1 /* Functions to compute SHA512 message digest of files or memory blocks.
2 according to the definition of SHA512 in FIPS 180-2.
3 Copyright (C) 2007, 2011 Free Software Foundation, Inc.
4 This file is part of the GNU C Library.
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; if not, see
18 <http://www.gnu.org/licenses/>. */
20 /* Written by Ulrich Drepper <drepper@redhat.com>, 2007. */
29 #include <sys/types.h>
33 #if __BYTE_ORDER == __LITTLE_ENDIAN
35 # include <byteswap.h>
36 # define SWAP(n) bswap_64 (n)
40 | (((n) & 0xff00) << 40) \
41 | (((n) & 0xff0000) << 24) \
42 | (((n) & 0xff000000) << 8) \
43 | (((n) >> 8) & 0xff000000) \
44 | (((n) >> 24) & 0xff0000) \
45 | (((n) >> 40) & 0xff00) \
53 /* This array contains the bytes used to pad the buffer to the next
54 64-byte boundary. (FIPS 180-2:5.1.2) */
55 static const unsigned char fillbuf
[128] = { 0x80, 0 /* , 0, 0, ... */ };
58 /* Constants for SHA512 from FIPS 180-2:4.2.3. */
59 static const uint64_t K
[80] =
61 UINT64_C (0x428a2f98d728ae22), UINT64_C (0x7137449123ef65cd),
62 UINT64_C (0xb5c0fbcfec4d3b2f), UINT64_C (0xe9b5dba58189dbbc),
63 UINT64_C (0x3956c25bf348b538), UINT64_C (0x59f111f1b605d019),
64 UINT64_C (0x923f82a4af194f9b), UINT64_C (0xab1c5ed5da6d8118),
65 UINT64_C (0xd807aa98a3030242), UINT64_C (0x12835b0145706fbe),
66 UINT64_C (0x243185be4ee4b28c), UINT64_C (0x550c7dc3d5ffb4e2),
67 UINT64_C (0x72be5d74f27b896f), UINT64_C (0x80deb1fe3b1696b1),
68 UINT64_C (0x9bdc06a725c71235), UINT64_C (0xc19bf174cf692694),
69 UINT64_C (0xe49b69c19ef14ad2), UINT64_C (0xefbe4786384f25e3),
70 UINT64_C (0x0fc19dc68b8cd5b5), UINT64_C (0x240ca1cc77ac9c65),
71 UINT64_C (0x2de92c6f592b0275), UINT64_C (0x4a7484aa6ea6e483),
72 UINT64_C (0x5cb0a9dcbd41fbd4), UINT64_C (0x76f988da831153b5),
73 UINT64_C (0x983e5152ee66dfab), UINT64_C (0xa831c66d2db43210),
74 UINT64_C (0xb00327c898fb213f), UINT64_C (0xbf597fc7beef0ee4),
75 UINT64_C (0xc6e00bf33da88fc2), UINT64_C (0xd5a79147930aa725),
76 UINT64_C (0x06ca6351e003826f), UINT64_C (0x142929670a0e6e70),
77 UINT64_C (0x27b70a8546d22ffc), UINT64_C (0x2e1b21385c26c926),
78 UINT64_C (0x4d2c6dfc5ac42aed), UINT64_C (0x53380d139d95b3df),
79 UINT64_C (0x650a73548baf63de), UINT64_C (0x766a0abb3c77b2a8),
80 UINT64_C (0x81c2c92e47edaee6), UINT64_C (0x92722c851482353b),
81 UINT64_C (0xa2bfe8a14cf10364), UINT64_C (0xa81a664bbc423001),
82 UINT64_C (0xc24b8b70d0f89791), UINT64_C (0xc76c51a30654be30),
83 UINT64_C (0xd192e819d6ef5218), UINT64_C (0xd69906245565a910),
84 UINT64_C (0xf40e35855771202a), UINT64_C (0x106aa07032bbd1b8),
85 UINT64_C (0x19a4c116b8d2d0c8), UINT64_C (0x1e376c085141ab53),
86 UINT64_C (0x2748774cdf8eeb99), UINT64_C (0x34b0bcb5e19b48a8),
87 UINT64_C (0x391c0cb3c5c95a63), UINT64_C (0x4ed8aa4ae3418acb),
88 UINT64_C (0x5b9cca4f7763e373), UINT64_C (0x682e6ff3d6b2b8a3),
89 UINT64_C (0x748f82ee5defb2fc), UINT64_C (0x78a5636f43172f60),
90 UINT64_C (0x84c87814a1f0ab72), UINT64_C (0x8cc702081a6439ec),
91 UINT64_C (0x90befffa23631e28), UINT64_C (0xa4506cebde82bde9),
92 UINT64_C (0xbef9a3f7b2c67915), UINT64_C (0xc67178f2e372532b),
93 UINT64_C (0xca273eceea26619c), UINT64_C (0xd186b8c721c0c207),
94 UINT64_C (0xeada7dd6cde0eb1e), UINT64_C (0xf57d4f7fee6ed178),
95 UINT64_C (0x06f067aa72176fba), UINT64_C (0x0a637dc5a2c898a6),
96 UINT64_C (0x113f9804bef90dae), UINT64_C (0x1b710b35131c471b),
97 UINT64_C (0x28db77f523047d84), UINT64_C (0x32caab7b40c72493),
98 UINT64_C (0x3c9ebe0a15c9bebc), UINT64_C (0x431d67c49c100d4c),
99 UINT64_C (0x4cc5d4becb3e42b6), UINT64_C (0x597f299cfc657e2a),
100 UINT64_C (0x5fcb6fab3ad6faec), UINT64_C (0x6c44198c4a475817)
104 /* Process LEN bytes of BUFFER, accumulating context into CTX.
105 It is assumed that LEN % 128 == 0. */
107 sha512_process_block (const void *buffer
, size_t len
, struct sha512_ctx
*ctx
)
109 const uint64_t *words
= buffer
;
110 size_t nwords
= len
/ sizeof (uint64_t);
111 uint64_t a
= ctx
->H
[0];
112 uint64_t b
= ctx
->H
[1];
113 uint64_t c
= ctx
->H
[2];
114 uint64_t d
= ctx
->H
[3];
115 uint64_t e
= ctx
->H
[4];
116 uint64_t f
= ctx
->H
[5];
117 uint64_t g
= ctx
->H
[6];
118 uint64_t h
= ctx
->H
[7];
120 /* First increment the byte count. FIPS 180-2 specifies the possible
121 length of the file up to 2^128 bits. Here we only compute the
122 number of bytes. Do a double word increment. */
124 ctx
->total128
+= len
;
126 ctx
->total
[TOTAL128_low
] += len
;
127 if (ctx
->total
[TOTAL128_low
] < len
)
128 ++ctx
->total
[TOTAL128_high
];
131 /* Process all bytes in the buffer with 128 bytes in each round of
145 /* Operators defined in FIPS 180-2:4.1.2. */
146 #define Ch(x, y, z) ((x & y) ^ (~x & z))
147 #define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
148 #define S0(x) (CYCLIC (x, 28) ^ CYCLIC (x, 34) ^ CYCLIC (x, 39))
149 #define S1(x) (CYCLIC (x, 14) ^ CYCLIC (x, 18) ^ CYCLIC (x, 41))
150 #define R0(x) (CYCLIC (x, 1) ^ CYCLIC (x, 8) ^ (x >> 7))
151 #define R1(x) (CYCLIC (x, 19) ^ CYCLIC (x, 61) ^ (x >> 6))
153 /* It is unfortunate that C does not provide an operator for
154 cyclic rotation. Hope the C compiler is smart enough. */
155 #define CYCLIC(w, s) ((w >> s) | (w << (64 - s)))
157 /* Compute the message schedule according to FIPS 180-2:6.3.2 step 2. */
158 for (unsigned int t
= 0; t
< 16; ++t
)
160 W
[t
] = SWAP (*words
);
163 for (unsigned int t
= 16; t
< 80; ++t
)
164 W
[t
] = R1 (W
[t
- 2]) + W
[t
- 7] + R0 (W
[t
- 15]) + W
[t
- 16];
166 /* The actual computation according to FIPS 180-2:6.3.2 step 3. */
167 for (unsigned int t
= 0; t
< 80; ++t
)
169 uint64_t T1
= h
+ S1 (e
) + Ch (e
, f
, g
) + K
[t
] + W
[t
];
170 uint64_t T2
= S0 (a
) + Maj (a
, b
, c
);
181 /* Add the starting values of the context according to FIPS 180-2:6.3.2
192 /* Prepare for the next round. */
196 /* Put checksum in context given as argument. */
208 /* Initialize structure containing state of computation.
209 (FIPS 180-2:5.3.3) */
211 __sha512_init_ctx (ctx
)
212 struct sha512_ctx
*ctx
;
214 ctx
->H
[0] = UINT64_C (0x6a09e667f3bcc908);
215 ctx
->H
[1] = UINT64_C (0xbb67ae8584caa73b);
216 ctx
->H
[2] = UINT64_C (0x3c6ef372fe94f82b);
217 ctx
->H
[3] = UINT64_C (0xa54ff53a5f1d36f1);
218 ctx
->H
[4] = UINT64_C (0x510e527fade682d1);
219 ctx
->H
[5] = UINT64_C (0x9b05688c2b3e6c1f);
220 ctx
->H
[6] = UINT64_C (0x1f83d9abfb41bd6b);
221 ctx
->H
[7] = UINT64_C (0x5be0cd19137e2179);
223 ctx
->total
[0] = ctx
->total
[1] = 0;
228 /* Process the remaining bytes in the internal buffer and the usual
229 prolog according to the standard and write the result to RESBUF.
231 IMPORTANT: On some systems it is required that RESBUF is correctly
232 aligned for a 32 bits value. */
234 __sha512_finish_ctx (ctx
, resbuf
)
235 struct sha512_ctx
*ctx
;
238 /* Take yet unprocessed bytes into account. */
239 uint64_t bytes
= ctx
->buflen
;
242 /* Now count remaining bytes. */
244 ctx
->total128
+= bytes
;
246 ctx
->total
[TOTAL128_low
] += bytes
;
247 if (ctx
->total
[TOTAL128_low
] < bytes
)
248 ++ctx
->total
[TOTAL128_high
];
251 pad
= bytes
>= 112 ? 128 + 112 - bytes
: 112 - bytes
;
252 memcpy (&ctx
->buffer
[bytes
], fillbuf
, pad
);
254 /* Put the 128-bit file length in *bits* at the end of the buffer. */
255 ctx
->buffer64
[(bytes
+ pad
+ 8) / 8] = SWAP (ctx
->total
[TOTAL128_low
] << 3);
256 ctx
->buffer64
[(bytes
+ pad
) / 8] = SWAP ((ctx
->total
[TOTAL128_high
] << 3) |
257 (ctx
->total
[TOTAL128_low
] >> 61));
259 /* Process last bytes. */
260 sha512_process_block (ctx
->buffer
, bytes
+ pad
+ 16, ctx
);
262 /* Put result from CTX in first 64 bytes following RESBUF. */
263 for (unsigned int i
= 0; i
< 8; ++i
)
264 ((uint64_t *) resbuf
)[i
] = SWAP (ctx
->H
[i
]);
271 __sha512_process_bytes (buffer
, len
, ctx
)
274 struct sha512_ctx
*ctx
;
276 /* When we already have some bits in our internal buffer concatenate
277 both inputs first. */
278 if (ctx
->buflen
!= 0)
280 size_t left_over
= ctx
->buflen
;
281 size_t add
= 256 - left_over
> len
? len
: 256 - left_over
;
283 memcpy (&ctx
->buffer
[left_over
], buffer
, add
);
286 if (ctx
->buflen
> 128)
288 sha512_process_block (ctx
->buffer
, ctx
->buflen
& ~127, ctx
);
291 /* The regions in the following copy operation cannot overlap. */
292 memcpy (ctx
->buffer
, &ctx
->buffer
[(left_over
+ add
) & ~127],
296 buffer
= (const char *) buffer
+ add
;
300 /* Process available complete blocks. */
303 #if !_STRING_ARCH_unaligned
304 /* To check alignment gcc has an appropriate operator. Other
307 # define UNALIGNED_P(p) (((uintptr_t) p) % __alignof__ (uint64_t) != 0)
309 # define UNALIGNED_P(p) (((uintptr_t) p) % sizeof (uint64_t) != 0)
311 if (UNALIGNED_P (buffer
))
314 sha512_process_block (memcpy (ctx
->buffer
, buffer
, 128), 128,
316 buffer
= (const char *) buffer
+ 128;
322 sha512_process_block (buffer
, len
& ~127, ctx
);
323 buffer
= (const char *) buffer
+ (len
& ~127);
328 /* Move remaining bytes into internal buffer. */
331 size_t left_over
= ctx
->buflen
;
333 memcpy (&ctx
->buffer
[left_over
], buffer
, len
);
335 if (left_over
>= 128)
337 sha512_process_block (ctx
->buffer
, 128, ctx
);
339 memcpy (ctx
->buffer
, &ctx
->buffer
[128], left_over
);
341 ctx
->buflen
= left_over
;