r
< d1
) /* Carry in the addition? */
1411 add_ssaaaa (n1
, n0
, r
- d0
, 0, 0, d0
);
1414 n1
= d0
- (d0
!= 0);
1419 udiv_qrnnd (quot
, r
, n1
, n0
, d1
);
1420 umul_ppmm (n1
, n0
, d0
, quot
);
1424 if (n1
> r
|| (n1
== r
&& n0
> 0))
1426 /* The estimated QUOT was too large. */
1429 sub_ddmmss (n1
, n0
, n1
, n0
, 0, d0
);
1431 if (r
>= d1
) /* If not carry, test QUOT again. */
1434 sub_ddmmss (n1
, n0
, r
, 0, n1
, n0
);
1440 return round_and_return (retval
, exponent
- 1, negative
,
1441 quot
, BITS_PER_MP_LIMB
- 1 - used
,
1442 more_bits
|| n1
!= 0 || n0
!= 0);
1447 mp_limb_t cy
, dX
, d1
, n0
, n1
;
1451 dX
= den
[densize
- 1];
1452 d1
= den
[densize
- 2];
1454 /* The division does not work if the upper limb of the two-limb
1455 numerator is greater than the denominator. */
1456 if (__mpn_cmp (num
, &den
[densize
- numsize
], numsize
) > 0)
1459 if (numsize
< densize
)
1461 mp_size_t empty
= densize
- numsize
;
1465 exponent
-= empty
* BITS_PER_MP_LIMB
;
1468 if (bits
+ empty
* BITS_PER_MP_LIMB
<= MANT_DIG
)
1470 /* We make a difference here because the compiler
1471 cannot optimize the `else' case that good and
1472 this reflects all currently used FLOAT types
1473 and GMP implementations. */
1474 #if RETURN_LIMB_SIZE <= 2
1475 assert (empty
== 1);
1476 __mpn_lshift_1 (retval
, RETURN_LIMB_SIZE
,
1477 BITS_PER_MP_LIMB
, 0);
1479 for (i
= RETURN_LIMB_SIZE
- 1; i
>= empty
; --i
)
1480 retval
[i
] = retval
[i
- empty
];
1487 used
= MANT_DIG
- bits
;
1488 if (used
>= BITS_PER_MP_LIMB
)
1491 (void) __mpn_lshift (&retval
[used
1492 / BITS_PER_MP_LIMB
],
1493 retval
, RETURN_LIMB_SIZE
,
1494 used
% BITS_PER_MP_LIMB
);
1495 for (i
= used
/ BITS_PER_MP_LIMB
- 1; i
>= 0; --i
)
1499 __mpn_lshift_1 (retval
, RETURN_LIMB_SIZE
, used
, 0);
1501 bits
+= empty
* BITS_PER_MP_LIMB
;
1503 for (i
= numsize
; i
> 0; --i
)
1504 num
[i
+ empty
] = num
[i
- 1];
1505 MPN_ZERO (num
, empty
+ 1);
1510 assert (numsize
== densize
);
1511 for (i
= numsize
; i
> 0; --i
)
1512 num
[i
] = num
[i
- 1];
1518 while (bits
<= MANT_DIG
)
1521 /* This might over-estimate QUOT, but it's probably not
1522 worth the extra code here to find out. */
1523 quot
= ~(mp_limb_t
) 0;
1528 udiv_qrnnd (quot
, r
, n0
, num
[densize
- 1], dX
);
1529 umul_ppmm (n1
, n0
, d1
, quot
);
1531 while (n1
> r
|| (n1
== r
&& n0
> num
[densize
- 2]))
1535 if (r
< dX
) /* I.e. "carry in previous addition?" */
1542 /* Possible optimization: We already have (q * n0) and (1 * n1)
1543 after the calculation of QUOT. Taking advantage of this, we
1544 could make this loop make two iterations less. */
1546 cy
= __mpn_submul_1 (num
, den
, densize
+ 1, quot
);
1548 if (num
[densize
] != cy
)
1550 cy
= __mpn_add_n (num
, num
, den
, densize
);
1554 n0
= num
[densize
] = num
[densize
- 1];
1555 for (i
= densize
- 1; i
> 0; --i
)
1556 num
[i
] = num
[i
- 1];
1561 for (i
= densize
; num
[i
] == 0 && i
>= 0; --i
)
1563 return round_and_return (retval
, exponent
- 1, negative
,
1564 quot
, BITS_PER_MP_LIMB
- 1 - used
,
1565 more_bits
|| i
>= 0);
1572 #if defined _LIBC && !defined USE_WIDE_CHAR
1573 libc_hidden_def (____STRTOF_INTERNAL
)
1576 /* External user entry point. */
1579 #ifdef weak_function
1582 __STRTOF (nptr
, endptr
, loc
)
1583 const STRING_TYPE
*nptr
;
1584 STRING_TYPE
**endptr
;
1587 return ____STRTOF_INTERNAL (nptr
, endptr
, 0, loc
);
1590 libc_hidden_def (__STRTOF
)
1591 libc_hidden_ver (__STRTOF
, STRTOF
)
1593 weak_alias (__STRTOF
, STRTOF
)
1595 #ifdef LONG_DOUBLE_COMPAT
1596 # if LONG_DOUBLE_COMPAT(libc, GLIBC_2_1)
1597 # ifdef USE_WIDE_CHAR
1598 compat_symbol (libc
, __wcstod_l
, __wcstold_l
, GLIBC_2_1
);
1600 compat_symbol (libc
, __strtod_l
, __strtold_l
, GLIBC_2_1
);
1603 # if LONG_DOUBLE_COMPAT(libc, GLIBC_2_3)
1604 # ifdef USE_WIDE_CHAR
1605 compat_symbol (libc
, wcstod_l
, wcstold_l
, GLIBC_2_3
);
1607 compat_symbol (libc
, strtod_l
, strtold_l
, GLIBC_2_3
);