Use __builtin_fma more in dbl-64 code.
[glibc.git] / sysdeps / ieee754 / dbl-64 / mpa.h
blobb8ca297eb79db785245f9875dab24e8d18be7f3c
1 /*
2 * IBM Accurate Mathematical Library
3 * Written by International Business Machines Corp.
4 * Copyright (C) 2001-2016 Free Software Foundation, Inc.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU Lesser General Public License as published by
8 * the Free Software Foundation; either version 2.1 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
20 /************************************************************************/
21 /* MODULE_NAME: mpa.h */
22 /* */
23 /* FUNCTIONS: */
24 /* mcr */
25 /* acr */
26 /* cpy */
27 /* mp_dbl */
28 /* dbl_mp */
29 /* add */
30 /* sub */
31 /* mul */
32 /* dvd */
33 /* */
34 /* Arithmetic functions for multiple precision numbers. */
35 /* Common types and definition */
36 /************************************************************************/
38 #include <mpa-arch.h>
40 /* The mp_no structure holds the details of a multi-precision floating point
41 number.
43 - The radix of the number (R) is 2 ^ 24.
45 - E: The exponent of the number.
47 - D[0]: The sign (-1, 1) or 0 if the value is 0. In the latter case, the
48 values of the remaining members of the structure are ignored.
50 - D[1] - D[p]: The mantissa of the number where:
52 0 <= D[i] < R and
53 P is the precision of the number and 1 <= p <= 32
55 D[p+1] ... D[39] have no significance.
57 - The value of the number is:
59 D[1] * R ^ (E - 1) + D[2] * R ^ (E - 2) ... D[p] * R ^ (E - p)
62 typedef struct
64 int e;
65 mantissa_t d[40];
66 } mp_no;
68 typedef union
70 int i[2];
71 double d;
72 } number;
74 extern const mp_no __mpone;
75 extern const mp_no __mptwo;
77 #define X x->d
78 #define Y y->d
79 #define Z z->d
80 #define EX x->e
81 #define EY y->e
82 #define EZ z->e
84 #ifndef RADIXI
85 # define RADIXI 0x1.0p-24 /* 2^-24 */
86 #endif
88 #ifndef TWO52
89 # define TWO52 0x1.0p52 /* 2^52 */
90 #endif
92 #define TWO5 TWOPOW (5) /* 2^5 */
93 #define TWO8 TWOPOW (8) /* 2^52 */
94 #define TWO10 TWOPOW (10) /* 2^10 */
95 #define TWO18 TWOPOW (18) /* 2^18 */
96 #define TWO19 TWOPOW (19) /* 2^19 */
97 #define TWO23 TWOPOW (23) /* 2^23 */
99 #define HALFRAD TWO23
101 #define TWO57 0x1.0p57 /* 2^57 */
102 #define TWO71 0x1.0p71 /* 2^71 */
103 #define TWOM1032 0x1.0p-1032 /* 2^-1032 */
104 #define TWOM1022 0x1.0p-1022 /* 2^-1022 */
106 #define HALF 0x1.0p-1 /* 1/2 */
107 #define MHALF -0x1.0p-1 /* -1/2 */
109 int __acr (const mp_no *, const mp_no *, int);
110 void __cpy (const mp_no *, mp_no *, int);
111 void __mp_dbl (const mp_no *, double *, int);
112 void __dbl_mp (double, mp_no *, int);
113 void __add (const mp_no *, const mp_no *, mp_no *, int);
114 void __sub (const mp_no *, const mp_no *, mp_no *, int);
115 void __mul (const mp_no *, const mp_no *, mp_no *, int);
116 void __sqr (const mp_no *, mp_no *, int);
117 void __dvd (const mp_no *, const mp_no *, mp_no *, int);
119 extern void __mpatan (mp_no *, mp_no *, int);
120 extern void __mpatan2 (mp_no *, mp_no *, mp_no *, int);
121 extern void __mpsqrt (mp_no *, mp_no *, int);
122 extern void __mpexp (mp_no *, mp_no *, int);
123 extern void __c32 (mp_no *, mp_no *, mp_no *, int);
124 extern int __mpranred (double, mp_no *, int);
126 /* Given a power POW, build a multiprecision number 2^POW. */
127 static inline void
128 __pow_mp (int pow, mp_no *y, int p)
130 int i, rem;
132 /* The exponent is E such that E is a factor of 2^24. The remainder (of the
133 form 2^x) goes entirely into the first digit of the mantissa as it is
134 always less than 2^24. */
135 EY = pow / 24;
136 rem = pow - EY * 24;
137 EY++;
139 /* If the remainder is negative, it means that POW was negative since
140 |EY * 24| <= |pow|. Adjust so that REM is positive and still less than
141 24 because of which, the mantissa digit is less than 2^24. */
142 if (rem < 0)
144 EY--;
145 rem += 24;
147 /* The sign of any 2^x is always positive. */
148 Y[0] = 1;
149 Y[1] = 1 << rem;
151 /* Everything else is 0. */
152 for (i = 2; i <= p; i++)
153 Y[i] = 0;