.
[glibc/history.git] / soft-fp / op-1.h
blob35cd0ba7bb159b816600c79e4a4381d57f23157f
1 /* Software floating-point emulation.
2 Basic one-word fraction declaration and manipulation.
3 Copyright (C) 1997,1998,1999,2006 Free Software Foundation, Inc.
4 This file is part of the GNU C Library.
5 Contributed by Richard Henderson (rth@cygnus.com),
6 Jakub Jelinek (jj@ultra.linux.cz),
7 David S. Miller (davem@redhat.com) and
8 Peter Maydell (pmaydell@chiark.greenend.org.uk).
10 The GNU C Library is free software; you can redistribute it and/or
11 modify it under the terms of the GNU Lesser General Public
12 License as published by the Free Software Foundation; either
13 version 2.1 of the License, or (at your option) any later version.
15 In addition to the permissions in the GNU Lesser General Public
16 License, the Free Software Foundation gives you unlimited
17 permission to link the compiled version of this file into
18 combinations with other programs, and to distribute those
19 combinations without any restriction coming from the use of this
20 file. (The Lesser General Public License restrictions do apply in
21 other respects; for example, they cover modification of the file,
22 and distribution when not linked into a combine executable.)
24 The GNU C Library is distributed in the hope that it will be useful,
25 but WITHOUT ANY WARRANTY; without even the implied warranty of
26 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
27 Lesser General Public License for more details.
29 You should have received a copy of the GNU Lesser General Public
30 License along with the GNU C Library; if not, write to the Free
31 Software Foundation, 51 Franklin Street, Fifth Floor, Boston,
32 MA 02110-1301, USA. */
34 #define _FP_FRAC_DECL_1(X) _FP_W_TYPE X##_f
35 #define _FP_FRAC_COPY_1(D,S) (D##_f = S##_f)
36 #define _FP_FRAC_SET_1(X,I) (X##_f = I)
37 #define _FP_FRAC_HIGH_1(X) (X##_f)
38 #define _FP_FRAC_LOW_1(X) (X##_f)
39 #define _FP_FRAC_WORD_1(X,w) (X##_f)
41 #define _FP_FRAC_ADDI_1(X,I) (X##_f += I)
42 #define _FP_FRAC_SLL_1(X,N) \
43 do { \
44 if (__builtin_constant_p(N) && (N) == 1) \
45 X##_f += X##_f; \
46 else \
47 X##_f <<= (N); \
48 } while (0)
49 #define _FP_FRAC_SRL_1(X,N) (X##_f >>= N)
51 /* Right shift with sticky-lsb. */
52 #define _FP_FRAC_SRST_1(X,S,N,sz) __FP_FRAC_SRST_1(X##_f, S, N, sz)
53 #define _FP_FRAC_SRS_1(X,N,sz) __FP_FRAC_SRS_1(X##_f, N, sz)
55 #define __FP_FRAC_SRST_1(X,S,N,sz) \
56 do { \
57 S = (__builtin_constant_p(N) && (N) == 1 \
58 ? X & 1 : (X << (_FP_W_TYPE_SIZE - (N))) != 0); \
59 X = X >> (N); \
60 } while (0)
62 #define __FP_FRAC_SRS_1(X,N,sz) \
63 (X = (X >> (N) | (__builtin_constant_p(N) && (N) == 1 \
64 ? X & 1 : (X << (_FP_W_TYPE_SIZE - (N))) != 0)))
66 #define _FP_FRAC_ADD_1(R,X,Y) (R##_f = X##_f + Y##_f)
67 #define _FP_FRAC_SUB_1(R,X,Y) (R##_f = X##_f - Y##_f)
68 #define _FP_FRAC_DEC_1(X,Y) (X##_f -= Y##_f)
69 #define _FP_FRAC_CLZ_1(z, X) __FP_CLZ(z, X##_f)
71 /* Predicates */
72 #define _FP_FRAC_NEGP_1(X) ((_FP_WS_TYPE)X##_f < 0)
73 #define _FP_FRAC_ZEROP_1(X) (X##_f == 0)
74 #define _FP_FRAC_OVERP_1(fs,X) (X##_f & _FP_OVERFLOW_##fs)
75 #define _FP_FRAC_CLEAR_OVERP_1(fs,X) (X##_f &= ~_FP_OVERFLOW_##fs)
76 #define _FP_FRAC_EQ_1(X, Y) (X##_f == Y##_f)
77 #define _FP_FRAC_GE_1(X, Y) (X##_f >= Y##_f)
78 #define _FP_FRAC_GT_1(X, Y) (X##_f > Y##_f)
80 #define _FP_ZEROFRAC_1 0
81 #define _FP_MINFRAC_1 1
82 #define _FP_MAXFRAC_1 (~(_FP_WS_TYPE)0)
85 * Unpack the raw bits of a native fp value. Do not classify or
86 * normalize the data.
89 #define _FP_UNPACK_RAW_1(fs, X, val) \
90 do { \
91 union _FP_UNION_##fs _flo; _flo.flt = (val); \
93 X##_f = _flo.bits.frac; \
94 X##_e = _flo.bits.exp; \
95 X##_s = _flo.bits.sign; \
96 } while (0)
98 #define _FP_UNPACK_RAW_1_P(fs, X, val) \
99 do { \
100 union _FP_UNION_##fs *_flo = \
101 (union _FP_UNION_##fs *)(val); \
103 X##_f = _flo->bits.frac; \
104 X##_e = _flo->bits.exp; \
105 X##_s = _flo->bits.sign; \
106 } while (0)
109 * Repack the raw bits of a native fp value.
112 #define _FP_PACK_RAW_1(fs, val, X) \
113 do { \
114 union _FP_UNION_##fs _flo; \
116 _flo.bits.frac = X##_f; \
117 _flo.bits.exp = X##_e; \
118 _flo.bits.sign = X##_s; \
120 (val) = _flo.flt; \
121 } while (0)
123 #define _FP_PACK_RAW_1_P(fs, val, X) \
124 do { \
125 union _FP_UNION_##fs *_flo = \
126 (union _FP_UNION_##fs *)(val); \
128 _flo->bits.frac = X##_f; \
129 _flo->bits.exp = X##_e; \
130 _flo->bits.sign = X##_s; \
131 } while (0)
135 * Multiplication algorithms:
138 /* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the
139 multiplication immediately. */
141 #define _FP_MUL_MEAT_1_imm(wfracbits, R, X, Y) \
142 do { \
143 R##_f = X##_f * Y##_f; \
144 /* Normalize since we know where the msb of the multiplicands \
145 were (bit B), we know that the msb of the of the product is \
146 at either 2B or 2B-1. */ \
147 _FP_FRAC_SRS_1(R, wfracbits-1, 2*wfracbits); \
148 } while (0)
150 /* Given a 1W * 1W => 2W primitive, do the extended multiplication. */
152 #define _FP_MUL_MEAT_1_wide(wfracbits, R, X, Y, doit) \
153 do { \
154 _FP_W_TYPE _Z_f0, _Z_f1; \
155 doit(_Z_f1, _Z_f0, X##_f, Y##_f); \
156 /* Normalize since we know where the msb of the multiplicands \
157 were (bit B), we know that the msb of the of the product is \
158 at either 2B or 2B-1. */ \
159 _FP_FRAC_SRS_2(_Z, wfracbits-1, 2*wfracbits); \
160 R##_f = _Z_f0; \
161 } while (0)
163 /* Finally, a simple widening multiply algorithm. What fun! */
165 #define _FP_MUL_MEAT_1_hard(wfracbits, R, X, Y) \
166 do { \
167 _FP_W_TYPE _xh, _xl, _yh, _yl, _z_f0, _z_f1, _a_f0, _a_f1; \
169 /* split the words in half */ \
170 _xh = X##_f >> (_FP_W_TYPE_SIZE/2); \
171 _xl = X##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1); \
172 _yh = Y##_f >> (_FP_W_TYPE_SIZE/2); \
173 _yl = Y##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1); \
175 /* multiply the pieces */ \
176 _z_f0 = _xl * _yl; \
177 _a_f0 = _xh * _yl; \
178 _a_f1 = _xl * _yh; \
179 _z_f1 = _xh * _yh; \
181 /* reassemble into two full words */ \
182 if ((_a_f0 += _a_f1) < _a_f1) \
183 _z_f1 += (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2); \
184 _a_f1 = _a_f0 >> (_FP_W_TYPE_SIZE/2); \
185 _a_f0 = _a_f0 << (_FP_W_TYPE_SIZE/2); \
186 _FP_FRAC_ADD_2(_z, _z, _a); \
188 /* normalize */ \
189 _FP_FRAC_SRS_2(_z, wfracbits - 1, 2*wfracbits); \
190 R##_f = _z_f0; \
191 } while (0)
195 * Division algorithms:
198 /* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the
199 division immediately. Give this macro either _FP_DIV_HELP_imm for
200 C primitives or _FP_DIV_HELP_ldiv for the ISO function. Which you
201 choose will depend on what the compiler does with divrem4. */
203 #define _FP_DIV_MEAT_1_imm(fs, R, X, Y, doit) \
204 do { \
205 _FP_W_TYPE _q, _r; \
206 X##_f <<= (X##_f < Y##_f \
207 ? R##_e--, _FP_WFRACBITS_##fs \
208 : _FP_WFRACBITS_##fs - 1); \
209 doit(_q, _r, X##_f, Y##_f); \
210 R##_f = _q | (_r != 0); \
211 } while (0)
213 /* GCC's longlong.h defines a 2W / 1W => (1W,1W) primitive udiv_qrnnd
214 that may be useful in this situation. This first is for a primitive
215 that requires normalization, the second for one that does not. Look
216 for UDIV_NEEDS_NORMALIZATION to tell which your machine needs. */
218 #define _FP_DIV_MEAT_1_udiv_norm(fs, R, X, Y) \
219 do { \
220 _FP_W_TYPE _nh, _nl, _q, _r, _y; \
222 /* Normalize Y -- i.e. make the most significant bit set. */ \
223 _y = Y##_f << _FP_WFRACXBITS_##fs; \
225 /* Shift X op correspondingly high, that is, up one full word. */ \
226 if (X##_f < Y##_f) \
228 R##_e--; \
229 _nl = 0; \
230 _nh = X##_f; \
232 else \
234 _nl = X##_f << (_FP_W_TYPE_SIZE - 1); \
235 _nh = X##_f >> 1; \
238 udiv_qrnnd(_q, _r, _nh, _nl, _y); \
239 R##_f = _q | (_r != 0); \
240 } while (0)
242 #define _FP_DIV_MEAT_1_udiv(fs, R, X, Y) \
243 do { \
244 _FP_W_TYPE _nh, _nl, _q, _r; \
245 if (X##_f < Y##_f) \
247 R##_e--; \
248 _nl = X##_f << _FP_WFRACBITS_##fs; \
249 _nh = X##_f >> _FP_WFRACXBITS_##fs; \
251 else \
253 _nl = X##_f << (_FP_WFRACBITS_##fs - 1); \
254 _nh = X##_f >> (_FP_WFRACXBITS_##fs + 1); \
256 udiv_qrnnd(_q, _r, _nh, _nl, Y##_f); \
257 R##_f = _q | (_r != 0); \
258 } while (0)
262 * Square root algorithms:
263 * We have just one right now, maybe Newton approximation
264 * should be added for those machines where division is fast.
267 #define _FP_SQRT_MEAT_1(R, S, T, X, q) \
268 do { \
269 while (q != _FP_WORK_ROUND) \
271 T##_f = S##_f + q; \
272 if (T##_f <= X##_f) \
274 S##_f = T##_f + q; \
275 X##_f -= T##_f; \
276 R##_f += q; \
278 _FP_FRAC_SLL_1(X, 1); \
279 q >>= 1; \
281 if (X##_f) \
283 if (S##_f < X##_f) \
284 R##_f |= _FP_WORK_ROUND; \
285 R##_f |= _FP_WORK_STICKY; \
287 } while (0)
290 * Assembly/disassembly for converting to/from integral types.
291 * No shifting or overflow handled here.
294 #define _FP_FRAC_ASSEMBLE_1(r, X, rsize) (r = X##_f)
295 #define _FP_FRAC_DISASSEMBLE_1(X, r, rsize) (X##_f = r)
299 * Convert FP values between word sizes
302 #define _FP_FRAC_COPY_1_1(D, S) (D##_f = S##_f)