1 /* Convert string representing a number to float value, using given locale.
2 Copyright (C) 1997,98,2002,2004,2005 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; if not, write to the Free
18 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
23 extern double ____strtod_l_internal (const char *, char **, int, __locale_t
);
24 extern unsigned long long int ____strtoull_l_internal (const char *, char **,
25 int, int, __locale_t
);
27 /* Configuration part. These macros are defined by `strtold.c',
28 `strtof.c', `wcstod.c', `wcstold.c', and `wcstof.c' to produce the
29 `long double' and `float' versions of the reader. */
34 # define STRTOF wcstod_l
35 # define __STRTOF __wcstod_l
37 # define STRTOF strtod_l
38 # define __STRTOF __strtod_l
40 # define MPN2FLOAT __mpn_construct_double
41 # define FLOAT_HUGE_VAL HUGE_VAL
42 # define SET_MANTISSA(flt, mant) \
43 do { union ieee754_double u; \
45 if ((mant & 0xfffffffffffffULL) == 0) \
46 mant = 0x8000000000000ULL; \
47 u.ieee.mantissa0 = ((mant) >> 32) & 0xfffff; \
48 u.ieee.mantissa1 = (mant) & 0xffffffff; \
52 /* End of configuration part. */
58 #include "../locale/localeinfo.h"
64 /* The gmp headers need some configuration frobs. */
67 /* Include gmp-mparam.h first, such that definitions of _SHORT_LIMB
68 and _LONG_LONG_LIMB in it can take effect into gmp.h. */
69 #include <gmp-mparam.h>
73 #include "fpioconst.h"
79 /* We use this code for the extended locale handling where the
80 function gets as an additional argument the locale which has to be
81 used. To access the values we have to redefine the _NL_CURRENT and
82 _NL_CURRENT_WORD macros. */
84 #define _NL_CURRENT(category, item) \
85 (current->values[_NL_ITEM_INDEX (item)].string)
86 #undef _NL_CURRENT_WORD
87 #define _NL_CURRENT_WORD(category, item) \
88 ((uint32_t) current->values[_NL_ITEM_INDEX (item)].word)
90 #if defined _LIBC || defined HAVE_WCHAR_H
96 # define STRING_TYPE wchar_t
97 # define CHAR_TYPE wint_t
99 # define ISSPACE(Ch) __iswspace_l ((Ch), loc)
100 # define ISDIGIT(Ch) __iswdigit_l ((Ch), loc)
101 # define ISXDIGIT(Ch) __iswxdigit_l ((Ch), loc)
102 # define TOLOWER(Ch) __towlower_l ((Ch), loc)
103 # define TOLOWER_C(Ch) __towlower_l ((Ch), &_nl_C_locobj)
104 # define STRNCASECMP(S1, S2, N) \
105 __wcsncasecmp_l ((S1), (S2), (N), &_nl_C_locobj)
106 # define STRTOULL(S, E, B) ____wcstoull_l_internal ((S), (E), (B), 0, loc)
108 # define STRING_TYPE char
109 # define CHAR_TYPE char
111 # define ISSPACE(Ch) __isspace_l ((Ch), loc)
112 # define ISDIGIT(Ch) __isdigit_l ((Ch), loc)
113 # define ISXDIGIT(Ch) __isxdigit_l ((Ch), loc)
114 # define TOLOWER(Ch) __tolower_l ((Ch), loc)
115 # define TOLOWER_C(Ch) __tolower_l ((Ch), &_nl_C_locobj)
116 # define STRNCASECMP(S1, S2, N) \
117 __strncasecmp_l ((S1), (S2), (N), &_nl_C_locobj)
118 # define STRTOULL(S, E, B) ____strtoull_l_internal ((S), (E), (B), 0, loc)
122 /* Constants we need from float.h; select the set for the FLOAT precision. */
123 #define MANT_DIG PASTE(FLT,_MANT_DIG)
124 #define DIG PASTE(FLT,_DIG)
125 #define MAX_EXP PASTE(FLT,_MAX_EXP)
126 #define MIN_EXP PASTE(FLT,_MIN_EXP)
127 #define MAX_10_EXP PASTE(FLT,_MAX_10_EXP)
128 #define MIN_10_EXP PASTE(FLT,_MIN_10_EXP)
130 /* Extra macros required to get FLT expanded before the pasting. */
131 #define PASTE(a,b) PASTE1(a,b)
132 #define PASTE1(a,b) a##b
134 /* Function to construct a floating point number from an MP integer
135 containing the fraction bits, a base 2 exponent, and a sign flag. */
136 extern FLOAT
MPN2FLOAT (mp_srcptr mpn
, int exponent
, int negative
);
138 /* Definitions according to limb size used. */
139 #if BITS_PER_MP_LIMB == 32
140 # define MAX_DIG_PER_LIMB 9
141 # define MAX_FAC_PER_LIMB 1000000000UL
142 #elif BITS_PER_MP_LIMB == 64
143 # define MAX_DIG_PER_LIMB 19
144 # define MAX_FAC_PER_LIMB 10000000000000000000ULL
146 # error "mp_limb_t size " BITS_PER_MP_LIMB "not accounted for"
150 /* Local data structure. */
151 static const mp_limb_t _tens_in_limb
[MAX_DIG_PER_LIMB
+ 1] =
153 1000, 10000, 100000L,
154 1000000L, 10000000L, 100000000L,
156 #if BITS_PER_MP_LIMB > 32
157 , 10000000000ULL, 100000000000ULL,
158 1000000000000ULL, 10000000000000ULL, 100000000000000ULL,
159 1000000000000000ULL, 10000000000000000ULL, 100000000000000000ULL,
160 1000000000000000000ULL, 10000000000000000000ULL
162 #if BITS_PER_MP_LIMB > 64
163 #error "Need to expand tens_in_limb table to" MAX_DIG_PER_LIMB
168 #define howmany(x,y) (((x)+((y)-1))/(y))
170 #define SWAP(x, y) ({ typeof(x) _tmp = x; x = y; y = _tmp; })
172 #define NDIG (MAX_10_EXP - MIN_10_EXP + 2 * MANT_DIG)
173 #define HEXNDIG ((MAX_EXP - MIN_EXP + 7) / 8 + 2 * MANT_DIG)
174 #define RETURN_LIMB_SIZE howmany (MANT_DIG, BITS_PER_MP_LIMB)
176 #define RETURN(val,end) \
177 do { if (endptr != NULL) *endptr = (STRING_TYPE *) (end); \
178 return val; } while (0)
180 /* Maximum size necessary for mpn integers to hold floating point numbers. */
181 #define MPNSIZE (howmany (MAX_EXP + 2 * MANT_DIG, BITS_PER_MP_LIMB) \
183 /* Declare an mpn integer variable that big. */
184 #define MPN_VAR(name) mp_limb_t name[MPNSIZE]; mp_size_t name##size
185 /* Copy an mpn integer value. */
186 #define MPN_ASSIGN(dst, src) \
187 memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t))
190 /* Return a floating point number of the needed type according to the given
191 multi-precision number after possible rounding. */
193 round_and_return (mp_limb_t
*retval
, int exponent
, int negative
,
194 mp_limb_t round_limb
, mp_size_t round_bit
, int more_bits
)
196 if (exponent
< MIN_EXP
- 1)
198 mp_size_t shift
= MIN_EXP
- 1 - exponent
;
200 if (shift
> MANT_DIG
)
206 more_bits
|= (round_limb
& ((((mp_limb_t
) 1) << round_bit
) - 1)) != 0;
207 if (shift
== MANT_DIG
)
208 /* This is a special case to handle the very seldom case where
209 the mantissa will be empty after the shift. */
213 round_limb
= retval
[RETURN_LIMB_SIZE
- 1];
214 round_bit
= (MANT_DIG
- 1) % BITS_PER_MP_LIMB
;
215 for (i
= 0; i
< RETURN_LIMB_SIZE
; ++i
)
216 more_bits
|= retval
[i
] != 0;
217 MPN_ZERO (retval
, RETURN_LIMB_SIZE
);
219 else if (shift
>= BITS_PER_MP_LIMB
)
223 round_limb
= retval
[(shift
- 1) / BITS_PER_MP_LIMB
];
224 round_bit
= (shift
- 1) % BITS_PER_MP_LIMB
;
225 for (i
= 0; i
< (shift
- 1) / BITS_PER_MP_LIMB
; ++i
)
226 more_bits
|= retval
[i
] != 0;
227 more_bits
|= ((round_limb
& ((((mp_limb_t
) 1) << round_bit
) - 1))
230 (void) __mpn_rshift (retval
, &retval
[shift
/ BITS_PER_MP_LIMB
],
231 RETURN_LIMB_SIZE
- (shift
/ BITS_PER_MP_LIMB
),
232 shift
% BITS_PER_MP_LIMB
);
233 MPN_ZERO (&retval
[RETURN_LIMB_SIZE
- (shift
/ BITS_PER_MP_LIMB
)],
234 shift
/ BITS_PER_MP_LIMB
);
238 round_limb
= retval
[0];
239 round_bit
= shift
- 1;
240 (void) __mpn_rshift (retval
, retval
, RETURN_LIMB_SIZE
, shift
);
242 /* This is a hook for the m68k long double format, where the
243 exponent bias is the same for normalized and denormalized
246 # define DENORM_EXP (MIN_EXP - 2)
248 exponent
= DENORM_EXP
;
251 if ((round_limb
& (((mp_limb_t
) 1) << round_bit
)) != 0
252 && (more_bits
|| (retval
[0] & 1) != 0
253 || (round_limb
& ((((mp_limb_t
) 1) << round_bit
) - 1)) != 0))
255 mp_limb_t cy
= __mpn_add_1 (retval
, retval
, RETURN_LIMB_SIZE
, 1);
257 if (((MANT_DIG
% BITS_PER_MP_LIMB
) == 0 && cy
) ||
258 ((MANT_DIG
% BITS_PER_MP_LIMB
) != 0 &&
259 (retval
[RETURN_LIMB_SIZE
- 1]
260 & (((mp_limb_t
) 1) << (MANT_DIG
% BITS_PER_MP_LIMB
))) != 0))
263 (void) __mpn_rshift (retval
, retval
, RETURN_LIMB_SIZE
, 1);
264 retval
[RETURN_LIMB_SIZE
- 1]
265 |= ((mp_limb_t
) 1) << ((MANT_DIG
- 1) % BITS_PER_MP_LIMB
);
267 else if (exponent
== DENORM_EXP
268 && (retval
[RETURN_LIMB_SIZE
- 1]
269 & (((mp_limb_t
) 1) << ((MANT_DIG
- 1) % BITS_PER_MP_LIMB
)))
271 /* The number was denormalized but now normalized. */
272 exponent
= MIN_EXP
- 1;
275 if (exponent
> MAX_EXP
)
276 return negative
? -FLOAT_HUGE_VAL
: FLOAT_HUGE_VAL
;
278 return MPN2FLOAT (retval
, exponent
, negative
);
282 /* Read a multi-precision integer starting at STR with exactly DIGCNT digits
283 into N. Return the size of the number limbs in NSIZE at the first
284 character od the string that is not part of the integer as the function
285 value. If the EXPONENT is small enough to be taken as an additional
286 factor for the resulting number (see code) multiply by it. */
287 static const STRING_TYPE
*
288 str_to_mpn (const STRING_TYPE
*str
, int digcnt
, mp_limb_t
*n
, mp_size_t
*nsize
,
290 #ifndef USE_WIDE_CHAR
291 , const char *decimal
, size_t decimal_len
, const char *thousands
296 /* Number of digits for actual limb. */
305 if (cnt
== MAX_DIG_PER_LIMB
)
315 cy
= __mpn_mul_1 (n
, n
, *nsize
, MAX_FAC_PER_LIMB
);
316 cy
+= __mpn_add_1 (n
, n
, *nsize
, low
);
327 /* There might be thousands separators or radix characters in
328 the string. But these all can be ignored because we know the
329 format of the number is correct and we have an exact number
330 of characters to read. */
332 if (*str
< L
'0' || *str
> L
'9')
335 if (*str
< '0' || *str
> '9')
338 if (thousands
!= NULL
&& *str
== *thousands
339 && ({ for (inner
= 1; thousands
[inner
] != '\0'; ++inner
)
340 if (thousands
[inner
] != str
[inner
])
342 thousands
[inner
] == '\0'; }))
348 low
= low
* 10 + *str
++ - L_('0');
351 while (--digcnt
> 0);
353 if (*exponent
> 0 && cnt
+ *exponent
<= MAX_DIG_PER_LIMB
)
355 low
*= _tens_in_limb
[*exponent
];
356 start
= _tens_in_limb
[cnt
+ *exponent
];
360 start
= _tens_in_limb
[cnt
];
370 cy
= __mpn_mul_1 (n
, n
, *nsize
, start
);
371 cy
+= __mpn_add_1 (n
, n
, *nsize
, low
);
380 /* Shift {PTR, SIZE} COUNT bits to the left, and fill the vacated bits
381 with the COUNT most significant bits of LIMB.
383 Tege doesn't like this function so I have to write it here myself. :)
386 __attribute ((always_inline
))
387 __mpn_lshift_1 (mp_limb_t
*ptr
, mp_size_t size
, unsigned int count
,
390 if (__builtin_constant_p (count
) && count
== BITS_PER_MP_LIMB
)
392 /* Optimize the case of shifting by exactly a word:
393 just copy words, with no actual bit-shifting. */
395 for (i
= size
- 1; i
> 0; --i
)
401 (void) __mpn_lshift (ptr
, ptr
, size
, count
);
402 ptr
[0] |= limb
>> (BITS_PER_MP_LIMB
- count
);
407 #define INTERNAL(x) INTERNAL1(x)
408 #define INTERNAL1(x) __##x##_internal
410 /* This file defines a function to check for correct grouping. */
411 #include "grouping.h"
414 /* Return a floating point number with the value of the given string NPTR.
415 Set *ENDPTR to the character after the last used one. If the number is
416 smaller than the smallest representable number, set `errno' to ERANGE and
417 return 0.0. If the number is too big to be represented, set `errno' to
418 ERANGE and return HUGE_VAL with the appropriate sign. */
420 INTERNAL (__STRTOF
) (nptr
, endptr
, group
, loc
)
421 const STRING_TYPE
*nptr
;
422 STRING_TYPE
**endptr
;
426 int negative
; /* The sign of the number. */
427 MPN_VAR (num
); /* MP representation of the number. */
428 int exponent
; /* Exponent of the number. */
430 /* Numbers starting `0X' or `0x' have to be processed with base 16. */
433 /* When we have to compute fractional digits we form a fraction with a
434 second multi-precision number (and we sometimes need a second for
435 temporary results). */
438 /* Representation for the return value. */
439 mp_limb_t retval
[RETURN_LIMB_SIZE
];
440 /* Number of bits currently in result value. */
443 /* Running pointer after the last character processed in the string. */
444 const STRING_TYPE
*cp
, *tp
;
445 /* Start of significant part of the number. */
446 const STRING_TYPE
*startp
, *start_of_digits
;
447 /* Points at the character following the integer and fractional digits. */
448 const STRING_TYPE
*expp
;
449 /* Total number of digit and number of digits in integer part. */
450 int dig_no
, int_no
, lead_zero
;
451 /* Contains the last character read. */
454 /* We should get wint_t from <stddef.h>, but not all GCC versions define it
455 there. So define it ourselves if it remains undefined. */
457 typedef unsigned int wint_t;
459 /* The radix character of the current locale. */
466 /* The thousands character of the current locale. */
468 wchar_t thousands
= L
'\0';
470 const char *thousands
= NULL
;
472 /* The numeric grouping specification of the current locale,
473 in the format described in <locale.h>. */
474 const char *grouping
;
475 /* Used in several places. */
478 struct locale_data
*current
= loc
->__locales
[LC_NUMERIC
];
482 grouping
= _NL_CURRENT (LC_NUMERIC
, GROUPING
);
483 if (*grouping
<= 0 || *grouping
== CHAR_MAX
)
487 /* Figure out the thousands separator character. */
489 thousands
= _NL_CURRENT_WORD (LC_NUMERIC
,
490 _NL_NUMERIC_THOUSANDS_SEP_WC
);
491 if (thousands
== L
'\0')
494 thousands
= _NL_CURRENT (LC_NUMERIC
, THOUSANDS_SEP
);
495 if (*thousands
== '\0')
506 /* Find the locale's decimal point character. */
508 decimal
= _NL_CURRENT_WORD (LC_NUMERIC
, _NL_NUMERIC_DECIMAL_POINT_WC
);
509 assert (decimal
!= L
'\0');
510 # define decimal_len 1
512 decimal
= _NL_CURRENT (LC_NUMERIC
, DECIMAL_POINT
);
513 decimal_len
= strlen (decimal
);
514 assert (decimal_len
> 0);
517 /* Prepare number representation. */
522 /* Parse string to get maximal legal prefix. We need the number of
523 characters of the integer part, the fractional part and the exponent. */
525 /* Ignore leading white space. */
530 /* Get sign of the result. */
536 else if (c
== L_('+'))
539 /* Return 0.0 if no legal string is found.
540 No character is used even if a sign was found. */
542 if (c
== (wint_t) decimal
543 && (wint_t) cp
[1] >= L
'0' && (wint_t) cp
[1] <= L
'9')
545 /* We accept it. This funny construct is here only to indent
546 the code directly. */
549 for (cnt
= 0; decimal
[cnt
] != '\0'; ++cnt
)
550 if (cp
[cnt
] != decimal
[cnt
])
552 if (decimal
[cnt
] == '\0' && cp
[cnt
] >= '0' && cp
[cnt
] <= '9')
554 /* We accept it. This funny construct is here only to indent
555 the code directly. */
558 else if (c
< L_('0') || c
> L_('9'))
560 /* Check for `INF' or `INFINITY'. */
561 if (TOLOWER_C (c
) == L_('i') && STRNCASECMP (cp
, L_("inf"), 3) == 0)
563 /* Return +/- infinity. */
565 *endptr
= (STRING_TYPE
*)
566 (cp
+ (STRNCASECMP (cp
+ 3, L_("inity"), 5) == 0
569 return negative
? -FLOAT_HUGE_VAL
: FLOAT_HUGE_VAL
;
572 if (TOLOWER_C (c
) == L_('n') && STRNCASECMP (cp
, L_("nan"), 3) == 0)
579 /* Match `(n-char-sequence-digit)'. */
582 const STRING_TYPE
*startp
= cp
;
585 while ((*cp
>= L_('0') && *cp
<= L_('9'))
586 || (TOLOWER (*cp
) >= L_('a') && TOLOWER (*cp
) <= L_('z'))
590 /* The closing brace is missing. Only match the NAN
595 /* This is a system-dependent way to specify the
596 bitmask used for the NaN. We expect it to be
597 a number which is put in the mantissa of the
600 unsigned long long int mant
;
602 mant
= STRTOULL (startp
+ 1, &endp
, 0);
604 SET_MANTISSA (retval
, mant
);
609 *endptr
= (STRING_TYPE
*) cp
;
614 /* It is really a text we do not recognize. */
618 /* First look whether we are faced with a hexadecimal number. */
619 if (c
== L_('0') && TOLOWER (cp
[1]) == L_('x'))
621 /* Okay, it is a hexa-decimal number. Remember this and skip
622 the characters. BTW: hexadecimal numbers must not be
630 /* Record the start of the digits, in case we will check their grouping. */
631 start_of_digits
= startp
= cp
;
633 /* Ignore leading zeroes. This helps us to avoid useless computations. */
635 while (c
== L
'0' || ((wint_t) thousands
!= L
'\0' && c
== (wint_t) thousands
))
638 if (thousands
== NULL
)
643 /* We also have the multibyte thousands string. */
648 for (cnt
= 0; thousands
[cnt
] != '\0'; ++cnt
)
649 if (c
!= thousands
[cnt
])
651 if (thousands
[cnt
] != '\0')
659 /* If no other digit but a '0' is found the result is 0.0.
660 Return current read pointer. */
661 if ((c
< L_('0') || c
> L_('9'))
662 && (base
== 16 && (c
< (CHAR_TYPE
) TOLOWER (L_('a'))
663 || c
> (CHAR_TYPE
) TOLOWER (L_('f'))))
665 && c
!= (wint_t) decimal
667 && ({ for (cnt
= 0; decimal
[cnt
] != '\0'; ++cnt
)
668 if (decimal
[cnt
] != cp
[cnt
])
670 decimal
[cnt
] != '\0'; })
672 && (base
== 16 && (cp
== start_of_digits
673 || (CHAR_TYPE
) TOLOWER (c
) != L_('p')))
674 && (base
!= 16 && (CHAR_TYPE
) TOLOWER (c
) != L_('e')))
677 tp
= __correctly_grouped_prefixwc (start_of_digits
, cp
, thousands
,
680 tp
= __correctly_grouped_prefixmb (start_of_digits
, cp
, thousands
,
683 /* If TP is at the start of the digits, there was no correctly
684 grouped prefix of the string; so no number found. */
685 RETURN (0.0, tp
== start_of_digits
? (base
== 16 ? cp
- 1 : nptr
) : tp
);
688 /* Remember first significant digit and read following characters until the
689 decimal point, exponent character or any non-FP number character. */
694 if ((c
>= L_('0') && c
<= L_('9'))
695 || (base
== 16 && (wint_t) TOLOWER (c
) >= L_('a')
696 && (wint_t) TOLOWER (c
) <= L_('f')))
701 if ((wint_t) thousands
== L
'\0' || c
!= (wint_t) thousands
)
702 /* Not a digit or separator: end of the integer part. */
705 if (thousands
== NULL
)
709 for (cnt
= 0; thousands
[cnt
] != '\0'; ++cnt
)
710 if (thousands
[cnt
] != cp
[cnt
])
712 if (thousands
[cnt
] != '\0')
720 if (grouping
&& dig_no
> 0)
722 /* Check the grouping of the digits. */
724 tp
= __correctly_grouped_prefixwc (start_of_digits
, cp
, thousands
,
727 tp
= __correctly_grouped_prefixmb (start_of_digits
, cp
, thousands
,
732 /* Less than the entire string was correctly grouped. */
734 if (tp
== start_of_digits
)
735 /* No valid group of numbers at all: no valid number. */
739 /* The number is validly grouped, but consists
740 only of zeroes. The whole value is zero. */
743 /* Recompute DIG_NO so we won't read more digits than
744 are properly grouped. */
747 for (tp
= startp
; tp
< cp
; ++tp
)
748 if (*tp
>= L_('0') && *tp
<= L_('9'))
758 /* We have the number digits in the integer part. Whether these are all or
759 any is really a fractional digit will be decided later. */
761 lead_zero
= int_no
== 0 ? -1 : 0;
763 /* Read the fractional digits. A special case are the 'american style'
764 numbers like `16.' i.e. with decimal but without trailing digits. */
767 c
== (wint_t) decimal
769 ({ for (cnt
= 0; decimal
[cnt
] != '\0'; ++cnt
)
770 if (decimal
[cnt
] != cp
[cnt
])
772 decimal
[cnt
] == '\0'; })
778 while ((c
>= L_('0') && c
<= L_('9')) ||
779 (base
== 16 && TOLOWER (c
) >= L_('a') && TOLOWER (c
) <= L_('f')))
781 if (c
!= L_('0') && lead_zero
== -1)
782 lead_zero
= dig_no
- int_no
;
788 /* Remember start of exponent (if any). */
792 if ((base
== 16 && TOLOWER (c
) == L_('p'))
793 || (base
!= 16 && TOLOWER (c
) == L_('e')))
795 int exp_negative
= 0;
803 else if (c
== L_('+'))
806 if (c
>= L_('0') && c
<= L_('9'))
810 /* Get the exponent limit. */
812 exp_limit
= (exp_negative
?
813 -MIN_EXP
+ MANT_DIG
+ 4 * int_no
:
814 MAX_EXP
- 4 * int_no
+ lead_zero
);
816 exp_limit
= (exp_negative
?
817 -MIN_10_EXP
+ MANT_DIG
+ int_no
:
818 MAX_10_EXP
- int_no
+ lead_zero
);
824 if (exponent
> exp_limit
)
825 /* The exponent is too large/small to represent a valid
830 /* We have to take care for special situation: a joker
831 might have written "0.0e100000" which is in fact
834 result
= negative
? -0.0 : 0.0;
837 /* Overflow or underflow. */
838 __set_errno (ERANGE
);
839 result
= (exp_negative
? 0.0 :
840 negative
? -FLOAT_HUGE_VAL
: FLOAT_HUGE_VAL
);
843 /* Accept all following digits as part of the exponent. */
846 while (*cp
>= L_('0') && *cp
<= L_('9'));
852 exponent
+= c
- L_('0');
855 while (c
>= L_('0') && c
<= L_('9'));
858 exponent
= -exponent
;
864 /* We don't want to have to work with trailing zeroes after the radix. */
867 while (expp
[-1] == L_('0'))
872 assert (dig_no
>= int_no
);
875 if (dig_no
== int_no
&& dig_no
> 0 && exponent
< 0)
878 while (! (base
== 16 ? ISXDIGIT (expp
[-1]) : ISDIGIT (expp
[-1])))
881 if (expp
[-1] != L_('0'))
889 while (dig_no
> 0 && exponent
< 0);
893 /* The whole string is parsed. Store the address of the next character. */
895 *endptr
= (STRING_TYPE
*) cp
;
898 return negative
? -0.0 : 0.0;
902 /* Find the decimal point */
904 while (*startp
!= decimal
)
909 if (*startp
== decimal
[0])
911 for (cnt
= 1; decimal
[cnt
] != '\0'; ++cnt
)
912 if (decimal
[cnt
] != startp
[cnt
])
914 if (decimal
[cnt
] == '\0')
920 startp
+= lead_zero
+ decimal_len
;
921 exponent
-= base
== 16 ? 4 * lead_zero
: lead_zero
;
925 /* If the BASE is 16 we can use a simpler algorithm. */
928 static const int nbits
[16] = { 0, 1, 2, 2, 3, 3, 3, 3,
929 4, 4, 4, 4, 4, 4, 4, 4 };
930 int idx
= (MANT_DIG
- 1) / BITS_PER_MP_LIMB
;
931 int pos
= (MANT_DIG
- 1) % BITS_PER_MP_LIMB
;
934 while (!ISXDIGIT (*startp
))
936 while (*startp
== L_('0'))
938 if (ISDIGIT (*startp
))
939 val
= *startp
++ - L_('0');
941 val
= 10 + TOLOWER (*startp
++) - L_('a');
943 /* We cannot have a leading zero. */
946 if (pos
+ 1 >= 4 || pos
+ 1 >= bits
)
948 /* We don't have to care for wrapping. This is the normal
949 case so we add the first clause in the `if' expression as
950 an optimization. It is a compile-time constant and so does
951 not cost anything. */
952 retval
[idx
] = val
<< (pos
- bits
+ 1);
957 retval
[idx
--] = val
>> (bits
- pos
- 1);
958 retval
[idx
] = val
<< (BITS_PER_MP_LIMB
- (bits
- pos
- 1));
959 pos
= BITS_PER_MP_LIMB
- 1 - (bits
- pos
- 1);
962 /* Adjust the exponent for the bits we are shifting in. */
963 exponent
+= bits
- 1 + (int_no
- 1) * 4;
965 while (--dig_no
> 0 && idx
>= 0)
967 if (!ISXDIGIT (*startp
))
968 startp
+= decimal_len
;
969 if (ISDIGIT (*startp
))
970 val
= *startp
++ - L_('0');
972 val
= 10 + TOLOWER (*startp
++) - L_('a');
976 retval
[idx
] |= val
<< (pos
- 4 + 1);
981 retval
[idx
--] |= val
>> (4 - pos
- 1);
982 val
<<= BITS_PER_MP_LIMB
- (4 - pos
- 1);
984 return round_and_return (retval
, exponent
, negative
, val
,
985 BITS_PER_MP_LIMB
- 1, dig_no
> 0);
988 pos
= BITS_PER_MP_LIMB
- 1 - (4 - pos
- 1);
992 /* We ran out of digits. */
993 MPN_ZERO (retval
, idx
);
995 return round_and_return (retval
, exponent
, negative
, 0, 0, 0);
998 /* Now we have the number of digits in total and the integer digits as well
999 as the exponent and its sign. We can decide whether the read digits are
1000 really integer digits or belong to the fractional part; i.e. we normalize
1003 register int incr
= (exponent
< 0 ? MAX (-int_no
, exponent
)
1004 : MIN (dig_no
- int_no
, exponent
));
1009 if (int_no
+ exponent
> MAX_10_EXP
+ 1)
1011 __set_errno (ERANGE
);
1012 return negative
? -FLOAT_HUGE_VAL
: FLOAT_HUGE_VAL
;
1015 if (exponent
< MIN_10_EXP
- (DIG
+ 1))
1017 __set_errno (ERANGE
);
1023 /* Read the integer part as a multi-precision number to NUM. */
1024 startp
= str_to_mpn (startp
, int_no
, num
, &numsize
, &exponent
1025 #ifndef USE_WIDE_CHAR
1026 , decimal
, decimal_len
, thousands
1032 /* We now multiply the gained number by the given power of ten. */
1033 mp_limb_t
*psrc
= num
;
1034 mp_limb_t
*pdest
= den
;
1036 const struct mp_power
*ttab
= &_fpioconst_pow10
[0];
1040 if ((exponent
& expbit
) != 0)
1042 size_t size
= ttab
->arraysize
- _FPIO_CONST_OFFSET
;
1046 /* FIXME: not the whole multiplication has to be
1047 done. If we have the needed number of bits we
1048 only need the information whether more non-zero
1050 if (numsize
>= ttab
->arraysize
- _FPIO_CONST_OFFSET
)
1051 cy
= __mpn_mul (pdest
, psrc
, numsize
,
1052 &__tens
[ttab
->arrayoff
1053 + _FPIO_CONST_OFFSET
],
1056 cy
= __mpn_mul (pdest
, &__tens
[ttab
->arrayoff
1057 + _FPIO_CONST_OFFSET
],
1058 size
, psrc
, numsize
);
1062 (void) SWAP (psrc
, pdest
);
1067 while (exponent
!= 0);
1070 memcpy (num
, den
, numsize
* sizeof (mp_limb_t
));
1073 /* Determine how many bits of the result we already have. */
1074 count_leading_zeros (bits
, num
[numsize
- 1]);
1075 bits
= numsize
* BITS_PER_MP_LIMB
- bits
;
1077 /* Now we know the exponent of the number in base two.
1078 Check it against the maximum possible exponent. */
1081 __set_errno (ERANGE
);
1082 return negative
? -FLOAT_HUGE_VAL
: FLOAT_HUGE_VAL
;
1085 /* We have already the first BITS bits of the result. Together with
1086 the information whether more non-zero bits follow this is enough
1087 to determine the result. */
1088 if (bits
> MANT_DIG
)
1091 const mp_size_t least_idx
= (bits
- MANT_DIG
) / BITS_PER_MP_LIMB
;
1092 const mp_size_t least_bit
= (bits
- MANT_DIG
) % BITS_PER_MP_LIMB
;
1093 const mp_size_t round_idx
= least_bit
== 0 ? least_idx
- 1
1095 const mp_size_t round_bit
= least_bit
== 0 ? BITS_PER_MP_LIMB
- 1
1099 memcpy (retval
, &num
[least_idx
],
1100 RETURN_LIMB_SIZE
* sizeof (mp_limb_t
));
1103 for (i
= least_idx
; i
< numsize
- 1; ++i
)
1104 retval
[i
- least_idx
] = (num
[i
] >> least_bit
)
1106 << (BITS_PER_MP_LIMB
- least_bit
));
1107 if (i
- least_idx
< RETURN_LIMB_SIZE
)
1108 retval
[RETURN_LIMB_SIZE
- 1] = num
[i
] >> least_bit
;
1111 /* Check whether any limb beside the ones in RETVAL are non-zero. */
1112 for (i
= 0; num
[i
] == 0; ++i
)
1115 return round_and_return (retval
, bits
- 1, negative
,
1116 num
[round_idx
], round_bit
,
1117 int_no
< dig_no
|| i
< round_idx
);
1120 else if (dig_no
== int_no
)
1122 const mp_size_t target_bit
= (MANT_DIG
- 1) % BITS_PER_MP_LIMB
;
1123 const mp_size_t is_bit
= (bits
- 1) % BITS_PER_MP_LIMB
;
1125 if (target_bit
== is_bit
)
1127 memcpy (&retval
[RETURN_LIMB_SIZE
- numsize
], num
,
1128 numsize
* sizeof (mp_limb_t
));
1129 /* FIXME: the following loop can be avoided if we assume a
1130 maximal MANT_DIG value. */
1131 MPN_ZERO (retval
, RETURN_LIMB_SIZE
- numsize
);
1133 else if (target_bit
> is_bit
)
1135 (void) __mpn_lshift (&retval
[RETURN_LIMB_SIZE
- numsize
],
1136 num
, numsize
, target_bit
- is_bit
);
1137 /* FIXME: the following loop can be avoided if we assume a
1138 maximal MANT_DIG value. */
1139 MPN_ZERO (retval
, RETURN_LIMB_SIZE
- numsize
);
1144 assert (numsize
< RETURN_LIMB_SIZE
);
1146 cy
= __mpn_rshift (&retval
[RETURN_LIMB_SIZE
- numsize
],
1147 num
, numsize
, is_bit
- target_bit
);
1148 retval
[RETURN_LIMB_SIZE
- numsize
- 1] = cy
;
1149 /* FIXME: the following loop can be avoided if we assume a
1150 maximal MANT_DIG value. */
1151 MPN_ZERO (retval
, RETURN_LIMB_SIZE
- numsize
- 1);
1154 return round_and_return (retval
, bits
- 1, negative
, 0, 0, 0);
1158 /* Store the bits we already have. */
1159 memcpy (retval
, num
, numsize
* sizeof (mp_limb_t
));
1160 #if RETURN_LIMB_SIZE > 1
1161 if (numsize
< RETURN_LIMB_SIZE
)
1162 # if RETURN_LIMB_SIZE == 2
1163 retval
[numsize
] = 0;
1165 MPN_ZERO (retval
+ numsize
, RETURN_LIMB_SIZE
- numsize
);
1170 /* We have to compute at least some of the fractional digits. */
1172 /* We construct a fraction and the result of the division gives us
1173 the needed digits. The denominator is 1.0 multiplied by the
1174 exponent of the lowest digit; i.e. 0.123 gives 123 / 1000 and
1175 123e-6 gives 123 / 1000000. */
1181 mp_limb_t
*psrc
= den
;
1182 mp_limb_t
*pdest
= num
;
1183 const struct mp_power
*ttab
= &_fpioconst_pow10
[0];
1185 assert (dig_no
> int_no
&& exponent
<= 0);
1188 /* For the fractional part we need not process too many digits. One
1189 decimal digits gives us log_2(10) ~ 3.32 bits. If we now compute
1191 digits we should have enough bits for the result. The remaining
1192 decimal digits give us the information that more bits are following.
1193 This can be used while rounding. (Two added as a safety margin.) */
1194 if (dig_no
- int_no
> (MANT_DIG
- bits
+ 2) / 3 + 2)
1196 dig_no
= int_no
+ (MANT_DIG
- bits
+ 2) / 3 + 2;
1202 neg_exp
= dig_no
- int_no
- exponent
;
1204 /* Construct the denominator. */
1209 if ((neg_exp
& expbit
) != 0)
1216 densize
= ttab
->arraysize
- _FPIO_CONST_OFFSET
;
1217 memcpy (psrc
, &__tens
[ttab
->arrayoff
+ _FPIO_CONST_OFFSET
],
1218 densize
* sizeof (mp_limb_t
));
1222 cy
= __mpn_mul (pdest
, &__tens
[ttab
->arrayoff
1223 + _FPIO_CONST_OFFSET
],
1224 ttab
->arraysize
- _FPIO_CONST_OFFSET
,
1226 densize
+= ttab
->arraysize
- _FPIO_CONST_OFFSET
;
1229 (void) SWAP (psrc
, pdest
);
1235 while (neg_exp
!= 0);
1238 memcpy (den
, num
, densize
* sizeof (mp_limb_t
));
1240 /* Read the fractional digits from the string. */
1241 (void) str_to_mpn (startp
, dig_no
- int_no
, num
, &numsize
, &exponent
1242 #ifndef USE_WIDE_CHAR
1243 , decimal
, decimal_len
, thousands
1247 /* We now have to shift both numbers so that the highest bit in the
1248 denominator is set. In the same process we copy the numerator to
1249 a high place in the array so that the division constructs the wanted
1250 digits. This is done by a "quasi fix point" number representation.
1252 num: ddddddddddd . 0000000000000000000000
1254 den: ddddddddddd n >= m
1258 count_leading_zeros (cnt
, den
[densize
- 1]);
1262 /* Don't call `mpn_shift' with a count of zero since the specification
1263 does not allow this. */
1264 (void) __mpn_lshift (den
, den
, densize
, cnt
);
1265 cy
= __mpn_lshift (num
, num
, numsize
, cnt
);
1267 num
[numsize
++] = cy
;
1270 /* Now we are ready for the division. But it is not necessary to
1271 do a full multi-precision division because we only need a small
1272 number of bits for the result. So we do not use __mpn_divmod
1273 here but instead do the division here by hand and stop whenever
1274 the needed number of bits is reached. The code itself comes
1275 from the GNU MP Library by Torbj\"orn Granlund. */
1283 mp_limb_t d
, n
, quot
;
1288 assert (numsize
== 1 && n
< d
);
1292 udiv_qrnnd (quot
, n
, n
, 0, d
);
1299 cnt = BITS_PER_MP_LIMB; \
1301 count_leading_zeros (cnt, quot); \
1303 if (BITS_PER_MP_LIMB - cnt > MANT_DIG) \
1305 used = MANT_DIG + cnt; \
1306 retval[0] = quot >> (BITS_PER_MP_LIMB - used); \
1307 bits = MANT_DIG + 1; \
1311 /* Note that we only clear the second element. */ \
1312 /* The conditional is determined at compile time. */ \
1313 if (RETURN_LIMB_SIZE > 1) \
1319 else if (bits + BITS_PER_MP_LIMB <= MANT_DIG) \
1320 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, BITS_PER_MP_LIMB, \
1324 used = MANT_DIG - bits; \
1326 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, quot); \
1328 bits += BITS_PER_MP_LIMB
1332 while (bits
<= MANT_DIG
);
1334 return round_and_return (retval
, exponent
- 1, negative
,
1335 quot
, BITS_PER_MP_LIMB
- 1 - used
,
1336 more_bits
|| n
!= 0);
1340 mp_limb_t d0
, d1
, n0
, n1
;
1347 if (numsize
< densize
)
1351 /* The numerator of the number occupies fewer bits than
1352 the denominator but the one limb is bigger than the
1353 high limb of the numerator. */
1360 exponent
-= BITS_PER_MP_LIMB
;
1363 if (bits
+ BITS_PER_MP_LIMB
<= MANT_DIG
)
1364 __mpn_lshift_1 (retval
, RETURN_LIMB_SIZE
,
1365 BITS_PER_MP_LIMB
, 0);
1368 used
= MANT_DIG
- bits
;
1370 __mpn_lshift_1 (retval
, RETURN_LIMB_SIZE
, used
, 0);
1372 bits
+= BITS_PER_MP_LIMB
;
1384 while (bits
<= MANT_DIG
)
1390 /* QUOT should be either 111..111 or 111..110. We need
1391 special treatment of this rare case as normal division
1392 would give overflow. */
1393 quot
= ~(mp_limb_t
) 0;
1396 if (r
< d1
) /* Carry in the addition? */
1398 add_ssaaaa (n1
, n0
, r
- d0
, 0, 0, d0
);
1401 n1
= d0
- (d0
!= 0);
1406 udiv_qrnnd (quot
, r
, n1
, n0
, d1
);
1407 umul_ppmm (n1
, n0
, d0
, quot
);
1411 if (n1
> r
|| (n1
== r
&& n0
> 0))
1413 /* The estimated QUOT was too large. */
1416 sub_ddmmss (n1
, n0
, n1
, n0
, 0, d0
);
1418 if (r
>= d1
) /* If not carry, test QUOT again. */
1421 sub_ddmmss (n1
, n0
, r
, 0, n1
, n0
);
1427 return round_and_return (retval
, exponent
- 1, negative
,
1428 quot
, BITS_PER_MP_LIMB
- 1 - used
,
1429 more_bits
|| n1
!= 0 || n0
!= 0);
1434 mp_limb_t cy
, dX
, d1
, n0
, n1
;
1438 dX
= den
[densize
- 1];
1439 d1
= den
[densize
- 2];
1441 /* The division does not work if the upper limb of the two-limb
1442 numerator is greater than the denominator. */
1443 if (__mpn_cmp (num
, &den
[densize
- numsize
], numsize
) > 0)
1446 if (numsize
< densize
)
1448 mp_size_t empty
= densize
- numsize
;
1452 exponent
-= empty
* BITS_PER_MP_LIMB
;
1455 if (bits
+ empty
* BITS_PER_MP_LIMB
<= MANT_DIG
)
1457 /* We make a difference here because the compiler
1458 cannot optimize the `else' case that good and
1459 this reflects all currently used FLOAT types
1460 and GMP implementations. */
1461 #if RETURN_LIMB_SIZE <= 2
1462 assert (empty
== 1);
1463 __mpn_lshift_1 (retval
, RETURN_LIMB_SIZE
,
1464 BITS_PER_MP_LIMB
, 0);
1466 for (i
= RETURN_LIMB_SIZE
- 1; i
>= empty
; --i
)
1467 retval
[i
] = retval
[i
- empty
];
1474 used
= MANT_DIG
- bits
;
1475 if (used
>= BITS_PER_MP_LIMB
)
1478 (void) __mpn_lshift (&retval
[used
1479 / BITS_PER_MP_LIMB
],
1480 retval
, RETURN_LIMB_SIZE
,
1481 used
% BITS_PER_MP_LIMB
);
1482 for (i
= used
/ BITS_PER_MP_LIMB
- 1; i
>= 0; --i
)
1486 __mpn_lshift_1 (retval
, RETURN_LIMB_SIZE
, used
, 0);
1488 bits
+= empty
* BITS_PER_MP_LIMB
;
1490 for (i
= numsize
; i
> 0; --i
)
1491 num
[i
+ empty
] = num
[i
- 1];
1492 MPN_ZERO (num
, empty
+ 1);
1497 assert (numsize
== densize
);
1498 for (i
= numsize
; i
> 0; --i
)
1499 num
[i
] = num
[i
- 1];
1505 while (bits
<= MANT_DIG
)
1508 /* This might over-estimate QUOT, but it's probably not
1509 worth the extra code here to find out. */
1510 quot
= ~(mp_limb_t
) 0;
1515 udiv_qrnnd (quot
, r
, n0
, num
[densize
- 1], dX
);
1516 umul_ppmm (n1
, n0
, d1
, quot
);
1518 while (n1
> r
|| (n1
== r
&& n0
> num
[densize
- 2]))
1522 if (r
< dX
) /* I.e. "carry in previous addition?" */
1529 /* Possible optimization: We already have (q * n0) and (1 * n1)
1530 after the calculation of QUOT. Taking advantage of this, we
1531 could make this loop make two iterations less. */
1533 cy
= __mpn_submul_1 (num
, den
, densize
+ 1, quot
);
1535 if (num
[densize
] != cy
)
1537 cy
= __mpn_add_n (num
, num
, den
, densize
);
1541 n0
= num
[densize
] = num
[densize
- 1];
1542 for (i
= densize
- 1; i
> 0; --i
)
1543 num
[i
] = num
[i
- 1];
1548 for (i
= densize
; num
[i
] == 0 && i
>= 0; --i
)
1550 return round_and_return (retval
, exponent
- 1, negative
,
1551 quot
, BITS_PER_MP_LIMB
- 1 - used
,
1552 more_bits
|| i
>= 0);
1559 #if defined _LIBC && !defined USE_WIDE_CHAR
1560 libc_hidden_def (INTERNAL (__STRTOF
))
1563 /* External user entry point. */
1566 #ifdef weak_function
1569 __STRTOF (nptr
, endptr
, loc
)
1570 const STRING_TYPE
*nptr
;
1571 STRING_TYPE
**endptr
;
1574 return INTERNAL (__STRTOF
) (nptr
, endptr
, 0, loc
);
1576 weak_alias (__STRTOF
, STRTOF
)