1 /* Convert string representing a number to float value, using given locale.
2 Copyright (C) 1997-2015 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; if not, see
18 <http://www.gnu.org/licenses/>. */
22 extern double ____strtod_l_internal (const char *, char **, int, __locale_t
);
23 extern unsigned long long int ____strtoull_l_internal (const char *, char **,
24 int, int, __locale_t
);
26 /* Configuration part. These macros are defined by `strtold.c',
27 `strtof.c', `wcstod.c', `wcstold.c', and `wcstof.c' to produce the
28 `long double' and `float' versions of the reader. */
30 # include <math_ldbl_opt.h>
34 # define STRTOF wcstod_l
35 # define __STRTOF __wcstod_l
37 # define STRTOF strtod_l
38 # define __STRTOF __strtod_l
40 # define MPN2FLOAT __mpn_construct_double
41 # define FLOAT_HUGE_VAL HUGE_VAL
42 # define SET_MANTISSA(flt, mant) \
43 do { union ieee754_double u; \
45 u.ieee_nan.mantissa0 = (mant) >> 32; \
46 u.ieee_nan.mantissa1 = (mant); \
47 if ((u.ieee.mantissa0 | u.ieee.mantissa1) != 0) \
51 /* End of configuration part. */
57 #include "../locale/localeinfo.h"
63 #include <rounding-mode.h>
66 /* The gmp headers need some configuration frobs. */
69 /* Include gmp-mparam.h first, such that definitions of _SHORT_LIMB
70 and _LONG_LONG_LIMB in it can take effect into gmp.h. */
71 #include <gmp-mparam.h>
75 #include "fpioconst.h"
80 /* We use this code for the extended locale handling where the
81 function gets as an additional argument the locale which has to be
82 used. To access the values we have to redefine the _NL_CURRENT and
83 _NL_CURRENT_WORD macros. */
85 #define _NL_CURRENT(category, item) \
86 (current->values[_NL_ITEM_INDEX (item)].string)
87 #undef _NL_CURRENT_WORD
88 #define _NL_CURRENT_WORD(category, item) \
89 ((uint32_t) current->values[_NL_ITEM_INDEX (item)].word)
91 #if defined _LIBC || defined HAVE_WCHAR_H
97 # define STRING_TYPE wchar_t
98 # define CHAR_TYPE wint_t
100 # define ISSPACE(Ch) __iswspace_l ((Ch), loc)
101 # define ISDIGIT(Ch) __iswdigit_l ((Ch), loc)
102 # define ISXDIGIT(Ch) __iswxdigit_l ((Ch), loc)
103 # define TOLOWER(Ch) __towlower_l ((Ch), loc)
104 # define TOLOWER_C(Ch) __towlower_l ((Ch), _nl_C_locobj_ptr)
105 # define STRNCASECMP(S1, S2, N) \
106 __wcsncasecmp_l ((S1), (S2), (N), _nl_C_locobj_ptr)
107 # define STRTOULL(S, E, B) ____wcstoull_l_internal ((S), (E), (B), 0, loc)
109 # define STRING_TYPE char
110 # define CHAR_TYPE char
112 # define ISSPACE(Ch) __isspace_l ((Ch), loc)
113 # define ISDIGIT(Ch) __isdigit_l ((Ch), loc)
114 # define ISXDIGIT(Ch) __isxdigit_l ((Ch), loc)
115 # define TOLOWER(Ch) __tolower_l ((Ch), loc)
116 # define TOLOWER_C(Ch) __tolower_l ((Ch), _nl_C_locobj_ptr)
117 # define STRNCASECMP(S1, S2, N) \
118 __strncasecmp_l ((S1), (S2), (N), _nl_C_locobj_ptr)
119 # define STRTOULL(S, E, B) ____strtoull_l_internal ((S), (E), (B), 0, loc)
123 /* Constants we need from float.h; select the set for the FLOAT precision. */
124 #define MANT_DIG PASTE(FLT,_MANT_DIG)
125 #define DIG PASTE(FLT,_DIG)
126 #define MAX_EXP PASTE(FLT,_MAX_EXP)
127 #define MIN_EXP PASTE(FLT,_MIN_EXP)
128 #define MAX_10_EXP PASTE(FLT,_MAX_10_EXP)
129 #define MIN_10_EXP PASTE(FLT,_MIN_10_EXP)
130 #define MAX_VALUE PASTE(FLT,_MAX)
131 #define MIN_VALUE PASTE(FLT,_MIN)
133 /* Extra macros required to get FLT expanded before the pasting. */
134 #define PASTE(a,b) PASTE1(a,b)
135 #define PASTE1(a,b) a##b
137 /* Function to construct a floating point number from an MP integer
138 containing the fraction bits, a base 2 exponent, and a sign flag. */
139 extern FLOAT
MPN2FLOAT (mp_srcptr mpn
, int exponent
, int negative
);
141 /* Definitions according to limb size used. */
142 #if BITS_PER_MP_LIMB == 32
143 # define MAX_DIG_PER_LIMB 9
144 # define MAX_FAC_PER_LIMB 1000000000UL
145 #elif BITS_PER_MP_LIMB == 64
146 # define MAX_DIG_PER_LIMB 19
147 # define MAX_FAC_PER_LIMB 10000000000000000000ULL
149 # error "mp_limb_t size " BITS_PER_MP_LIMB "not accounted for"
152 extern const mp_limb_t _tens_in_limb
[MAX_DIG_PER_LIMB
+ 1];
155 #define howmany(x,y) (((x)+((y)-1))/(y))
157 #define SWAP(x, y) ({ typeof(x) _tmp = x; x = y; y = _tmp; })
159 #define RETURN_LIMB_SIZE howmany (MANT_DIG, BITS_PER_MP_LIMB)
161 #define RETURN(val,end) \
162 do { if (endptr != NULL) *endptr = (STRING_TYPE *) (end); \
163 return val; } while (0)
165 /* Maximum size necessary for mpn integers to hold floating point
166 numbers. The largest number we need to hold is 10^n where 2^-n is
167 1/4 ulp of the smallest representable value (that is, n = MANT_DIG
168 - MIN_EXP + 2). Approximate using 10^3 < 2^10. */
169 #define MPNSIZE (howmany (1 + ((MANT_DIG - MIN_EXP + 2) * 10) / 3, \
170 BITS_PER_MP_LIMB) + 2)
171 /* Declare an mpn integer variable that big. */
172 #define MPN_VAR(name) mp_limb_t name[MPNSIZE]; mp_size_t name##size
173 /* Copy an mpn integer value. */
174 #define MPN_ASSIGN(dst, src) \
175 memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t))
178 /* Set errno and return an overflowing value with sign specified by
181 overflow_value (int negative
)
183 __set_errno (ERANGE
);
184 #if FLT_EVAL_METHOD != 0
187 FLOAT result
= (negative
? -MAX_VALUE
: MAX_VALUE
) * MAX_VALUE
;
192 /* Set errno and return an underflowing value with sign specified by
195 underflow_value (int negative
)
197 __set_errno (ERANGE
);
198 #if FLT_EVAL_METHOD != 0
201 FLOAT result
= (negative
? -MIN_VALUE
: MIN_VALUE
) * MIN_VALUE
;
206 /* Return a floating point number of the needed type according to the given
207 multi-precision number after possible rounding. */
209 round_and_return (mp_limb_t
*retval
, intmax_t exponent
, int negative
,
210 mp_limb_t round_limb
, mp_size_t round_bit
, int more_bits
)
212 int mode
= get_rounding_mode ();
214 if (exponent
< MIN_EXP
- 1)
216 if (exponent
< MIN_EXP
- 1 - MANT_DIG
)
217 return underflow_value (negative
);
219 mp_size_t shift
= MIN_EXP
- 1 - exponent
;
222 more_bits
|= (round_limb
& ((((mp_limb_t
) 1) << round_bit
) - 1)) != 0;
223 if (shift
== MANT_DIG
)
224 /* This is a special case to handle the very seldom case where
225 the mantissa will be empty after the shift. */
229 round_limb
= retval
[RETURN_LIMB_SIZE
- 1];
230 round_bit
= (MANT_DIG
- 1) % BITS_PER_MP_LIMB
;
231 for (i
= 0; i
< RETURN_LIMB_SIZE
- 1; ++i
)
232 more_bits
|= retval
[i
] != 0;
233 MPN_ZERO (retval
, RETURN_LIMB_SIZE
);
235 else if (shift
>= BITS_PER_MP_LIMB
)
239 round_limb
= retval
[(shift
- 1) / BITS_PER_MP_LIMB
];
240 round_bit
= (shift
- 1) % BITS_PER_MP_LIMB
;
241 for (i
= 0; i
< (shift
- 1) / BITS_PER_MP_LIMB
; ++i
)
242 more_bits
|= retval
[i
] != 0;
243 more_bits
|= ((round_limb
& ((((mp_limb_t
) 1) << round_bit
) - 1))
246 /* __mpn_rshift requires 0 < shift < BITS_PER_MP_LIMB. */
247 if ((shift
% BITS_PER_MP_LIMB
) != 0)
248 (void) __mpn_rshift (retval
, &retval
[shift
/ BITS_PER_MP_LIMB
],
249 RETURN_LIMB_SIZE
- (shift
/ BITS_PER_MP_LIMB
),
250 shift
% BITS_PER_MP_LIMB
);
252 for (i
= 0; i
< RETURN_LIMB_SIZE
- (shift
/ BITS_PER_MP_LIMB
); i
++)
253 retval
[i
] = retval
[i
+ (shift
/ BITS_PER_MP_LIMB
)];
254 MPN_ZERO (&retval
[RETURN_LIMB_SIZE
- (shift
/ BITS_PER_MP_LIMB
)],
255 shift
/ BITS_PER_MP_LIMB
);
259 if (TININESS_AFTER_ROUNDING
&& shift
== 1)
261 /* Whether the result counts as tiny depends on whether,
262 after rounding to the normal precision, it still has
263 a subnormal exponent. */
264 mp_limb_t retval_normal
[RETURN_LIMB_SIZE
];
265 if (round_away (negative
,
266 (retval
[0] & 1) != 0,
268 & (((mp_limb_t
) 1) << round_bit
)) != 0,
271 & ((((mp_limb_t
) 1) << round_bit
) - 1))
275 mp_limb_t cy
= __mpn_add_1 (retval_normal
, retval
,
276 RETURN_LIMB_SIZE
, 1);
278 if (((MANT_DIG
% BITS_PER_MP_LIMB
) == 0 && cy
) ||
279 ((MANT_DIG
% BITS_PER_MP_LIMB
) != 0 &&
280 ((retval_normal
[RETURN_LIMB_SIZE
- 1]
281 & (((mp_limb_t
) 1) << (MANT_DIG
% BITS_PER_MP_LIMB
)))
286 round_limb
= retval
[0];
287 round_bit
= shift
- 1;
288 (void) __mpn_rshift (retval
, retval
, RETURN_LIMB_SIZE
, shift
);
290 /* This is a hook for the m68k long double format, where the
291 exponent bias is the same for normalized and denormalized
294 # define DENORM_EXP (MIN_EXP - 2)
296 exponent
= DENORM_EXP
;
298 && ((round_limb
& (((mp_limb_t
) 1) << round_bit
)) != 0
300 || (round_limb
& ((((mp_limb_t
) 1) << round_bit
) - 1)) != 0))
302 __set_errno (ERANGE
);
303 volatile FLOAT force_underflow_exception
= MIN_VALUE
* MIN_VALUE
;
304 (void) force_underflow_exception
;
308 if (exponent
> MAX_EXP
)
311 if (round_away (negative
,
312 (retval
[0] & 1) != 0,
313 (round_limb
& (((mp_limb_t
) 1) << round_bit
)) != 0,
315 || (round_limb
& ((((mp_limb_t
) 1) << round_bit
) - 1)) != 0),
318 mp_limb_t cy
= __mpn_add_1 (retval
, retval
, RETURN_LIMB_SIZE
, 1);
320 if (((MANT_DIG
% BITS_PER_MP_LIMB
) == 0 && cy
) ||
321 ((MANT_DIG
% BITS_PER_MP_LIMB
) != 0 &&
322 (retval
[RETURN_LIMB_SIZE
- 1]
323 & (((mp_limb_t
) 1) << (MANT_DIG
% BITS_PER_MP_LIMB
))) != 0))
326 (void) __mpn_rshift (retval
, retval
, RETURN_LIMB_SIZE
, 1);
327 retval
[RETURN_LIMB_SIZE
- 1]
328 |= ((mp_limb_t
) 1) << ((MANT_DIG
- 1) % BITS_PER_MP_LIMB
);
330 else if (exponent
== DENORM_EXP
331 && (retval
[RETURN_LIMB_SIZE
- 1]
332 & (((mp_limb_t
) 1) << ((MANT_DIG
- 1) % BITS_PER_MP_LIMB
)))
334 /* The number was denormalized but now normalized. */
335 exponent
= MIN_EXP
- 1;
338 if (exponent
> MAX_EXP
)
340 return overflow_value (negative
);
342 return MPN2FLOAT (retval
, exponent
, negative
);
346 /* Read a multi-precision integer starting at STR with exactly DIGCNT digits
347 into N. Return the size of the number limbs in NSIZE at the first
348 character od the string that is not part of the integer as the function
349 value. If the EXPONENT is small enough to be taken as an additional
350 factor for the resulting number (see code) multiply by it. */
351 static const STRING_TYPE
*
352 str_to_mpn (const STRING_TYPE
*str
, int digcnt
, mp_limb_t
*n
, mp_size_t
*nsize
,
354 #ifndef USE_WIDE_CHAR
355 , const char *decimal
, size_t decimal_len
, const char *thousands
360 /* Number of digits for actual limb. */
369 if (cnt
== MAX_DIG_PER_LIMB
)
379 cy
= __mpn_mul_1 (n
, n
, *nsize
, MAX_FAC_PER_LIMB
);
380 cy
+= __mpn_add_1 (n
, n
, *nsize
, low
);
383 assert (*nsize
< MPNSIZE
);
392 /* There might be thousands separators or radix characters in
393 the string. But these all can be ignored because we know the
394 format of the number is correct and we have an exact number
395 of characters to read. */
397 if (*str
< L
'0' || *str
> L
'9')
400 if (*str
< '0' || *str
> '9')
403 if (thousands
!= NULL
&& *str
== *thousands
404 && ({ for (inner
= 1; thousands
[inner
] != '\0'; ++inner
)
405 if (thousands
[inner
] != str
[inner
])
407 thousands
[inner
] == '\0'; }))
413 low
= low
* 10 + *str
++ - L_('0');
416 while (--digcnt
> 0);
418 if (*exponent
> 0 && *exponent
<= MAX_DIG_PER_LIMB
- cnt
)
420 low
*= _tens_in_limb
[*exponent
];
421 start
= _tens_in_limb
[cnt
+ *exponent
];
425 start
= _tens_in_limb
[cnt
];
435 cy
= __mpn_mul_1 (n
, n
, *nsize
, start
);
436 cy
+= __mpn_add_1 (n
, n
, *nsize
, low
);
439 assert (*nsize
< MPNSIZE
);
448 /* Shift {PTR, SIZE} COUNT bits to the left, and fill the vacated bits
449 with the COUNT most significant bits of LIMB.
451 Implemented as a macro, so that __builtin_constant_p works even at -O0.
453 Tege doesn't like this macro so I have to write it here myself. :)
455 #define __mpn_lshift_1(ptr, size, count, limb) \
458 mp_limb_t *__ptr = (ptr); \
459 if (__builtin_constant_p (count) && count == BITS_PER_MP_LIMB) \
462 for (i = (size) - 1; i > 0; --i) \
463 __ptr[i] = __ptr[i - 1]; \
468 /* We assume count > 0 && count < BITS_PER_MP_LIMB here. */ \
469 unsigned int __count = (count); \
470 (void) __mpn_lshift (__ptr, __ptr, size, __count); \
471 __ptr[0] |= (limb) >> (BITS_PER_MP_LIMB - __count); \
477 #define INTERNAL(x) INTERNAL1(x)
478 #define INTERNAL1(x) __##x##_internal
479 #ifndef ____STRTOF_INTERNAL
480 # define ____STRTOF_INTERNAL INTERNAL (__STRTOF)
483 /* This file defines a function to check for correct grouping. */
484 #include "grouping.h"
487 /* Return a floating point number with the value of the given string NPTR.
488 Set *ENDPTR to the character after the last used one. If the number is
489 smaller than the smallest representable number, set `errno' to ERANGE and
490 return 0.0. If the number is too big to be represented, set `errno' to
491 ERANGE and return HUGE_VAL with the appropriate sign. */
493 ____STRTOF_INTERNAL (nptr
, endptr
, group
, loc
)
494 const STRING_TYPE
*nptr
;
495 STRING_TYPE
**endptr
;
499 int negative
; /* The sign of the number. */
500 MPN_VAR (num
); /* MP representation of the number. */
501 intmax_t exponent
; /* Exponent of the number. */
503 /* Numbers starting `0X' or `0x' have to be processed with base 16. */
506 /* When we have to compute fractional digits we form a fraction with a
507 second multi-precision number (and we sometimes need a second for
508 temporary results). */
511 /* Representation for the return value. */
512 mp_limb_t retval
[RETURN_LIMB_SIZE
];
513 /* Number of bits currently in result value. */
516 /* Running pointer after the last character processed in the string. */
517 const STRING_TYPE
*cp
, *tp
;
518 /* Start of significant part of the number. */
519 const STRING_TYPE
*startp
, *start_of_digits
;
520 /* Points at the character following the integer and fractional digits. */
521 const STRING_TYPE
*expp
;
522 /* Total number of digit and number of digits in integer part. */
523 size_t dig_no
, int_no
, lead_zero
;
524 /* Contains the last character read. */
527 /* We should get wint_t from <stddef.h>, but not all GCC versions define it
528 there. So define it ourselves if it remains undefined. */
530 typedef unsigned int wint_t;
532 /* The radix character of the current locale. */
539 /* The thousands character of the current locale. */
541 wchar_t thousands
= L
'\0';
543 const char *thousands
= NULL
;
545 /* The numeric grouping specification of the current locale,
546 in the format described in <locale.h>. */
547 const char *grouping
;
548 /* Used in several places. */
551 struct __locale_data
*current
= loc
->__locales
[LC_NUMERIC
];
553 if (__glibc_unlikely (group
))
555 grouping
= _NL_CURRENT (LC_NUMERIC
, GROUPING
);
556 if (*grouping
<= 0 || *grouping
== CHAR_MAX
)
560 /* Figure out the thousands separator character. */
562 thousands
= _NL_CURRENT_WORD (LC_NUMERIC
,
563 _NL_NUMERIC_THOUSANDS_SEP_WC
);
564 if (thousands
== L
'\0')
567 thousands
= _NL_CURRENT (LC_NUMERIC
, THOUSANDS_SEP
);
568 if (*thousands
== '\0')
579 /* Find the locale's decimal point character. */
581 decimal
= _NL_CURRENT_WORD (LC_NUMERIC
, _NL_NUMERIC_DECIMAL_POINT_WC
);
582 assert (decimal
!= L
'\0');
583 # define decimal_len 1
585 decimal
= _NL_CURRENT (LC_NUMERIC
, DECIMAL_POINT
);
586 decimal_len
= strlen (decimal
);
587 assert (decimal_len
> 0);
590 /* Prepare number representation. */
595 /* Parse string to get maximal legal prefix. We need the number of
596 characters of the integer part, the fractional part and the exponent. */
598 /* Ignore leading white space. */
603 /* Get sign of the result. */
609 else if (c
== L_('+'))
612 /* Return 0.0 if no legal string is found.
613 No character is used even if a sign was found. */
615 if (c
== (wint_t) decimal
616 && (wint_t) cp
[1] >= L
'0' && (wint_t) cp
[1] <= L
'9')
618 /* We accept it. This funny construct is here only to indent
619 the code correctly. */
622 for (cnt
= 0; decimal
[cnt
] != '\0'; ++cnt
)
623 if (cp
[cnt
] != decimal
[cnt
])
625 if (decimal
[cnt
] == '\0' && cp
[cnt
] >= '0' && cp
[cnt
] <= '9')
627 /* We accept it. This funny construct is here only to indent
628 the code correctly. */
631 else if (c
< L_('0') || c
> L_('9'))
633 /* Check for `INF' or `INFINITY'. */
634 CHAR_TYPE lowc
= TOLOWER_C (c
);
636 if (lowc
== L_('i') && STRNCASECMP (cp
, L_("inf"), 3) == 0)
638 /* Return +/- infinity. */
640 *endptr
= (STRING_TYPE
*)
641 (cp
+ (STRNCASECMP (cp
+ 3, L_("inity"), 5) == 0
644 return negative
? -FLOAT_HUGE_VAL
: FLOAT_HUGE_VAL
;
647 if (lowc
== L_('n') && STRNCASECMP (cp
, L_("nan"), 3) == 0)
654 /* Match `(n-char-sequence-digit)'. */
657 const STRING_TYPE
*startp
= cp
;
660 while ((*cp
>= L_('0') && *cp
<= L_('9'))
661 || ({ CHAR_TYPE lo
= TOLOWER (*cp
);
662 lo
>= L_('a') && lo
<= L_('z'); })
666 /* The closing brace is missing. Only match the NAN
671 /* This is a system-dependent way to specify the
672 bitmask used for the NaN. We expect it to be
673 a number which is put in the mantissa of the
676 unsigned long long int mant
;
678 mant
= STRTOULL (startp
+ 1, &endp
, 0);
680 SET_MANTISSA (retval
, mant
);
682 /* Consume the closing brace. */
688 *endptr
= (STRING_TYPE
*) cp
;
693 /* It is really a text we do not recognize. */
697 /* First look whether we are faced with a hexadecimal number. */
698 if (c
== L_('0') && TOLOWER (cp
[1]) == L_('x'))
700 /* Okay, it is a hexa-decimal number. Remember this and skip
701 the characters. BTW: hexadecimal numbers must not be
709 /* Record the start of the digits, in case we will check their grouping. */
710 start_of_digits
= startp
= cp
;
712 /* Ignore leading zeroes. This helps us to avoid useless computations. */
714 while (c
== L
'0' || ((wint_t) thousands
!= L
'\0' && c
== (wint_t) thousands
))
717 if (__glibc_likely (thousands
== NULL
))
722 /* We also have the multibyte thousands string. */
727 for (cnt
= 0; thousands
[cnt
] != '\0'; ++cnt
)
728 if (thousands
[cnt
] != cp
[cnt
])
730 if (thousands
[cnt
] != '\0')
739 /* If no other digit but a '0' is found the result is 0.0.
740 Return current read pointer. */
741 CHAR_TYPE lowc
= TOLOWER (c
);
742 if (!((c
>= L_('0') && c
<= L_('9'))
743 || (base
== 16 && lowc
>= L_('a') && lowc
<= L_('f'))
746 c
== (wint_t) decimal
748 ({ for (cnt
= 0; decimal
[cnt
] != '\0'; ++cnt
)
749 if (decimal
[cnt
] != cp
[cnt
])
751 decimal
[cnt
] == '\0'; })
753 /* '0x.' alone is not a valid hexadecimal number.
754 '.' alone is not valid either, but that has been checked
757 || cp
!= start_of_digits
758 || (cp
[decimal_len
] >= L_('0') && cp
[decimal_len
] <= L_('9'))
759 || ({ CHAR_TYPE lo
= TOLOWER (cp
[decimal_len
]);
760 lo
>= L_('a') && lo
<= L_('f'); })))
761 || (base
== 16 && (cp
!= start_of_digits
763 || (base
!= 16 && lowc
== L_('e'))))
766 tp
= __correctly_grouped_prefixwc (start_of_digits
, cp
, thousands
,
769 tp
= __correctly_grouped_prefixmb (start_of_digits
, cp
, thousands
,
772 /* If TP is at the start of the digits, there was no correctly
773 grouped prefix of the string; so no number found. */
774 RETURN (negative
? -0.0 : 0.0,
775 tp
== start_of_digits
? (base
== 16 ? cp
- 1 : nptr
) : tp
);
778 /* Remember first significant digit and read following characters until the
779 decimal point, exponent character or any non-FP number character. */
784 if ((c
>= L_('0') && c
<= L_('9'))
786 && ({ CHAR_TYPE lo
= TOLOWER (c
);
787 lo
>= L_('a') && lo
<= L_('f'); })))
792 if (__builtin_expect ((wint_t) thousands
== L
'\0', 1)
793 || c
!= (wint_t) thousands
)
794 /* Not a digit or separator: end of the integer part. */
797 if (__glibc_likely (thousands
== NULL
))
801 for (cnt
= 0; thousands
[cnt
] != '\0'; ++cnt
)
802 if (thousands
[cnt
] != cp
[cnt
])
804 if (thousands
[cnt
] != '\0')
813 if (__builtin_expect (grouping
!= NULL
, 0) && cp
> start_of_digits
)
815 /* Check the grouping of the digits. */
817 tp
= __correctly_grouped_prefixwc (start_of_digits
, cp
, thousands
,
820 tp
= __correctly_grouped_prefixmb (start_of_digits
, cp
, thousands
,
825 /* Less than the entire string was correctly grouped. */
827 if (tp
== start_of_digits
)
828 /* No valid group of numbers at all: no valid number. */
832 /* The number is validly grouped, but consists
833 only of zeroes. The whole value is zero. */
834 RETURN (negative
? -0.0 : 0.0, tp
);
836 /* Recompute DIG_NO so we won't read more digits than
837 are properly grouped. */
840 for (tp
= startp
; tp
< cp
; ++tp
)
841 if (*tp
>= L_('0') && *tp
<= L_('9'))
851 /* We have the number of digits in the integer part. Whether these
852 are all or any is really a fractional digit will be decided
855 lead_zero
= int_no
== 0 ? (size_t) -1 : 0;
857 /* Read the fractional digits. A special case are the 'american
858 style' numbers like `16.' i.e. with decimal point but without
862 c
== (wint_t) decimal
864 ({ for (cnt
= 0; decimal
[cnt
] != '\0'; ++cnt
)
865 if (decimal
[cnt
] != cp
[cnt
])
867 decimal
[cnt
] == '\0'; })
873 while ((c
>= L_('0') && c
<= L_('9')) ||
874 (base
== 16 && ({ CHAR_TYPE lo
= TOLOWER (c
);
875 lo
>= L_('a') && lo
<= L_('f'); })))
877 if (c
!= L_('0') && lead_zero
== (size_t) -1)
878 lead_zero
= dig_no
- int_no
;
883 assert (dig_no
<= (uintmax_t) INTMAX_MAX
);
885 /* Remember start of exponent (if any). */
890 if ((base
== 16 && lowc
== L_('p'))
891 || (base
!= 16 && lowc
== L_('e')))
893 int exp_negative
= 0;
901 else if (c
== L_('+'))
904 if (c
>= L_('0') && c
<= L_('9'))
908 /* Get the exponent limit. */
913 assert (int_no
<= (uintmax_t) (INTMAX_MAX
914 + MIN_EXP
- MANT_DIG
) / 4);
915 exp_limit
= -MIN_EXP
+ MANT_DIG
+ 4 * (intmax_t) int_no
;
921 assert (lead_zero
== 0
922 && int_no
<= (uintmax_t) INTMAX_MAX
/ 4);
923 exp_limit
= MAX_EXP
- 4 * (intmax_t) int_no
+ 3;
925 else if (lead_zero
== (size_t) -1)
927 /* The number is zero and this limit is
929 exp_limit
= MAX_EXP
+ 3;
934 <= (uintmax_t) (INTMAX_MAX
- MAX_EXP
- 3) / 4);
936 + 4 * (intmax_t) lead_zero
946 <= (uintmax_t) (INTMAX_MAX
+ MIN_10_EXP
- MANT_DIG
));
947 exp_limit
= -MIN_10_EXP
+ MANT_DIG
+ (intmax_t) int_no
;
953 assert (lead_zero
== 0
954 && int_no
<= (uintmax_t) INTMAX_MAX
);
955 exp_limit
= MAX_10_EXP
- (intmax_t) int_no
+ 1;
957 else if (lead_zero
== (size_t) -1)
959 /* The number is zero and this limit is
961 exp_limit
= MAX_10_EXP
+ 1;
966 <= (uintmax_t) (INTMAX_MAX
- MAX_10_EXP
- 1));
967 exp_limit
= MAX_10_EXP
+ (intmax_t) lead_zero
+ 1;
977 if (__builtin_expect ((exponent
> exp_limit
/ 10
978 || (exponent
== exp_limit
/ 10
979 && c
- L_('0') > exp_limit
% 10)), 0))
980 /* The exponent is too large/small to represent a valid
985 /* We have to take care for special situation: a joker
986 might have written "0.0e100000" which is in fact
988 if (lead_zero
== (size_t) -1)
989 result
= negative
? -0.0 : 0.0;
992 /* Overflow or underflow. */
993 result
= (exp_negative
994 ? underflow_value (negative
)
995 : overflow_value (negative
));
998 /* Accept all following digits as part of the exponent. */
1001 while (*cp
>= L_('0') && *cp
<= L_('9'));
1003 RETURN (result
, cp
);
1008 exponent
+= c
- L_('0');
1012 while (c
>= L_('0') && c
<= L_('9'));
1015 exponent
= -exponent
;
1021 /* We don't want to have to work with trailing zeroes after the radix. */
1022 if (dig_no
> int_no
)
1024 while (expp
[-1] == L_('0'))
1029 assert (dig_no
>= int_no
);
1032 if (dig_no
== int_no
&& dig_no
> 0 && exponent
< 0)
1035 while (! (base
== 16 ? ISXDIGIT (expp
[-1]) : ISDIGIT (expp
[-1])))
1038 if (expp
[-1] != L_('0'))
1044 exponent
+= base
== 16 ? 4 : 1;
1046 while (dig_no
> 0 && exponent
< 0);
1050 /* The whole string is parsed. Store the address of the next character. */
1052 *endptr
= (STRING_TYPE
*) cp
;
1055 return negative
? -0.0 : 0.0;
1059 /* Find the decimal point */
1060 #ifdef USE_WIDE_CHAR
1061 while (*startp
!= decimal
)
1066 if (*startp
== decimal
[0])
1068 for (cnt
= 1; decimal
[cnt
] != '\0'; ++cnt
)
1069 if (decimal
[cnt
] != startp
[cnt
])
1071 if (decimal
[cnt
] == '\0')
1077 startp
+= lead_zero
+ decimal_len
;
1078 assert (lead_zero
<= (base
== 16
1079 ? (uintmax_t) INTMAX_MAX
/ 4
1080 : (uintmax_t) INTMAX_MAX
));
1081 assert (lead_zero
<= (base
== 16
1082 ? ((uintmax_t) exponent
1083 - (uintmax_t) INTMAX_MIN
) / 4
1084 : ((uintmax_t) exponent
- (uintmax_t) INTMAX_MIN
)));
1085 exponent
-= base
== 16 ? 4 * (intmax_t) lead_zero
: (intmax_t) lead_zero
;
1086 dig_no
-= lead_zero
;
1089 /* If the BASE is 16 we can use a simpler algorithm. */
1092 static const int nbits
[16] = { 0, 1, 2, 2, 3, 3, 3, 3,
1093 4, 4, 4, 4, 4, 4, 4, 4 };
1094 int idx
= (MANT_DIG
- 1) / BITS_PER_MP_LIMB
;
1095 int pos
= (MANT_DIG
- 1) % BITS_PER_MP_LIMB
;
1098 while (!ISXDIGIT (*startp
))
1100 while (*startp
== L_('0'))
1102 if (ISDIGIT (*startp
))
1103 val
= *startp
++ - L_('0');
1105 val
= 10 + TOLOWER (*startp
++) - L_('a');
1107 /* We cannot have a leading zero. */
1110 if (pos
+ 1 >= 4 || pos
+ 1 >= bits
)
1112 /* We don't have to care for wrapping. This is the normal
1113 case so we add the first clause in the `if' expression as
1114 an optimization. It is a compile-time constant and so does
1115 not cost anything. */
1116 retval
[idx
] = val
<< (pos
- bits
+ 1);
1121 retval
[idx
--] = val
>> (bits
- pos
- 1);
1122 retval
[idx
] = val
<< (BITS_PER_MP_LIMB
- (bits
- pos
- 1));
1123 pos
= BITS_PER_MP_LIMB
- 1 - (bits
- pos
- 1);
1126 /* Adjust the exponent for the bits we are shifting in. */
1127 assert (int_no
<= (uintmax_t) (exponent
< 0
1128 ? (INTMAX_MAX
- bits
+ 1) / 4
1129 : (INTMAX_MAX
- exponent
- bits
+ 1) / 4));
1130 exponent
+= bits
- 1 + ((intmax_t) int_no
- 1) * 4;
1132 while (--dig_no
> 0 && idx
>= 0)
1134 if (!ISXDIGIT (*startp
))
1135 startp
+= decimal_len
;
1136 if (ISDIGIT (*startp
))
1137 val
= *startp
++ - L_('0');
1139 val
= 10 + TOLOWER (*startp
++) - L_('a');
1143 retval
[idx
] |= val
<< (pos
- 4 + 1);
1148 retval
[idx
--] |= val
>> (4 - pos
- 1);
1149 val
<<= BITS_PER_MP_LIMB
- (4 - pos
- 1);
1152 int rest_nonzero
= 0;
1153 while (--dig_no
> 0)
1155 if (*startp
!= L_('0'))
1162 return round_and_return (retval
, exponent
, negative
, val
,
1163 BITS_PER_MP_LIMB
- 1, rest_nonzero
);
1167 pos
= BITS_PER_MP_LIMB
- 1 - (4 - pos
- 1);
1171 /* We ran out of digits. */
1172 MPN_ZERO (retval
, idx
);
1174 return round_and_return (retval
, exponent
, negative
, 0, 0, 0);
1177 /* Now we have the number of digits in total and the integer digits as well
1178 as the exponent and its sign. We can decide whether the read digits are
1179 really integer digits or belong to the fractional part; i.e. we normalize
1182 intmax_t incr
= (exponent
< 0
1183 ? MAX (-(intmax_t) int_no
, exponent
)
1184 : MIN ((intmax_t) dig_no
- (intmax_t) int_no
, exponent
));
1189 if (__glibc_unlikely (exponent
> MAX_10_EXP
+ 1 - (intmax_t) int_no
))
1190 return overflow_value (negative
);
1192 /* 10^(MIN_10_EXP-1) is not normal. Thus, 10^(MIN_10_EXP-1) /
1193 2^MANT_DIG is below half the least subnormal, so anything with a
1194 base-10 exponent less than the base-10 exponent (which is
1195 MIN_10_EXP - 1 - ceil(MANT_DIG*log10(2))) of that value
1196 underflows. DIG is floor((MANT_DIG-1)log10(2)), so an exponent
1197 below MIN_10_EXP - (DIG + 3) underflows. But EXPONENT is
1198 actually an exponent multiplied only by a fractional part, not an
1199 integer part, so an exponent below MIN_10_EXP - (DIG + 2)
1201 if (__glibc_unlikely (exponent
< MIN_10_EXP
- (DIG
+ 2)))
1202 return underflow_value (negative
);
1206 /* Read the integer part as a multi-precision number to NUM. */
1207 startp
= str_to_mpn (startp
, int_no
, num
, &numsize
, &exponent
1208 #ifndef USE_WIDE_CHAR
1209 , decimal
, decimal_len
, thousands
1215 /* We now multiply the gained number by the given power of ten. */
1216 mp_limb_t
*psrc
= num
;
1217 mp_limb_t
*pdest
= den
;
1219 const struct mp_power
*ttab
= &_fpioconst_pow10
[0];
1223 if ((exponent
& expbit
) != 0)
1225 size_t size
= ttab
->arraysize
- _FPIO_CONST_OFFSET
;
1229 /* FIXME: not the whole multiplication has to be
1230 done. If we have the needed number of bits we
1231 only need the information whether more non-zero
1233 if (numsize
>= ttab
->arraysize
- _FPIO_CONST_OFFSET
)
1234 cy
= __mpn_mul (pdest
, psrc
, numsize
,
1235 &__tens
[ttab
->arrayoff
1236 + _FPIO_CONST_OFFSET
],
1239 cy
= __mpn_mul (pdest
, &__tens
[ttab
->arrayoff
1240 + _FPIO_CONST_OFFSET
],
1241 size
, psrc
, numsize
);
1245 (void) SWAP (psrc
, pdest
);
1250 while (exponent
!= 0);
1253 memcpy (num
, den
, numsize
* sizeof (mp_limb_t
));
1256 /* Determine how many bits of the result we already have. */
1257 count_leading_zeros (bits
, num
[numsize
- 1]);
1258 bits
= numsize
* BITS_PER_MP_LIMB
- bits
;
1260 /* Now we know the exponent of the number in base two.
1261 Check it against the maximum possible exponent. */
1262 if (__glibc_unlikely (bits
> MAX_EXP
))
1263 return overflow_value (negative
);
1265 /* We have already the first BITS bits of the result. Together with
1266 the information whether more non-zero bits follow this is enough
1267 to determine the result. */
1268 if (bits
> MANT_DIG
)
1271 const mp_size_t least_idx
= (bits
- MANT_DIG
) / BITS_PER_MP_LIMB
;
1272 const mp_size_t least_bit
= (bits
- MANT_DIG
) % BITS_PER_MP_LIMB
;
1273 const mp_size_t round_idx
= least_bit
== 0 ? least_idx
- 1
1275 const mp_size_t round_bit
= least_bit
== 0 ? BITS_PER_MP_LIMB
- 1
1279 memcpy (retval
, &num
[least_idx
],
1280 RETURN_LIMB_SIZE
* sizeof (mp_limb_t
));
1283 for (i
= least_idx
; i
< numsize
- 1; ++i
)
1284 retval
[i
- least_idx
] = (num
[i
] >> least_bit
)
1286 << (BITS_PER_MP_LIMB
- least_bit
));
1287 if (i
- least_idx
< RETURN_LIMB_SIZE
)
1288 retval
[RETURN_LIMB_SIZE
- 1] = num
[i
] >> least_bit
;
1291 /* Check whether any limb beside the ones in RETVAL are non-zero. */
1292 for (i
= 0; num
[i
] == 0; ++i
)
1295 return round_and_return (retval
, bits
- 1, negative
,
1296 num
[round_idx
], round_bit
,
1297 int_no
< dig_no
|| i
< round_idx
);
1300 else if (dig_no
== int_no
)
1302 const mp_size_t target_bit
= (MANT_DIG
- 1) % BITS_PER_MP_LIMB
;
1303 const mp_size_t is_bit
= (bits
- 1) % BITS_PER_MP_LIMB
;
1305 if (target_bit
== is_bit
)
1307 memcpy (&retval
[RETURN_LIMB_SIZE
- numsize
], num
,
1308 numsize
* sizeof (mp_limb_t
));
1309 /* FIXME: the following loop can be avoided if we assume a
1310 maximal MANT_DIG value. */
1311 MPN_ZERO (retval
, RETURN_LIMB_SIZE
- numsize
);
1313 else if (target_bit
> is_bit
)
1315 (void) __mpn_lshift (&retval
[RETURN_LIMB_SIZE
- numsize
],
1316 num
, numsize
, target_bit
- is_bit
);
1317 /* FIXME: the following loop can be avoided if we assume a
1318 maximal MANT_DIG value. */
1319 MPN_ZERO (retval
, RETURN_LIMB_SIZE
- numsize
);
1324 assert (numsize
< RETURN_LIMB_SIZE
);
1326 cy
= __mpn_rshift (&retval
[RETURN_LIMB_SIZE
- numsize
],
1327 num
, numsize
, is_bit
- target_bit
);
1328 retval
[RETURN_LIMB_SIZE
- numsize
- 1] = cy
;
1329 /* FIXME: the following loop can be avoided if we assume a
1330 maximal MANT_DIG value. */
1331 MPN_ZERO (retval
, RETURN_LIMB_SIZE
- numsize
- 1);
1334 return round_and_return (retval
, bits
- 1, negative
, 0, 0, 0);
1338 /* Store the bits we already have. */
1339 memcpy (retval
, num
, numsize
* sizeof (mp_limb_t
));
1340 #if RETURN_LIMB_SIZE > 1
1341 if (numsize
< RETURN_LIMB_SIZE
)
1342 # if RETURN_LIMB_SIZE == 2
1343 retval
[numsize
] = 0;
1345 MPN_ZERO (retval
+ numsize
, RETURN_LIMB_SIZE
- numsize
);
1350 /* We have to compute at least some of the fractional digits. */
1352 /* We construct a fraction and the result of the division gives us
1353 the needed digits. The denominator is 1.0 multiplied by the
1354 exponent of the lowest digit; i.e. 0.123 gives 123 / 1000 and
1355 123e-6 gives 123 / 1000000. */
1360 int need_frac_digits
;
1362 mp_limb_t
*psrc
= den
;
1363 mp_limb_t
*pdest
= num
;
1364 const struct mp_power
*ttab
= &_fpioconst_pow10
[0];
1366 assert (dig_no
> int_no
1368 && exponent
>= MIN_10_EXP
- (DIG
+ 2));
1370 /* We need to compute MANT_DIG - BITS fractional bits that lie
1371 within the mantissa of the result, the following bit for
1372 rounding, and to know whether any subsequent bit is 0.
1373 Computing a bit with value 2^-n means looking at n digits after
1374 the decimal point. */
1377 /* The bits required are those immediately after the point. */
1378 assert (int_no
> 0 && exponent
== 0);
1379 need_frac_digits
= 1 + MANT_DIG
- bits
;
1383 /* The number is in the form .123eEXPONENT. */
1384 assert (int_no
== 0 && *startp
!= L_('0'));
1385 /* The number is at least 10^(EXPONENT-1), and 10^3 <
1387 int neg_exp_2
= ((1 - exponent
) * 10) / 3 + 1;
1388 /* The number is at least 2^-NEG_EXP_2. We need up to
1389 MANT_DIG bits following that bit. */
1390 need_frac_digits
= neg_exp_2
+ MANT_DIG
;
1391 /* However, we never need bits beyond 1/4 ulp of the smallest
1392 representable value. (That 1/4 ulp bit is only needed to
1393 determine tinyness on machines where tinyness is determined
1395 if (need_frac_digits
> MANT_DIG
- MIN_EXP
+ 2)
1396 need_frac_digits
= MANT_DIG
- MIN_EXP
+ 2;
1397 /* At this point, NEED_FRAC_DIGITS is the total number of
1398 digits needed after the point, but some of those may be
1400 need_frac_digits
+= exponent
;
1401 /* Any cases underflowing enough that none of the fractional
1402 digits are needed should have been caught earlier (such
1403 cases are on the order of 10^-n or smaller where 2^-n is
1404 the least subnormal). */
1405 assert (need_frac_digits
> 0);
1408 if (need_frac_digits
> (intmax_t) dig_no
- (intmax_t) int_no
)
1409 need_frac_digits
= (intmax_t) dig_no
- (intmax_t) int_no
;
1411 if ((intmax_t) dig_no
> (intmax_t) int_no
+ need_frac_digits
)
1413 dig_no
= int_no
+ need_frac_digits
;
1419 neg_exp
= (intmax_t) dig_no
- (intmax_t) int_no
- exponent
;
1421 /* Construct the denominator. */
1426 if ((neg_exp
& expbit
) != 0)
1433 densize
= ttab
->arraysize
- _FPIO_CONST_OFFSET
;
1434 memcpy (psrc
, &__tens
[ttab
->arrayoff
+ _FPIO_CONST_OFFSET
],
1435 densize
* sizeof (mp_limb_t
));
1439 cy
= __mpn_mul (pdest
, &__tens
[ttab
->arrayoff
1440 + _FPIO_CONST_OFFSET
],
1441 ttab
->arraysize
- _FPIO_CONST_OFFSET
,
1443 densize
+= ttab
->arraysize
- _FPIO_CONST_OFFSET
;
1446 (void) SWAP (psrc
, pdest
);
1452 while (neg_exp
!= 0);
1455 memcpy (den
, num
, densize
* sizeof (mp_limb_t
));
1457 /* Read the fractional digits from the string. */
1458 (void) str_to_mpn (startp
, dig_no
- int_no
, num
, &numsize
, &exponent
1459 #ifndef USE_WIDE_CHAR
1460 , decimal
, decimal_len
, thousands
1464 /* We now have to shift both numbers so that the highest bit in the
1465 denominator is set. In the same process we copy the numerator to
1466 a high place in the array so that the division constructs the wanted
1467 digits. This is done by a "quasi fix point" number representation.
1469 num: ddddddddddd . 0000000000000000000000
1471 den: ddddddddddd n >= m
1475 count_leading_zeros (cnt
, den
[densize
- 1]);
1479 /* Don't call `mpn_shift' with a count of zero since the specification
1480 does not allow this. */
1481 (void) __mpn_lshift (den
, den
, densize
, cnt
);
1482 cy
= __mpn_lshift (num
, num
, numsize
, cnt
);
1484 num
[numsize
++] = cy
;
1487 /* Now we are ready for the division. But it is not necessary to
1488 do a full multi-precision division because we only need a small
1489 number of bits for the result. So we do not use __mpn_divmod
1490 here but instead do the division here by hand and stop whenever
1491 the needed number of bits is reached. The code itself comes
1492 from the GNU MP Library by Torbj\"orn Granlund. */
1500 mp_limb_t d
, n
, quot
;
1505 assert (numsize
== 1 && n
< d
);
1509 udiv_qrnnd (quot
, n
, n
, 0, d
);
1516 cnt = BITS_PER_MP_LIMB; \
1518 count_leading_zeros (cnt, quot); \
1520 if (BITS_PER_MP_LIMB - cnt > MANT_DIG) \
1522 used = MANT_DIG + cnt; \
1523 retval[0] = quot >> (BITS_PER_MP_LIMB - used); \
1524 bits = MANT_DIG + 1; \
1528 /* Note that we only clear the second element. */ \
1529 /* The conditional is determined at compile time. */ \
1530 if (RETURN_LIMB_SIZE > 1) \
1536 else if (bits + BITS_PER_MP_LIMB <= MANT_DIG) \
1537 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, BITS_PER_MP_LIMB, \
1541 used = MANT_DIG - bits; \
1543 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, quot); \
1545 bits += BITS_PER_MP_LIMB
1549 while (bits
<= MANT_DIG
);
1551 return round_and_return (retval
, exponent
- 1, negative
,
1552 quot
, BITS_PER_MP_LIMB
- 1 - used
,
1553 more_bits
|| n
!= 0);
1557 mp_limb_t d0
, d1
, n0
, n1
;
1564 if (numsize
< densize
)
1568 /* The numerator of the number occupies fewer bits than
1569 the denominator but the one limb is bigger than the
1570 high limb of the numerator. */
1577 exponent
-= BITS_PER_MP_LIMB
;
1580 if (bits
+ BITS_PER_MP_LIMB
<= MANT_DIG
)
1581 __mpn_lshift_1 (retval
, RETURN_LIMB_SIZE
,
1582 BITS_PER_MP_LIMB
, 0);
1585 used
= MANT_DIG
- bits
;
1587 __mpn_lshift_1 (retval
, RETURN_LIMB_SIZE
, used
, 0);
1589 bits
+= BITS_PER_MP_LIMB
;
1601 while (bits
<= MANT_DIG
)
1607 /* QUOT should be either 111..111 or 111..110. We need
1608 special treatment of this rare case as normal division
1609 would give overflow. */
1610 quot
= ~(mp_limb_t
) 0;
1613 if (r
< d1
) /* Carry in the addition? */
1615 add_ssaaaa (n1
, n0
, r
- d0
, 0, 0, d0
);
1618 n1
= d0
- (d0
!= 0);
1623 udiv_qrnnd (quot
, r
, n1
, n0
, d1
);
1624 umul_ppmm (n1
, n0
, d0
, quot
);
1628 if (n1
> r
|| (n1
== r
&& n0
> 0))
1630 /* The estimated QUOT was too large. */
1633 sub_ddmmss (n1
, n0
, n1
, n0
, 0, d0
);
1635 if (r
>= d1
) /* If not carry, test QUOT again. */
1638 sub_ddmmss (n1
, n0
, r
, 0, n1
, n0
);
1644 return round_and_return (retval
, exponent
- 1, negative
,
1645 quot
, BITS_PER_MP_LIMB
- 1 - used
,
1646 more_bits
|| n1
!= 0 || n0
!= 0);
1651 mp_limb_t cy
, dX
, d1
, n0
, n1
;
1655 dX
= den
[densize
- 1];
1656 d1
= den
[densize
- 2];
1658 /* The division does not work if the upper limb of the two-limb
1659 numerator is greater than the denominator. */
1660 if (__mpn_cmp (num
, &den
[densize
- numsize
], numsize
) > 0)
1663 if (numsize
< densize
)
1665 mp_size_t empty
= densize
- numsize
;
1669 exponent
-= empty
* BITS_PER_MP_LIMB
;
1672 if (bits
+ empty
* BITS_PER_MP_LIMB
<= MANT_DIG
)
1674 /* We make a difference here because the compiler
1675 cannot optimize the `else' case that good and
1676 this reflects all currently used FLOAT types
1677 and GMP implementations. */
1678 #if RETURN_LIMB_SIZE <= 2
1679 assert (empty
== 1);
1680 __mpn_lshift_1 (retval
, RETURN_LIMB_SIZE
,
1681 BITS_PER_MP_LIMB
, 0);
1683 for (i
= RETURN_LIMB_SIZE
- 1; i
>= empty
; --i
)
1684 retval
[i
] = retval
[i
- empty
];
1691 used
= MANT_DIG
- bits
;
1692 if (used
>= BITS_PER_MP_LIMB
)
1695 (void) __mpn_lshift (&retval
[used
1696 / BITS_PER_MP_LIMB
],
1699 - used
/ BITS_PER_MP_LIMB
),
1700 used
% BITS_PER_MP_LIMB
);
1701 for (i
= used
/ BITS_PER_MP_LIMB
- 1; i
>= 0; --i
)
1705 __mpn_lshift_1 (retval
, RETURN_LIMB_SIZE
, used
, 0);
1707 bits
+= empty
* BITS_PER_MP_LIMB
;
1709 for (i
= numsize
; i
> 0; --i
)
1710 num
[i
+ empty
] = num
[i
- 1];
1711 MPN_ZERO (num
, empty
+ 1);
1716 assert (numsize
== densize
);
1717 for (i
= numsize
; i
> 0; --i
)
1718 num
[i
] = num
[i
- 1];
1725 while (bits
<= MANT_DIG
)
1728 /* This might over-estimate QUOT, but it's probably not
1729 worth the extra code here to find out. */
1730 quot
= ~(mp_limb_t
) 0;
1735 udiv_qrnnd (quot
, r
, n0
, num
[densize
- 1], dX
);
1736 umul_ppmm (n1
, n0
, d1
, quot
);
1738 while (n1
> r
|| (n1
== r
&& n0
> num
[densize
- 2]))
1742 if (r
< dX
) /* I.e. "carry in previous addition?" */
1749 /* Possible optimization: We already have (q * n0) and (1 * n1)
1750 after the calculation of QUOT. Taking advantage of this, we
1751 could make this loop make two iterations less. */
1753 cy
= __mpn_submul_1 (num
, den
, densize
+ 1, quot
);
1755 if (num
[densize
] != cy
)
1757 cy
= __mpn_add_n (num
, num
, den
, densize
);
1761 n0
= num
[densize
] = num
[densize
- 1];
1762 for (i
= densize
- 1; i
> 0; --i
)
1763 num
[i
] = num
[i
- 1];
1769 for (i
= densize
; i
>= 0 && num
[i
] == 0; --i
)
1771 return round_and_return (retval
, exponent
- 1, negative
,
1772 quot
, BITS_PER_MP_LIMB
- 1 - used
,
1773 more_bits
|| i
>= 0);
1780 #if defined _LIBC && !defined USE_WIDE_CHAR
1781 libc_hidden_def (____STRTOF_INTERNAL
)
1784 /* External user entry point. */
1787 #ifdef weak_function
1790 __STRTOF (nptr
, endptr
, loc
)
1791 const STRING_TYPE
*nptr
;
1792 STRING_TYPE
**endptr
;
1795 return ____STRTOF_INTERNAL (nptr
, endptr
, 0, loc
);
1798 libc_hidden_def (__STRTOF
)
1799 libc_hidden_ver (__STRTOF
, STRTOF
)
1801 weak_alias (__STRTOF
, STRTOF
)
1803 #ifdef LONG_DOUBLE_COMPAT
1804 # if LONG_DOUBLE_COMPAT(libc, GLIBC_2_1)
1805 # ifdef USE_WIDE_CHAR
1806 compat_symbol (libc
, __wcstod_l
, __wcstold_l
, GLIBC_2_1
);
1808 compat_symbol (libc
, __strtod_l
, __strtold_l
, GLIBC_2_1
);
1811 # if LONG_DOUBLE_COMPAT(libc, GLIBC_2_3)
1812 # ifdef USE_WIDE_CHAR
1813 compat_symbol (libc
, wcstod_l
, wcstold_l
, GLIBC_2_3
);
1815 compat_symbol (libc
, strtod_l
, strtold_l
, GLIBC_2_3
);