[ARM] Optimise memchr for NEON-enabled processors
[glibc.git] / nptl / pthread_mutex_timedlock.c
blobbe5338178ffdefc11db24738e36be50372523abd
1 /* Copyright (C) 2002-2017 Free Software Foundation, Inc.
2 This file is part of the GNU C Library.
3 Contributed by Ulrich Drepper <drepper@redhat.com>, 2002.
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
15 You should have received a copy of the GNU Lesser General Public
16 License along with the GNU C Library; if not, see
17 <http://www.gnu.org/licenses/>. */
19 #include <assert.h>
20 #include <errno.h>
21 #include <time.h>
22 #include <sys/param.h>
23 #include <sys/time.h>
24 #include "pthreadP.h"
25 #include <atomic.h>
26 #include <lowlevellock.h>
27 #include <not-cancel.h>
29 #include <stap-probe.h>
31 #ifndef lll_timedlock_elision
32 #define lll_timedlock_elision(a,dummy,b,c) lll_timedlock(a, b, c)
33 #endif
35 #ifndef lll_trylock_elision
36 #define lll_trylock_elision(a,t) lll_trylock(a)
37 #endif
39 #ifndef FORCE_ELISION
40 #define FORCE_ELISION(m, s)
41 #endif
43 int
44 __pthread_mutex_timedlock (pthread_mutex_t *mutex,
45 const struct timespec *abstime)
47 int oldval;
48 pid_t id = THREAD_GETMEM (THREAD_SELF, tid);
49 int result = 0;
51 LIBC_PROBE (mutex_timedlock_entry, 2, mutex, abstime);
53 /* We must not check ABSTIME here. If the thread does not block
54 abstime must not be checked for a valid value. */
56 switch (__builtin_expect (PTHREAD_MUTEX_TYPE_ELISION (mutex),
57 PTHREAD_MUTEX_TIMED_NP))
59 /* Recursive mutex. */
60 case PTHREAD_MUTEX_RECURSIVE_NP|PTHREAD_MUTEX_ELISION_NP:
61 case PTHREAD_MUTEX_RECURSIVE_NP:
62 /* Check whether we already hold the mutex. */
63 if (mutex->__data.__owner == id)
65 /* Just bump the counter. */
66 if (__glibc_unlikely (mutex->__data.__count + 1 == 0))
67 /* Overflow of the counter. */
68 return EAGAIN;
70 ++mutex->__data.__count;
72 goto out;
75 /* We have to get the mutex. */
76 result = lll_timedlock (mutex->__data.__lock, abstime,
77 PTHREAD_MUTEX_PSHARED (mutex));
79 if (result != 0)
80 goto out;
82 /* Only locked once so far. */
83 mutex->__data.__count = 1;
84 break;
86 /* Error checking mutex. */
87 case PTHREAD_MUTEX_ERRORCHECK_NP:
88 /* Check whether we already hold the mutex. */
89 if (__glibc_unlikely (mutex->__data.__owner == id))
90 return EDEADLK;
92 /* Don't do lock elision on an error checking mutex. */
93 goto simple;
95 case PTHREAD_MUTEX_TIMED_NP:
96 FORCE_ELISION (mutex, goto elision);
97 simple:
98 /* Normal mutex. */
99 result = lll_timedlock (mutex->__data.__lock, abstime,
100 PTHREAD_MUTEX_PSHARED (mutex));
101 break;
103 case PTHREAD_MUTEX_TIMED_ELISION_NP:
104 elision: __attribute__((unused))
105 /* Don't record ownership */
106 return lll_timedlock_elision (mutex->__data.__lock,
107 mutex->__data.__spins,
108 abstime,
109 PTHREAD_MUTEX_PSHARED (mutex));
112 case PTHREAD_MUTEX_ADAPTIVE_NP:
113 if (! __is_smp)
114 goto simple;
116 if (lll_trylock (mutex->__data.__lock) != 0)
118 int cnt = 0;
119 int max_cnt = MIN (MAX_ADAPTIVE_COUNT,
120 mutex->__data.__spins * 2 + 10);
123 if (cnt++ >= max_cnt)
125 result = lll_timedlock (mutex->__data.__lock, abstime,
126 PTHREAD_MUTEX_PSHARED (mutex));
127 break;
129 atomic_spin_nop ();
131 while (lll_trylock (mutex->__data.__lock) != 0);
133 mutex->__data.__spins += (cnt - mutex->__data.__spins) / 8;
135 break;
137 case PTHREAD_MUTEX_ROBUST_RECURSIVE_NP:
138 case PTHREAD_MUTEX_ROBUST_ERRORCHECK_NP:
139 case PTHREAD_MUTEX_ROBUST_NORMAL_NP:
140 case PTHREAD_MUTEX_ROBUST_ADAPTIVE_NP:
141 THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending,
142 &mutex->__data.__list.__next);
143 /* We need to set op_pending before starting the operation. Also
144 see comments at ENQUEUE_MUTEX. */
145 __asm ("" ::: "memory");
147 oldval = mutex->__data.__lock;
148 /* This is set to FUTEX_WAITERS iff we might have shared the
149 FUTEX_WAITERS flag with other threads, and therefore need to keep it
150 set to avoid lost wake-ups. We have the same requirement in the
151 simple mutex algorithm. */
152 unsigned int assume_other_futex_waiters = 0;
153 while (1)
155 /* Try to acquire the lock through a CAS from 0 (not acquired) to
156 our TID | assume_other_futex_waiters. */
157 if (__glibc_likely ((oldval == 0)
158 && (atomic_compare_and_exchange_bool_acq
159 (&mutex->__data.__lock,
160 id | assume_other_futex_waiters, 0) == 0)))
161 break;
163 if ((oldval & FUTEX_OWNER_DIED) != 0)
165 /* The previous owner died. Try locking the mutex. */
166 int newval = id | (oldval & FUTEX_WAITERS)
167 | assume_other_futex_waiters;
169 newval
170 = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
171 newval, oldval);
172 if (newval != oldval)
174 oldval = newval;
175 continue;
178 /* We got the mutex. */
179 mutex->__data.__count = 1;
180 /* But it is inconsistent unless marked otherwise. */
181 mutex->__data.__owner = PTHREAD_MUTEX_INCONSISTENT;
183 /* We must not enqueue the mutex before we have acquired it.
184 Also see comments at ENQUEUE_MUTEX. */
185 __asm ("" ::: "memory");
186 ENQUEUE_MUTEX (mutex);
187 /* We need to clear op_pending after we enqueue the mutex. */
188 __asm ("" ::: "memory");
189 THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
191 /* Note that we deliberately exit here. If we fall
192 through to the end of the function __nusers would be
193 incremented which is not correct because the old
194 owner has to be discounted. */
195 return EOWNERDEAD;
198 /* Check whether we already hold the mutex. */
199 if (__glibc_unlikely ((oldval & FUTEX_TID_MASK) == id))
201 int kind = PTHREAD_MUTEX_TYPE (mutex);
202 if (kind == PTHREAD_MUTEX_ROBUST_ERRORCHECK_NP)
204 /* We do not need to ensure ordering wrt another memory
205 access. Also see comments at ENQUEUE_MUTEX. */
206 THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending,
207 NULL);
208 return EDEADLK;
211 if (kind == PTHREAD_MUTEX_ROBUST_RECURSIVE_NP)
213 /* We do not need to ensure ordering wrt another memory
214 access. */
215 THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending,
216 NULL);
218 /* Just bump the counter. */
219 if (__glibc_unlikely (mutex->__data.__count + 1 == 0))
220 /* Overflow of the counter. */
221 return EAGAIN;
223 ++mutex->__data.__count;
225 LIBC_PROBE (mutex_timedlock_acquired, 1, mutex);
227 return 0;
231 /* We are about to block; check whether the timeout is invalid. */
232 if (abstime->tv_nsec < 0 || abstime->tv_nsec >= 1000000000)
233 return EINVAL;
234 /* Work around the fact that the kernel rejects negative timeout
235 values despite them being valid. */
236 if (__glibc_unlikely (abstime->tv_sec < 0))
237 return ETIMEDOUT;
238 #if (!defined __ASSUME_FUTEX_CLOCK_REALTIME \
239 || !defined lll_futex_timed_wait_bitset)
240 struct timeval tv;
241 struct timespec rt;
243 /* Get the current time. */
244 (void) __gettimeofday (&tv, NULL);
246 /* Compute relative timeout. */
247 rt.tv_sec = abstime->tv_sec - tv.tv_sec;
248 rt.tv_nsec = abstime->tv_nsec - tv.tv_usec * 1000;
249 if (rt.tv_nsec < 0)
251 rt.tv_nsec += 1000000000;
252 --rt.tv_sec;
255 /* Already timed out? */
256 if (rt.tv_sec < 0)
257 return ETIMEDOUT;
258 #endif
260 /* We cannot acquire the mutex nor has its owner died. Thus, try
261 to block using futexes. Set FUTEX_WAITERS if necessary so that
262 other threads are aware that there are potentially threads
263 blocked on the futex. Restart if oldval changed in the
264 meantime. */
265 if ((oldval & FUTEX_WAITERS) == 0)
267 if (atomic_compare_and_exchange_bool_acq (&mutex->__data.__lock,
268 oldval | FUTEX_WAITERS,
269 oldval)
270 != 0)
272 oldval = mutex->__data.__lock;
273 continue;
275 oldval |= FUTEX_WAITERS;
278 /* It is now possible that we share the FUTEX_WAITERS flag with
279 another thread; therefore, update assume_other_futex_waiters so
280 that we do not forget about this when handling other cases
281 above and thus do not cause lost wake-ups. */
282 assume_other_futex_waiters |= FUTEX_WAITERS;
284 /* Block using the futex. */
285 #if (!defined __ASSUME_FUTEX_CLOCK_REALTIME \
286 || !defined lll_futex_timed_wait_bitset)
287 lll_futex_timed wait (&mutex->__data.__lock, oldval,
288 &rt, PTHREAD_ROBUST_MUTEX_PSHARED (mutex));
289 #else
290 int err = lll_futex_timed_wait_bitset (&mutex->__data.__lock,
291 oldval, abstime, FUTEX_CLOCK_REALTIME,
292 PTHREAD_ROBUST_MUTEX_PSHARED (mutex));
293 /* The futex call timed out. */
294 if (err == -ETIMEDOUT)
295 return -err;
296 #endif
297 /* Reload current lock value. */
298 oldval = mutex->__data.__lock;
301 /* We have acquired the mutex; check if it is still consistent. */
302 if (__builtin_expect (mutex->__data.__owner
303 == PTHREAD_MUTEX_NOTRECOVERABLE, 0))
305 /* This mutex is now not recoverable. */
306 mutex->__data.__count = 0;
307 int private = PTHREAD_ROBUST_MUTEX_PSHARED (mutex);
308 lll_unlock (mutex->__data.__lock, private);
309 /* FIXME This violates the mutex destruction requirements. See
310 __pthread_mutex_unlock_full. */
311 THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
312 return ENOTRECOVERABLE;
315 mutex->__data.__count = 1;
316 /* We must not enqueue the mutex before we have acquired it.
317 Also see comments at ENQUEUE_MUTEX. */
318 __asm ("" ::: "memory");
319 ENQUEUE_MUTEX (mutex);
320 /* We need to clear op_pending after we enqueue the mutex. */
321 __asm ("" ::: "memory");
322 THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
323 break;
325 /* The PI support requires the Linux futex system call. If that's not
326 available, pthread_mutex_init should never have allowed the type to
327 be set. So it will get the default case for an invalid type. */
328 #ifdef __NR_futex
329 case PTHREAD_MUTEX_PI_RECURSIVE_NP:
330 case PTHREAD_MUTEX_PI_ERRORCHECK_NP:
331 case PTHREAD_MUTEX_PI_NORMAL_NP:
332 case PTHREAD_MUTEX_PI_ADAPTIVE_NP:
333 case PTHREAD_MUTEX_PI_ROBUST_RECURSIVE_NP:
334 case PTHREAD_MUTEX_PI_ROBUST_ERRORCHECK_NP:
335 case PTHREAD_MUTEX_PI_ROBUST_NORMAL_NP:
336 case PTHREAD_MUTEX_PI_ROBUST_ADAPTIVE_NP:
338 int kind = mutex->__data.__kind & PTHREAD_MUTEX_KIND_MASK_NP;
339 int robust = mutex->__data.__kind & PTHREAD_MUTEX_ROBUST_NORMAL_NP;
341 if (robust)
343 /* Note: robust PI futexes are signaled by setting bit 0. */
344 THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending,
345 (void *) (((uintptr_t) &mutex->__data.__list.__next)
346 | 1));
347 /* We need to set op_pending before starting the operation. Also
348 see comments at ENQUEUE_MUTEX. */
349 __asm ("" ::: "memory");
352 oldval = mutex->__data.__lock;
354 /* Check whether we already hold the mutex. */
355 if (__glibc_unlikely ((oldval & FUTEX_TID_MASK) == id))
357 if (kind == PTHREAD_MUTEX_ERRORCHECK_NP)
359 /* We do not need to ensure ordering wrt another memory
360 access. */
361 THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
362 return EDEADLK;
365 if (kind == PTHREAD_MUTEX_RECURSIVE_NP)
367 /* We do not need to ensure ordering wrt another memory
368 access. */
369 THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
371 /* Just bump the counter. */
372 if (__glibc_unlikely (mutex->__data.__count + 1 == 0))
373 /* Overflow of the counter. */
374 return EAGAIN;
376 ++mutex->__data.__count;
378 LIBC_PROBE (mutex_timedlock_acquired, 1, mutex);
380 return 0;
384 oldval = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
385 id, 0);
387 if (oldval != 0)
389 /* The mutex is locked. The kernel will now take care of
390 everything. The timeout value must be a relative value.
391 Convert it. */
392 int private = (robust
393 ? PTHREAD_ROBUST_MUTEX_PSHARED (mutex)
394 : PTHREAD_MUTEX_PSHARED (mutex));
395 INTERNAL_SYSCALL_DECL (__err);
397 int e = INTERNAL_SYSCALL (futex, __err, 4, &mutex->__data.__lock,
398 __lll_private_flag (FUTEX_LOCK_PI,
399 private), 1,
400 abstime);
401 if (INTERNAL_SYSCALL_ERROR_P (e, __err))
403 if (INTERNAL_SYSCALL_ERRNO (e, __err) == ETIMEDOUT)
404 return ETIMEDOUT;
406 if (INTERNAL_SYSCALL_ERRNO (e, __err) == ESRCH
407 || INTERNAL_SYSCALL_ERRNO (e, __err) == EDEADLK)
409 assert (INTERNAL_SYSCALL_ERRNO (e, __err) != EDEADLK
410 || (kind != PTHREAD_MUTEX_ERRORCHECK_NP
411 && kind != PTHREAD_MUTEX_RECURSIVE_NP));
412 /* ESRCH can happen only for non-robust PI mutexes where
413 the owner of the lock died. */
414 assert (INTERNAL_SYSCALL_ERRNO (e, __err) != ESRCH
415 || !robust);
417 /* Delay the thread until the timeout is reached.
418 Then return ETIMEDOUT. */
419 struct timespec reltime;
420 struct timespec now;
422 INTERNAL_SYSCALL (clock_gettime, __err, 2, CLOCK_REALTIME,
423 &now);
424 reltime.tv_sec = abstime->tv_sec - now.tv_sec;
425 reltime.tv_nsec = abstime->tv_nsec - now.tv_nsec;
426 if (reltime.tv_nsec < 0)
428 reltime.tv_nsec += 1000000000;
429 --reltime.tv_sec;
431 if (reltime.tv_sec >= 0)
432 while (nanosleep_not_cancel (&reltime, &reltime) != 0)
433 continue;
435 return ETIMEDOUT;
438 return INTERNAL_SYSCALL_ERRNO (e, __err);
441 oldval = mutex->__data.__lock;
443 assert (robust || (oldval & FUTEX_OWNER_DIED) == 0);
446 if (__glibc_unlikely (oldval & FUTEX_OWNER_DIED))
448 atomic_and (&mutex->__data.__lock, ~FUTEX_OWNER_DIED);
450 /* We got the mutex. */
451 mutex->__data.__count = 1;
452 /* But it is inconsistent unless marked otherwise. */
453 mutex->__data.__owner = PTHREAD_MUTEX_INCONSISTENT;
455 /* We must not enqueue the mutex before we have acquired it.
456 Also see comments at ENQUEUE_MUTEX. */
457 __asm ("" ::: "memory");
458 ENQUEUE_MUTEX_PI (mutex);
459 /* We need to clear op_pending after we enqueue the mutex. */
460 __asm ("" ::: "memory");
461 THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
463 /* Note that we deliberately exit here. If we fall
464 through to the end of the function __nusers would be
465 incremented which is not correct because the old owner
466 has to be discounted. */
467 return EOWNERDEAD;
470 if (robust
471 && __builtin_expect (mutex->__data.__owner
472 == PTHREAD_MUTEX_NOTRECOVERABLE, 0))
474 /* This mutex is now not recoverable. */
475 mutex->__data.__count = 0;
477 INTERNAL_SYSCALL_DECL (__err);
478 INTERNAL_SYSCALL (futex, __err, 4, &mutex->__data.__lock,
479 __lll_private_flag (FUTEX_UNLOCK_PI,
480 PTHREAD_ROBUST_MUTEX_PSHARED (mutex)),
481 0, 0);
483 /* To the kernel, this will be visible after the kernel has
484 acquired the mutex in the syscall. */
485 THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
486 return ENOTRECOVERABLE;
489 mutex->__data.__count = 1;
490 if (robust)
492 /* We must not enqueue the mutex before we have acquired it.
493 Also see comments at ENQUEUE_MUTEX. */
494 __asm ("" ::: "memory");
495 ENQUEUE_MUTEX_PI (mutex);
496 /* We need to clear op_pending after we enqueue the mutex. */
497 __asm ("" ::: "memory");
498 THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
501 break;
502 #endif /* __NR_futex. */
504 case PTHREAD_MUTEX_PP_RECURSIVE_NP:
505 case PTHREAD_MUTEX_PP_ERRORCHECK_NP:
506 case PTHREAD_MUTEX_PP_NORMAL_NP:
507 case PTHREAD_MUTEX_PP_ADAPTIVE_NP:
509 int kind = mutex->__data.__kind & PTHREAD_MUTEX_KIND_MASK_NP;
511 oldval = mutex->__data.__lock;
513 /* Check whether we already hold the mutex. */
514 if (mutex->__data.__owner == id)
516 if (kind == PTHREAD_MUTEX_ERRORCHECK_NP)
517 return EDEADLK;
519 if (kind == PTHREAD_MUTEX_RECURSIVE_NP)
521 /* Just bump the counter. */
522 if (__glibc_unlikely (mutex->__data.__count + 1 == 0))
523 /* Overflow of the counter. */
524 return EAGAIN;
526 ++mutex->__data.__count;
528 LIBC_PROBE (mutex_timedlock_acquired, 1, mutex);
530 return 0;
534 int oldprio = -1, ceilval;
537 int ceiling = (oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK)
538 >> PTHREAD_MUTEX_PRIO_CEILING_SHIFT;
540 if (__pthread_current_priority () > ceiling)
542 result = EINVAL;
543 failpp:
544 if (oldprio != -1)
545 __pthread_tpp_change_priority (oldprio, -1);
546 return result;
549 result = __pthread_tpp_change_priority (oldprio, ceiling);
550 if (result)
551 return result;
553 ceilval = ceiling << PTHREAD_MUTEX_PRIO_CEILING_SHIFT;
554 oldprio = ceiling;
556 oldval
557 = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
558 ceilval | 1, ceilval);
560 if (oldval == ceilval)
561 break;
565 oldval
566 = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
567 ceilval | 2,
568 ceilval | 1);
570 if ((oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) != ceilval)
571 break;
573 if (oldval != ceilval)
575 /* Reject invalid timeouts. */
576 if (abstime->tv_nsec < 0 || abstime->tv_nsec >= 1000000000)
578 result = EINVAL;
579 goto failpp;
582 struct timeval tv;
583 struct timespec rt;
585 /* Get the current time. */
586 (void) __gettimeofday (&tv, NULL);
588 /* Compute relative timeout. */
589 rt.tv_sec = abstime->tv_sec - tv.tv_sec;
590 rt.tv_nsec = abstime->tv_nsec - tv.tv_usec * 1000;
591 if (rt.tv_nsec < 0)
593 rt.tv_nsec += 1000000000;
594 --rt.tv_sec;
597 /* Already timed out? */
598 if (rt.tv_sec < 0)
600 result = ETIMEDOUT;
601 goto failpp;
604 lll_futex_timed_wait (&mutex->__data.__lock,
605 ceilval | 2, &rt,
606 PTHREAD_MUTEX_PSHARED (mutex));
609 while (atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
610 ceilval | 2, ceilval)
611 != ceilval);
613 while ((oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) != ceilval);
615 assert (mutex->__data.__owner == 0);
616 mutex->__data.__count = 1;
618 break;
620 default:
621 /* Correct code cannot set any other type. */
622 return EINVAL;
625 if (result == 0)
627 /* Record the ownership. */
628 mutex->__data.__owner = id;
629 ++mutex->__data.__nusers;
631 LIBC_PROBE (mutex_timedlock_acquired, 1, mutex);
634 out:
635 return result;
637 weak_alias (__pthread_mutex_timedlock, pthread_mutex_timedlock)