1 /* @(#)e_acosh.c 5.1 93/09/24 */
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
10 * ====================================================
16 * acosh(x) = log [ x + sqrt(x*x-1) ]
18 * acosh(x) := log(x)+ln2, if x is large; else
19 * acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
20 * acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
23 * acosh(x) is NaN with signal if x<1.
24 * acosh(NaN) is NaN without signal.
28 #include <math_private.h>
32 ln2
= 6.93147180559945286227e-01; /* 0x3FE62E42, 0xFEFA39EF */
35 __ieee754_acosh (double x
)
40 EXTRACT_WORDS (hx
, lx
, x
);
41 if (hx
< 0x3ff00000) /* x < 1 */
43 return (x
- x
) / (x
- x
);
45 else if (hx
>= 0x41b00000) /* x > 2**28 */
47 if (hx
>= 0x7ff00000) /* x is inf of NaN */
52 return __ieee754_log (x
) + ln2
; /* acosh(huge)=log(2x) */
54 else if (((hx
- 0x3ff00000) | lx
) == 0)
56 return 0.0; /* acosh(1) = 0 */
58 else if (hx
> 0x40000000) /* 2**28 > x > 2 */
61 return __ieee754_log (2.0 * x
- one
/ (x
+ __ieee754_sqrt (t
- one
)));
66 return __log1p (t
+ __ieee754_sqrt (2.0 * t
+ t
* t
));
69 strong_alias (__ieee754_acosh
, __acosh_finite
)