aarch64: Remove inaccurate comment from sysdep.h
[glibc.git] / malloc / malloc.c
blob9a45707ee733777348984e0da4a7616a1ba799af
1 /* Malloc implementation for multiple threads without lock contention.
2 Copyright (C) 1996-2014 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Wolfram Gloger <wg@malloc.de>
5 and Doug Lea <dl@cs.oswego.edu>, 2001.
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public License as
9 published by the Free Software Foundation; either version 2.1 of the
10 License, or (at your option) any later version.
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Lesser General Public License for more details.
17 You should have received a copy of the GNU Lesser General Public
18 License along with the GNU C Library; see the file COPYING.LIB. If
19 not, see <http://www.gnu.org/licenses/>. */
22 This is a version (aka ptmalloc2) of malloc/free/realloc written by
23 Doug Lea and adapted to multiple threads/arenas by Wolfram Gloger.
25 There have been substantial changesmade after the integration into
26 glibc in all parts of the code. Do not look for much commonality
27 with the ptmalloc2 version.
29 * Version ptmalloc2-20011215
30 based on:
31 VERSION 2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)
33 * Quickstart
35 In order to compile this implementation, a Makefile is provided with
36 the ptmalloc2 distribution, which has pre-defined targets for some
37 popular systems (e.g. "make posix" for Posix threads). All that is
38 typically required with regard to compiler flags is the selection of
39 the thread package via defining one out of USE_PTHREADS, USE_THR or
40 USE_SPROC. Check the thread-m.h file for what effects this has.
41 Many/most systems will additionally require USE_TSD_DATA_HACK to be
42 defined, so this is the default for "make posix".
44 * Why use this malloc?
46 This is not the fastest, most space-conserving, most portable, or
47 most tunable malloc ever written. However it is among the fastest
48 while also being among the most space-conserving, portable and tunable.
49 Consistent balance across these factors results in a good general-purpose
50 allocator for malloc-intensive programs.
52 The main properties of the algorithms are:
53 * For large (>= 512 bytes) requests, it is a pure best-fit allocator,
54 with ties normally decided via FIFO (i.e. least recently used).
55 * For small (<= 64 bytes by default) requests, it is a caching
56 allocator, that maintains pools of quickly recycled chunks.
57 * In between, and for combinations of large and small requests, it does
58 the best it can trying to meet both goals at once.
59 * For very large requests (>= 128KB by default), it relies on system
60 memory mapping facilities, if supported.
62 For a longer but slightly out of date high-level description, see
63 http://gee.cs.oswego.edu/dl/html/malloc.html
65 You may already by default be using a C library containing a malloc
66 that is based on some version of this malloc (for example in
67 linux). You might still want to use the one in this file in order to
68 customize settings or to avoid overheads associated with library
69 versions.
71 * Contents, described in more detail in "description of public routines" below.
73 Standard (ANSI/SVID/...) functions:
74 malloc(size_t n);
75 calloc(size_t n_elements, size_t element_size);
76 free(void* p);
77 realloc(void* p, size_t n);
78 memalign(size_t alignment, size_t n);
79 valloc(size_t n);
80 mallinfo()
81 mallopt(int parameter_number, int parameter_value)
83 Additional functions:
84 independent_calloc(size_t n_elements, size_t size, void* chunks[]);
85 independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]);
86 pvalloc(size_t n);
87 cfree(void* p);
88 malloc_trim(size_t pad);
89 malloc_usable_size(void* p);
90 malloc_stats();
92 * Vital statistics:
94 Supported pointer representation: 4 or 8 bytes
95 Supported size_t representation: 4 or 8 bytes
96 Note that size_t is allowed to be 4 bytes even if pointers are 8.
97 You can adjust this by defining INTERNAL_SIZE_T
99 Alignment: 2 * sizeof(size_t) (default)
100 (i.e., 8 byte alignment with 4byte size_t). This suffices for
101 nearly all current machines and C compilers. However, you can
102 define MALLOC_ALIGNMENT to be wider than this if necessary.
104 Minimum overhead per allocated chunk: 4 or 8 bytes
105 Each malloced chunk has a hidden word of overhead holding size
106 and status information.
108 Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead)
109 8-byte ptrs: 24/32 bytes (including, 4/8 overhead)
111 When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
112 ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
113 needed; 4 (8) for a trailing size field and 8 (16) bytes for
114 free list pointers. Thus, the minimum allocatable size is
115 16/24/32 bytes.
117 Even a request for zero bytes (i.e., malloc(0)) returns a
118 pointer to something of the minimum allocatable size.
120 The maximum overhead wastage (i.e., number of extra bytes
121 allocated than were requested in malloc) is less than or equal
122 to the minimum size, except for requests >= mmap_threshold that
123 are serviced via mmap(), where the worst case wastage is 2 *
124 sizeof(size_t) bytes plus the remainder from a system page (the
125 minimal mmap unit); typically 4096 or 8192 bytes.
127 Maximum allocated size: 4-byte size_t: 2^32 minus about two pages
128 8-byte size_t: 2^64 minus about two pages
130 It is assumed that (possibly signed) size_t values suffice to
131 represent chunk sizes. `Possibly signed' is due to the fact
132 that `size_t' may be defined on a system as either a signed or
133 an unsigned type. The ISO C standard says that it must be
134 unsigned, but a few systems are known not to adhere to this.
135 Additionally, even when size_t is unsigned, sbrk (which is by
136 default used to obtain memory from system) accepts signed
137 arguments, and may not be able to handle size_t-wide arguments
138 with negative sign bit. Generally, values that would
139 appear as negative after accounting for overhead and alignment
140 are supported only via mmap(), which does not have this
141 limitation.
143 Requests for sizes outside the allowed range will perform an optional
144 failure action and then return null. (Requests may also
145 also fail because a system is out of memory.)
147 Thread-safety: thread-safe
149 Compliance: I believe it is compliant with the 1997 Single Unix Specification
150 Also SVID/XPG, ANSI C, and probably others as well.
152 * Synopsis of compile-time options:
154 People have reported using previous versions of this malloc on all
155 versions of Unix, sometimes by tweaking some of the defines
156 below. It has been tested most extensively on Solaris and Linux.
157 People also report using it in stand-alone embedded systems.
159 The implementation is in straight, hand-tuned ANSI C. It is not
160 at all modular. (Sorry!) It uses a lot of macros. To be at all
161 usable, this code should be compiled using an optimizing compiler
162 (for example gcc -O3) that can simplify expressions and control
163 paths. (FAQ: some macros import variables as arguments rather than
164 declare locals because people reported that some debuggers
165 otherwise get confused.)
167 OPTION DEFAULT VALUE
169 Compilation Environment options:
171 HAVE_MREMAP 0
173 Changing default word sizes:
175 INTERNAL_SIZE_T size_t
176 MALLOC_ALIGNMENT MAX (2 * sizeof(INTERNAL_SIZE_T),
177 __alignof__ (long double))
179 Configuration and functionality options:
181 USE_PUBLIC_MALLOC_WRAPPERS NOT defined
182 USE_MALLOC_LOCK NOT defined
183 MALLOC_DEBUG NOT defined
184 REALLOC_ZERO_BYTES_FREES 1
185 TRIM_FASTBINS 0
187 Options for customizing MORECORE:
189 MORECORE sbrk
190 MORECORE_FAILURE -1
191 MORECORE_CONTIGUOUS 1
192 MORECORE_CANNOT_TRIM NOT defined
193 MORECORE_CLEARS 1
194 MMAP_AS_MORECORE_SIZE (1024 * 1024)
196 Tuning options that are also dynamically changeable via mallopt:
198 DEFAULT_MXFAST 64 (for 32bit), 128 (for 64bit)
199 DEFAULT_TRIM_THRESHOLD 128 * 1024
200 DEFAULT_TOP_PAD 0
201 DEFAULT_MMAP_THRESHOLD 128 * 1024
202 DEFAULT_MMAP_MAX 65536
204 There are several other #defined constants and macros that you
205 probably don't want to touch unless you are extending or adapting malloc. */
208 void* is the pointer type that malloc should say it returns
211 #ifndef void
212 #define void void
213 #endif /*void*/
215 #include <stddef.h> /* for size_t */
216 #include <stdlib.h> /* for getenv(), abort() */
217 #include <unistd.h> /* for __libc_enable_secure */
219 #include <malloc-machine.h>
220 #include <malloc-sysdep.h>
222 #include <atomic.h>
223 #include <_itoa.h>
224 #include <bits/wordsize.h>
225 #include <sys/sysinfo.h>
227 #include <ldsodefs.h>
229 #include <unistd.h>
230 #include <stdio.h> /* needed for malloc_stats */
231 #include <errno.h>
233 #include <shlib-compat.h>
235 /* For uintptr_t. */
236 #include <stdint.h>
238 /* For va_arg, va_start, va_end. */
239 #include <stdarg.h>
241 /* For MIN, MAX, powerof2. */
242 #include <sys/param.h>
246 Debugging:
248 Because freed chunks may be overwritten with bookkeeping fields, this
249 malloc will often die when freed memory is overwritten by user
250 programs. This can be very effective (albeit in an annoying way)
251 in helping track down dangling pointers.
253 If you compile with -DMALLOC_DEBUG, a number of assertion checks are
254 enabled that will catch more memory errors. You probably won't be
255 able to make much sense of the actual assertion errors, but they
256 should help you locate incorrectly overwritten memory. The checking
257 is fairly extensive, and will slow down execution
258 noticeably. Calling malloc_stats or mallinfo with MALLOC_DEBUG set
259 will attempt to check every non-mmapped allocated and free chunk in
260 the course of computing the summmaries. (By nature, mmapped regions
261 cannot be checked very much automatically.)
263 Setting MALLOC_DEBUG may also be helpful if you are trying to modify
264 this code. The assertions in the check routines spell out in more
265 detail the assumptions and invariants underlying the algorithms.
267 Setting MALLOC_DEBUG does NOT provide an automated mechanism for
268 checking that all accesses to malloced memory stay within their
269 bounds. However, there are several add-ons and adaptations of this
270 or other mallocs available that do this.
273 #ifdef NDEBUG
274 # define assert(expr) ((void) 0)
275 #else
276 # define assert(expr) \
277 ((expr) \
278 ? ((void) 0) \
279 : __malloc_assert (__STRING (expr), __FILE__, __LINE__, __func__))
281 extern const char *__progname;
283 static void
284 __malloc_assert (const char *assertion, const char *file, unsigned int line,
285 const char *function)
287 (void) __fxprintf (NULL, "%s%s%s:%u: %s%sAssertion `%s' failed.\n",
288 __progname, __progname[0] ? ": " : "",
289 file, line,
290 function ? function : "", function ? ": " : "",
291 assertion);
292 fflush (stderr);
293 abort ();
295 #endif
299 INTERNAL_SIZE_T is the word-size used for internal bookkeeping
300 of chunk sizes.
302 The default version is the same as size_t.
304 While not strictly necessary, it is best to define this as an
305 unsigned type, even if size_t is a signed type. This may avoid some
306 artificial size limitations on some systems.
308 On a 64-bit machine, you may be able to reduce malloc overhead by
309 defining INTERNAL_SIZE_T to be a 32 bit `unsigned int' at the
310 expense of not being able to handle more than 2^32 of malloced
311 space. If this limitation is acceptable, you are encouraged to set
312 this unless you are on a platform requiring 16byte alignments. In
313 this case the alignment requirements turn out to negate any
314 potential advantages of decreasing size_t word size.
316 Implementors: Beware of the possible combinations of:
317 - INTERNAL_SIZE_T might be signed or unsigned, might be 32 or 64 bits,
318 and might be the same width as int or as long
319 - size_t might have different width and signedness as INTERNAL_SIZE_T
320 - int and long might be 32 or 64 bits, and might be the same width
321 To deal with this, most comparisons and difference computations
322 among INTERNAL_SIZE_Ts should cast them to unsigned long, being
323 aware of the fact that casting an unsigned int to a wider long does
324 not sign-extend. (This also makes checking for negative numbers
325 awkward.) Some of these casts result in harmless compiler warnings
326 on some systems.
329 #ifndef INTERNAL_SIZE_T
330 #define INTERNAL_SIZE_T size_t
331 #endif
333 /* The corresponding word size */
334 #define SIZE_SZ (sizeof(INTERNAL_SIZE_T))
338 MALLOC_ALIGNMENT is the minimum alignment for malloc'ed chunks.
339 It must be a power of two at least 2 * SIZE_SZ, even on machines
340 for which smaller alignments would suffice. It may be defined as
341 larger than this though. Note however that code and data structures
342 are optimized for the case of 8-byte alignment.
346 #ifndef MALLOC_ALIGNMENT
347 # if !SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_16)
348 /* This is the correct definition when there is no past ABI to constrain it.
350 Among configurations with a past ABI constraint, it differs from
351 2*SIZE_SZ only on powerpc32. For the time being, changing this is
352 causing more compatibility problems due to malloc_get_state and
353 malloc_set_state than will returning blocks not adequately aligned for
354 long double objects under -mlong-double-128. */
356 # define MALLOC_ALIGNMENT (2 *SIZE_SZ < __alignof__ (long double) \
357 ? __alignof__ (long double) : 2 *SIZE_SZ)
358 # else
359 # define MALLOC_ALIGNMENT (2 *SIZE_SZ)
360 # endif
361 #endif
363 /* The corresponding bit mask value */
364 #define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1)
369 REALLOC_ZERO_BYTES_FREES should be set if a call to
370 realloc with zero bytes should be the same as a call to free.
371 This is required by the C standard. Otherwise, since this malloc
372 returns a unique pointer for malloc(0), so does realloc(p, 0).
375 #ifndef REALLOC_ZERO_BYTES_FREES
376 #define REALLOC_ZERO_BYTES_FREES 1
377 #endif
380 TRIM_FASTBINS controls whether free() of a very small chunk can
381 immediately lead to trimming. Setting to true (1) can reduce memory
382 footprint, but will almost always slow down programs that use a lot
383 of small chunks.
385 Define this only if you are willing to give up some speed to more
386 aggressively reduce system-level memory footprint when releasing
387 memory in programs that use many small chunks. You can get
388 essentially the same effect by setting MXFAST to 0, but this can
389 lead to even greater slowdowns in programs using many small chunks.
390 TRIM_FASTBINS is an in-between compile-time option, that disables
391 only those chunks bordering topmost memory from being placed in
392 fastbins.
395 #ifndef TRIM_FASTBINS
396 #define TRIM_FASTBINS 0
397 #endif
400 /* Definition for getting more memory from the OS. */
401 #define MORECORE (*__morecore)
402 #define MORECORE_FAILURE 0
403 void * __default_morecore (ptrdiff_t);
404 void *(*__morecore)(ptrdiff_t) = __default_morecore;
407 #include <string.h>
410 MORECORE-related declarations. By default, rely on sbrk
415 MORECORE is the name of the routine to call to obtain more memory
416 from the system. See below for general guidance on writing
417 alternative MORECORE functions, as well as a version for WIN32 and a
418 sample version for pre-OSX macos.
421 #ifndef MORECORE
422 #define MORECORE sbrk
423 #endif
426 MORECORE_FAILURE is the value returned upon failure of MORECORE
427 as well as mmap. Since it cannot be an otherwise valid memory address,
428 and must reflect values of standard sys calls, you probably ought not
429 try to redefine it.
432 #ifndef MORECORE_FAILURE
433 #define MORECORE_FAILURE (-1)
434 #endif
437 If MORECORE_CONTIGUOUS is true, take advantage of fact that
438 consecutive calls to MORECORE with positive arguments always return
439 contiguous increasing addresses. This is true of unix sbrk. Even
440 if not defined, when regions happen to be contiguous, malloc will
441 permit allocations spanning regions obtained from different
442 calls. But defining this when applicable enables some stronger
443 consistency checks and space efficiencies.
446 #ifndef MORECORE_CONTIGUOUS
447 #define MORECORE_CONTIGUOUS 1
448 #endif
451 Define MORECORE_CANNOT_TRIM if your version of MORECORE
452 cannot release space back to the system when given negative
453 arguments. This is generally necessary only if you are using
454 a hand-crafted MORECORE function that cannot handle negative arguments.
457 /* #define MORECORE_CANNOT_TRIM */
459 /* MORECORE_CLEARS (default 1)
460 The degree to which the routine mapped to MORECORE zeroes out
461 memory: never (0), only for newly allocated space (1) or always
462 (2). The distinction between (1) and (2) is necessary because on
463 some systems, if the application first decrements and then
464 increments the break value, the contents of the reallocated space
465 are unspecified.
468 #ifndef MORECORE_CLEARS
469 # define MORECORE_CLEARS 1
470 #endif
474 MMAP_AS_MORECORE_SIZE is the minimum mmap size argument to use if
475 sbrk fails, and mmap is used as a backup. The value must be a
476 multiple of page size. This backup strategy generally applies only
477 when systems have "holes" in address space, so sbrk cannot perform
478 contiguous expansion, but there is still space available on system.
479 On systems for which this is known to be useful (i.e. most linux
480 kernels), this occurs only when programs allocate huge amounts of
481 memory. Between this, and the fact that mmap regions tend to be
482 limited, the size should be large, to avoid too many mmap calls and
483 thus avoid running out of kernel resources. */
485 #ifndef MMAP_AS_MORECORE_SIZE
486 #define MMAP_AS_MORECORE_SIZE (1024 * 1024)
487 #endif
490 Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
491 large blocks.
494 #ifndef HAVE_MREMAP
495 #define HAVE_MREMAP 0
496 #endif
500 This version of malloc supports the standard SVID/XPG mallinfo
501 routine that returns a struct containing usage properties and
502 statistics. It should work on any SVID/XPG compliant system that has
503 a /usr/include/malloc.h defining struct mallinfo. (If you'd like to
504 install such a thing yourself, cut out the preliminary declarations
505 as described above and below and save them in a malloc.h file. But
506 there's no compelling reason to bother to do this.)
508 The main declaration needed is the mallinfo struct that is returned
509 (by-copy) by mallinfo(). The SVID/XPG malloinfo struct contains a
510 bunch of fields that are not even meaningful in this version of
511 malloc. These fields are are instead filled by mallinfo() with
512 other numbers that might be of interest.
516 /* ---------- description of public routines ------------ */
519 malloc(size_t n)
520 Returns a pointer to a newly allocated chunk of at least n bytes, or null
521 if no space is available. Additionally, on failure, errno is
522 set to ENOMEM on ANSI C systems.
524 If n is zero, malloc returns a minumum-sized chunk. (The minimum
525 size is 16 bytes on most 32bit systems, and 24 or 32 bytes on 64bit
526 systems.) On most systems, size_t is an unsigned type, so calls
527 with negative arguments are interpreted as requests for huge amounts
528 of space, which will often fail. The maximum supported value of n
529 differs across systems, but is in all cases less than the maximum
530 representable value of a size_t.
532 void* __libc_malloc(size_t);
533 libc_hidden_proto (__libc_malloc)
536 free(void* p)
537 Releases the chunk of memory pointed to by p, that had been previously
538 allocated using malloc or a related routine such as realloc.
539 It has no effect if p is null. It can have arbitrary (i.e., bad!)
540 effects if p has already been freed.
542 Unless disabled (using mallopt), freeing very large spaces will
543 when possible, automatically trigger operations that give
544 back unused memory to the system, thus reducing program footprint.
546 void __libc_free(void*);
547 libc_hidden_proto (__libc_free)
550 calloc(size_t n_elements, size_t element_size);
551 Returns a pointer to n_elements * element_size bytes, with all locations
552 set to zero.
554 void* __libc_calloc(size_t, size_t);
557 realloc(void* p, size_t n)
558 Returns a pointer to a chunk of size n that contains the same data
559 as does chunk p up to the minimum of (n, p's size) bytes, or null
560 if no space is available.
562 The returned pointer may or may not be the same as p. The algorithm
563 prefers extending p when possible, otherwise it employs the
564 equivalent of a malloc-copy-free sequence.
566 If p is null, realloc is equivalent to malloc.
568 If space is not available, realloc returns null, errno is set (if on
569 ANSI) and p is NOT freed.
571 if n is for fewer bytes than already held by p, the newly unused
572 space is lopped off and freed if possible. Unless the #define
573 REALLOC_ZERO_BYTES_FREES is set, realloc with a size argument of
574 zero (re)allocates a minimum-sized chunk.
576 Large chunks that were internally obtained via mmap will always
577 be reallocated using malloc-copy-free sequences unless
578 the system supports MREMAP (currently only linux).
580 The old unix realloc convention of allowing the last-free'd chunk
581 to be used as an argument to realloc is not supported.
583 void* __libc_realloc(void*, size_t);
584 libc_hidden_proto (__libc_realloc)
587 memalign(size_t alignment, size_t n);
588 Returns a pointer to a newly allocated chunk of n bytes, aligned
589 in accord with the alignment argument.
591 The alignment argument should be a power of two. If the argument is
592 not a power of two, the nearest greater power is used.
593 8-byte alignment is guaranteed by normal malloc calls, so don't
594 bother calling memalign with an argument of 8 or less.
596 Overreliance on memalign is a sure way to fragment space.
598 void* __libc_memalign(size_t, size_t);
599 libc_hidden_proto (__libc_memalign)
602 valloc(size_t n);
603 Equivalent to memalign(pagesize, n), where pagesize is the page
604 size of the system. If the pagesize is unknown, 4096 is used.
606 void* __libc_valloc(size_t);
611 mallopt(int parameter_number, int parameter_value)
612 Sets tunable parameters The format is to provide a
613 (parameter-number, parameter-value) pair. mallopt then sets the
614 corresponding parameter to the argument value if it can (i.e., so
615 long as the value is meaningful), and returns 1 if successful else
616 0. SVID/XPG/ANSI defines four standard param numbers for mallopt,
617 normally defined in malloc.h. Only one of these (M_MXFAST) is used
618 in this malloc. The others (M_NLBLKS, M_GRAIN, M_KEEP) don't apply,
619 so setting them has no effect. But this malloc also supports four
620 other options in mallopt. See below for details. Briefly, supported
621 parameters are as follows (listed defaults are for "typical"
622 configurations).
624 Symbol param # default allowed param values
625 M_MXFAST 1 64 0-80 (0 disables fastbins)
626 M_TRIM_THRESHOLD -1 128*1024 any (-1U disables trimming)
627 M_TOP_PAD -2 0 any
628 M_MMAP_THRESHOLD -3 128*1024 any (or 0 if no MMAP support)
629 M_MMAP_MAX -4 65536 any (0 disables use of mmap)
631 int __libc_mallopt(int, int);
632 libc_hidden_proto (__libc_mallopt)
636 mallinfo()
637 Returns (by copy) a struct containing various summary statistics:
639 arena: current total non-mmapped bytes allocated from system
640 ordblks: the number of free chunks
641 smblks: the number of fastbin blocks (i.e., small chunks that
642 have been freed but not use resused or consolidated)
643 hblks: current number of mmapped regions
644 hblkhd: total bytes held in mmapped regions
645 usmblks: the maximum total allocated space. This will be greater
646 than current total if trimming has occurred.
647 fsmblks: total bytes held in fastbin blocks
648 uordblks: current total allocated space (normal or mmapped)
649 fordblks: total free space
650 keepcost: the maximum number of bytes that could ideally be released
651 back to system via malloc_trim. ("ideally" means that
652 it ignores page restrictions etc.)
654 Because these fields are ints, but internal bookkeeping may
655 be kept as longs, the reported values may wrap around zero and
656 thus be inaccurate.
658 struct mallinfo __libc_mallinfo(void);
662 pvalloc(size_t n);
663 Equivalent to valloc(minimum-page-that-holds(n)), that is,
664 round up n to nearest pagesize.
666 void* __libc_pvalloc(size_t);
669 malloc_trim(size_t pad);
671 If possible, gives memory back to the system (via negative
672 arguments to sbrk) if there is unused memory at the `high' end of
673 the malloc pool. You can call this after freeing large blocks of
674 memory to potentially reduce the system-level memory requirements
675 of a program. However, it cannot guarantee to reduce memory. Under
676 some allocation patterns, some large free blocks of memory will be
677 locked between two used chunks, so they cannot be given back to
678 the system.
680 The `pad' argument to malloc_trim represents the amount of free
681 trailing space to leave untrimmed. If this argument is zero,
682 only the minimum amount of memory to maintain internal data
683 structures will be left (one page or less). Non-zero arguments
684 can be supplied to maintain enough trailing space to service
685 future expected allocations without having to re-obtain memory
686 from the system.
688 Malloc_trim returns 1 if it actually released any memory, else 0.
689 On systems that do not support "negative sbrks", it will always
690 return 0.
692 int __malloc_trim(size_t);
695 malloc_usable_size(void* p);
697 Returns the number of bytes you can actually use in
698 an allocated chunk, which may be more than you requested (although
699 often not) due to alignment and minimum size constraints.
700 You can use this many bytes without worrying about
701 overwriting other allocated objects. This is not a particularly great
702 programming practice. malloc_usable_size can be more useful in
703 debugging and assertions, for example:
705 p = malloc(n);
706 assert(malloc_usable_size(p) >= 256);
709 size_t __malloc_usable_size(void*);
712 malloc_stats();
713 Prints on stderr the amount of space obtained from the system (both
714 via sbrk and mmap), the maximum amount (which may be more than
715 current if malloc_trim and/or munmap got called), and the current
716 number of bytes allocated via malloc (or realloc, etc) but not yet
717 freed. Note that this is the number of bytes allocated, not the
718 number requested. It will be larger than the number requested
719 because of alignment and bookkeeping overhead. Because it includes
720 alignment wastage as being in use, this figure may be greater than
721 zero even when no user-level chunks are allocated.
723 The reported current and maximum system memory can be inaccurate if
724 a program makes other calls to system memory allocation functions
725 (normally sbrk) outside of malloc.
727 malloc_stats prints only the most commonly interesting statistics.
728 More information can be obtained by calling mallinfo.
731 void __malloc_stats(void);
734 malloc_get_state(void);
736 Returns the state of all malloc variables in an opaque data
737 structure.
739 void* __malloc_get_state(void);
742 malloc_set_state(void* state);
744 Restore the state of all malloc variables from data obtained with
745 malloc_get_state().
747 int __malloc_set_state(void*);
750 posix_memalign(void **memptr, size_t alignment, size_t size);
752 POSIX wrapper like memalign(), checking for validity of size.
754 int __posix_memalign(void **, size_t, size_t);
756 /* mallopt tuning options */
759 M_MXFAST is the maximum request size used for "fastbins", special bins
760 that hold returned chunks without consolidating their spaces. This
761 enables future requests for chunks of the same size to be handled
762 very quickly, but can increase fragmentation, and thus increase the
763 overall memory footprint of a program.
765 This malloc manages fastbins very conservatively yet still
766 efficiently, so fragmentation is rarely a problem for values less
767 than or equal to the default. The maximum supported value of MXFAST
768 is 80. You wouldn't want it any higher than this anyway. Fastbins
769 are designed especially for use with many small structs, objects or
770 strings -- the default handles structs/objects/arrays with sizes up
771 to 8 4byte fields, or small strings representing words, tokens,
772 etc. Using fastbins for larger objects normally worsens
773 fragmentation without improving speed.
775 M_MXFAST is set in REQUEST size units. It is internally used in
776 chunksize units, which adds padding and alignment. You can reduce
777 M_MXFAST to 0 to disable all use of fastbins. This causes the malloc
778 algorithm to be a closer approximation of fifo-best-fit in all cases,
779 not just for larger requests, but will generally cause it to be
780 slower.
784 /* M_MXFAST is a standard SVID/XPG tuning option, usually listed in malloc.h */
785 #ifndef M_MXFAST
786 #define M_MXFAST 1
787 #endif
789 #ifndef DEFAULT_MXFAST
790 #define DEFAULT_MXFAST (64 * SIZE_SZ / 4)
791 #endif
795 M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
796 to keep before releasing via malloc_trim in free().
798 Automatic trimming is mainly useful in long-lived programs.
799 Because trimming via sbrk can be slow on some systems, and can
800 sometimes be wasteful (in cases where programs immediately
801 afterward allocate more large chunks) the value should be high
802 enough so that your overall system performance would improve by
803 releasing this much memory.
805 The trim threshold and the mmap control parameters (see below)
806 can be traded off with one another. Trimming and mmapping are
807 two different ways of releasing unused memory back to the
808 system. Between these two, it is often possible to keep
809 system-level demands of a long-lived program down to a bare
810 minimum. For example, in one test suite of sessions measuring
811 the XF86 X server on Linux, using a trim threshold of 128K and a
812 mmap threshold of 192K led to near-minimal long term resource
813 consumption.
815 If you are using this malloc in a long-lived program, it should
816 pay to experiment with these values. As a rough guide, you
817 might set to a value close to the average size of a process
818 (program) running on your system. Releasing this much memory
819 would allow such a process to run in memory. Generally, it's
820 worth it to tune for trimming rather tham memory mapping when a
821 program undergoes phases where several large chunks are
822 allocated and released in ways that can reuse each other's
823 storage, perhaps mixed with phases where there are no such
824 chunks at all. And in well-behaved long-lived programs,
825 controlling release of large blocks via trimming versus mapping
826 is usually faster.
828 However, in most programs, these parameters serve mainly as
829 protection against the system-level effects of carrying around
830 massive amounts of unneeded memory. Since frequent calls to
831 sbrk, mmap, and munmap otherwise degrade performance, the default
832 parameters are set to relatively high values that serve only as
833 safeguards.
835 The trim value It must be greater than page size to have any useful
836 effect. To disable trimming completely, you can set to
837 (unsigned long)(-1)
839 Trim settings interact with fastbin (MXFAST) settings: Unless
840 TRIM_FASTBINS is defined, automatic trimming never takes place upon
841 freeing a chunk with size less than or equal to MXFAST. Trimming is
842 instead delayed until subsequent freeing of larger chunks. However,
843 you can still force an attempted trim by calling malloc_trim.
845 Also, trimming is not generally possible in cases where
846 the main arena is obtained via mmap.
848 Note that the trick some people use of mallocing a huge space and
849 then freeing it at program startup, in an attempt to reserve system
850 memory, doesn't have the intended effect under automatic trimming,
851 since that memory will immediately be returned to the system.
854 #define M_TRIM_THRESHOLD -1
856 #ifndef DEFAULT_TRIM_THRESHOLD
857 #define DEFAULT_TRIM_THRESHOLD (128 * 1024)
858 #endif
861 M_TOP_PAD is the amount of extra `padding' space to allocate or
862 retain whenever sbrk is called. It is used in two ways internally:
864 * When sbrk is called to extend the top of the arena to satisfy
865 a new malloc request, this much padding is added to the sbrk
866 request.
868 * When malloc_trim is called automatically from free(),
869 it is used as the `pad' argument.
871 In both cases, the actual amount of padding is rounded
872 so that the end of the arena is always a system page boundary.
874 The main reason for using padding is to avoid calling sbrk so
875 often. Having even a small pad greatly reduces the likelihood
876 that nearly every malloc request during program start-up (or
877 after trimming) will invoke sbrk, which needlessly wastes
878 time.
880 Automatic rounding-up to page-size units is normally sufficient
881 to avoid measurable overhead, so the default is 0. However, in
882 systems where sbrk is relatively slow, it can pay to increase
883 this value, at the expense of carrying around more memory than
884 the program needs.
887 #define M_TOP_PAD -2
889 #ifndef DEFAULT_TOP_PAD
890 #define DEFAULT_TOP_PAD (0)
891 #endif
894 MMAP_THRESHOLD_MAX and _MIN are the bounds on the dynamically
895 adjusted MMAP_THRESHOLD.
898 #ifndef DEFAULT_MMAP_THRESHOLD_MIN
899 #define DEFAULT_MMAP_THRESHOLD_MIN (128 * 1024)
900 #endif
902 #ifndef DEFAULT_MMAP_THRESHOLD_MAX
903 /* For 32-bit platforms we cannot increase the maximum mmap
904 threshold much because it is also the minimum value for the
905 maximum heap size and its alignment. Going above 512k (i.e., 1M
906 for new heaps) wastes too much address space. */
907 # if __WORDSIZE == 32
908 # define DEFAULT_MMAP_THRESHOLD_MAX (512 * 1024)
909 # else
910 # define DEFAULT_MMAP_THRESHOLD_MAX (4 * 1024 * 1024 * sizeof(long))
911 # endif
912 #endif
915 M_MMAP_THRESHOLD is the request size threshold for using mmap()
916 to service a request. Requests of at least this size that cannot
917 be allocated using already-existing space will be serviced via mmap.
918 (If enough normal freed space already exists it is used instead.)
920 Using mmap segregates relatively large chunks of memory so that
921 they can be individually obtained and released from the host
922 system. A request serviced through mmap is never reused by any
923 other request (at least not directly; the system may just so
924 happen to remap successive requests to the same locations).
926 Segregating space in this way has the benefits that:
928 1. Mmapped space can ALWAYS be individually released back
929 to the system, which helps keep the system level memory
930 demands of a long-lived program low.
931 2. Mapped memory can never become `locked' between
932 other chunks, as can happen with normally allocated chunks, which
933 means that even trimming via malloc_trim would not release them.
934 3. On some systems with "holes" in address spaces, mmap can obtain
935 memory that sbrk cannot.
937 However, it has the disadvantages that:
939 1. The space cannot be reclaimed, consolidated, and then
940 used to service later requests, as happens with normal chunks.
941 2. It can lead to more wastage because of mmap page alignment
942 requirements
943 3. It causes malloc performance to be more dependent on host
944 system memory management support routines which may vary in
945 implementation quality and may impose arbitrary
946 limitations. Generally, servicing a request via normal
947 malloc steps is faster than going through a system's mmap.
949 The advantages of mmap nearly always outweigh disadvantages for
950 "large" chunks, but the value of "large" varies across systems. The
951 default is an empirically derived value that works well in most
952 systems.
955 Update in 2006:
956 The above was written in 2001. Since then the world has changed a lot.
957 Memory got bigger. Applications got bigger. The virtual address space
958 layout in 32 bit linux changed.
960 In the new situation, brk() and mmap space is shared and there are no
961 artificial limits on brk size imposed by the kernel. What is more,
962 applications have started using transient allocations larger than the
963 128Kb as was imagined in 2001.
965 The price for mmap is also high now; each time glibc mmaps from the
966 kernel, the kernel is forced to zero out the memory it gives to the
967 application. Zeroing memory is expensive and eats a lot of cache and
968 memory bandwidth. This has nothing to do with the efficiency of the
969 virtual memory system, by doing mmap the kernel just has no choice but
970 to zero.
972 In 2001, the kernel had a maximum size for brk() which was about 800
973 megabytes on 32 bit x86, at that point brk() would hit the first
974 mmaped shared libaries and couldn't expand anymore. With current 2.6
975 kernels, the VA space layout is different and brk() and mmap
976 both can span the entire heap at will.
978 Rather than using a static threshold for the brk/mmap tradeoff,
979 we are now using a simple dynamic one. The goal is still to avoid
980 fragmentation. The old goals we kept are
981 1) try to get the long lived large allocations to use mmap()
982 2) really large allocations should always use mmap()
983 and we're adding now:
984 3) transient allocations should use brk() to avoid forcing the kernel
985 having to zero memory over and over again
987 The implementation works with a sliding threshold, which is by default
988 limited to go between 128Kb and 32Mb (64Mb for 64 bitmachines) and starts
989 out at 128Kb as per the 2001 default.
991 This allows us to satisfy requirement 1) under the assumption that long
992 lived allocations are made early in the process' lifespan, before it has
993 started doing dynamic allocations of the same size (which will
994 increase the threshold).
996 The upperbound on the threshold satisfies requirement 2)
998 The threshold goes up in value when the application frees memory that was
999 allocated with the mmap allocator. The idea is that once the application
1000 starts freeing memory of a certain size, it's highly probable that this is
1001 a size the application uses for transient allocations. This estimator
1002 is there to satisfy the new third requirement.
1006 #define M_MMAP_THRESHOLD -3
1008 #ifndef DEFAULT_MMAP_THRESHOLD
1009 #define DEFAULT_MMAP_THRESHOLD DEFAULT_MMAP_THRESHOLD_MIN
1010 #endif
1013 M_MMAP_MAX is the maximum number of requests to simultaneously
1014 service using mmap. This parameter exists because
1015 some systems have a limited number of internal tables for
1016 use by mmap, and using more than a few of them may degrade
1017 performance.
1019 The default is set to a value that serves only as a safeguard.
1020 Setting to 0 disables use of mmap for servicing large requests.
1023 #define M_MMAP_MAX -4
1025 #ifndef DEFAULT_MMAP_MAX
1026 #define DEFAULT_MMAP_MAX (65536)
1027 #endif
1029 #include <malloc.h>
1031 #ifndef RETURN_ADDRESS
1032 #define RETURN_ADDRESS(X_) (NULL)
1033 #endif
1035 /* On some platforms we can compile internal, not exported functions better.
1036 Let the environment provide a macro and define it to be empty if it
1037 is not available. */
1038 #ifndef internal_function
1039 # define internal_function
1040 #endif
1042 /* Forward declarations. */
1043 struct malloc_chunk;
1044 typedef struct malloc_chunk* mchunkptr;
1046 /* Internal routines. */
1048 static void* _int_malloc(mstate, size_t);
1049 static void _int_free(mstate, mchunkptr, int);
1050 static void* _int_realloc(mstate, mchunkptr, INTERNAL_SIZE_T,
1051 INTERNAL_SIZE_T);
1052 static void* _int_memalign(mstate, size_t, size_t);
1053 static void* _mid_memalign(size_t, size_t, void *);
1055 static void malloc_printerr(int action, const char *str, void *ptr);
1057 static void* internal_function mem2mem_check(void *p, size_t sz);
1058 static int internal_function top_check(void);
1059 static void internal_function munmap_chunk(mchunkptr p);
1060 #if HAVE_MREMAP
1061 static mchunkptr internal_function mremap_chunk(mchunkptr p, size_t new_size);
1062 #endif
1064 static void* malloc_check(size_t sz, const void *caller);
1065 static void free_check(void* mem, const void *caller);
1066 static void* realloc_check(void* oldmem, size_t bytes,
1067 const void *caller);
1068 static void* memalign_check(size_t alignment, size_t bytes,
1069 const void *caller);
1070 #ifndef NO_THREADS
1071 static void* malloc_atfork(size_t sz, const void *caller);
1072 static void free_atfork(void* mem, const void *caller);
1073 #endif
1075 /* ------------------ MMAP support ------------------ */
1078 #include <fcntl.h>
1079 #include <sys/mman.h>
1081 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
1082 # define MAP_ANONYMOUS MAP_ANON
1083 #endif
1085 #ifndef MAP_NORESERVE
1086 # define MAP_NORESERVE 0
1087 #endif
1089 #define MMAP(addr, size, prot, flags) \
1090 __mmap((addr), (size), (prot), (flags)|MAP_ANONYMOUS|MAP_PRIVATE, -1, 0)
1094 ----------------------- Chunk representations -----------------------
1099 This struct declaration is misleading (but accurate and necessary).
1100 It declares a "view" into memory allowing access to necessary
1101 fields at known offsets from a given base. See explanation below.
1104 struct malloc_chunk {
1106 INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
1107 INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */
1109 struct malloc_chunk* fd; /* double links -- used only if free. */
1110 struct malloc_chunk* bk;
1112 /* Only used for large blocks: pointer to next larger size. */
1113 struct malloc_chunk* fd_nextsize; /* double links -- used only if free. */
1114 struct malloc_chunk* bk_nextsize;
1119 malloc_chunk details:
1121 (The following includes lightly edited explanations by Colin Plumb.)
1123 Chunks of memory are maintained using a `boundary tag' method as
1124 described in e.g., Knuth or Standish. (See the paper by Paul
1125 Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
1126 survey of such techniques.) Sizes of free chunks are stored both
1127 in the front of each chunk and at the end. This makes
1128 consolidating fragmented chunks into bigger chunks very fast. The
1129 size fields also hold bits representing whether chunks are free or
1130 in use.
1132 An allocated chunk looks like this:
1135 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1136 | Size of previous chunk, if allocated | |
1137 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1138 | Size of chunk, in bytes |M|P|
1139 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1140 | User data starts here... .
1142 . (malloc_usable_size() bytes) .
1144 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1145 | Size of chunk |
1146 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1149 Where "chunk" is the front of the chunk for the purpose of most of
1150 the malloc code, but "mem" is the pointer that is returned to the
1151 user. "Nextchunk" is the beginning of the next contiguous chunk.
1153 Chunks always begin on even word boundaries, so the mem portion
1154 (which is returned to the user) is also on an even word boundary, and
1155 thus at least double-word aligned.
1157 Free chunks are stored in circular doubly-linked lists, and look like this:
1159 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1160 | Size of previous chunk |
1161 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1162 `head:' | Size of chunk, in bytes |P|
1163 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1164 | Forward pointer to next chunk in list |
1165 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1166 | Back pointer to previous chunk in list |
1167 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1168 | Unused space (may be 0 bytes long) .
1171 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1172 `foot:' | Size of chunk, in bytes |
1173 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1175 The P (PREV_INUSE) bit, stored in the unused low-order bit of the
1176 chunk size (which is always a multiple of two words), is an in-use
1177 bit for the *previous* chunk. If that bit is *clear*, then the
1178 word before the current chunk size contains the previous chunk
1179 size, and can be used to find the front of the previous chunk.
1180 The very first chunk allocated always has this bit set,
1181 preventing access to non-existent (or non-owned) memory. If
1182 prev_inuse is set for any given chunk, then you CANNOT determine
1183 the size of the previous chunk, and might even get a memory
1184 addressing fault when trying to do so.
1186 Note that the `foot' of the current chunk is actually represented
1187 as the prev_size of the NEXT chunk. This makes it easier to
1188 deal with alignments etc but can be very confusing when trying
1189 to extend or adapt this code.
1191 The two exceptions to all this are
1193 1. The special chunk `top' doesn't bother using the
1194 trailing size field since there is no next contiguous chunk
1195 that would have to index off it. After initialization, `top'
1196 is forced to always exist. If it would become less than
1197 MINSIZE bytes long, it is replenished.
1199 2. Chunks allocated via mmap, which have the second-lowest-order
1200 bit M (IS_MMAPPED) set in their size fields. Because they are
1201 allocated one-by-one, each must contain its own trailing size field.
1206 ---------- Size and alignment checks and conversions ----------
1209 /* conversion from malloc headers to user pointers, and back */
1211 #define chunk2mem(p) ((void*)((char*)(p) + 2*SIZE_SZ))
1212 #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
1214 /* The smallest possible chunk */
1215 #define MIN_CHUNK_SIZE (offsetof(struct malloc_chunk, fd_nextsize))
1217 /* The smallest size we can malloc is an aligned minimal chunk */
1219 #define MINSIZE \
1220 (unsigned long)(((MIN_CHUNK_SIZE+MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK))
1222 /* Check if m has acceptable alignment */
1224 #define aligned_OK(m) (((unsigned long)(m) & MALLOC_ALIGN_MASK) == 0)
1226 #define misaligned_chunk(p) \
1227 ((uintptr_t)(MALLOC_ALIGNMENT == 2 * SIZE_SZ ? (p) : chunk2mem (p)) \
1228 & MALLOC_ALIGN_MASK)
1232 Check if a request is so large that it would wrap around zero when
1233 padded and aligned. To simplify some other code, the bound is made
1234 low enough so that adding MINSIZE will also not wrap around zero.
1237 #define REQUEST_OUT_OF_RANGE(req) \
1238 ((unsigned long) (req) >= \
1239 (unsigned long) (INTERNAL_SIZE_T) (-2 * MINSIZE))
1241 /* pad request bytes into a usable size -- internal version */
1243 #define request2size(req) \
1244 (((req) + SIZE_SZ + MALLOC_ALIGN_MASK < MINSIZE) ? \
1245 MINSIZE : \
1246 ((req) + SIZE_SZ + MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK)
1248 /* Same, except also perform argument check */
1250 #define checked_request2size(req, sz) \
1251 if (REQUEST_OUT_OF_RANGE (req)) { \
1252 __set_errno (ENOMEM); \
1253 return 0; \
1255 (sz) = request2size (req);
1258 --------------- Physical chunk operations ---------------
1262 /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
1263 #define PREV_INUSE 0x1
1265 /* extract inuse bit of previous chunk */
1266 #define prev_inuse(p) ((p)->size & PREV_INUSE)
1269 /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
1270 #define IS_MMAPPED 0x2
1272 /* check for mmap()'ed chunk */
1273 #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
1276 /* size field is or'ed with NON_MAIN_ARENA if the chunk was obtained
1277 from a non-main arena. This is only set immediately before handing
1278 the chunk to the user, if necessary. */
1279 #define NON_MAIN_ARENA 0x4
1281 /* check for chunk from non-main arena */
1282 #define chunk_non_main_arena(p) ((p)->size & NON_MAIN_ARENA)
1286 Bits to mask off when extracting size
1288 Note: IS_MMAPPED is intentionally not masked off from size field in
1289 macros for which mmapped chunks should never be seen. This should
1290 cause helpful core dumps to occur if it is tried by accident by
1291 people extending or adapting this malloc.
1293 #define SIZE_BITS (PREV_INUSE | IS_MMAPPED | NON_MAIN_ARENA)
1295 /* Get size, ignoring use bits */
1296 #define chunksize(p) ((p)->size & ~(SIZE_BITS))
1299 /* Ptr to next physical malloc_chunk. */
1300 #define next_chunk(p) ((mchunkptr) (((char *) (p)) + ((p)->size & ~SIZE_BITS)))
1302 /* Ptr to previous physical malloc_chunk */
1303 #define prev_chunk(p) ((mchunkptr) (((char *) (p)) - ((p)->prev_size)))
1305 /* Treat space at ptr + offset as a chunk */
1306 #define chunk_at_offset(p, s) ((mchunkptr) (((char *) (p)) + (s)))
1308 /* extract p's inuse bit */
1309 #define inuse(p) \
1310 ((((mchunkptr) (((char *) (p)) + ((p)->size & ~SIZE_BITS)))->size) & PREV_INUSE)
1312 /* set/clear chunk as being inuse without otherwise disturbing */
1313 #define set_inuse(p) \
1314 ((mchunkptr) (((char *) (p)) + ((p)->size & ~SIZE_BITS)))->size |= PREV_INUSE
1316 #define clear_inuse(p) \
1317 ((mchunkptr) (((char *) (p)) + ((p)->size & ~SIZE_BITS)))->size &= ~(PREV_INUSE)
1320 /* check/set/clear inuse bits in known places */
1321 #define inuse_bit_at_offset(p, s) \
1322 (((mchunkptr) (((char *) (p)) + (s)))->size & PREV_INUSE)
1324 #define set_inuse_bit_at_offset(p, s) \
1325 (((mchunkptr) (((char *) (p)) + (s)))->size |= PREV_INUSE)
1327 #define clear_inuse_bit_at_offset(p, s) \
1328 (((mchunkptr) (((char *) (p)) + (s)))->size &= ~(PREV_INUSE))
1331 /* Set size at head, without disturbing its use bit */
1332 #define set_head_size(p, s) ((p)->size = (((p)->size & SIZE_BITS) | (s)))
1334 /* Set size/use field */
1335 #define set_head(p, s) ((p)->size = (s))
1337 /* Set size at footer (only when chunk is not in use) */
1338 #define set_foot(p, s) (((mchunkptr) ((char *) (p) + (s)))->prev_size = (s))
1342 -------------------- Internal data structures --------------------
1344 All internal state is held in an instance of malloc_state defined
1345 below. There are no other static variables, except in two optional
1346 cases:
1347 * If USE_MALLOC_LOCK is defined, the mALLOC_MUTEx declared above.
1348 * If mmap doesn't support MAP_ANONYMOUS, a dummy file descriptor
1349 for mmap.
1351 Beware of lots of tricks that minimize the total bookkeeping space
1352 requirements. The result is a little over 1K bytes (for 4byte
1353 pointers and size_t.)
1357 Bins
1359 An array of bin headers for free chunks. Each bin is doubly
1360 linked. The bins are approximately proportionally (log) spaced.
1361 There are a lot of these bins (128). This may look excessive, but
1362 works very well in practice. Most bins hold sizes that are
1363 unusual as malloc request sizes, but are more usual for fragments
1364 and consolidated sets of chunks, which is what these bins hold, so
1365 they can be found quickly. All procedures maintain the invariant
1366 that no consolidated chunk physically borders another one, so each
1367 chunk in a list is known to be preceeded and followed by either
1368 inuse chunks or the ends of memory.
1370 Chunks in bins are kept in size order, with ties going to the
1371 approximately least recently used chunk. Ordering isn't needed
1372 for the small bins, which all contain the same-sized chunks, but
1373 facilitates best-fit allocation for larger chunks. These lists
1374 are just sequential. Keeping them in order almost never requires
1375 enough traversal to warrant using fancier ordered data
1376 structures.
1378 Chunks of the same size are linked with the most
1379 recently freed at the front, and allocations are taken from the
1380 back. This results in LRU (FIFO) allocation order, which tends
1381 to give each chunk an equal opportunity to be consolidated with
1382 adjacent freed chunks, resulting in larger free chunks and less
1383 fragmentation.
1385 To simplify use in double-linked lists, each bin header acts
1386 as a malloc_chunk. This avoids special-casing for headers.
1387 But to conserve space and improve locality, we allocate
1388 only the fd/bk pointers of bins, and then use repositioning tricks
1389 to treat these as the fields of a malloc_chunk*.
1392 typedef struct malloc_chunk *mbinptr;
1394 /* addressing -- note that bin_at(0) does not exist */
1395 #define bin_at(m, i) \
1396 (mbinptr) (((char *) &((m)->bins[((i) - 1) * 2])) \
1397 - offsetof (struct malloc_chunk, fd))
1399 /* analog of ++bin */
1400 #define next_bin(b) ((mbinptr) ((char *) (b) + (sizeof (mchunkptr) << 1)))
1402 /* Reminders about list directionality within bins */
1403 #define first(b) ((b)->fd)
1404 #define last(b) ((b)->bk)
1406 /* Take a chunk off a bin list */
1407 #define unlink(P, BK, FD) { \
1408 FD = P->fd; \
1409 BK = P->bk; \
1410 if (__builtin_expect (FD->bk != P || BK->fd != P, 0)) \
1411 malloc_printerr (check_action, "corrupted double-linked list", P); \
1412 else { \
1413 FD->bk = BK; \
1414 BK->fd = FD; \
1415 if (!in_smallbin_range (P->size) \
1416 && __builtin_expect (P->fd_nextsize != NULL, 0)) { \
1417 assert (P->fd_nextsize->bk_nextsize == P); \
1418 assert (P->bk_nextsize->fd_nextsize == P); \
1419 if (FD->fd_nextsize == NULL) { \
1420 if (P->fd_nextsize == P) \
1421 FD->fd_nextsize = FD->bk_nextsize = FD; \
1422 else { \
1423 FD->fd_nextsize = P->fd_nextsize; \
1424 FD->bk_nextsize = P->bk_nextsize; \
1425 P->fd_nextsize->bk_nextsize = FD; \
1426 P->bk_nextsize->fd_nextsize = FD; \
1428 } else { \
1429 P->fd_nextsize->bk_nextsize = P->bk_nextsize; \
1430 P->bk_nextsize->fd_nextsize = P->fd_nextsize; \
1437 Indexing
1439 Bins for sizes < 512 bytes contain chunks of all the same size, spaced
1440 8 bytes apart. Larger bins are approximately logarithmically spaced:
1442 64 bins of size 8
1443 32 bins of size 64
1444 16 bins of size 512
1445 8 bins of size 4096
1446 4 bins of size 32768
1447 2 bins of size 262144
1448 1 bin of size what's left
1450 There is actually a little bit of slop in the numbers in bin_index
1451 for the sake of speed. This makes no difference elsewhere.
1453 The bins top out around 1MB because we expect to service large
1454 requests via mmap.
1456 Bin 0 does not exist. Bin 1 is the unordered list; if that would be
1457 a valid chunk size the small bins are bumped up one.
1460 #define NBINS 128
1461 #define NSMALLBINS 64
1462 #define SMALLBIN_WIDTH MALLOC_ALIGNMENT
1463 #define SMALLBIN_CORRECTION (MALLOC_ALIGNMENT > 2 * SIZE_SZ)
1464 #define MIN_LARGE_SIZE ((NSMALLBINS - SMALLBIN_CORRECTION) * SMALLBIN_WIDTH)
1466 #define in_smallbin_range(sz) \
1467 ((unsigned long) (sz) < (unsigned long) MIN_LARGE_SIZE)
1469 #define smallbin_index(sz) \
1470 ((SMALLBIN_WIDTH == 16 ? (((unsigned) (sz)) >> 4) : (((unsigned) (sz)) >> 3))\
1471 + SMALLBIN_CORRECTION)
1473 #define largebin_index_32(sz) \
1474 (((((unsigned long) (sz)) >> 6) <= 38) ? 56 + (((unsigned long) (sz)) >> 6) :\
1475 ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\
1476 ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\
1477 ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\
1478 ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\
1479 126)
1481 #define largebin_index_32_big(sz) \
1482 (((((unsigned long) (sz)) >> 6) <= 45) ? 49 + (((unsigned long) (sz)) >> 6) :\
1483 ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\
1484 ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\
1485 ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\
1486 ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\
1487 126)
1489 // XXX It remains to be seen whether it is good to keep the widths of
1490 // XXX the buckets the same or whether it should be scaled by a factor
1491 // XXX of two as well.
1492 #define largebin_index_64(sz) \
1493 (((((unsigned long) (sz)) >> 6) <= 48) ? 48 + (((unsigned long) (sz)) >> 6) :\
1494 ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\
1495 ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\
1496 ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\
1497 ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\
1498 126)
1500 #define largebin_index(sz) \
1501 (SIZE_SZ == 8 ? largebin_index_64 (sz) \
1502 : MALLOC_ALIGNMENT == 16 ? largebin_index_32_big (sz) \
1503 : largebin_index_32 (sz))
1505 #define bin_index(sz) \
1506 ((in_smallbin_range (sz)) ? smallbin_index (sz) : largebin_index (sz))
1510 Unsorted chunks
1512 All remainders from chunk splits, as well as all returned chunks,
1513 are first placed in the "unsorted" bin. They are then placed
1514 in regular bins after malloc gives them ONE chance to be used before
1515 binning. So, basically, the unsorted_chunks list acts as a queue,
1516 with chunks being placed on it in free (and malloc_consolidate),
1517 and taken off (to be either used or placed in bins) in malloc.
1519 The NON_MAIN_ARENA flag is never set for unsorted chunks, so it
1520 does not have to be taken into account in size comparisons.
1523 /* The otherwise unindexable 1-bin is used to hold unsorted chunks. */
1524 #define unsorted_chunks(M) (bin_at (M, 1))
1529 The top-most available chunk (i.e., the one bordering the end of
1530 available memory) is treated specially. It is never included in
1531 any bin, is used only if no other chunk is available, and is
1532 released back to the system if it is very large (see
1533 M_TRIM_THRESHOLD). Because top initially
1534 points to its own bin with initial zero size, thus forcing
1535 extension on the first malloc request, we avoid having any special
1536 code in malloc to check whether it even exists yet. But we still
1537 need to do so when getting memory from system, so we make
1538 initial_top treat the bin as a legal but unusable chunk during the
1539 interval between initialization and the first call to
1540 sysmalloc. (This is somewhat delicate, since it relies on
1541 the 2 preceding words to be zero during this interval as well.)
1544 /* Conveniently, the unsorted bin can be used as dummy top on first call */
1545 #define initial_top(M) (unsorted_chunks (M))
1548 Binmap
1550 To help compensate for the large number of bins, a one-level index
1551 structure is used for bin-by-bin searching. `binmap' is a
1552 bitvector recording whether bins are definitely empty so they can
1553 be skipped over during during traversals. The bits are NOT always
1554 cleared as soon as bins are empty, but instead only
1555 when they are noticed to be empty during traversal in malloc.
1558 /* Conservatively use 32 bits per map word, even if on 64bit system */
1559 #define BINMAPSHIFT 5
1560 #define BITSPERMAP (1U << BINMAPSHIFT)
1561 #define BINMAPSIZE (NBINS / BITSPERMAP)
1563 #define idx2block(i) ((i) >> BINMAPSHIFT)
1564 #define idx2bit(i) ((1U << ((i) & ((1U << BINMAPSHIFT) - 1))))
1566 #define mark_bin(m, i) ((m)->binmap[idx2block (i)] |= idx2bit (i))
1567 #define unmark_bin(m, i) ((m)->binmap[idx2block (i)] &= ~(idx2bit (i)))
1568 #define get_binmap(m, i) ((m)->binmap[idx2block (i)] & idx2bit (i))
1571 Fastbins
1573 An array of lists holding recently freed small chunks. Fastbins
1574 are not doubly linked. It is faster to single-link them, and
1575 since chunks are never removed from the middles of these lists,
1576 double linking is not necessary. Also, unlike regular bins, they
1577 are not even processed in FIFO order (they use faster LIFO) since
1578 ordering doesn't much matter in the transient contexts in which
1579 fastbins are normally used.
1581 Chunks in fastbins keep their inuse bit set, so they cannot
1582 be consolidated with other free chunks. malloc_consolidate
1583 releases all chunks in fastbins and consolidates them with
1584 other free chunks.
1587 typedef struct malloc_chunk *mfastbinptr;
1588 #define fastbin(ar_ptr, idx) ((ar_ptr)->fastbinsY[idx])
1590 /* offset 2 to use otherwise unindexable first 2 bins */
1591 #define fastbin_index(sz) \
1592 ((((unsigned int) (sz)) >> (SIZE_SZ == 8 ? 4 : 3)) - 2)
1595 /* The maximum fastbin request size we support */
1596 #define MAX_FAST_SIZE (80 * SIZE_SZ / 4)
1598 #define NFASTBINS (fastbin_index (request2size (MAX_FAST_SIZE)) + 1)
1601 FASTBIN_CONSOLIDATION_THRESHOLD is the size of a chunk in free()
1602 that triggers automatic consolidation of possibly-surrounding
1603 fastbin chunks. This is a heuristic, so the exact value should not
1604 matter too much. It is defined at half the default trim threshold as a
1605 compromise heuristic to only attempt consolidation if it is likely
1606 to lead to trimming. However, it is not dynamically tunable, since
1607 consolidation reduces fragmentation surrounding large chunks even
1608 if trimming is not used.
1611 #define FASTBIN_CONSOLIDATION_THRESHOLD (65536UL)
1614 Since the lowest 2 bits in max_fast don't matter in size comparisons,
1615 they are used as flags.
1619 FASTCHUNKS_BIT held in max_fast indicates that there are probably
1620 some fastbin chunks. It is set true on entering a chunk into any
1621 fastbin, and cleared only in malloc_consolidate.
1623 The truth value is inverted so that have_fastchunks will be true
1624 upon startup (since statics are zero-filled), simplifying
1625 initialization checks.
1628 #define FASTCHUNKS_BIT (1U)
1630 #define have_fastchunks(M) (((M)->flags & FASTCHUNKS_BIT) == 0)
1631 #define clear_fastchunks(M) catomic_or (&(M)->flags, FASTCHUNKS_BIT)
1632 #define set_fastchunks(M) catomic_and (&(M)->flags, ~FASTCHUNKS_BIT)
1635 NONCONTIGUOUS_BIT indicates that MORECORE does not return contiguous
1636 regions. Otherwise, contiguity is exploited in merging together,
1637 when possible, results from consecutive MORECORE calls.
1639 The initial value comes from MORECORE_CONTIGUOUS, but is
1640 changed dynamically if mmap is ever used as an sbrk substitute.
1643 #define NONCONTIGUOUS_BIT (2U)
1645 #define contiguous(M) (((M)->flags & NONCONTIGUOUS_BIT) == 0)
1646 #define noncontiguous(M) (((M)->flags & NONCONTIGUOUS_BIT) != 0)
1647 #define set_noncontiguous(M) ((M)->flags |= NONCONTIGUOUS_BIT)
1648 #define set_contiguous(M) ((M)->flags &= ~NONCONTIGUOUS_BIT)
1651 Set value of max_fast.
1652 Use impossibly small value if 0.
1653 Precondition: there are no existing fastbin chunks.
1654 Setting the value clears fastchunk bit but preserves noncontiguous bit.
1657 #define set_max_fast(s) \
1658 global_max_fast = (((s) == 0) \
1659 ? SMALLBIN_WIDTH : ((s + SIZE_SZ) & ~MALLOC_ALIGN_MASK))
1660 #define get_max_fast() global_max_fast
1664 ----------- Internal state representation and initialization -----------
1667 struct malloc_state
1669 /* Serialize access. */
1670 mutex_t mutex;
1672 /* Flags (formerly in max_fast). */
1673 int flags;
1675 /* Fastbins */
1676 mfastbinptr fastbinsY[NFASTBINS];
1678 /* Base of the topmost chunk -- not otherwise kept in a bin */
1679 mchunkptr top;
1681 /* The remainder from the most recent split of a small request */
1682 mchunkptr last_remainder;
1684 /* Normal bins packed as described above */
1685 mchunkptr bins[NBINS * 2 - 2];
1687 /* Bitmap of bins */
1688 unsigned int binmap[BINMAPSIZE];
1690 /* Linked list */
1691 struct malloc_state *next;
1693 /* Linked list for free arenas. */
1694 struct malloc_state *next_free;
1696 /* Memory allocated from the system in this arena. */
1697 INTERNAL_SIZE_T system_mem;
1698 INTERNAL_SIZE_T max_system_mem;
1701 struct malloc_par
1703 /* Tunable parameters */
1704 unsigned long trim_threshold;
1705 INTERNAL_SIZE_T top_pad;
1706 INTERNAL_SIZE_T mmap_threshold;
1707 INTERNAL_SIZE_T arena_test;
1708 INTERNAL_SIZE_T arena_max;
1710 /* Memory map support */
1711 int n_mmaps;
1712 int n_mmaps_max;
1713 int max_n_mmaps;
1714 /* the mmap_threshold is dynamic, until the user sets
1715 it manually, at which point we need to disable any
1716 dynamic behavior. */
1717 int no_dyn_threshold;
1719 /* Statistics */
1720 INTERNAL_SIZE_T mmapped_mem;
1721 /*INTERNAL_SIZE_T sbrked_mem;*/
1722 /*INTERNAL_SIZE_T max_sbrked_mem;*/
1723 INTERNAL_SIZE_T max_mmapped_mem;
1724 INTERNAL_SIZE_T max_total_mem; /* only kept for NO_THREADS */
1726 /* First address handed out by MORECORE/sbrk. */
1727 char *sbrk_base;
1730 /* There are several instances of this struct ("arenas") in this
1731 malloc. If you are adapting this malloc in a way that does NOT use
1732 a static or mmapped malloc_state, you MUST explicitly zero-fill it
1733 before using. This malloc relies on the property that malloc_state
1734 is initialized to all zeroes (as is true of C statics). */
1736 static struct malloc_state main_arena =
1738 .mutex = MUTEX_INITIALIZER,
1739 .next = &main_arena
1742 /* There is only one instance of the malloc parameters. */
1744 static struct malloc_par mp_ =
1746 .top_pad = DEFAULT_TOP_PAD,
1747 .n_mmaps_max = DEFAULT_MMAP_MAX,
1748 .mmap_threshold = DEFAULT_MMAP_THRESHOLD,
1749 .trim_threshold = DEFAULT_TRIM_THRESHOLD,
1750 #define NARENAS_FROM_NCORES(n) ((n) * (sizeof (long) == 4 ? 2 : 8))
1751 .arena_test = NARENAS_FROM_NCORES (1)
1755 /* Non public mallopt parameters. */
1756 #define M_ARENA_TEST -7
1757 #define M_ARENA_MAX -8
1760 /* Maximum size of memory handled in fastbins. */
1761 static INTERNAL_SIZE_T global_max_fast;
1764 Initialize a malloc_state struct.
1766 This is called only from within malloc_consolidate, which needs
1767 be called in the same contexts anyway. It is never called directly
1768 outside of malloc_consolidate because some optimizing compilers try
1769 to inline it at all call points, which turns out not to be an
1770 optimization at all. (Inlining it in malloc_consolidate is fine though.)
1773 static void
1774 malloc_init_state (mstate av)
1776 int i;
1777 mbinptr bin;
1779 /* Establish circular links for normal bins */
1780 for (i = 1; i < NBINS; ++i)
1782 bin = bin_at (av, i);
1783 bin->fd = bin->bk = bin;
1786 #if MORECORE_CONTIGUOUS
1787 if (av != &main_arena)
1788 #endif
1789 set_noncontiguous (av);
1790 if (av == &main_arena)
1791 set_max_fast (DEFAULT_MXFAST);
1792 av->flags |= FASTCHUNKS_BIT;
1794 av->top = initial_top (av);
1798 Other internal utilities operating on mstates
1801 static void *sysmalloc (INTERNAL_SIZE_T, mstate);
1802 static int systrim (size_t, mstate);
1803 static void malloc_consolidate (mstate);
1806 /* -------------- Early definitions for debugging hooks ---------------- */
1808 /* Define and initialize the hook variables. These weak definitions must
1809 appear before any use of the variables in a function (arena.c uses one). */
1810 #ifndef weak_variable
1811 /* In GNU libc we want the hook variables to be weak definitions to
1812 avoid a problem with Emacs. */
1813 # define weak_variable weak_function
1814 #endif
1816 /* Forward declarations. */
1817 static void *malloc_hook_ini (size_t sz,
1818 const void *caller) __THROW;
1819 static void *realloc_hook_ini (void *ptr, size_t sz,
1820 const void *caller) __THROW;
1821 static void *memalign_hook_ini (size_t alignment, size_t sz,
1822 const void *caller) __THROW;
1824 void weak_variable (*__malloc_initialize_hook) (void) = NULL;
1825 void weak_variable (*__free_hook) (void *__ptr,
1826 const void *) = NULL;
1827 void *weak_variable (*__malloc_hook)
1828 (size_t __size, const void *) = malloc_hook_ini;
1829 void *weak_variable (*__realloc_hook)
1830 (void *__ptr, size_t __size, const void *)
1831 = realloc_hook_ini;
1832 void *weak_variable (*__memalign_hook)
1833 (size_t __alignment, size_t __size, const void *)
1834 = memalign_hook_ini;
1835 void weak_variable (*__after_morecore_hook) (void) = NULL;
1838 /* ---------------- Error behavior ------------------------------------ */
1840 #ifndef DEFAULT_CHECK_ACTION
1841 # define DEFAULT_CHECK_ACTION 3
1842 #endif
1844 static int check_action = DEFAULT_CHECK_ACTION;
1847 /* ------------------ Testing support ----------------------------------*/
1849 static int perturb_byte;
1851 static inline void
1852 alloc_perturb (char *p, size_t n)
1854 if (__glibc_unlikely (perturb_byte))
1855 memset (p, perturb_byte ^ 0xff, n);
1858 static inline void
1859 free_perturb (char *p, size_t n)
1861 if (__glibc_unlikely (perturb_byte))
1862 memset (p, perturb_byte, n);
1867 #include <stap-probe.h>
1869 /* ------------------- Support for multiple arenas -------------------- */
1870 #include "arena.c"
1873 Debugging support
1875 These routines make a number of assertions about the states
1876 of data structures that should be true at all times. If any
1877 are not true, it's very likely that a user program has somehow
1878 trashed memory. (It's also possible that there is a coding error
1879 in malloc. In which case, please report it!)
1882 #if !MALLOC_DEBUG
1884 # define check_chunk(A, P)
1885 # define check_free_chunk(A, P)
1886 # define check_inuse_chunk(A, P)
1887 # define check_remalloced_chunk(A, P, N)
1888 # define check_malloced_chunk(A, P, N)
1889 # define check_malloc_state(A)
1891 #else
1893 # define check_chunk(A, P) do_check_chunk (A, P)
1894 # define check_free_chunk(A, P) do_check_free_chunk (A, P)
1895 # define check_inuse_chunk(A, P) do_check_inuse_chunk (A, P)
1896 # define check_remalloced_chunk(A, P, N) do_check_remalloced_chunk (A, P, N)
1897 # define check_malloced_chunk(A, P, N) do_check_malloced_chunk (A, P, N)
1898 # define check_malloc_state(A) do_check_malloc_state (A)
1901 Properties of all chunks
1904 static void
1905 do_check_chunk (mstate av, mchunkptr p)
1907 unsigned long sz = chunksize (p);
1908 /* min and max possible addresses assuming contiguous allocation */
1909 char *max_address = (char *) (av->top) + chunksize (av->top);
1910 char *min_address = max_address - av->system_mem;
1912 if (!chunk_is_mmapped (p))
1914 /* Has legal address ... */
1915 if (p != av->top)
1917 if (contiguous (av))
1919 assert (((char *) p) >= min_address);
1920 assert (((char *) p + sz) <= ((char *) (av->top)));
1923 else
1925 /* top size is always at least MINSIZE */
1926 assert ((unsigned long) (sz) >= MINSIZE);
1927 /* top predecessor always marked inuse */
1928 assert (prev_inuse (p));
1931 else
1933 /* address is outside main heap */
1934 if (contiguous (av) && av->top != initial_top (av))
1936 assert (((char *) p) < min_address || ((char *) p) >= max_address);
1938 /* chunk is page-aligned */
1939 assert (((p->prev_size + sz) & (GLRO (dl_pagesize) - 1)) == 0);
1940 /* mem is aligned */
1941 assert (aligned_OK (chunk2mem (p)));
1946 Properties of free chunks
1949 static void
1950 do_check_free_chunk (mstate av, mchunkptr p)
1952 INTERNAL_SIZE_T sz = p->size & ~(PREV_INUSE | NON_MAIN_ARENA);
1953 mchunkptr next = chunk_at_offset (p, sz);
1955 do_check_chunk (av, p);
1957 /* Chunk must claim to be free ... */
1958 assert (!inuse (p));
1959 assert (!chunk_is_mmapped (p));
1961 /* Unless a special marker, must have OK fields */
1962 if ((unsigned long) (sz) >= MINSIZE)
1964 assert ((sz & MALLOC_ALIGN_MASK) == 0);
1965 assert (aligned_OK (chunk2mem (p)));
1966 /* ... matching footer field */
1967 assert (next->prev_size == sz);
1968 /* ... and is fully consolidated */
1969 assert (prev_inuse (p));
1970 assert (next == av->top || inuse (next));
1972 /* ... and has minimally sane links */
1973 assert (p->fd->bk == p);
1974 assert (p->bk->fd == p);
1976 else /* markers are always of size SIZE_SZ */
1977 assert (sz == SIZE_SZ);
1981 Properties of inuse chunks
1984 static void
1985 do_check_inuse_chunk (mstate av, mchunkptr p)
1987 mchunkptr next;
1989 do_check_chunk (av, p);
1991 if (chunk_is_mmapped (p))
1992 return; /* mmapped chunks have no next/prev */
1994 /* Check whether it claims to be in use ... */
1995 assert (inuse (p));
1997 next = next_chunk (p);
1999 /* ... and is surrounded by OK chunks.
2000 Since more things can be checked with free chunks than inuse ones,
2001 if an inuse chunk borders them and debug is on, it's worth doing them.
2003 if (!prev_inuse (p))
2005 /* Note that we cannot even look at prev unless it is not inuse */
2006 mchunkptr prv = prev_chunk (p);
2007 assert (next_chunk (prv) == p);
2008 do_check_free_chunk (av, prv);
2011 if (next == av->top)
2013 assert (prev_inuse (next));
2014 assert (chunksize (next) >= MINSIZE);
2016 else if (!inuse (next))
2017 do_check_free_chunk (av, next);
2021 Properties of chunks recycled from fastbins
2024 static void
2025 do_check_remalloced_chunk (mstate av, mchunkptr p, INTERNAL_SIZE_T s)
2027 INTERNAL_SIZE_T sz = p->size & ~(PREV_INUSE | NON_MAIN_ARENA);
2029 if (!chunk_is_mmapped (p))
2031 assert (av == arena_for_chunk (p));
2032 if (chunk_non_main_arena (p))
2033 assert (av != &main_arena);
2034 else
2035 assert (av == &main_arena);
2038 do_check_inuse_chunk (av, p);
2040 /* Legal size ... */
2041 assert ((sz & MALLOC_ALIGN_MASK) == 0);
2042 assert ((unsigned long) (sz) >= MINSIZE);
2043 /* ... and alignment */
2044 assert (aligned_OK (chunk2mem (p)));
2045 /* chunk is less than MINSIZE more than request */
2046 assert ((long) (sz) - (long) (s) >= 0);
2047 assert ((long) (sz) - (long) (s + MINSIZE) < 0);
2051 Properties of nonrecycled chunks at the point they are malloced
2054 static void
2055 do_check_malloced_chunk (mstate av, mchunkptr p, INTERNAL_SIZE_T s)
2057 /* same as recycled case ... */
2058 do_check_remalloced_chunk (av, p, s);
2061 ... plus, must obey implementation invariant that prev_inuse is
2062 always true of any allocated chunk; i.e., that each allocated
2063 chunk borders either a previously allocated and still in-use
2064 chunk, or the base of its memory arena. This is ensured
2065 by making all allocations from the `lowest' part of any found
2066 chunk. This does not necessarily hold however for chunks
2067 recycled via fastbins.
2070 assert (prev_inuse (p));
2075 Properties of malloc_state.
2077 This may be useful for debugging malloc, as well as detecting user
2078 programmer errors that somehow write into malloc_state.
2080 If you are extending or experimenting with this malloc, you can
2081 probably figure out how to hack this routine to print out or
2082 display chunk addresses, sizes, bins, and other instrumentation.
2085 static void
2086 do_check_malloc_state (mstate av)
2088 int i;
2089 mchunkptr p;
2090 mchunkptr q;
2091 mbinptr b;
2092 unsigned int idx;
2093 INTERNAL_SIZE_T size;
2094 unsigned long total = 0;
2095 int max_fast_bin;
2097 /* internal size_t must be no wider than pointer type */
2098 assert (sizeof (INTERNAL_SIZE_T) <= sizeof (char *));
2100 /* alignment is a power of 2 */
2101 assert ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT - 1)) == 0);
2103 /* cannot run remaining checks until fully initialized */
2104 if (av->top == 0 || av->top == initial_top (av))
2105 return;
2107 /* pagesize is a power of 2 */
2108 assert ((GLRO (dl_pagesize) & (GLRO (dl_pagesize) - 1)) == 0);
2110 /* A contiguous main_arena is consistent with sbrk_base. */
2111 if (av == &main_arena && contiguous (av))
2112 assert ((char *) mp_.sbrk_base + av->system_mem ==
2113 (char *) av->top + chunksize (av->top));
2115 /* properties of fastbins */
2117 /* max_fast is in allowed range */
2118 assert ((get_max_fast () & ~1) <= request2size (MAX_FAST_SIZE));
2120 max_fast_bin = fastbin_index (get_max_fast ());
2122 for (i = 0; i < NFASTBINS; ++i)
2124 p = fastbin (av, i);
2126 /* The following test can only be performed for the main arena.
2127 While mallopt calls malloc_consolidate to get rid of all fast
2128 bins (especially those larger than the new maximum) this does
2129 only happen for the main arena. Trying to do this for any
2130 other arena would mean those arenas have to be locked and
2131 malloc_consolidate be called for them. This is excessive. And
2132 even if this is acceptable to somebody it still cannot solve
2133 the problem completely since if the arena is locked a
2134 concurrent malloc call might create a new arena which then
2135 could use the newly invalid fast bins. */
2137 /* all bins past max_fast are empty */
2138 if (av == &main_arena && i > max_fast_bin)
2139 assert (p == 0);
2141 while (p != 0)
2143 /* each chunk claims to be inuse */
2144 do_check_inuse_chunk (av, p);
2145 total += chunksize (p);
2146 /* chunk belongs in this bin */
2147 assert (fastbin_index (chunksize (p)) == i);
2148 p = p->fd;
2152 if (total != 0)
2153 assert (have_fastchunks (av));
2154 else if (!have_fastchunks (av))
2155 assert (total == 0);
2157 /* check normal bins */
2158 for (i = 1; i < NBINS; ++i)
2160 b = bin_at (av, i);
2162 /* binmap is accurate (except for bin 1 == unsorted_chunks) */
2163 if (i >= 2)
2165 unsigned int binbit = get_binmap (av, i);
2166 int empty = last (b) == b;
2167 if (!binbit)
2168 assert (empty);
2169 else if (!empty)
2170 assert (binbit);
2173 for (p = last (b); p != b; p = p->bk)
2175 /* each chunk claims to be free */
2176 do_check_free_chunk (av, p);
2177 size = chunksize (p);
2178 total += size;
2179 if (i >= 2)
2181 /* chunk belongs in bin */
2182 idx = bin_index (size);
2183 assert (idx == i);
2184 /* lists are sorted */
2185 assert (p->bk == b ||
2186 (unsigned long) chunksize (p->bk) >= (unsigned long) chunksize (p));
2188 if (!in_smallbin_range (size))
2190 if (p->fd_nextsize != NULL)
2192 if (p->fd_nextsize == p)
2193 assert (p->bk_nextsize == p);
2194 else
2196 if (p->fd_nextsize == first (b))
2197 assert (chunksize (p) < chunksize (p->fd_nextsize));
2198 else
2199 assert (chunksize (p) > chunksize (p->fd_nextsize));
2201 if (p == first (b))
2202 assert (chunksize (p) > chunksize (p->bk_nextsize));
2203 else
2204 assert (chunksize (p) < chunksize (p->bk_nextsize));
2207 else
2208 assert (p->bk_nextsize == NULL);
2211 else if (!in_smallbin_range (size))
2212 assert (p->fd_nextsize == NULL && p->bk_nextsize == NULL);
2213 /* chunk is followed by a legal chain of inuse chunks */
2214 for (q = next_chunk (p);
2215 (q != av->top && inuse (q) &&
2216 (unsigned long) (chunksize (q)) >= MINSIZE);
2217 q = next_chunk (q))
2218 do_check_inuse_chunk (av, q);
2222 /* top chunk is OK */
2223 check_chunk (av, av->top);
2225 #endif
2228 /* ----------------- Support for debugging hooks -------------------- */
2229 #include "hooks.c"
2232 /* ----------- Routines dealing with system allocation -------------- */
2235 sysmalloc handles malloc cases requiring more memory from the system.
2236 On entry, it is assumed that av->top does not have enough
2237 space to service request for nb bytes, thus requiring that av->top
2238 be extended or replaced.
2241 static void *
2242 sysmalloc (INTERNAL_SIZE_T nb, mstate av)
2244 mchunkptr old_top; /* incoming value of av->top */
2245 INTERNAL_SIZE_T old_size; /* its size */
2246 char *old_end; /* its end address */
2248 long size; /* arg to first MORECORE or mmap call */
2249 char *brk; /* return value from MORECORE */
2251 long correction; /* arg to 2nd MORECORE call */
2252 char *snd_brk; /* 2nd return val */
2254 INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of new space */
2255 INTERNAL_SIZE_T end_misalign; /* partial page left at end of new space */
2256 char *aligned_brk; /* aligned offset into brk */
2258 mchunkptr p; /* the allocated/returned chunk */
2259 mchunkptr remainder; /* remainder from allocation */
2260 unsigned long remainder_size; /* its size */
2263 size_t pagemask = GLRO (dl_pagesize) - 1;
2264 bool tried_mmap = false;
2268 If have mmap, and the request size meets the mmap threshold, and
2269 the system supports mmap, and there are few enough currently
2270 allocated mmapped regions, try to directly map this request
2271 rather than expanding top.
2274 if ((unsigned long) (nb) >= (unsigned long) (mp_.mmap_threshold) &&
2275 (mp_.n_mmaps < mp_.n_mmaps_max))
2277 char *mm; /* return value from mmap call*/
2279 try_mmap:
2281 Round up size to nearest page. For mmapped chunks, the overhead
2282 is one SIZE_SZ unit larger than for normal chunks, because there
2283 is no following chunk whose prev_size field could be used.
2285 See the front_misalign handling below, for glibc there is no
2286 need for further alignments unless we have have high alignment.
2288 if (MALLOC_ALIGNMENT == 2 * SIZE_SZ)
2289 size = (nb + SIZE_SZ + pagemask) & ~pagemask;
2290 else
2291 size = (nb + SIZE_SZ + MALLOC_ALIGN_MASK + pagemask) & ~pagemask;
2292 tried_mmap = true;
2294 /* Don't try if size wraps around 0 */
2295 if ((unsigned long) (size) > (unsigned long) (nb))
2297 mm = (char *) (MMAP (0, size, PROT_READ | PROT_WRITE, 0));
2299 if (mm != MAP_FAILED)
2302 The offset to the start of the mmapped region is stored
2303 in the prev_size field of the chunk. This allows us to adjust
2304 returned start address to meet alignment requirements here
2305 and in memalign(), and still be able to compute proper
2306 address argument for later munmap in free() and realloc().
2309 if (MALLOC_ALIGNMENT == 2 * SIZE_SZ)
2311 /* For glibc, chunk2mem increases the address by 2*SIZE_SZ and
2312 MALLOC_ALIGN_MASK is 2*SIZE_SZ-1. Each mmap'ed area is page
2313 aligned and therefore definitely MALLOC_ALIGN_MASK-aligned. */
2314 assert (((INTERNAL_SIZE_T) chunk2mem (mm) & MALLOC_ALIGN_MASK) == 0);
2315 front_misalign = 0;
2317 else
2318 front_misalign = (INTERNAL_SIZE_T) chunk2mem (mm) & MALLOC_ALIGN_MASK;
2319 if (front_misalign > 0)
2321 correction = MALLOC_ALIGNMENT - front_misalign;
2322 p = (mchunkptr) (mm + correction);
2323 p->prev_size = correction;
2324 set_head (p, (size - correction) | IS_MMAPPED);
2326 else
2328 p = (mchunkptr) mm;
2329 set_head (p, size | IS_MMAPPED);
2332 /* update statistics */
2334 int new = atomic_exchange_and_add (&mp_.n_mmaps, 1) + 1;
2335 atomic_max (&mp_.max_n_mmaps, new);
2337 unsigned long sum;
2338 sum = atomic_exchange_and_add (&mp_.mmapped_mem, size) + size;
2339 atomic_max (&mp_.max_mmapped_mem, sum);
2341 check_chunk (av, p);
2343 return chunk2mem (p);
2348 /* Record incoming configuration of top */
2350 old_top = av->top;
2351 old_size = chunksize (old_top);
2352 old_end = (char *) (chunk_at_offset (old_top, old_size));
2354 brk = snd_brk = (char *) (MORECORE_FAILURE);
2357 If not the first time through, we require old_size to be
2358 at least MINSIZE and to have prev_inuse set.
2361 assert ((old_top == initial_top (av) && old_size == 0) ||
2362 ((unsigned long) (old_size) >= MINSIZE &&
2363 prev_inuse (old_top) &&
2364 ((unsigned long) old_end & pagemask) == 0));
2366 /* Precondition: not enough current space to satisfy nb request */
2367 assert ((unsigned long) (old_size) < (unsigned long) (nb + MINSIZE));
2370 if (av != &main_arena)
2372 heap_info *old_heap, *heap;
2373 size_t old_heap_size;
2375 /* First try to extend the current heap. */
2376 old_heap = heap_for_ptr (old_top);
2377 old_heap_size = old_heap->size;
2378 if ((long) (MINSIZE + nb - old_size) > 0
2379 && grow_heap (old_heap, MINSIZE + nb - old_size) == 0)
2381 av->system_mem += old_heap->size - old_heap_size;
2382 arena_mem += old_heap->size - old_heap_size;
2383 set_head (old_top, (((char *) old_heap + old_heap->size) - (char *) old_top)
2384 | PREV_INUSE);
2386 else if ((heap = new_heap (nb + (MINSIZE + sizeof (*heap)), mp_.top_pad)))
2388 /* Use a newly allocated heap. */
2389 heap->ar_ptr = av;
2390 heap->prev = old_heap;
2391 av->system_mem += heap->size;
2392 arena_mem += heap->size;
2393 /* Set up the new top. */
2394 top (av) = chunk_at_offset (heap, sizeof (*heap));
2395 set_head (top (av), (heap->size - sizeof (*heap)) | PREV_INUSE);
2397 /* Setup fencepost and free the old top chunk with a multiple of
2398 MALLOC_ALIGNMENT in size. */
2399 /* The fencepost takes at least MINSIZE bytes, because it might
2400 become the top chunk again later. Note that a footer is set
2401 up, too, although the chunk is marked in use. */
2402 old_size = (old_size - MINSIZE) & ~MALLOC_ALIGN_MASK;
2403 set_head (chunk_at_offset (old_top, old_size + 2 * SIZE_SZ), 0 | PREV_INUSE);
2404 if (old_size >= MINSIZE)
2406 set_head (chunk_at_offset (old_top, old_size), (2 * SIZE_SZ) | PREV_INUSE);
2407 set_foot (chunk_at_offset (old_top, old_size), (2 * SIZE_SZ));
2408 set_head (old_top, old_size | PREV_INUSE | NON_MAIN_ARENA);
2409 _int_free (av, old_top, 1);
2411 else
2413 set_head (old_top, (old_size + 2 * SIZE_SZ) | PREV_INUSE);
2414 set_foot (old_top, (old_size + 2 * SIZE_SZ));
2417 else if (!tried_mmap)
2418 /* We can at least try to use to mmap memory. */
2419 goto try_mmap;
2421 else /* av == main_arena */
2424 { /* Request enough space for nb + pad + overhead */
2425 size = nb + mp_.top_pad + MINSIZE;
2428 If contiguous, we can subtract out existing space that we hope to
2429 combine with new space. We add it back later only if
2430 we don't actually get contiguous space.
2433 if (contiguous (av))
2434 size -= old_size;
2437 Round to a multiple of page size.
2438 If MORECORE is not contiguous, this ensures that we only call it
2439 with whole-page arguments. And if MORECORE is contiguous and
2440 this is not first time through, this preserves page-alignment of
2441 previous calls. Otherwise, we correct to page-align below.
2444 size = (size + pagemask) & ~pagemask;
2447 Don't try to call MORECORE if argument is so big as to appear
2448 negative. Note that since mmap takes size_t arg, it may succeed
2449 below even if we cannot call MORECORE.
2452 if (size > 0)
2454 brk = (char *) (MORECORE (size));
2455 LIBC_PROBE (memory_sbrk_more, 2, brk, size);
2458 if (brk != (char *) (MORECORE_FAILURE))
2460 /* Call the `morecore' hook if necessary. */
2461 void (*hook) (void) = atomic_forced_read (__after_morecore_hook);
2462 if (__builtin_expect (hook != NULL, 0))
2463 (*hook)();
2465 else
2468 If have mmap, try using it as a backup when MORECORE fails or
2469 cannot be used. This is worth doing on systems that have "holes" in
2470 address space, so sbrk cannot extend to give contiguous space, but
2471 space is available elsewhere. Note that we ignore mmap max count
2472 and threshold limits, since the space will not be used as a
2473 segregated mmap region.
2476 /* Cannot merge with old top, so add its size back in */
2477 if (contiguous (av))
2478 size = (size + old_size + pagemask) & ~pagemask;
2480 /* If we are relying on mmap as backup, then use larger units */
2481 if ((unsigned long) (size) < (unsigned long) (MMAP_AS_MORECORE_SIZE))
2482 size = MMAP_AS_MORECORE_SIZE;
2484 /* Don't try if size wraps around 0 */
2485 if ((unsigned long) (size) > (unsigned long) (nb))
2487 char *mbrk = (char *) (MMAP (0, size, PROT_READ | PROT_WRITE, 0));
2489 if (mbrk != MAP_FAILED)
2491 /* We do not need, and cannot use, another sbrk call to find end */
2492 brk = mbrk;
2493 snd_brk = brk + size;
2496 Record that we no longer have a contiguous sbrk region.
2497 After the first time mmap is used as backup, we do not
2498 ever rely on contiguous space since this could incorrectly
2499 bridge regions.
2501 set_noncontiguous (av);
2506 if (brk != (char *) (MORECORE_FAILURE))
2508 if (mp_.sbrk_base == 0)
2509 mp_.sbrk_base = brk;
2510 av->system_mem += size;
2513 If MORECORE extends previous space, we can likewise extend top size.
2516 if (brk == old_end && snd_brk == (char *) (MORECORE_FAILURE))
2517 set_head (old_top, (size + old_size) | PREV_INUSE);
2519 else if (contiguous (av) && old_size && brk < old_end)
2521 /* Oops! Someone else killed our space.. Can't touch anything. */
2522 malloc_printerr (3, "break adjusted to free malloc space", brk);
2526 Otherwise, make adjustments:
2528 * If the first time through or noncontiguous, we need to call sbrk
2529 just to find out where the end of memory lies.
2531 * We need to ensure that all returned chunks from malloc will meet
2532 MALLOC_ALIGNMENT
2534 * If there was an intervening foreign sbrk, we need to adjust sbrk
2535 request size to account for fact that we will not be able to
2536 combine new space with existing space in old_top.
2538 * Almost all systems internally allocate whole pages at a time, in
2539 which case we might as well use the whole last page of request.
2540 So we allocate enough more memory to hit a page boundary now,
2541 which in turn causes future contiguous calls to page-align.
2544 else
2546 front_misalign = 0;
2547 end_misalign = 0;
2548 correction = 0;
2549 aligned_brk = brk;
2551 /* handle contiguous cases */
2552 if (contiguous (av))
2554 /* Count foreign sbrk as system_mem. */
2555 if (old_size)
2556 av->system_mem += brk - old_end;
2558 /* Guarantee alignment of first new chunk made from this space */
2560 front_misalign = (INTERNAL_SIZE_T) chunk2mem (brk) & MALLOC_ALIGN_MASK;
2561 if (front_misalign > 0)
2564 Skip over some bytes to arrive at an aligned position.
2565 We don't need to specially mark these wasted front bytes.
2566 They will never be accessed anyway because
2567 prev_inuse of av->top (and any chunk created from its start)
2568 is always true after initialization.
2571 correction = MALLOC_ALIGNMENT - front_misalign;
2572 aligned_brk += correction;
2576 If this isn't adjacent to existing space, then we will not
2577 be able to merge with old_top space, so must add to 2nd request.
2580 correction += old_size;
2582 /* Extend the end address to hit a page boundary */
2583 end_misalign = (INTERNAL_SIZE_T) (brk + size + correction);
2584 correction += ((end_misalign + pagemask) & ~pagemask) - end_misalign;
2586 assert (correction >= 0);
2587 snd_brk = (char *) (MORECORE (correction));
2590 If can't allocate correction, try to at least find out current
2591 brk. It might be enough to proceed without failing.
2593 Note that if second sbrk did NOT fail, we assume that space
2594 is contiguous with first sbrk. This is a safe assumption unless
2595 program is multithreaded but doesn't use locks and a foreign sbrk
2596 occurred between our first and second calls.
2599 if (snd_brk == (char *) (MORECORE_FAILURE))
2601 correction = 0;
2602 snd_brk = (char *) (MORECORE (0));
2604 else
2606 /* Call the `morecore' hook if necessary. */
2607 void (*hook) (void) = atomic_forced_read (__after_morecore_hook);
2608 if (__builtin_expect (hook != NULL, 0))
2609 (*hook)();
2613 /* handle non-contiguous cases */
2614 else
2616 if (MALLOC_ALIGNMENT == 2 * SIZE_SZ)
2617 /* MORECORE/mmap must correctly align */
2618 assert (((unsigned long) chunk2mem (brk) & MALLOC_ALIGN_MASK) == 0);
2619 else
2621 front_misalign = (INTERNAL_SIZE_T) chunk2mem (brk) & MALLOC_ALIGN_MASK;
2622 if (front_misalign > 0)
2625 Skip over some bytes to arrive at an aligned position.
2626 We don't need to specially mark these wasted front bytes.
2627 They will never be accessed anyway because
2628 prev_inuse of av->top (and any chunk created from its start)
2629 is always true after initialization.
2632 aligned_brk += MALLOC_ALIGNMENT - front_misalign;
2636 /* Find out current end of memory */
2637 if (snd_brk == (char *) (MORECORE_FAILURE))
2639 snd_brk = (char *) (MORECORE (0));
2643 /* Adjust top based on results of second sbrk */
2644 if (snd_brk != (char *) (MORECORE_FAILURE))
2646 av->top = (mchunkptr) aligned_brk;
2647 set_head (av->top, (snd_brk - aligned_brk + correction) | PREV_INUSE);
2648 av->system_mem += correction;
2651 If not the first time through, we either have a
2652 gap due to foreign sbrk or a non-contiguous region. Insert a
2653 double fencepost at old_top to prevent consolidation with space
2654 we don't own. These fenceposts are artificial chunks that are
2655 marked as inuse and are in any case too small to use. We need
2656 two to make sizes and alignments work out.
2659 if (old_size != 0)
2662 Shrink old_top to insert fenceposts, keeping size a
2663 multiple of MALLOC_ALIGNMENT. We know there is at least
2664 enough space in old_top to do this.
2666 old_size = (old_size - 4 * SIZE_SZ) & ~MALLOC_ALIGN_MASK;
2667 set_head (old_top, old_size | PREV_INUSE);
2670 Note that the following assignments completely overwrite
2671 old_top when old_size was previously MINSIZE. This is
2672 intentional. We need the fencepost, even if old_top otherwise gets
2673 lost.
2675 chunk_at_offset (old_top, old_size)->size =
2676 (2 * SIZE_SZ) | PREV_INUSE;
2678 chunk_at_offset (old_top, old_size + 2 * SIZE_SZ)->size =
2679 (2 * SIZE_SZ) | PREV_INUSE;
2681 /* If possible, release the rest. */
2682 if (old_size >= MINSIZE)
2684 _int_free (av, old_top, 1);
2690 } /* if (av != &main_arena) */
2692 if ((unsigned long) av->system_mem > (unsigned long) (av->max_system_mem))
2693 av->max_system_mem = av->system_mem;
2694 check_malloc_state (av);
2696 /* finally, do the allocation */
2697 p = av->top;
2698 size = chunksize (p);
2700 /* check that one of the above allocation paths succeeded */
2701 if ((unsigned long) (size) >= (unsigned long) (nb + MINSIZE))
2703 remainder_size = size - nb;
2704 remainder = chunk_at_offset (p, nb);
2705 av->top = remainder;
2706 set_head (p, nb | PREV_INUSE | (av != &main_arena ? NON_MAIN_ARENA : 0));
2707 set_head (remainder, remainder_size | PREV_INUSE);
2708 check_malloced_chunk (av, p, nb);
2709 return chunk2mem (p);
2712 /* catch all failure paths */
2713 __set_errno (ENOMEM);
2714 return 0;
2719 systrim is an inverse of sorts to sysmalloc. It gives memory back
2720 to the system (via negative arguments to sbrk) if there is unused
2721 memory at the `high' end of the malloc pool. It is called
2722 automatically by free() when top space exceeds the trim
2723 threshold. It is also called by the public malloc_trim routine. It
2724 returns 1 if it actually released any memory, else 0.
2727 static int
2728 systrim (size_t pad, mstate av)
2730 long top_size; /* Amount of top-most memory */
2731 long extra; /* Amount to release */
2732 long released; /* Amount actually released */
2733 char *current_brk; /* address returned by pre-check sbrk call */
2734 char *new_brk; /* address returned by post-check sbrk call */
2735 size_t pagesz;
2736 long top_area;
2738 pagesz = GLRO (dl_pagesize);
2739 top_size = chunksize (av->top);
2741 top_area = top_size - MINSIZE - 1;
2742 if (top_area <= pad)
2743 return 0;
2745 /* Release in pagesize units, keeping at least one page */
2746 extra = (top_area - pad) & ~(pagesz - 1);
2749 Only proceed if end of memory is where we last set it.
2750 This avoids problems if there were foreign sbrk calls.
2752 current_brk = (char *) (MORECORE (0));
2753 if (current_brk == (char *) (av->top) + top_size)
2756 Attempt to release memory. We ignore MORECORE return value,
2757 and instead call again to find out where new end of memory is.
2758 This avoids problems if first call releases less than we asked,
2759 of if failure somehow altered brk value. (We could still
2760 encounter problems if it altered brk in some very bad way,
2761 but the only thing we can do is adjust anyway, which will cause
2762 some downstream failure.)
2765 MORECORE (-extra);
2766 /* Call the `morecore' hook if necessary. */
2767 void (*hook) (void) = atomic_forced_read (__after_morecore_hook);
2768 if (__builtin_expect (hook != NULL, 0))
2769 (*hook)();
2770 new_brk = (char *) (MORECORE (0));
2772 LIBC_PROBE (memory_sbrk_less, 2, new_brk, extra);
2774 if (new_brk != (char *) MORECORE_FAILURE)
2776 released = (long) (current_brk - new_brk);
2778 if (released != 0)
2780 /* Success. Adjust top. */
2781 av->system_mem -= released;
2782 set_head (av->top, (top_size - released) | PREV_INUSE);
2783 check_malloc_state (av);
2784 return 1;
2788 return 0;
2791 static void
2792 internal_function
2793 munmap_chunk (mchunkptr p)
2795 INTERNAL_SIZE_T size = chunksize (p);
2797 assert (chunk_is_mmapped (p));
2799 uintptr_t block = (uintptr_t) p - p->prev_size;
2800 size_t total_size = p->prev_size + size;
2801 /* Unfortunately we have to do the compilers job by hand here. Normally
2802 we would test BLOCK and TOTAL-SIZE separately for compliance with the
2803 page size. But gcc does not recognize the optimization possibility
2804 (in the moment at least) so we combine the two values into one before
2805 the bit test. */
2806 if (__builtin_expect (((block | total_size) & (GLRO (dl_pagesize) - 1)) != 0, 0))
2808 malloc_printerr (check_action, "munmap_chunk(): invalid pointer",
2809 chunk2mem (p));
2810 return;
2813 atomic_decrement (&mp_.n_mmaps);
2814 atomic_add (&mp_.mmapped_mem, -total_size);
2816 /* If munmap failed the process virtual memory address space is in a
2817 bad shape. Just leave the block hanging around, the process will
2818 terminate shortly anyway since not much can be done. */
2819 __munmap ((char *) block, total_size);
2822 #if HAVE_MREMAP
2824 static mchunkptr
2825 internal_function
2826 mremap_chunk (mchunkptr p, size_t new_size)
2828 size_t page_mask = GLRO (dl_pagesize) - 1;
2829 INTERNAL_SIZE_T offset = p->prev_size;
2830 INTERNAL_SIZE_T size = chunksize (p);
2831 char *cp;
2833 assert (chunk_is_mmapped (p));
2834 assert (((size + offset) & (GLRO (dl_pagesize) - 1)) == 0);
2836 /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
2837 new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
2839 /* No need to remap if the number of pages does not change. */
2840 if (size + offset == new_size)
2841 return p;
2843 cp = (char *) __mremap ((char *) p - offset, size + offset, new_size,
2844 MREMAP_MAYMOVE);
2846 if (cp == MAP_FAILED)
2847 return 0;
2849 p = (mchunkptr) (cp + offset);
2851 assert (aligned_OK (chunk2mem (p)));
2853 assert ((p->prev_size == offset));
2854 set_head (p, (new_size - offset) | IS_MMAPPED);
2856 INTERNAL_SIZE_T new;
2857 new = atomic_exchange_and_add (&mp_.mmapped_mem, new_size - size - offset)
2858 + new_size - size - offset;
2859 atomic_max (&mp_.max_mmapped_mem, new);
2860 return p;
2862 #endif /* HAVE_MREMAP */
2864 /*------------------------ Public wrappers. --------------------------------*/
2866 void *
2867 __libc_malloc (size_t bytes)
2869 mstate ar_ptr;
2870 void *victim;
2872 void *(*hook) (size_t, const void *)
2873 = atomic_forced_read (__malloc_hook);
2874 if (__builtin_expect (hook != NULL, 0))
2875 return (*hook)(bytes, RETURN_ADDRESS (0));
2877 arena_lookup (ar_ptr);
2879 arena_lock (ar_ptr, bytes);
2880 if (!ar_ptr)
2881 return 0;
2883 victim = _int_malloc (ar_ptr, bytes);
2884 if (!victim)
2886 LIBC_PROBE (memory_malloc_retry, 1, bytes);
2887 ar_ptr = arena_get_retry (ar_ptr, bytes);
2888 if (__builtin_expect (ar_ptr != NULL, 1))
2890 victim = _int_malloc (ar_ptr, bytes);
2891 (void) mutex_unlock (&ar_ptr->mutex);
2894 else
2895 (void) mutex_unlock (&ar_ptr->mutex);
2896 assert (!victim || chunk_is_mmapped (mem2chunk (victim)) ||
2897 ar_ptr == arena_for_chunk (mem2chunk (victim)));
2898 return victim;
2900 libc_hidden_def (__libc_malloc)
2902 void
2903 __libc_free (void *mem)
2905 mstate ar_ptr;
2906 mchunkptr p; /* chunk corresponding to mem */
2908 void (*hook) (void *, const void *)
2909 = atomic_forced_read (__free_hook);
2910 if (__builtin_expect (hook != NULL, 0))
2912 (*hook)(mem, RETURN_ADDRESS (0));
2913 return;
2916 if (mem == 0) /* free(0) has no effect */
2917 return;
2919 p = mem2chunk (mem);
2921 if (chunk_is_mmapped (p)) /* release mmapped memory. */
2923 /* see if the dynamic brk/mmap threshold needs adjusting */
2924 if (!mp_.no_dyn_threshold
2925 && p->size > mp_.mmap_threshold
2926 && p->size <= DEFAULT_MMAP_THRESHOLD_MAX)
2928 mp_.mmap_threshold = chunksize (p);
2929 mp_.trim_threshold = 2 * mp_.mmap_threshold;
2930 LIBC_PROBE (memory_mallopt_free_dyn_thresholds, 2,
2931 mp_.mmap_threshold, mp_.trim_threshold);
2933 munmap_chunk (p);
2934 return;
2937 ar_ptr = arena_for_chunk (p);
2938 _int_free (ar_ptr, p, 0);
2940 libc_hidden_def (__libc_free)
2942 void *
2943 __libc_realloc (void *oldmem, size_t bytes)
2945 mstate ar_ptr;
2946 INTERNAL_SIZE_T nb; /* padded request size */
2948 void *newp; /* chunk to return */
2950 void *(*hook) (void *, size_t, const void *) =
2951 atomic_forced_read (__realloc_hook);
2952 if (__builtin_expect (hook != NULL, 0))
2953 return (*hook)(oldmem, bytes, RETURN_ADDRESS (0));
2955 #if REALLOC_ZERO_BYTES_FREES
2956 if (bytes == 0 && oldmem != NULL)
2958 __libc_free (oldmem); return 0;
2960 #endif
2962 /* realloc of null is supposed to be same as malloc */
2963 if (oldmem == 0)
2964 return __libc_malloc (bytes);
2966 /* chunk corresponding to oldmem */
2967 const mchunkptr oldp = mem2chunk (oldmem);
2968 /* its size */
2969 const INTERNAL_SIZE_T oldsize = chunksize (oldp);
2971 /* Little security check which won't hurt performance: the
2972 allocator never wrapps around at the end of the address space.
2973 Therefore we can exclude some size values which might appear
2974 here by accident or by "design" from some intruder. */
2975 if (__builtin_expect ((uintptr_t) oldp > (uintptr_t) -oldsize, 0)
2976 || __builtin_expect (misaligned_chunk (oldp), 0))
2978 malloc_printerr (check_action, "realloc(): invalid pointer", oldmem);
2979 return NULL;
2982 checked_request2size (bytes, nb);
2984 if (chunk_is_mmapped (oldp))
2986 void *newmem;
2988 #if HAVE_MREMAP
2989 newp = mremap_chunk (oldp, nb);
2990 if (newp)
2991 return chunk2mem (newp);
2992 #endif
2993 /* Note the extra SIZE_SZ overhead. */
2994 if (oldsize - SIZE_SZ >= nb)
2995 return oldmem; /* do nothing */
2997 /* Must alloc, copy, free. */
2998 newmem = __libc_malloc (bytes);
2999 if (newmem == 0)
3000 return 0; /* propagate failure */
3002 memcpy (newmem, oldmem, oldsize - 2 * SIZE_SZ);
3003 munmap_chunk (oldp);
3004 return newmem;
3007 ar_ptr = arena_for_chunk (oldp);
3008 (void) mutex_lock (&ar_ptr->mutex);
3011 newp = _int_realloc (ar_ptr, oldp, oldsize, nb);
3013 (void) mutex_unlock (&ar_ptr->mutex);
3014 assert (!newp || chunk_is_mmapped (mem2chunk (newp)) ||
3015 ar_ptr == arena_for_chunk (mem2chunk (newp)));
3017 if (newp == NULL)
3019 /* Try harder to allocate memory in other arenas. */
3020 LIBC_PROBE (memory_realloc_retry, 2, bytes, oldmem);
3021 newp = __libc_malloc (bytes);
3022 if (newp != NULL)
3024 memcpy (newp, oldmem, oldsize - SIZE_SZ);
3025 _int_free (ar_ptr, oldp, 0);
3029 return newp;
3031 libc_hidden_def (__libc_realloc)
3033 void *
3034 __libc_memalign (size_t alignment, size_t bytes)
3036 void *address = RETURN_ADDRESS (0);
3037 return _mid_memalign (alignment, bytes, address);
3040 static void *
3041 _mid_memalign (size_t alignment, size_t bytes, void *address)
3043 mstate ar_ptr;
3044 void *p;
3046 void *(*hook) (size_t, size_t, const void *) =
3047 atomic_forced_read (__memalign_hook);
3048 if (__builtin_expect (hook != NULL, 0))
3049 return (*hook)(alignment, bytes, address);
3051 /* If we need less alignment than we give anyway, just relay to malloc. */
3052 if (alignment <= MALLOC_ALIGNMENT)
3053 return __libc_malloc (bytes);
3055 /* Otherwise, ensure that it is at least a minimum chunk size */
3056 if (alignment < MINSIZE)
3057 alignment = MINSIZE;
3059 /* If the alignment is greater than SIZE_MAX / 2 + 1 it cannot be a
3060 power of 2 and will cause overflow in the check below. */
3061 if (alignment > SIZE_MAX / 2 + 1)
3063 __set_errno (EINVAL);
3064 return 0;
3067 /* Check for overflow. */
3068 if (bytes > SIZE_MAX - alignment - MINSIZE)
3070 __set_errno (ENOMEM);
3071 return 0;
3075 /* Make sure alignment is power of 2. */
3076 if (!powerof2 (alignment))
3078 size_t a = MALLOC_ALIGNMENT * 2;
3079 while (a < alignment)
3080 a <<= 1;
3081 alignment = a;
3084 arena_get (ar_ptr, bytes + alignment + MINSIZE);
3085 if (!ar_ptr)
3086 return 0;
3088 p = _int_memalign (ar_ptr, alignment, bytes);
3089 if (!p)
3091 LIBC_PROBE (memory_memalign_retry, 2, bytes, alignment);
3092 ar_ptr = arena_get_retry (ar_ptr, bytes);
3093 if (__builtin_expect (ar_ptr != NULL, 1))
3095 p = _int_memalign (ar_ptr, alignment, bytes);
3096 (void) mutex_unlock (&ar_ptr->mutex);
3099 else
3100 (void) mutex_unlock (&ar_ptr->mutex);
3101 assert (!p || chunk_is_mmapped (mem2chunk (p)) ||
3102 ar_ptr == arena_for_chunk (mem2chunk (p)));
3103 return p;
3105 /* For ISO C11. */
3106 weak_alias (__libc_memalign, aligned_alloc)
3107 libc_hidden_def (__libc_memalign)
3109 void *
3110 __libc_valloc (size_t bytes)
3112 if (__malloc_initialized < 0)
3113 ptmalloc_init ();
3115 void *address = RETURN_ADDRESS (0);
3116 size_t pagesz = GLRO (dl_pagesize);
3117 return _mid_memalign (pagesz, bytes, address);
3120 void *
3121 __libc_pvalloc (size_t bytes)
3123 if (__malloc_initialized < 0)
3124 ptmalloc_init ();
3126 void *address = RETURN_ADDRESS (0);
3127 size_t pagesz = GLRO (dl_pagesize);
3128 size_t page_mask = GLRO (dl_pagesize) - 1;
3129 size_t rounded_bytes = (bytes + page_mask) & ~(page_mask);
3131 /* Check for overflow. */
3132 if (bytes > SIZE_MAX - 2 * pagesz - MINSIZE)
3134 __set_errno (ENOMEM);
3135 return 0;
3138 return _mid_memalign (pagesz, rounded_bytes, address);
3141 void *
3142 __libc_calloc (size_t n, size_t elem_size)
3144 mstate av;
3145 mchunkptr oldtop, p;
3146 INTERNAL_SIZE_T bytes, sz, csz, oldtopsize;
3147 void *mem;
3148 unsigned long clearsize;
3149 unsigned long nclears;
3150 INTERNAL_SIZE_T *d;
3152 /* size_t is unsigned so the behavior on overflow is defined. */
3153 bytes = n * elem_size;
3154 #define HALF_INTERNAL_SIZE_T \
3155 (((INTERNAL_SIZE_T) 1) << (8 * sizeof (INTERNAL_SIZE_T) / 2))
3156 if (__builtin_expect ((n | elem_size) >= HALF_INTERNAL_SIZE_T, 0))
3158 if (elem_size != 0 && bytes / elem_size != n)
3160 __set_errno (ENOMEM);
3161 return 0;
3165 void *(*hook) (size_t, const void *) =
3166 atomic_forced_read (__malloc_hook);
3167 if (__builtin_expect (hook != NULL, 0))
3169 sz = bytes;
3170 mem = (*hook)(sz, RETURN_ADDRESS (0));
3171 if (mem == 0)
3172 return 0;
3174 return memset (mem, 0, sz);
3177 sz = bytes;
3179 arena_get (av, sz);
3180 if (!av)
3181 return 0;
3183 /* Check if we hand out the top chunk, in which case there may be no
3184 need to clear. */
3185 #if MORECORE_CLEARS
3186 oldtop = top (av);
3187 oldtopsize = chunksize (top (av));
3188 # if MORECORE_CLEARS < 2
3189 /* Only newly allocated memory is guaranteed to be cleared. */
3190 if (av == &main_arena &&
3191 oldtopsize < mp_.sbrk_base + av->max_system_mem - (char *) oldtop)
3192 oldtopsize = (mp_.sbrk_base + av->max_system_mem - (char *) oldtop);
3193 # endif
3194 if (av != &main_arena)
3196 heap_info *heap = heap_for_ptr (oldtop);
3197 if (oldtopsize < (char *) heap + heap->mprotect_size - (char *) oldtop)
3198 oldtopsize = (char *) heap + heap->mprotect_size - (char *) oldtop;
3200 #endif
3201 mem = _int_malloc (av, sz);
3204 assert (!mem || chunk_is_mmapped (mem2chunk (mem)) ||
3205 av == arena_for_chunk (mem2chunk (mem)));
3207 if (mem == 0)
3209 LIBC_PROBE (memory_calloc_retry, 1, sz);
3210 av = arena_get_retry (av, sz);
3211 if (__builtin_expect (av != NULL, 1))
3213 mem = _int_malloc (av, sz);
3214 (void) mutex_unlock (&av->mutex);
3216 if (mem == 0)
3217 return 0;
3219 else
3220 (void) mutex_unlock (&av->mutex);
3221 p = mem2chunk (mem);
3223 /* Two optional cases in which clearing not necessary */
3224 if (chunk_is_mmapped (p))
3226 if (__builtin_expect (perturb_byte, 0))
3227 return memset (mem, 0, sz);
3229 return mem;
3232 csz = chunksize (p);
3234 #if MORECORE_CLEARS
3235 if (perturb_byte == 0 && (p == oldtop && csz > oldtopsize))
3237 /* clear only the bytes from non-freshly-sbrked memory */
3238 csz = oldtopsize;
3240 #endif
3242 /* Unroll clear of <= 36 bytes (72 if 8byte sizes). We know that
3243 contents have an odd number of INTERNAL_SIZE_T-sized words;
3244 minimally 3. */
3245 d = (INTERNAL_SIZE_T *) mem;
3246 clearsize = csz - SIZE_SZ;
3247 nclears = clearsize / sizeof (INTERNAL_SIZE_T);
3248 assert (nclears >= 3);
3250 if (nclears > 9)
3251 return memset (d, 0, clearsize);
3253 else
3255 *(d + 0) = 0;
3256 *(d + 1) = 0;
3257 *(d + 2) = 0;
3258 if (nclears > 4)
3260 *(d + 3) = 0;
3261 *(d + 4) = 0;
3262 if (nclears > 6)
3264 *(d + 5) = 0;
3265 *(d + 6) = 0;
3266 if (nclears > 8)
3268 *(d + 7) = 0;
3269 *(d + 8) = 0;
3275 return mem;
3279 ------------------------------ malloc ------------------------------
3282 static void *
3283 _int_malloc (mstate av, size_t bytes)
3285 INTERNAL_SIZE_T nb; /* normalized request size */
3286 unsigned int idx; /* associated bin index */
3287 mbinptr bin; /* associated bin */
3289 mchunkptr victim; /* inspected/selected chunk */
3290 INTERNAL_SIZE_T size; /* its size */
3291 int victim_index; /* its bin index */
3293 mchunkptr remainder; /* remainder from a split */
3294 unsigned long remainder_size; /* its size */
3296 unsigned int block; /* bit map traverser */
3297 unsigned int bit; /* bit map traverser */
3298 unsigned int map; /* current word of binmap */
3300 mchunkptr fwd; /* misc temp for linking */
3301 mchunkptr bck; /* misc temp for linking */
3303 const char *errstr = NULL;
3306 Convert request size to internal form by adding SIZE_SZ bytes
3307 overhead plus possibly more to obtain necessary alignment and/or
3308 to obtain a size of at least MINSIZE, the smallest allocatable
3309 size. Also, checked_request2size traps (returning 0) request sizes
3310 that are so large that they wrap around zero when padded and
3311 aligned.
3314 checked_request2size (bytes, nb);
3317 If the size qualifies as a fastbin, first check corresponding bin.
3318 This code is safe to execute even if av is not yet initialized, so we
3319 can try it without checking, which saves some time on this fast path.
3322 if ((unsigned long) (nb) <= (unsigned long) (get_max_fast ()))
3324 idx = fastbin_index (nb);
3325 mfastbinptr *fb = &fastbin (av, idx);
3326 mchunkptr pp = *fb;
3329 victim = pp;
3330 if (victim == NULL)
3331 break;
3333 while ((pp = catomic_compare_and_exchange_val_acq (fb, victim->fd, victim))
3334 != victim);
3335 if (victim != 0)
3337 if (__builtin_expect (fastbin_index (chunksize (victim)) != idx, 0))
3339 errstr = "malloc(): memory corruption (fast)";
3340 errout:
3341 malloc_printerr (check_action, errstr, chunk2mem (victim));
3342 return NULL;
3344 check_remalloced_chunk (av, victim, nb);
3345 void *p = chunk2mem (victim);
3346 alloc_perturb (p, bytes);
3347 return p;
3352 If a small request, check regular bin. Since these "smallbins"
3353 hold one size each, no searching within bins is necessary.
3354 (For a large request, we need to wait until unsorted chunks are
3355 processed to find best fit. But for small ones, fits are exact
3356 anyway, so we can check now, which is faster.)
3359 if (in_smallbin_range (nb))
3361 idx = smallbin_index (nb);
3362 bin = bin_at (av, idx);
3364 if ((victim = last (bin)) != bin)
3366 if (victim == 0) /* initialization check */
3367 malloc_consolidate (av);
3368 else
3370 bck = victim->bk;
3371 if (__glibc_unlikely (bck->fd != victim))
3373 errstr = "malloc(): smallbin double linked list corrupted";
3374 goto errout;
3376 set_inuse_bit_at_offset (victim, nb);
3377 bin->bk = bck;
3378 bck->fd = bin;
3380 if (av != &main_arena)
3381 victim->size |= NON_MAIN_ARENA;
3382 check_malloced_chunk (av, victim, nb);
3383 void *p = chunk2mem (victim);
3384 alloc_perturb (p, bytes);
3385 return p;
3391 If this is a large request, consolidate fastbins before continuing.
3392 While it might look excessive to kill all fastbins before
3393 even seeing if there is space available, this avoids
3394 fragmentation problems normally associated with fastbins.
3395 Also, in practice, programs tend to have runs of either small or
3396 large requests, but less often mixtures, so consolidation is not
3397 invoked all that often in most programs. And the programs that
3398 it is called frequently in otherwise tend to fragment.
3401 else
3403 idx = largebin_index (nb);
3404 if (have_fastchunks (av))
3405 malloc_consolidate (av);
3409 Process recently freed or remaindered chunks, taking one only if
3410 it is exact fit, or, if this a small request, the chunk is remainder from
3411 the most recent non-exact fit. Place other traversed chunks in
3412 bins. Note that this step is the only place in any routine where
3413 chunks are placed in bins.
3415 The outer loop here is needed because we might not realize until
3416 near the end of malloc that we should have consolidated, so must
3417 do so and retry. This happens at most once, and only when we would
3418 otherwise need to expand memory to service a "small" request.
3421 for (;; )
3423 int iters = 0;
3424 while ((victim = unsorted_chunks (av)->bk) != unsorted_chunks (av))
3426 bck = victim->bk;
3427 if (__builtin_expect (victim->size <= 2 * SIZE_SZ, 0)
3428 || __builtin_expect (victim->size > av->system_mem, 0))
3429 malloc_printerr (check_action, "malloc(): memory corruption",
3430 chunk2mem (victim));
3431 size = chunksize (victim);
3434 If a small request, try to use last remainder if it is the
3435 only chunk in unsorted bin. This helps promote locality for
3436 runs of consecutive small requests. This is the only
3437 exception to best-fit, and applies only when there is
3438 no exact fit for a small chunk.
3441 if (in_smallbin_range (nb) &&
3442 bck == unsorted_chunks (av) &&
3443 victim == av->last_remainder &&
3444 (unsigned long) (size) > (unsigned long) (nb + MINSIZE))
3446 /* split and reattach remainder */
3447 remainder_size = size - nb;
3448 remainder = chunk_at_offset (victim, nb);
3449 unsorted_chunks (av)->bk = unsorted_chunks (av)->fd = remainder;
3450 av->last_remainder = remainder;
3451 remainder->bk = remainder->fd = unsorted_chunks (av);
3452 if (!in_smallbin_range (remainder_size))
3454 remainder->fd_nextsize = NULL;
3455 remainder->bk_nextsize = NULL;
3458 set_head (victim, nb | PREV_INUSE |
3459 (av != &main_arena ? NON_MAIN_ARENA : 0));
3460 set_head (remainder, remainder_size | PREV_INUSE);
3461 set_foot (remainder, remainder_size);
3463 check_malloced_chunk (av, victim, nb);
3464 void *p = chunk2mem (victim);
3465 alloc_perturb (p, bytes);
3466 return p;
3469 /* remove from unsorted list */
3470 unsorted_chunks (av)->bk = bck;
3471 bck->fd = unsorted_chunks (av);
3473 /* Take now instead of binning if exact fit */
3475 if (size == nb)
3477 set_inuse_bit_at_offset (victim, size);
3478 if (av != &main_arena)
3479 victim->size |= NON_MAIN_ARENA;
3480 check_malloced_chunk (av, victim, nb);
3481 void *p = chunk2mem (victim);
3482 alloc_perturb (p, bytes);
3483 return p;
3486 /* place chunk in bin */
3488 if (in_smallbin_range (size))
3490 victim_index = smallbin_index (size);
3491 bck = bin_at (av, victim_index);
3492 fwd = bck->fd;
3494 else
3496 victim_index = largebin_index (size);
3497 bck = bin_at (av, victim_index);
3498 fwd = bck->fd;
3500 /* maintain large bins in sorted order */
3501 if (fwd != bck)
3503 /* Or with inuse bit to speed comparisons */
3504 size |= PREV_INUSE;
3505 /* if smaller than smallest, bypass loop below */
3506 assert ((bck->bk->size & NON_MAIN_ARENA) == 0);
3507 if ((unsigned long) (size) < (unsigned long) (bck->bk->size))
3509 fwd = bck;
3510 bck = bck->bk;
3512 victim->fd_nextsize = fwd->fd;
3513 victim->bk_nextsize = fwd->fd->bk_nextsize;
3514 fwd->fd->bk_nextsize = victim->bk_nextsize->fd_nextsize = victim;
3516 else
3518 assert ((fwd->size & NON_MAIN_ARENA) == 0);
3519 while ((unsigned long) size < fwd->size)
3521 fwd = fwd->fd_nextsize;
3522 assert ((fwd->size & NON_MAIN_ARENA) == 0);
3525 if ((unsigned long) size == (unsigned long) fwd->size)
3526 /* Always insert in the second position. */
3527 fwd = fwd->fd;
3528 else
3530 victim->fd_nextsize = fwd;
3531 victim->bk_nextsize = fwd->bk_nextsize;
3532 fwd->bk_nextsize = victim;
3533 victim->bk_nextsize->fd_nextsize = victim;
3535 bck = fwd->bk;
3538 else
3539 victim->fd_nextsize = victim->bk_nextsize = victim;
3542 mark_bin (av, victim_index);
3543 victim->bk = bck;
3544 victim->fd = fwd;
3545 fwd->bk = victim;
3546 bck->fd = victim;
3548 #define MAX_ITERS 10000
3549 if (++iters >= MAX_ITERS)
3550 break;
3554 If a large request, scan through the chunks of current bin in
3555 sorted order to find smallest that fits. Use the skip list for this.
3558 if (!in_smallbin_range (nb))
3560 bin = bin_at (av, idx);
3562 /* skip scan if empty or largest chunk is too small */
3563 if ((victim = first (bin)) != bin &&
3564 (unsigned long) (victim->size) >= (unsigned long) (nb))
3566 victim = victim->bk_nextsize;
3567 while (((unsigned long) (size = chunksize (victim)) <
3568 (unsigned long) (nb)))
3569 victim = victim->bk_nextsize;
3571 /* Avoid removing the first entry for a size so that the skip
3572 list does not have to be rerouted. */
3573 if (victim != last (bin) && victim->size == victim->fd->size)
3574 victim = victim->fd;
3576 remainder_size = size - nb;
3577 unlink (victim, bck, fwd);
3579 /* Exhaust */
3580 if (remainder_size < MINSIZE)
3582 set_inuse_bit_at_offset (victim, size);
3583 if (av != &main_arena)
3584 victim->size |= NON_MAIN_ARENA;
3586 /* Split */
3587 else
3589 remainder = chunk_at_offset (victim, nb);
3590 /* We cannot assume the unsorted list is empty and therefore
3591 have to perform a complete insert here. */
3592 bck = unsorted_chunks (av);
3593 fwd = bck->fd;
3594 if (__glibc_unlikely (fwd->bk != bck))
3596 errstr = "malloc(): corrupted unsorted chunks";
3597 goto errout;
3599 remainder->bk = bck;
3600 remainder->fd = fwd;
3601 bck->fd = remainder;
3602 fwd->bk = remainder;
3603 if (!in_smallbin_range (remainder_size))
3605 remainder->fd_nextsize = NULL;
3606 remainder->bk_nextsize = NULL;
3608 set_head (victim, nb | PREV_INUSE |
3609 (av != &main_arena ? NON_MAIN_ARENA : 0));
3610 set_head (remainder, remainder_size | PREV_INUSE);
3611 set_foot (remainder, remainder_size);
3613 check_malloced_chunk (av, victim, nb);
3614 void *p = chunk2mem (victim);
3615 alloc_perturb (p, bytes);
3616 return p;
3621 Search for a chunk by scanning bins, starting with next largest
3622 bin. This search is strictly by best-fit; i.e., the smallest
3623 (with ties going to approximately the least recently used) chunk
3624 that fits is selected.
3626 The bitmap avoids needing to check that most blocks are nonempty.
3627 The particular case of skipping all bins during warm-up phases
3628 when no chunks have been returned yet is faster than it might look.
3631 ++idx;
3632 bin = bin_at (av, idx);
3633 block = idx2block (idx);
3634 map = av->binmap[block];
3635 bit = idx2bit (idx);
3637 for (;; )
3639 /* Skip rest of block if there are no more set bits in this block. */
3640 if (bit > map || bit == 0)
3644 if (++block >= BINMAPSIZE) /* out of bins */
3645 goto use_top;
3647 while ((map = av->binmap[block]) == 0);
3649 bin = bin_at (av, (block << BINMAPSHIFT));
3650 bit = 1;
3653 /* Advance to bin with set bit. There must be one. */
3654 while ((bit & map) == 0)
3656 bin = next_bin (bin);
3657 bit <<= 1;
3658 assert (bit != 0);
3661 /* Inspect the bin. It is likely to be non-empty */
3662 victim = last (bin);
3664 /* If a false alarm (empty bin), clear the bit. */
3665 if (victim == bin)
3667 av->binmap[block] = map &= ~bit; /* Write through */
3668 bin = next_bin (bin);
3669 bit <<= 1;
3672 else
3674 size = chunksize (victim);
3676 /* We know the first chunk in this bin is big enough to use. */
3677 assert ((unsigned long) (size) >= (unsigned long) (nb));
3679 remainder_size = size - nb;
3681 /* unlink */
3682 unlink (victim, bck, fwd);
3684 /* Exhaust */
3685 if (remainder_size < MINSIZE)
3687 set_inuse_bit_at_offset (victim, size);
3688 if (av != &main_arena)
3689 victim->size |= NON_MAIN_ARENA;
3692 /* Split */
3693 else
3695 remainder = chunk_at_offset (victim, nb);
3697 /* We cannot assume the unsorted list is empty and therefore
3698 have to perform a complete insert here. */
3699 bck = unsorted_chunks (av);
3700 fwd = bck->fd;
3701 if (__glibc_unlikely (fwd->bk != bck))
3703 errstr = "malloc(): corrupted unsorted chunks 2";
3704 goto errout;
3706 remainder->bk = bck;
3707 remainder->fd = fwd;
3708 bck->fd = remainder;
3709 fwd->bk = remainder;
3711 /* advertise as last remainder */
3712 if (in_smallbin_range (nb))
3713 av->last_remainder = remainder;
3714 if (!in_smallbin_range (remainder_size))
3716 remainder->fd_nextsize = NULL;
3717 remainder->bk_nextsize = NULL;
3719 set_head (victim, nb | PREV_INUSE |
3720 (av != &main_arena ? NON_MAIN_ARENA : 0));
3721 set_head (remainder, remainder_size | PREV_INUSE);
3722 set_foot (remainder, remainder_size);
3724 check_malloced_chunk (av, victim, nb);
3725 void *p = chunk2mem (victim);
3726 alloc_perturb (p, bytes);
3727 return p;
3731 use_top:
3733 If large enough, split off the chunk bordering the end of memory
3734 (held in av->top). Note that this is in accord with the best-fit
3735 search rule. In effect, av->top is treated as larger (and thus
3736 less well fitting) than any other available chunk since it can
3737 be extended to be as large as necessary (up to system
3738 limitations).
3740 We require that av->top always exists (i.e., has size >=
3741 MINSIZE) after initialization, so if it would otherwise be
3742 exhausted by current request, it is replenished. (The main
3743 reason for ensuring it exists is that we may need MINSIZE space
3744 to put in fenceposts in sysmalloc.)
3747 victim = av->top;
3748 size = chunksize (victim);
3750 if ((unsigned long) (size) >= (unsigned long) (nb + MINSIZE))
3752 remainder_size = size - nb;
3753 remainder = chunk_at_offset (victim, nb);
3754 av->top = remainder;
3755 set_head (victim, nb | PREV_INUSE |
3756 (av != &main_arena ? NON_MAIN_ARENA : 0));
3757 set_head (remainder, remainder_size | PREV_INUSE);
3759 check_malloced_chunk (av, victim, nb);
3760 void *p = chunk2mem (victim);
3761 alloc_perturb (p, bytes);
3762 return p;
3765 /* When we are using atomic ops to free fast chunks we can get
3766 here for all block sizes. */
3767 else if (have_fastchunks (av))
3769 malloc_consolidate (av);
3770 /* restore original bin index */
3771 if (in_smallbin_range (nb))
3772 idx = smallbin_index (nb);
3773 else
3774 idx = largebin_index (nb);
3778 Otherwise, relay to handle system-dependent cases
3780 else
3782 void *p = sysmalloc (nb, av);
3783 if (p != NULL)
3784 alloc_perturb (p, bytes);
3785 return p;
3791 ------------------------------ free ------------------------------
3794 static void
3795 _int_free (mstate av, mchunkptr p, int have_lock)
3797 INTERNAL_SIZE_T size; /* its size */
3798 mfastbinptr *fb; /* associated fastbin */
3799 mchunkptr nextchunk; /* next contiguous chunk */
3800 INTERNAL_SIZE_T nextsize; /* its size */
3801 int nextinuse; /* true if nextchunk is used */
3802 INTERNAL_SIZE_T prevsize; /* size of previous contiguous chunk */
3803 mchunkptr bck; /* misc temp for linking */
3804 mchunkptr fwd; /* misc temp for linking */
3806 const char *errstr = NULL;
3807 int locked = 0;
3809 size = chunksize (p);
3811 /* Little security check which won't hurt performance: the
3812 allocator never wrapps around at the end of the address space.
3813 Therefore we can exclude some size values which might appear
3814 here by accident or by "design" from some intruder. */
3815 if (__builtin_expect ((uintptr_t) p > (uintptr_t) -size, 0)
3816 || __builtin_expect (misaligned_chunk (p), 0))
3818 errstr = "free(): invalid pointer";
3819 errout:
3820 if (!have_lock && locked)
3821 (void) mutex_unlock (&av->mutex);
3822 malloc_printerr (check_action, errstr, chunk2mem (p));
3823 return;
3825 /* We know that each chunk is at least MINSIZE bytes in size or a
3826 multiple of MALLOC_ALIGNMENT. */
3827 if (__glibc_unlikely (size < MINSIZE || !aligned_OK (size)))
3829 errstr = "free(): invalid size";
3830 goto errout;
3833 check_inuse_chunk(av, p);
3836 If eligible, place chunk on a fastbin so it can be found
3837 and used quickly in malloc.
3840 if ((unsigned long)(size) <= (unsigned long)(get_max_fast ())
3842 #if TRIM_FASTBINS
3844 If TRIM_FASTBINS set, don't place chunks
3845 bordering top into fastbins
3847 && (chunk_at_offset(p, size) != av->top)
3848 #endif
3851 if (__builtin_expect (chunk_at_offset (p, size)->size <= 2 * SIZE_SZ, 0)
3852 || __builtin_expect (chunksize (chunk_at_offset (p, size))
3853 >= av->system_mem, 0))
3855 /* We might not have a lock at this point and concurrent modifications
3856 of system_mem might have let to a false positive. Redo the test
3857 after getting the lock. */
3858 if (have_lock
3859 || ({ assert (locked == 0);
3860 mutex_lock(&av->mutex);
3861 locked = 1;
3862 chunk_at_offset (p, size)->size <= 2 * SIZE_SZ
3863 || chunksize (chunk_at_offset (p, size)) >= av->system_mem;
3866 errstr = "free(): invalid next size (fast)";
3867 goto errout;
3869 if (! have_lock)
3871 (void)mutex_unlock(&av->mutex);
3872 locked = 0;
3876 free_perturb (chunk2mem(p), size - 2 * SIZE_SZ);
3878 set_fastchunks(av);
3879 unsigned int idx = fastbin_index(size);
3880 fb = &fastbin (av, idx);
3882 /* Atomically link P to its fastbin: P->FD = *FB; *FB = P; */
3883 mchunkptr old = *fb, old2;
3884 unsigned int old_idx = ~0u;
3887 /* Check that the top of the bin is not the record we are going to add
3888 (i.e., double free). */
3889 if (__builtin_expect (old == p, 0))
3891 errstr = "double free or corruption (fasttop)";
3892 goto errout;
3894 /* Check that size of fastbin chunk at the top is the same as
3895 size of the chunk that we are adding. We can dereference OLD
3896 only if we have the lock, otherwise it might have already been
3897 deallocated. See use of OLD_IDX below for the actual check. */
3898 if (have_lock && old != NULL)
3899 old_idx = fastbin_index(chunksize(old));
3900 p->fd = old2 = old;
3902 while ((old = catomic_compare_and_exchange_val_rel (fb, p, old2)) != old2);
3904 if (have_lock && old != NULL && __builtin_expect (old_idx != idx, 0))
3906 errstr = "invalid fastbin entry (free)";
3907 goto errout;
3912 Consolidate other non-mmapped chunks as they arrive.
3915 else if (!chunk_is_mmapped(p)) {
3916 if (! have_lock) {
3917 (void)mutex_lock(&av->mutex);
3918 locked = 1;
3921 nextchunk = chunk_at_offset(p, size);
3923 /* Lightweight tests: check whether the block is already the
3924 top block. */
3925 if (__glibc_unlikely (p == av->top))
3927 errstr = "double free or corruption (top)";
3928 goto errout;
3930 /* Or whether the next chunk is beyond the boundaries of the arena. */
3931 if (__builtin_expect (contiguous (av)
3932 && (char *) nextchunk
3933 >= ((char *) av->top + chunksize(av->top)), 0))
3935 errstr = "double free or corruption (out)";
3936 goto errout;
3938 /* Or whether the block is actually not marked used. */
3939 if (__glibc_unlikely (!prev_inuse(nextchunk)))
3941 errstr = "double free or corruption (!prev)";
3942 goto errout;
3945 nextsize = chunksize(nextchunk);
3946 if (__builtin_expect (nextchunk->size <= 2 * SIZE_SZ, 0)
3947 || __builtin_expect (nextsize >= av->system_mem, 0))
3949 errstr = "free(): invalid next size (normal)";
3950 goto errout;
3953 free_perturb (chunk2mem(p), size - 2 * SIZE_SZ);
3955 /* consolidate backward */
3956 if (!prev_inuse(p)) {
3957 prevsize = p->prev_size;
3958 size += prevsize;
3959 p = chunk_at_offset(p, -((long) prevsize));
3960 unlink(p, bck, fwd);
3963 if (nextchunk != av->top) {
3964 /* get and clear inuse bit */
3965 nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
3967 /* consolidate forward */
3968 if (!nextinuse) {
3969 unlink(nextchunk, bck, fwd);
3970 size += nextsize;
3971 } else
3972 clear_inuse_bit_at_offset(nextchunk, 0);
3975 Place the chunk in unsorted chunk list. Chunks are
3976 not placed into regular bins until after they have
3977 been given one chance to be used in malloc.
3980 bck = unsorted_chunks(av);
3981 fwd = bck->fd;
3982 if (__glibc_unlikely (fwd->bk != bck))
3984 errstr = "free(): corrupted unsorted chunks";
3985 goto errout;
3987 p->fd = fwd;
3988 p->bk = bck;
3989 if (!in_smallbin_range(size))
3991 p->fd_nextsize = NULL;
3992 p->bk_nextsize = NULL;
3994 bck->fd = p;
3995 fwd->bk = p;
3997 set_head(p, size | PREV_INUSE);
3998 set_foot(p, size);
4000 check_free_chunk(av, p);
4004 If the chunk borders the current high end of memory,
4005 consolidate into top
4008 else {
4009 size += nextsize;
4010 set_head(p, size | PREV_INUSE);
4011 av->top = p;
4012 check_chunk(av, p);
4016 If freeing a large space, consolidate possibly-surrounding
4017 chunks. Then, if the total unused topmost memory exceeds trim
4018 threshold, ask malloc_trim to reduce top.
4020 Unless max_fast is 0, we don't know if there are fastbins
4021 bordering top, so we cannot tell for sure whether threshold
4022 has been reached unless fastbins are consolidated. But we
4023 don't want to consolidate on each free. As a compromise,
4024 consolidation is performed if FASTBIN_CONSOLIDATION_THRESHOLD
4025 is reached.
4028 if ((unsigned long)(size) >= FASTBIN_CONSOLIDATION_THRESHOLD) {
4029 if (have_fastchunks(av))
4030 malloc_consolidate(av);
4032 if (av == &main_arena) {
4033 #ifndef MORECORE_CANNOT_TRIM
4034 if ((unsigned long)(chunksize(av->top)) >=
4035 (unsigned long)(mp_.trim_threshold))
4036 systrim(mp_.top_pad, av);
4037 #endif
4038 } else {
4039 /* Always try heap_trim(), even if the top chunk is not
4040 large, because the corresponding heap might go away. */
4041 heap_info *heap = heap_for_ptr(top(av));
4043 assert(heap->ar_ptr == av);
4044 heap_trim(heap, mp_.top_pad);
4048 if (! have_lock) {
4049 assert (locked);
4050 (void)mutex_unlock(&av->mutex);
4054 If the chunk was allocated via mmap, release via munmap().
4057 else {
4058 munmap_chunk (p);
4063 ------------------------- malloc_consolidate -------------------------
4065 malloc_consolidate is a specialized version of free() that tears
4066 down chunks held in fastbins. Free itself cannot be used for this
4067 purpose since, among other things, it might place chunks back onto
4068 fastbins. So, instead, we need to use a minor variant of the same
4069 code.
4071 Also, because this routine needs to be called the first time through
4072 malloc anyway, it turns out to be the perfect place to trigger
4073 initialization code.
4076 static void malloc_consolidate(mstate av)
4078 mfastbinptr* fb; /* current fastbin being consolidated */
4079 mfastbinptr* maxfb; /* last fastbin (for loop control) */
4080 mchunkptr p; /* current chunk being consolidated */
4081 mchunkptr nextp; /* next chunk to consolidate */
4082 mchunkptr unsorted_bin; /* bin header */
4083 mchunkptr first_unsorted; /* chunk to link to */
4085 /* These have same use as in free() */
4086 mchunkptr nextchunk;
4087 INTERNAL_SIZE_T size;
4088 INTERNAL_SIZE_T nextsize;
4089 INTERNAL_SIZE_T prevsize;
4090 int nextinuse;
4091 mchunkptr bck;
4092 mchunkptr fwd;
4095 If max_fast is 0, we know that av hasn't
4096 yet been initialized, in which case do so below
4099 if (get_max_fast () != 0) {
4100 clear_fastchunks(av);
4102 unsorted_bin = unsorted_chunks(av);
4105 Remove each chunk from fast bin and consolidate it, placing it
4106 then in unsorted bin. Among other reasons for doing this,
4107 placing in unsorted bin avoids needing to calculate actual bins
4108 until malloc is sure that chunks aren't immediately going to be
4109 reused anyway.
4112 maxfb = &fastbin (av, NFASTBINS - 1);
4113 fb = &fastbin (av, 0);
4114 do {
4115 p = atomic_exchange_acq (fb, 0);
4116 if (p != 0) {
4117 do {
4118 check_inuse_chunk(av, p);
4119 nextp = p->fd;
4121 /* Slightly streamlined version of consolidation code in free() */
4122 size = p->size & ~(PREV_INUSE|NON_MAIN_ARENA);
4123 nextchunk = chunk_at_offset(p, size);
4124 nextsize = chunksize(nextchunk);
4126 if (!prev_inuse(p)) {
4127 prevsize = p->prev_size;
4128 size += prevsize;
4129 p = chunk_at_offset(p, -((long) prevsize));
4130 unlink(p, bck, fwd);
4133 if (nextchunk != av->top) {
4134 nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
4136 if (!nextinuse) {
4137 size += nextsize;
4138 unlink(nextchunk, bck, fwd);
4139 } else
4140 clear_inuse_bit_at_offset(nextchunk, 0);
4142 first_unsorted = unsorted_bin->fd;
4143 unsorted_bin->fd = p;
4144 first_unsorted->bk = p;
4146 if (!in_smallbin_range (size)) {
4147 p->fd_nextsize = NULL;
4148 p->bk_nextsize = NULL;
4151 set_head(p, size | PREV_INUSE);
4152 p->bk = unsorted_bin;
4153 p->fd = first_unsorted;
4154 set_foot(p, size);
4157 else {
4158 size += nextsize;
4159 set_head(p, size | PREV_INUSE);
4160 av->top = p;
4163 } while ( (p = nextp) != 0);
4166 } while (fb++ != maxfb);
4168 else {
4169 malloc_init_state(av);
4170 check_malloc_state(av);
4175 ------------------------------ realloc ------------------------------
4178 void*
4179 _int_realloc(mstate av, mchunkptr oldp, INTERNAL_SIZE_T oldsize,
4180 INTERNAL_SIZE_T nb)
4182 mchunkptr newp; /* chunk to return */
4183 INTERNAL_SIZE_T newsize; /* its size */
4184 void* newmem; /* corresponding user mem */
4186 mchunkptr next; /* next contiguous chunk after oldp */
4188 mchunkptr remainder; /* extra space at end of newp */
4189 unsigned long remainder_size; /* its size */
4191 mchunkptr bck; /* misc temp for linking */
4192 mchunkptr fwd; /* misc temp for linking */
4194 unsigned long copysize; /* bytes to copy */
4195 unsigned int ncopies; /* INTERNAL_SIZE_T words to copy */
4196 INTERNAL_SIZE_T* s; /* copy source */
4197 INTERNAL_SIZE_T* d; /* copy destination */
4199 const char *errstr = NULL;
4201 /* oldmem size */
4202 if (__builtin_expect (oldp->size <= 2 * SIZE_SZ, 0)
4203 || __builtin_expect (oldsize >= av->system_mem, 0))
4205 errstr = "realloc(): invalid old size";
4206 errout:
4207 malloc_printerr (check_action, errstr, chunk2mem (oldp));
4208 return NULL;
4211 check_inuse_chunk (av, oldp);
4213 /* All callers already filter out mmap'ed chunks. */
4214 assert (!chunk_is_mmapped (oldp));
4216 next = chunk_at_offset (oldp, oldsize);
4217 INTERNAL_SIZE_T nextsize = chunksize (next);
4218 if (__builtin_expect (next->size <= 2 * SIZE_SZ, 0)
4219 || __builtin_expect (nextsize >= av->system_mem, 0))
4221 errstr = "realloc(): invalid next size";
4222 goto errout;
4225 if ((unsigned long) (oldsize) >= (unsigned long) (nb))
4227 /* already big enough; split below */
4228 newp = oldp;
4229 newsize = oldsize;
4232 else
4234 /* Try to expand forward into top */
4235 if (next == av->top &&
4236 (unsigned long) (newsize = oldsize + nextsize) >=
4237 (unsigned long) (nb + MINSIZE))
4239 set_head_size (oldp, nb | (av != &main_arena ? NON_MAIN_ARENA : 0));
4240 av->top = chunk_at_offset (oldp, nb);
4241 set_head (av->top, (newsize - nb) | PREV_INUSE);
4242 check_inuse_chunk (av, oldp);
4243 return chunk2mem (oldp);
4246 /* Try to expand forward into next chunk; split off remainder below */
4247 else if (next != av->top &&
4248 !inuse (next) &&
4249 (unsigned long) (newsize = oldsize + nextsize) >=
4250 (unsigned long) (nb))
4252 newp = oldp;
4253 unlink (next, bck, fwd);
4256 /* allocate, copy, free */
4257 else
4259 newmem = _int_malloc (av, nb - MALLOC_ALIGN_MASK);
4260 if (newmem == 0)
4261 return 0; /* propagate failure */
4263 newp = mem2chunk (newmem);
4264 newsize = chunksize (newp);
4267 Avoid copy if newp is next chunk after oldp.
4269 if (newp == next)
4271 newsize += oldsize;
4272 newp = oldp;
4274 else
4277 Unroll copy of <= 36 bytes (72 if 8byte sizes)
4278 We know that contents have an odd number of
4279 INTERNAL_SIZE_T-sized words; minimally 3.
4282 copysize = oldsize - SIZE_SZ;
4283 s = (INTERNAL_SIZE_T *) (chunk2mem (oldp));
4284 d = (INTERNAL_SIZE_T *) (newmem);
4285 ncopies = copysize / sizeof (INTERNAL_SIZE_T);
4286 assert (ncopies >= 3);
4288 if (ncopies > 9)
4289 memcpy (d, s, copysize);
4291 else
4293 *(d + 0) = *(s + 0);
4294 *(d + 1) = *(s + 1);
4295 *(d + 2) = *(s + 2);
4296 if (ncopies > 4)
4298 *(d + 3) = *(s + 3);
4299 *(d + 4) = *(s + 4);
4300 if (ncopies > 6)
4302 *(d + 5) = *(s + 5);
4303 *(d + 6) = *(s + 6);
4304 if (ncopies > 8)
4306 *(d + 7) = *(s + 7);
4307 *(d + 8) = *(s + 8);
4313 _int_free (av, oldp, 1);
4314 check_inuse_chunk (av, newp);
4315 return chunk2mem (newp);
4320 /* If possible, free extra space in old or extended chunk */
4322 assert ((unsigned long) (newsize) >= (unsigned long) (nb));
4324 remainder_size = newsize - nb;
4326 if (remainder_size < MINSIZE) /* not enough extra to split off */
4328 set_head_size (newp, newsize | (av != &main_arena ? NON_MAIN_ARENA : 0));
4329 set_inuse_bit_at_offset (newp, newsize);
4331 else /* split remainder */
4333 remainder = chunk_at_offset (newp, nb);
4334 set_head_size (newp, nb | (av != &main_arena ? NON_MAIN_ARENA : 0));
4335 set_head (remainder, remainder_size | PREV_INUSE |
4336 (av != &main_arena ? NON_MAIN_ARENA : 0));
4337 /* Mark remainder as inuse so free() won't complain */
4338 set_inuse_bit_at_offset (remainder, remainder_size);
4339 _int_free (av, remainder, 1);
4342 check_inuse_chunk (av, newp);
4343 return chunk2mem (newp);
4347 ------------------------------ memalign ------------------------------
4350 static void *
4351 _int_memalign (mstate av, size_t alignment, size_t bytes)
4353 INTERNAL_SIZE_T nb; /* padded request size */
4354 char *m; /* memory returned by malloc call */
4355 mchunkptr p; /* corresponding chunk */
4356 char *brk; /* alignment point within p */
4357 mchunkptr newp; /* chunk to return */
4358 INTERNAL_SIZE_T newsize; /* its size */
4359 INTERNAL_SIZE_T leadsize; /* leading space before alignment point */
4360 mchunkptr remainder; /* spare room at end to split off */
4361 unsigned long remainder_size; /* its size */
4362 INTERNAL_SIZE_T size;
4366 checked_request2size (bytes, nb);
4369 Strategy: find a spot within that chunk that meets the alignment
4370 request, and then possibly free the leading and trailing space.
4374 /* Call malloc with worst case padding to hit alignment. */
4376 m = (char *) (_int_malloc (av, nb + alignment + MINSIZE));
4378 if (m == 0)
4379 return 0; /* propagate failure */
4381 p = mem2chunk (m);
4383 if ((((unsigned long) (m)) % alignment) != 0) /* misaligned */
4385 { /*
4386 Find an aligned spot inside chunk. Since we need to give back
4387 leading space in a chunk of at least MINSIZE, if the first
4388 calculation places us at a spot with less than MINSIZE leader,
4389 we can move to the next aligned spot -- we've allocated enough
4390 total room so that this is always possible.
4392 brk = (char *) mem2chunk (((unsigned long) (m + alignment - 1)) &
4393 - ((signed long) alignment));
4394 if ((unsigned long) (brk - (char *) (p)) < MINSIZE)
4395 brk += alignment;
4397 newp = (mchunkptr) brk;
4398 leadsize = brk - (char *) (p);
4399 newsize = chunksize (p) - leadsize;
4401 /* For mmapped chunks, just adjust offset */
4402 if (chunk_is_mmapped (p))
4404 newp->prev_size = p->prev_size + leadsize;
4405 set_head (newp, newsize | IS_MMAPPED);
4406 return chunk2mem (newp);
4409 /* Otherwise, give back leader, use the rest */
4410 set_head (newp, newsize | PREV_INUSE |
4411 (av != &main_arena ? NON_MAIN_ARENA : 0));
4412 set_inuse_bit_at_offset (newp, newsize);
4413 set_head_size (p, leadsize | (av != &main_arena ? NON_MAIN_ARENA : 0));
4414 _int_free (av, p, 1);
4415 p = newp;
4417 assert (newsize >= nb &&
4418 (((unsigned long) (chunk2mem (p))) % alignment) == 0);
4421 /* Also give back spare room at the end */
4422 if (!chunk_is_mmapped (p))
4424 size = chunksize (p);
4425 if ((unsigned long) (size) > (unsigned long) (nb + MINSIZE))
4427 remainder_size = size - nb;
4428 remainder = chunk_at_offset (p, nb);
4429 set_head (remainder, remainder_size | PREV_INUSE |
4430 (av != &main_arena ? NON_MAIN_ARENA : 0));
4431 set_head_size (p, nb);
4432 _int_free (av, remainder, 1);
4436 check_inuse_chunk (av, p);
4437 return chunk2mem (p);
4442 ------------------------------ malloc_trim ------------------------------
4445 static int
4446 mtrim (mstate av, size_t pad)
4448 /* Ensure initialization/consolidation */
4449 malloc_consolidate (av);
4451 const size_t ps = GLRO (dl_pagesize);
4452 int psindex = bin_index (ps);
4453 const size_t psm1 = ps - 1;
4455 int result = 0;
4456 for (int i = 1; i < NBINS; ++i)
4457 if (i == 1 || i >= psindex)
4459 mbinptr bin = bin_at (av, i);
4461 for (mchunkptr p = last (bin); p != bin; p = p->bk)
4463 INTERNAL_SIZE_T size = chunksize (p);
4465 if (size > psm1 + sizeof (struct malloc_chunk))
4467 /* See whether the chunk contains at least one unused page. */
4468 char *paligned_mem = (char *) (((uintptr_t) p
4469 + sizeof (struct malloc_chunk)
4470 + psm1) & ~psm1);
4472 assert ((char *) chunk2mem (p) + 4 * SIZE_SZ <= paligned_mem);
4473 assert ((char *) p + size > paligned_mem);
4475 /* This is the size we could potentially free. */
4476 size -= paligned_mem - (char *) p;
4478 if (size > psm1)
4480 #ifdef MALLOC_DEBUG
4481 /* When debugging we simulate destroying the memory
4482 content. */
4483 memset (paligned_mem, 0x89, size & ~psm1);
4484 #endif
4485 __madvise (paligned_mem, size & ~psm1, MADV_DONTNEED);
4487 result = 1;
4493 #ifndef MORECORE_CANNOT_TRIM
4494 return result | (av == &main_arena ? systrim (pad, av) : 0);
4496 #else
4497 return result;
4498 #endif
4503 __malloc_trim (size_t s)
4505 int result = 0;
4507 if (__malloc_initialized < 0)
4508 ptmalloc_init ();
4510 mstate ar_ptr = &main_arena;
4513 (void) mutex_lock (&ar_ptr->mutex);
4514 result |= mtrim (ar_ptr, s);
4515 (void) mutex_unlock (&ar_ptr->mutex);
4517 ar_ptr = ar_ptr->next;
4519 while (ar_ptr != &main_arena);
4521 return result;
4526 ------------------------- malloc_usable_size -------------------------
4529 static size_t
4530 musable (void *mem)
4532 mchunkptr p;
4533 if (mem != 0)
4535 p = mem2chunk (mem);
4537 if (__builtin_expect (using_malloc_checking == 1, 0))
4538 return malloc_check_get_size (p);
4540 if (chunk_is_mmapped (p))
4541 return chunksize (p) - 2 * SIZE_SZ;
4542 else if (inuse (p))
4543 return chunksize (p) - SIZE_SZ;
4545 return 0;
4549 size_t
4550 __malloc_usable_size (void *m)
4552 size_t result;
4554 result = musable (m);
4555 return result;
4559 ------------------------------ mallinfo ------------------------------
4560 Accumulate malloc statistics for arena AV into M.
4563 static void
4564 int_mallinfo (mstate av, struct mallinfo *m)
4566 size_t i;
4567 mbinptr b;
4568 mchunkptr p;
4569 INTERNAL_SIZE_T avail;
4570 INTERNAL_SIZE_T fastavail;
4571 int nblocks;
4572 int nfastblocks;
4574 /* Ensure initialization */
4575 if (av->top == 0)
4576 malloc_consolidate (av);
4578 check_malloc_state (av);
4580 /* Account for top */
4581 avail = chunksize (av->top);
4582 nblocks = 1; /* top always exists */
4584 /* traverse fastbins */
4585 nfastblocks = 0;
4586 fastavail = 0;
4588 for (i = 0; i < NFASTBINS; ++i)
4590 for (p = fastbin (av, i); p != 0; p = p->fd)
4592 ++nfastblocks;
4593 fastavail += chunksize (p);
4597 avail += fastavail;
4599 /* traverse regular bins */
4600 for (i = 1; i < NBINS; ++i)
4602 b = bin_at (av, i);
4603 for (p = last (b); p != b; p = p->bk)
4605 ++nblocks;
4606 avail += chunksize (p);
4610 m->smblks += nfastblocks;
4611 m->ordblks += nblocks;
4612 m->fordblks += avail;
4613 m->uordblks += av->system_mem - avail;
4614 m->arena += av->system_mem;
4615 m->fsmblks += fastavail;
4616 if (av == &main_arena)
4618 m->hblks = mp_.n_mmaps;
4619 m->hblkhd = mp_.mmapped_mem;
4620 m->usmblks = mp_.max_total_mem;
4621 m->keepcost = chunksize (av->top);
4626 struct mallinfo
4627 __libc_mallinfo ()
4629 struct mallinfo m;
4630 mstate ar_ptr;
4632 if (__malloc_initialized < 0)
4633 ptmalloc_init ();
4635 memset (&m, 0, sizeof (m));
4636 ar_ptr = &main_arena;
4639 (void) mutex_lock (&ar_ptr->mutex);
4640 int_mallinfo (ar_ptr, &m);
4641 (void) mutex_unlock (&ar_ptr->mutex);
4643 ar_ptr = ar_ptr->next;
4645 while (ar_ptr != &main_arena);
4647 return m;
4651 ------------------------------ malloc_stats ------------------------------
4654 void
4655 __malloc_stats (void)
4657 int i;
4658 mstate ar_ptr;
4659 unsigned int in_use_b = mp_.mmapped_mem, system_b = in_use_b;
4661 if (__malloc_initialized < 0)
4662 ptmalloc_init ();
4663 _IO_flockfile (stderr);
4664 int old_flags2 = ((_IO_FILE *) stderr)->_flags2;
4665 ((_IO_FILE *) stderr)->_flags2 |= _IO_FLAGS2_NOTCANCEL;
4666 for (i = 0, ar_ptr = &main_arena;; i++)
4668 struct mallinfo mi;
4670 memset (&mi, 0, sizeof (mi));
4671 (void) mutex_lock (&ar_ptr->mutex);
4672 int_mallinfo (ar_ptr, &mi);
4673 fprintf (stderr, "Arena %d:\n", i);
4674 fprintf (stderr, "system bytes = %10u\n", (unsigned int) mi.arena);
4675 fprintf (stderr, "in use bytes = %10u\n", (unsigned int) mi.uordblks);
4676 #if MALLOC_DEBUG > 1
4677 if (i > 0)
4678 dump_heap (heap_for_ptr (top (ar_ptr)));
4679 #endif
4680 system_b += mi.arena;
4681 in_use_b += mi.uordblks;
4682 (void) mutex_unlock (&ar_ptr->mutex);
4683 ar_ptr = ar_ptr->next;
4684 if (ar_ptr == &main_arena)
4685 break;
4687 fprintf (stderr, "Total (incl. mmap):\n");
4688 fprintf (stderr, "system bytes = %10u\n", system_b);
4689 fprintf (stderr, "in use bytes = %10u\n", in_use_b);
4690 fprintf (stderr, "max mmap regions = %10u\n", (unsigned int) mp_.max_n_mmaps);
4691 fprintf (stderr, "max mmap bytes = %10lu\n",
4692 (unsigned long) mp_.max_mmapped_mem);
4693 ((_IO_FILE *) stderr)->_flags2 |= old_flags2;
4694 _IO_funlockfile (stderr);
4699 ------------------------------ mallopt ------------------------------
4703 __libc_mallopt (int param_number, int value)
4705 mstate av = &main_arena;
4706 int res = 1;
4708 if (__malloc_initialized < 0)
4709 ptmalloc_init ();
4710 (void) mutex_lock (&av->mutex);
4711 /* Ensure initialization/consolidation */
4712 malloc_consolidate (av);
4714 LIBC_PROBE (memory_mallopt, 2, param_number, value);
4716 switch (param_number)
4718 case M_MXFAST:
4719 if (value >= 0 && value <= MAX_FAST_SIZE)
4721 LIBC_PROBE (memory_mallopt_mxfast, 2, value, get_max_fast ());
4722 set_max_fast (value);
4724 else
4725 res = 0;
4726 break;
4728 case M_TRIM_THRESHOLD:
4729 LIBC_PROBE (memory_mallopt_trim_threshold, 3, value,
4730 mp_.trim_threshold, mp_.no_dyn_threshold);
4731 mp_.trim_threshold = value;
4732 mp_.no_dyn_threshold = 1;
4733 break;
4735 case M_TOP_PAD:
4736 LIBC_PROBE (memory_mallopt_top_pad, 3, value,
4737 mp_.top_pad, mp_.no_dyn_threshold);
4738 mp_.top_pad = value;
4739 mp_.no_dyn_threshold = 1;
4740 break;
4742 case M_MMAP_THRESHOLD:
4743 /* Forbid setting the threshold too high. */
4744 if ((unsigned long) value > HEAP_MAX_SIZE / 2)
4745 res = 0;
4746 else
4748 LIBC_PROBE (memory_mallopt_mmap_threshold, 3, value,
4749 mp_.mmap_threshold, mp_.no_dyn_threshold);
4750 mp_.mmap_threshold = value;
4751 mp_.no_dyn_threshold = 1;
4753 break;
4755 case M_MMAP_MAX:
4756 LIBC_PROBE (memory_mallopt_mmap_max, 3, value,
4757 mp_.n_mmaps_max, mp_.no_dyn_threshold);
4758 mp_.n_mmaps_max = value;
4759 mp_.no_dyn_threshold = 1;
4760 break;
4762 case M_CHECK_ACTION:
4763 LIBC_PROBE (memory_mallopt_check_action, 2, value, check_action);
4764 check_action = value;
4765 break;
4767 case M_PERTURB:
4768 LIBC_PROBE (memory_mallopt_perturb, 2, value, perturb_byte);
4769 perturb_byte = value;
4770 break;
4772 case M_ARENA_TEST:
4773 if (value > 0)
4775 LIBC_PROBE (memory_mallopt_arena_test, 2, value, mp_.arena_test);
4776 mp_.arena_test = value;
4778 break;
4780 case M_ARENA_MAX:
4781 if (value > 0)
4783 LIBC_PROBE (memory_mallopt_arena_max, 2, value, mp_.arena_max);
4784 mp_.arena_max = value;
4786 break;
4788 (void) mutex_unlock (&av->mutex);
4789 return res;
4791 libc_hidden_def (__libc_mallopt)
4795 -------------------- Alternative MORECORE functions --------------------
4800 General Requirements for MORECORE.
4802 The MORECORE function must have the following properties:
4804 If MORECORE_CONTIGUOUS is false:
4806 * MORECORE must allocate in multiples of pagesize. It will
4807 only be called with arguments that are multiples of pagesize.
4809 * MORECORE(0) must return an address that is at least
4810 MALLOC_ALIGNMENT aligned. (Page-aligning always suffices.)
4812 else (i.e. If MORECORE_CONTIGUOUS is true):
4814 * Consecutive calls to MORECORE with positive arguments
4815 return increasing addresses, indicating that space has been
4816 contiguously extended.
4818 * MORECORE need not allocate in multiples of pagesize.
4819 Calls to MORECORE need not have args of multiples of pagesize.
4821 * MORECORE need not page-align.
4823 In either case:
4825 * MORECORE may allocate more memory than requested. (Or even less,
4826 but this will generally result in a malloc failure.)
4828 * MORECORE must not allocate memory when given argument zero, but
4829 instead return one past the end address of memory from previous
4830 nonzero call. This malloc does NOT call MORECORE(0)
4831 until at least one call with positive arguments is made, so
4832 the initial value returned is not important.
4834 * Even though consecutive calls to MORECORE need not return contiguous
4835 addresses, it must be OK for malloc'ed chunks to span multiple
4836 regions in those cases where they do happen to be contiguous.
4838 * MORECORE need not handle negative arguments -- it may instead
4839 just return MORECORE_FAILURE when given negative arguments.
4840 Negative arguments are always multiples of pagesize. MORECORE
4841 must not misinterpret negative args as large positive unsigned
4842 args. You can suppress all such calls from even occurring by defining
4843 MORECORE_CANNOT_TRIM,
4845 There is some variation across systems about the type of the
4846 argument to sbrk/MORECORE. If size_t is unsigned, then it cannot
4847 actually be size_t, because sbrk supports negative args, so it is
4848 normally the signed type of the same width as size_t (sometimes
4849 declared as "intptr_t", and sometimes "ptrdiff_t"). It doesn't much
4850 matter though. Internally, we use "long" as arguments, which should
4851 work across all reasonable possibilities.
4853 Additionally, if MORECORE ever returns failure for a positive
4854 request, then mmap is used as a noncontiguous system allocator. This
4855 is a useful backup strategy for systems with holes in address spaces
4856 -- in this case sbrk cannot contiguously expand the heap, but mmap
4857 may be able to map noncontiguous space.
4859 If you'd like mmap to ALWAYS be used, you can define MORECORE to be
4860 a function that always returns MORECORE_FAILURE.
4862 If you are using this malloc with something other than sbrk (or its
4863 emulation) to supply memory regions, you probably want to set
4864 MORECORE_CONTIGUOUS as false. As an example, here is a custom
4865 allocator kindly contributed for pre-OSX macOS. It uses virtually
4866 but not necessarily physically contiguous non-paged memory (locked
4867 in, present and won't get swapped out). You can use it by
4868 uncommenting this section, adding some #includes, and setting up the
4869 appropriate defines above:
4871 *#define MORECORE osMoreCore
4872 *#define MORECORE_CONTIGUOUS 0
4874 There is also a shutdown routine that should somehow be called for
4875 cleanup upon program exit.
4877 *#define MAX_POOL_ENTRIES 100
4878 *#define MINIMUM_MORECORE_SIZE (64 * 1024)
4879 static int next_os_pool;
4880 void *our_os_pools[MAX_POOL_ENTRIES];
4882 void *osMoreCore(int size)
4884 void *ptr = 0;
4885 static void *sbrk_top = 0;
4887 if (size > 0)
4889 if (size < MINIMUM_MORECORE_SIZE)
4890 size = MINIMUM_MORECORE_SIZE;
4891 if (CurrentExecutionLevel() == kTaskLevel)
4892 ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
4893 if (ptr == 0)
4895 return (void *) MORECORE_FAILURE;
4897 // save ptrs so they can be freed during cleanup
4898 our_os_pools[next_os_pool] = ptr;
4899 next_os_pool++;
4900 ptr = (void *) ((((unsigned long) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
4901 sbrk_top = (char *) ptr + size;
4902 return ptr;
4904 else if (size < 0)
4906 // we don't currently support shrink behavior
4907 return (void *) MORECORE_FAILURE;
4909 else
4911 return sbrk_top;
4915 // cleanup any allocated memory pools
4916 // called as last thing before shutting down driver
4918 void osCleanupMem(void)
4920 void **ptr;
4922 for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
4923 if (*ptr)
4925 PoolDeallocate(*ptr);
4926 * ptr = 0;
4933 /* Helper code. */
4935 extern char **__libc_argv attribute_hidden;
4937 static void
4938 malloc_printerr (int action, const char *str, void *ptr)
4940 if ((action & 5) == 5)
4941 __libc_message (action & 2, "%s\n", str);
4942 else if (action & 1)
4944 char buf[2 * sizeof (uintptr_t) + 1];
4946 buf[sizeof (buf) - 1] = '\0';
4947 char *cp = _itoa_word ((uintptr_t) ptr, &buf[sizeof (buf) - 1], 16, 0);
4948 while (cp > buf)
4949 *--cp = '0';
4951 __libc_message (action & 2, "*** Error in `%s': %s: 0x%s ***\n",
4952 __libc_argv[0] ? : "<unknown>", str, cp);
4954 else if (action & 2)
4955 abort ();
4958 /* We need a wrapper function for one of the additions of POSIX. */
4960 __posix_memalign (void **memptr, size_t alignment, size_t size)
4962 void *mem;
4964 /* Test whether the SIZE argument is valid. It must be a power of
4965 two multiple of sizeof (void *). */
4966 if (alignment % sizeof (void *) != 0
4967 || !powerof2 (alignment / sizeof (void *)) != 0
4968 || alignment == 0)
4969 return EINVAL;
4972 void *address = RETURN_ADDRESS (0);
4973 mem = _mid_memalign (alignment, size, address);
4975 if (mem != NULL)
4977 *memptr = mem;
4978 return 0;
4981 return ENOMEM;
4983 weak_alias (__posix_memalign, posix_memalign)
4987 malloc_info (int options, FILE *fp)
4989 /* For now, at least. */
4990 if (options != 0)
4991 return EINVAL;
4993 int n = 0;
4994 size_t total_nblocks = 0;
4995 size_t total_nfastblocks = 0;
4996 size_t total_avail = 0;
4997 size_t total_fastavail = 0;
4998 size_t total_system = 0;
4999 size_t total_max_system = 0;
5000 size_t total_aspace = 0;
5001 size_t total_aspace_mprotect = 0;
5003 void
5004 mi_arena (mstate ar_ptr)
5006 fprintf (fp, "<heap nr=\"%d\">\n<sizes>\n", n++);
5008 size_t nblocks = 0;
5009 size_t nfastblocks = 0;
5010 size_t avail = 0;
5011 size_t fastavail = 0;
5012 struct
5014 size_t from;
5015 size_t to;
5016 size_t total;
5017 size_t count;
5018 } sizes[NFASTBINS + NBINS - 1];
5019 #define nsizes (sizeof (sizes) / sizeof (sizes[0]))
5021 mutex_lock (&ar_ptr->mutex);
5023 for (size_t i = 0; i < NFASTBINS; ++i)
5025 mchunkptr p = fastbin (ar_ptr, i);
5026 if (p != NULL)
5028 size_t nthissize = 0;
5029 size_t thissize = chunksize (p);
5031 while (p != NULL)
5033 ++nthissize;
5034 p = p->fd;
5037 fastavail += nthissize * thissize;
5038 nfastblocks += nthissize;
5039 sizes[i].from = thissize - (MALLOC_ALIGNMENT - 1);
5040 sizes[i].to = thissize;
5041 sizes[i].count = nthissize;
5043 else
5044 sizes[i].from = sizes[i].to = sizes[i].count = 0;
5046 sizes[i].total = sizes[i].count * sizes[i].to;
5050 mbinptr bin;
5051 struct malloc_chunk *r;
5053 for (size_t i = 1; i < NBINS; ++i)
5055 bin = bin_at (ar_ptr, i);
5056 r = bin->fd;
5057 sizes[NFASTBINS - 1 + i].from = ~((size_t) 0);
5058 sizes[NFASTBINS - 1 + i].to = sizes[NFASTBINS - 1 + i].total
5059 = sizes[NFASTBINS - 1 + i].count = 0;
5061 if (r != NULL)
5062 while (r != bin)
5064 ++sizes[NFASTBINS - 1 + i].count;
5065 sizes[NFASTBINS - 1 + i].total += r->size;
5066 sizes[NFASTBINS - 1 + i].from
5067 = MIN (sizes[NFASTBINS - 1 + i].from, r->size);
5068 sizes[NFASTBINS - 1 + i].to = MAX (sizes[NFASTBINS - 1 + i].to,
5069 r->size);
5071 r = r->fd;
5074 if (sizes[NFASTBINS - 1 + i].count == 0)
5075 sizes[NFASTBINS - 1 + i].from = 0;
5076 nblocks += sizes[NFASTBINS - 1 + i].count;
5077 avail += sizes[NFASTBINS - 1 + i].total;
5080 mutex_unlock (&ar_ptr->mutex);
5082 total_nfastblocks += nfastblocks;
5083 total_fastavail += fastavail;
5085 total_nblocks += nblocks;
5086 total_avail += avail;
5088 for (size_t i = 0; i < nsizes; ++i)
5089 if (sizes[i].count != 0 && i != NFASTBINS)
5090 fprintf (fp, " \
5091 <size from=\"%zu\" to=\"%zu\" total=\"%zu\" count=\"%zu\"/>\n",
5092 sizes[i].from, sizes[i].to, sizes[i].total, sizes[i].count);
5094 if (sizes[NFASTBINS].count != 0)
5095 fprintf (fp, "\
5096 <unsorted from=\"%zu\" to=\"%zu\" total=\"%zu\" count=\"%zu\"/>\n",
5097 sizes[NFASTBINS].from, sizes[NFASTBINS].to,
5098 sizes[NFASTBINS].total, sizes[NFASTBINS].count);
5100 total_system += ar_ptr->system_mem;
5101 total_max_system += ar_ptr->max_system_mem;
5103 fprintf (fp,
5104 "</sizes>\n<total type=\"fast\" count=\"%zu\" size=\"%zu\"/>\n"
5105 "<total type=\"rest\" count=\"%zu\" size=\"%zu\"/>\n"
5106 "<system type=\"current\" size=\"%zu\"/>\n"
5107 "<system type=\"max\" size=\"%zu\"/>\n",
5108 nfastblocks, fastavail, nblocks, avail,
5109 ar_ptr->system_mem, ar_ptr->max_system_mem);
5111 if (ar_ptr != &main_arena)
5113 heap_info *heap = heap_for_ptr (top (ar_ptr));
5114 fprintf (fp,
5115 "<aspace type=\"total\" size=\"%zu\"/>\n"
5116 "<aspace type=\"mprotect\" size=\"%zu\"/>\n",
5117 heap->size, heap->mprotect_size);
5118 total_aspace += heap->size;
5119 total_aspace_mprotect += heap->mprotect_size;
5121 else
5123 fprintf (fp,
5124 "<aspace type=\"total\" size=\"%zu\"/>\n"
5125 "<aspace type=\"mprotect\" size=\"%zu\"/>\n",
5126 ar_ptr->system_mem, ar_ptr->system_mem);
5127 total_aspace += ar_ptr->system_mem;
5128 total_aspace_mprotect += ar_ptr->system_mem;
5131 fputs ("</heap>\n", fp);
5134 if (__malloc_initialized < 0)
5135 ptmalloc_init ();
5137 fputs ("<malloc version=\"1\">\n", fp);
5139 /* Iterate over all arenas currently in use. */
5140 mstate ar_ptr = &main_arena;
5143 mi_arena (ar_ptr);
5144 ar_ptr = ar_ptr->next;
5146 while (ar_ptr != &main_arena);
5148 fprintf (fp,
5149 "<total type=\"fast\" count=\"%zu\" size=\"%zu\"/>\n"
5150 "<total type=\"rest\" count=\"%zu\" size=\"%zu\"/>\n"
5151 "<system type=\"current\" size=\"%zu\"/>\n"
5152 "<system type=\"max\" size=\"%zu\"/>\n"
5153 "<aspace type=\"total\" size=\"%zu\"/>\n"
5154 "<aspace type=\"mprotect\" size=\"%zu\"/>\n"
5155 "</malloc>\n",
5156 total_nfastblocks, total_fastavail, total_nblocks, total_avail,
5157 total_system, total_max_system,
5158 total_aspace, total_aspace_mprotect);
5160 return 0;
5164 strong_alias (__libc_calloc, __calloc) weak_alias (__libc_calloc, calloc)
5165 strong_alias (__libc_free, __cfree) weak_alias (__libc_free, cfree)
5166 strong_alias (__libc_free, __free) strong_alias (__libc_free, free)
5167 strong_alias (__libc_malloc, __malloc) strong_alias (__libc_malloc, malloc)
5168 strong_alias (__libc_memalign, __memalign)
5169 weak_alias (__libc_memalign, memalign)
5170 strong_alias (__libc_realloc, __realloc) strong_alias (__libc_realloc, realloc)
5171 strong_alias (__libc_valloc, __valloc) weak_alias (__libc_valloc, valloc)
5172 strong_alias (__libc_pvalloc, __pvalloc) weak_alias (__libc_pvalloc, pvalloc)
5173 strong_alias (__libc_mallinfo, __mallinfo)
5174 weak_alias (__libc_mallinfo, mallinfo)
5175 strong_alias (__libc_mallopt, __mallopt) weak_alias (__libc_mallopt, mallopt)
5177 weak_alias (__malloc_stats, malloc_stats)
5178 weak_alias (__malloc_usable_size, malloc_usable_size)
5179 weak_alias (__malloc_trim, malloc_trim)
5180 weak_alias (__malloc_get_state, malloc_get_state)
5181 weak_alias (__malloc_set_state, malloc_set_state)
5184 /* ------------------------------------------------------------
5185 History:
5187 [see ftp://g.oswego.edu/pub/misc/malloc.c for the history of dlmalloc]
5191 * Local variables:
5192 * c-basic-offset: 2
5193 * End: