(atomic_add): Don't allow address register for operand 0.
[glibc.git] / linuxthreads / pthread.c
blob721da9b4e7b63c5c09e4f693a76492366e13689e
2 /* Linuxthreads - a simple clone()-based implementation of Posix */
3 /* threads for Linux. */
4 /* Copyright (C) 1996 Xavier Leroy (Xavier.Leroy@inria.fr) */
5 /* */
6 /* This program is free software; you can redistribute it and/or */
7 /* modify it under the terms of the GNU Library General Public License */
8 /* as published by the Free Software Foundation; either version 2 */
9 /* of the License, or (at your option) any later version. */
10 /* */
11 /* This program is distributed in the hope that it will be useful, */
12 /* but WITHOUT ANY WARRANTY; without even the implied warranty of */
13 /* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */
14 /* GNU Library General Public License for more details. */
16 /* Thread creation, initialization, and basic low-level routines */
18 #include <errno.h>
19 #include <stddef.h>
20 #include <stdio.h>
21 #include <stdlib.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <fcntl.h>
25 #include <sys/wait.h>
26 #include <sys/resource.h>
27 #include <sys/sysctl.h>
28 #include <shlib-compat.h>
29 #include "pthread.h"
30 #include "internals.h"
31 #include "spinlock.h"
32 #include "restart.h"
34 /* We need the global/static resolver state here. */
35 #include <resolv.h>
36 #undef _res
38 extern struct __res_state _res;
40 /* Sanity check. */
41 #if __ASSUME_REALTIME_SIGNALS && !defined __SIGRTMIN
42 # error "This must not happen; new kernel assumed but old headers"
43 #endif
45 /* These variables are used by the setup code. */
46 extern int _errno;
47 extern int _h_errno;
49 /* Descriptor of the initial thread */
51 struct _pthread_descr_struct __pthread_initial_thread = {
54 &__pthread_initial_thread /* pthread_descr self */
57 &__pthread_initial_thread, /* pthread_descr p_nextlive */
58 &__pthread_initial_thread, /* pthread_descr p_prevlive */
59 NULL, /* pthread_descr p_nextwaiting */
60 NULL, /* pthread_descr p_nextlock */
61 PTHREAD_THREADS_MAX, /* pthread_t p_tid */
62 0, /* int p_pid */
63 0, /* int p_priority */
64 &__pthread_handles[0].h_lock, /* struct _pthread_fastlock * p_lock */
65 0, /* int p_signal */
66 NULL, /* sigjmp_buf * p_signal_buf */
67 NULL, /* sigjmp_buf * p_cancel_buf */
68 0, /* char p_terminated */
69 0, /* char p_detached */
70 0, /* char p_exited */
71 NULL, /* void * p_retval */
72 0, /* int p_retval */
73 NULL, /* pthread_descr p_joining */
74 NULL, /* struct _pthread_cleanup_buffer * p_cleanup */
75 0, /* char p_cancelstate */
76 0, /* char p_canceltype */
77 0, /* char p_canceled */
78 &_errno, /* int *p_errnop */
79 0, /* int p_errno */
80 &_h_errno, /* int *p_h_errnop */
81 0, /* int p_h_errno */
82 NULL, /* char * p_in_sighandler */
83 0, /* char p_sigwaiting */
84 PTHREAD_START_ARGS_INITIALIZER(NULL),
85 /* struct pthread_start_args p_start_args */
86 {NULL}, /* void ** p_specific[PTHREAD_KEY_1STLEVEL_SIZE] */
87 {NULL}, /* void * p_libc_specific[_LIBC_TSD_KEY_N] */
88 1, /* int p_userstack */
89 NULL, /* void * p_guardaddr */
90 0, /* size_t p_guardsize */
91 0, /* Always index 0 */
92 0, /* int p_report_events */
93 {{{0, }}, 0, NULL}, /* td_eventbuf_t p_eventbuf */
94 __ATOMIC_INITIALIZER, /* struct pthread_atomic p_resume_count */
95 0, /* char p_woken_by_cancel */
96 0, /* char p_condvar_avail */
97 0, /* char p_sem_avail */
98 NULL, /* struct pthread_extricate_if *p_extricate */
99 NULL, /* pthread_readlock_info *p_readlock_list; */
100 NULL, /* pthread_readlock_info *p_readlock_free; */
101 0 /* int p_untracked_readlock_count; */
104 /* Descriptor of the manager thread; none of this is used but the error
105 variables, the p_pid and p_priority fields,
106 and the address for identification. */
108 struct _pthread_descr_struct __pthread_manager_thread = {
111 &__pthread_manager_thread /* pthread_descr self */
114 NULL, /* pthread_descr p_nextlive */
115 NULL, /* pthread_descr p_prevlive */
116 NULL, /* pthread_descr p_nextwaiting */
117 NULL, /* pthread_descr p_nextlock */
118 0, /* int p_tid */
119 0, /* int p_pid */
120 0, /* int p_priority */
121 &__pthread_handles[1].h_lock, /* struct _pthread_fastlock * p_lock */
122 0, /* int p_signal */
123 NULL, /* sigjmp_buf * p_signal_buf */
124 NULL, /* sigjmp_buf * p_cancel_buf */
125 0, /* char p_terminated */
126 0, /* char p_detached */
127 0, /* char p_exited */
128 NULL, /* void * p_retval */
129 0, /* int p_retval */
130 NULL, /* pthread_descr p_joining */
131 NULL, /* struct _pthread_cleanup_buffer * p_cleanup */
132 0, /* char p_cancelstate */
133 0, /* char p_canceltype */
134 0, /* char p_canceled */
135 &__pthread_manager_thread.p_errno, /* int *p_errnop */
136 0, /* int p_errno */
137 NULL, /* int *p_h_errnop */
138 0, /* int p_h_errno */
139 NULL, /* char * p_in_sighandler */
140 0, /* char p_sigwaiting */
141 PTHREAD_START_ARGS_INITIALIZER(__pthread_manager),
142 /* struct pthread_start_args p_start_args */
143 {NULL}, /* void ** p_specific[PTHREAD_KEY_1STLEVEL_SIZE] */
144 {NULL}, /* void * p_libc_specific[_LIBC_TSD_KEY_N] */
145 0, /* int p_userstack */
146 NULL, /* void * p_guardaddr */
147 0, /* size_t p_guardsize */
148 1, /* Always index 1 */
149 0, /* int p_report_events */
150 {{{0, }}, 0, NULL}, /* td_eventbuf_t p_eventbuf */
151 __ATOMIC_INITIALIZER, /* struct pthread_atomic p_resume_count */
152 0, /* char p_woken_by_cancel */
153 0, /* char p_condvar_avail */
154 0, /* char p_sem_avail */
155 NULL, /* struct pthread_extricate_if *p_extricate */
156 NULL, /* pthread_readlock_info *p_readlock_list; */
157 NULL, /* pthread_readlock_info *p_readlock_free; */
158 0 /* int p_untracked_readlock_count; */
161 /* Pointer to the main thread (the father of the thread manager thread) */
162 /* Originally, this is the initial thread, but this changes after fork() */
164 pthread_descr __pthread_main_thread = &__pthread_initial_thread;
166 /* Limit between the stack of the initial thread (above) and the
167 stacks of other threads (below). Aligned on a STACK_SIZE boundary. */
169 char *__pthread_initial_thread_bos;
171 /* File descriptor for sending requests to the thread manager. */
172 /* Initially -1, meaning that the thread manager is not running. */
174 int __pthread_manager_request = -1;
176 /* Other end of the pipe for sending requests to the thread manager. */
178 int __pthread_manager_reader;
180 /* Limits of the thread manager stack */
182 char *__pthread_manager_thread_bos;
183 char *__pthread_manager_thread_tos;
185 /* For process-wide exit() */
187 int __pthread_exit_requested;
188 int __pthread_exit_code;
190 /* Maximum stack size. */
191 size_t __pthread_max_stacksize;
193 /* Nozero if the machine has more than one processor. */
194 int __pthread_smp_kernel;
197 #if !__ASSUME_REALTIME_SIGNALS
198 /* Pointers that select new or old suspend/resume functions
199 based on availability of rt signals. */
201 void (*__pthread_restart)(pthread_descr) = __pthread_restart_old;
202 void (*__pthread_suspend)(pthread_descr) = __pthread_suspend_old;
203 int (*__pthread_timedsuspend)(pthread_descr, const struct timespec *) = __pthread_timedsuspend_old;
204 #endif /* __ASSUME_REALTIME_SIGNALS */
206 /* Communicate relevant LinuxThreads constants to gdb */
208 const int __pthread_threads_max = PTHREAD_THREADS_MAX;
209 const int __pthread_sizeof_handle = sizeof(struct pthread_handle_struct);
210 const int __pthread_offsetof_descr = offsetof(struct pthread_handle_struct,
211 h_descr);
212 const int __pthread_offsetof_pid = offsetof(struct _pthread_descr_struct,
213 p_pid);
214 const int __linuxthread_pthread_sizeof_descr
215 = sizeof(struct _pthread_descr_struct);
217 /* Forward declarations */
219 static void pthread_onexit_process(int retcode, void *arg);
220 #ifndef HAVE_Z_NODELETE
221 static void pthread_atexit_process(void *arg, int retcode);
222 static void pthread_atexit_retcode(void *arg, int retcode);
223 #endif
224 static void pthread_handle_sigcancel(int sig);
225 static void pthread_handle_sigrestart(int sig);
226 static void pthread_handle_sigdebug(int sig);
228 /* CPU clock handling. */
229 #if HP_TIMING_AVAIL
230 extern hp_timing_t _dl_cpuclock_offset;
231 #endif
233 /* Signal numbers used for the communication.
234 In these variables we keep track of the used variables. If the
235 platform does not support any real-time signals we will define the
236 values to some unreasonable value which will signal failing of all
237 the functions below. */
238 #ifndef __SIGRTMIN
239 static int current_rtmin = -1;
240 static int current_rtmax = -1;
241 int __pthread_sig_restart = SIGUSR1;
242 int __pthread_sig_cancel = SIGUSR2;
243 int __pthread_sig_debug;
244 #else
245 static int current_rtmin;
246 static int current_rtmax;
248 #if __SIGRTMAX - __SIGRTMIN >= 3
249 int __pthread_sig_restart = __SIGRTMIN;
250 int __pthread_sig_cancel = __SIGRTMIN + 1;
251 int __pthread_sig_debug = __SIGRTMIN + 2;
252 #else
253 int __pthread_sig_restart = SIGUSR1;
254 int __pthread_sig_cancel = SIGUSR2;
255 int __pthread_sig_debug;
256 #endif
258 static int rtsigs_initialized;
260 #if !__ASSUME_REALTIME_SIGNALS
261 # include "testrtsig.h"
262 #endif
264 static void
265 init_rtsigs (void)
267 #if !__ASSUME_REALTIME_SIGNALS
268 if (__builtin_expect (!kernel_has_rtsig (), 0))
270 current_rtmin = -1;
271 current_rtmax = -1;
272 # if __SIGRTMAX - __SIGRTMIN >= 3
273 __pthread_sig_restart = SIGUSR1;
274 __pthread_sig_cancel = SIGUSR2;
275 __pthread_sig_debug = 0;
276 # endif
278 else
279 #endif /* __ASSUME_REALTIME_SIGNALS */
281 #if __SIGRTMAX - __SIGRTMIN >= 3
282 current_rtmin = __SIGRTMIN + 3;
283 # if !__ASSUME_REALTIME_SIGNALS
284 __pthread_restart = __pthread_restart_new;
285 __pthread_suspend = __pthread_wait_for_restart_signal;
286 __pthread_timedsuspend = __pthread_timedsuspend_new;
287 # endif /* __ASSUME_REALTIME_SIGNALS */
288 #else
289 current_rtmin = __SIGRTMIN;
290 #endif
292 current_rtmax = __SIGRTMAX;
295 rtsigs_initialized = 1;
297 #endif
299 /* Return number of available real-time signal with highest priority. */
301 __libc_current_sigrtmin (void)
303 #ifdef __SIGRTMIN
304 if (__builtin_expect (!rtsigs_initialized, 0))
305 init_rtsigs ();
306 #endif
307 return current_rtmin;
310 /* Return number of available real-time signal with lowest priority. */
312 __libc_current_sigrtmax (void)
314 #ifdef __SIGRTMIN
315 if (__builtin_expect (!rtsigs_initialized, 0))
316 init_rtsigs ();
317 #endif
318 return current_rtmax;
321 /* Allocate real-time signal with highest/lowest available
322 priority. Please note that we don't use a lock since we assume
323 this function to be called at program start. */
325 __libc_allocate_rtsig (int high)
327 #ifndef __SIGRTMIN
328 return -1;
329 #else
330 if (__builtin_expect (!rtsigs_initialized, 0))
331 init_rtsigs ();
332 if (__builtin_expect (current_rtmin == -1, 0)
333 || __builtin_expect (current_rtmin > current_rtmax, 0))
334 /* We don't have anymore signal available. */
335 return -1;
337 return high ? current_rtmin++ : current_rtmax--;
338 #endif
341 /* The function we use to get the kernel revision. */
342 extern int __sysctl (int *name, int nlen, void *oldval, size_t *oldlenp,
343 void *newval, size_t newlen);
345 /* Test whether the machine has more than one processor. This is not the
346 best test but good enough. More complicated tests would require `malloc'
347 which is not available at that time. */
348 static int
349 is_smp_system (void)
351 static const int sysctl_args[] = { CTL_KERN, KERN_VERSION };
352 char buf[512];
353 size_t reslen = sizeof (buf);
355 /* Try reading the number using `sysctl' first. */
356 if (__sysctl ((int *) sysctl_args,
357 sizeof (sysctl_args) / sizeof (sysctl_args[0]),
358 buf, &reslen, NULL, 0) < 0)
360 /* This was not successful. Now try reading the /proc filesystem. */
361 int fd = __open ("/proc/sys/kernel/version", O_RDONLY);
362 if (__builtin_expect (fd, 0) == -1
363 || (reslen = __read (fd, buf, sizeof (buf))) <= 0)
364 /* This also didn't work. We give up and say it's a UP machine. */
365 buf[0] = '\0';
367 __close (fd);
370 return strstr (buf, "SMP") != NULL;
374 /* Initialize the pthread library.
375 Initialization is split in two functions:
376 - a constructor function that blocks the __pthread_sig_restart signal
377 (must do this very early, since the program could capture the signal
378 mask with e.g. sigsetjmp before creating the first thread);
379 - a regular function called from pthread_create when needed. */
381 static void pthread_initialize(void) __attribute__((constructor));
383 #ifndef HAVE_Z_NODELETE
384 extern void *__dso_handle __attribute__ ((weak));
385 #endif
388 /* Do some minimal initialization which has to be done during the
389 startup of the C library. */
390 void
391 __pthread_initialize_minimal(void)
393 /* If we have special thread_self processing, initialize that for the
394 main thread now. */
395 #ifdef INIT_THREAD_SELF
396 INIT_THREAD_SELF(&__pthread_initial_thread, 0);
397 #endif
398 #if HP_TIMING_AVAIL
399 __pthread_initial_thread.p_cpuclock_offset = _dl_cpuclock_offset;
400 #endif
404 void
405 __pthread_init_max_stacksize(void)
407 struct rlimit limit;
408 size_t max_stack;
410 getrlimit(RLIMIT_STACK, &limit);
411 #ifdef FLOATING_STACKS
412 if (limit.rlim_cur == RLIM_INFINITY)
413 limit.rlim_cur = ARCH_STACK_MAX_SIZE;
414 # ifdef NEED_SEPARATE_REGISTER_STACK
415 max_stack = limit.rlim_cur / 2;
416 # else
417 max_stack = limit.rlim_cur;
418 # endif
419 #else
420 /* Play with the stack size limit to make sure that no stack ever grows
421 beyond STACK_SIZE minus one page (to act as a guard page). */
422 # ifdef NEED_SEPARATE_REGISTER_STACK
423 /* STACK_SIZE bytes hold both the main stack and register backing
424 store. The rlimit value applies to each individually. */
425 max_stack = STACK_SIZE/2 - __getpagesize ();
426 # else
427 max_stack = STACK_SIZE - __getpagesize();
428 # endif
429 if (limit.rlim_cur > max_stack) {
430 limit.rlim_cur = max_stack;
431 setrlimit(RLIMIT_STACK, &limit);
433 #endif
434 __pthread_max_stacksize = max_stack;
438 static void pthread_initialize(void)
440 struct sigaction sa;
441 sigset_t mask;
443 /* If already done (e.g. by a constructor called earlier!), bail out */
444 if (__pthread_initial_thread_bos != NULL) return;
445 #ifdef TEST_FOR_COMPARE_AND_SWAP
446 /* Test if compare-and-swap is available */
447 __pthread_has_cas = compare_and_swap_is_available();
448 #endif
449 #ifdef FLOATING_STACKS
450 /* We don't need to know the bottom of the stack. Give the pointer some
451 value to signal that initialization happened. */
452 __pthread_initial_thread_bos = (void *) -1l;
453 #else
454 /* Determine stack size limits . */
455 __pthread_init_max_stacksize ();
456 # ifdef _STACK_GROWS_UP
457 /* The initial thread already has all the stack it needs */
458 __pthread_initial_thread_bos = (char *)
459 ((long)CURRENT_STACK_FRAME &~ (STACK_SIZE - 1));
460 # else
461 /* For the initial stack, reserve at least STACK_SIZE bytes of stack
462 below the current stack address, and align that on a
463 STACK_SIZE boundary. */
464 __pthread_initial_thread_bos =
465 (char *)(((long)CURRENT_STACK_FRAME - 2 * STACK_SIZE) & ~(STACK_SIZE - 1));
466 # endif
467 #endif
468 /* Update the descriptor for the initial thread. */
469 __pthread_initial_thread.p_pid = __getpid();
470 /* Likewise for the resolver state _res. */
471 __pthread_initial_thread.p_resp = &_res;
472 #ifdef __SIGRTMIN
473 /* Initialize real-time signals. */
474 init_rtsigs ();
475 #endif
476 /* Setup signal handlers for the initial thread.
477 Since signal handlers are shared between threads, these settings
478 will be inherited by all other threads. */
479 sa.sa_handler = pthread_handle_sigrestart;
480 sigemptyset(&sa.sa_mask);
481 sa.sa_flags = 0;
482 __libc_sigaction(__pthread_sig_restart, &sa, NULL);
483 sa.sa_handler = pthread_handle_sigcancel;
484 // sa.sa_flags = 0;
485 __libc_sigaction(__pthread_sig_cancel, &sa, NULL);
486 if (__pthread_sig_debug > 0) {
487 sa.sa_handler = pthread_handle_sigdebug;
488 sigemptyset(&sa.sa_mask);
489 // sa.sa_flags = 0;
490 __libc_sigaction(__pthread_sig_debug, &sa, NULL);
492 /* Initially, block __pthread_sig_restart. Will be unblocked on demand. */
493 sigemptyset(&mask);
494 sigaddset(&mask, __pthread_sig_restart);
495 sigprocmask(SIG_BLOCK, &mask, NULL);
496 /* Register an exit function to kill all other threads. */
497 /* Do it early so that user-registered atexit functions are called
498 before pthread_*exit_process. */
499 #ifndef HAVE_Z_NODELETE
500 if (__builtin_expect (&__dso_handle != NULL, 1))
501 __cxa_atexit ((void (*) (void *)) pthread_atexit_process, NULL,
502 __dso_handle);
503 else
504 #endif
505 __on_exit (pthread_onexit_process, NULL);
506 /* How many processors. */
507 __pthread_smp_kernel = is_smp_system ();
510 void __pthread_initialize(void)
512 pthread_initialize();
515 int __pthread_initialize_manager(void)
517 int manager_pipe[2];
518 int pid;
519 struct pthread_request request;
521 #ifndef HAVE_Z_NODELETE
522 if (__builtin_expect (&__dso_handle != NULL, 1))
523 __cxa_atexit ((void (*) (void *)) pthread_atexit_retcode, NULL,
524 __dso_handle);
525 #endif
527 if (__pthread_max_stacksize == 0)
528 __pthread_init_max_stacksize ();
529 /* If basic initialization not done yet (e.g. we're called from a
530 constructor run before our constructor), do it now */
531 if (__pthread_initial_thread_bos == NULL) pthread_initialize();
532 /* Setup stack for thread manager */
533 __pthread_manager_thread_bos = malloc(THREAD_MANAGER_STACK_SIZE);
534 if (__pthread_manager_thread_bos == NULL) return -1;
535 __pthread_manager_thread_tos =
536 __pthread_manager_thread_bos + THREAD_MANAGER_STACK_SIZE;
537 /* Setup pipe to communicate with thread manager */
538 if (pipe(manager_pipe) == -1) {
539 free(__pthread_manager_thread_bos);
540 return -1;
542 /* Start the thread manager */
543 pid = 0;
544 if (__builtin_expect (__pthread_initial_thread.p_report_events, 0))
546 /* It's a bit more complicated. We have to report the creation of
547 the manager thread. */
548 int idx = __td_eventword (TD_CREATE);
549 uint32_t mask = __td_eventmask (TD_CREATE);
551 if ((mask & (__pthread_threads_events.event_bits[idx]
552 | __pthread_initial_thread.p_eventbuf.eventmask.event_bits[idx]))
553 != 0)
555 __pthread_lock(__pthread_manager_thread.p_lock, NULL);
557 #ifdef NEED_SEPARATE_REGISTER_STACK
558 pid = __clone2(__pthread_manager_event,
559 (void **) __pthread_manager_thread_bos,
560 THREAD_MANAGER_STACK_SIZE,
561 CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND,
562 (void *)(long)manager_pipe[0]);
563 #elif _STACK_GROWS_UP
564 pid = __clone(__pthread_manager_event,
565 (void **) __pthread_manager_thread_bos,
566 CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND,
567 (void *)(long)manager_pipe[0]);
568 #else
569 pid = __clone(__pthread_manager_event,
570 (void **) __pthread_manager_thread_tos,
571 CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND,
572 (void *)(long)manager_pipe[0]);
573 #endif
575 if (pid != -1)
577 /* Now fill in the information about the new thread in
578 the newly created thread's data structure. We cannot let
579 the new thread do this since we don't know whether it was
580 already scheduled when we send the event. */
581 __pthread_manager_thread.p_eventbuf.eventdata =
582 &__pthread_manager_thread;
583 __pthread_manager_thread.p_eventbuf.eventnum = TD_CREATE;
584 __pthread_last_event = &__pthread_manager_thread;
585 __pthread_manager_thread.p_tid = 2* PTHREAD_THREADS_MAX + 1;
586 __pthread_manager_thread.p_pid = pid;
588 /* Now call the function which signals the event. */
589 __linuxthreads_create_event ();
592 /* Now restart the thread. */
593 __pthread_unlock(__pthread_manager_thread.p_lock);
597 if (__builtin_expect (pid, 0) == 0)
599 #ifdef NEED_SEPARATE_REGISTER_STACK
600 pid = __clone2(__pthread_manager, (void **) __pthread_manager_thread_bos,
601 THREAD_MANAGER_STACK_SIZE,
602 CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND,
603 (void *)(long)manager_pipe[0]);
604 #elif _STACK_GROWS_UP
605 pid = __clone(__pthread_manager, (void **) __pthread_manager_thread_bos,
606 CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND,
607 (void *)(long)manager_pipe[0]);
608 #else
609 pid = __clone(__pthread_manager, (void **) __pthread_manager_thread_tos,
610 CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND,
611 (void *)(long)manager_pipe[0]);
612 #endif
614 if (__builtin_expect (pid, 0) == -1) {
615 free(__pthread_manager_thread_bos);
616 __libc_close(manager_pipe[0]);
617 __libc_close(manager_pipe[1]);
618 return -1;
620 __pthread_manager_request = manager_pipe[1]; /* writing end */
621 __pthread_manager_reader = manager_pipe[0]; /* reading end */
622 __pthread_manager_thread.p_tid = 2* PTHREAD_THREADS_MAX + 1;
623 __pthread_manager_thread.p_pid = pid;
624 /* Make gdb aware of new thread manager */
625 if (__builtin_expect (__pthread_threads_debug, 0) && __pthread_sig_debug > 0)
627 raise(__pthread_sig_debug);
628 /* We suspend ourself and gdb will wake us up when it is
629 ready to handle us. */
630 __pthread_wait_for_restart_signal(thread_self());
632 /* Synchronize debugging of the thread manager */
633 request.req_kind = REQ_DEBUG;
634 __libc_write(__pthread_manager_request, (char *) &request, sizeof(request));
635 return 0;
638 /* Thread creation */
640 int __pthread_create_2_1(pthread_t *thread, const pthread_attr_t *attr,
641 void * (*start_routine)(void *), void *arg)
643 pthread_descr self = thread_self();
644 struct pthread_request request;
645 int retval;
646 if (__builtin_expect (__pthread_manager_request, 0) < 0) {
647 if (__pthread_initialize_manager() < 0) return EAGAIN;
649 request.req_thread = self;
650 request.req_kind = REQ_CREATE;
651 request.req_args.create.attr = attr;
652 request.req_args.create.fn = start_routine;
653 request.req_args.create.arg = arg;
654 sigprocmask(SIG_SETMASK, (const sigset_t *) NULL,
655 &request.req_args.create.mask);
656 __libc_write(__pthread_manager_request, (char *) &request, sizeof(request));
657 suspend(self);
658 retval = THREAD_GETMEM(self, p_retcode);
659 if (__builtin_expect (retval, 0) == 0)
660 *thread = (pthread_t) THREAD_GETMEM(self, p_retval);
661 return retval;
664 versioned_symbol (libpthread, __pthread_create_2_1, pthread_create, GLIBC_2_1);
666 #if SHLIB_COMPAT (libpthread, GLIBC_2_0, GLIBC_2_1)
668 int __pthread_create_2_0(pthread_t *thread, const pthread_attr_t *attr,
669 void * (*start_routine)(void *), void *arg)
671 /* The ATTR attribute is not really of type `pthread_attr_t *'. It has
672 the old size and access to the new members might crash the program.
673 We convert the struct now. */
674 pthread_attr_t new_attr;
676 if (attr != NULL)
678 size_t ps = __getpagesize ();
680 memcpy (&new_attr, attr,
681 (size_t) &(((pthread_attr_t*)NULL)->__guardsize));
682 new_attr.__guardsize = ps;
683 new_attr.__stackaddr_set = 0;
684 new_attr.__stackaddr = NULL;
685 new_attr.__stacksize = STACK_SIZE - ps;
686 attr = &new_attr;
688 return __pthread_create_2_1 (thread, attr, start_routine, arg);
690 compat_symbol (libpthread, __pthread_create_2_0, pthread_create, GLIBC_2_0);
691 #endif
693 /* Simple operations on thread identifiers */
695 pthread_t pthread_self(void)
697 pthread_descr self = thread_self();
698 return THREAD_GETMEM(self, p_tid);
701 int pthread_equal(pthread_t thread1, pthread_t thread2)
703 return thread1 == thread2;
706 /* Helper function for thread_self in the case of user-provided stacks */
708 #ifndef THREAD_SELF
710 pthread_descr __pthread_find_self()
712 char * sp = CURRENT_STACK_FRAME;
713 pthread_handle h;
715 /* __pthread_handles[0] is the initial thread, __pthread_handles[1] is
716 the manager threads handled specially in thread_self(), so start at 2 */
717 h = __pthread_handles + 2;
718 while (! (sp <= (char *) h->h_descr && sp >= h->h_bottom)) h++;
719 return h->h_descr;
722 #endif
724 /* Thread scheduling */
726 int pthread_setschedparam(pthread_t thread, int policy,
727 const struct sched_param *param)
729 pthread_handle handle = thread_handle(thread);
730 pthread_descr th;
732 __pthread_lock(&handle->h_lock, NULL);
733 if (__builtin_expect (invalid_handle(handle, thread), 0)) {
734 __pthread_unlock(&handle->h_lock);
735 return ESRCH;
737 th = handle->h_descr;
738 if (__builtin_expect (__sched_setscheduler(th->p_pid, policy, param) == -1,
739 0)) {
740 __pthread_unlock(&handle->h_lock);
741 return errno;
743 th->p_priority = policy == SCHED_OTHER ? 0 : param->sched_priority;
744 __pthread_unlock(&handle->h_lock);
745 if (__pthread_manager_request >= 0)
746 __pthread_manager_adjust_prio(th->p_priority);
747 return 0;
750 int pthread_getschedparam(pthread_t thread, int *policy,
751 struct sched_param *param)
753 pthread_handle handle = thread_handle(thread);
754 int pid, pol;
756 __pthread_lock(&handle->h_lock, NULL);
757 if (__builtin_expect (invalid_handle(handle, thread), 0)) {
758 __pthread_unlock(&handle->h_lock);
759 return ESRCH;
761 pid = handle->h_descr->p_pid;
762 __pthread_unlock(&handle->h_lock);
763 pol = __sched_getscheduler(pid);
764 if (__builtin_expect (pol, 0) == -1) return errno;
765 if (__sched_getparam(pid, param) == -1) return errno;
766 *policy = pol;
767 return 0;
770 int __pthread_yield ()
772 /* For now this is equivalent with the POSIX call. */
773 return sched_yield ();
775 weak_alias (__pthread_yield, pthread_yield)
777 /* Process-wide exit() request */
779 static void pthread_onexit_process(int retcode, void *arg)
781 if (__builtin_expect (__pthread_manager_request, 0) >= 0) {
782 struct pthread_request request;
783 pthread_descr self = thread_self();
785 request.req_thread = self;
786 request.req_kind = REQ_PROCESS_EXIT;
787 request.req_args.exit.code = retcode;
788 __libc_write(__pthread_manager_request,
789 (char *) &request, sizeof(request));
790 suspend(self);
791 /* Main thread should accumulate times for thread manager and its
792 children, so that timings for main thread account for all threads. */
793 if (self == __pthread_main_thread)
795 waitpid(__pthread_manager_thread.p_pid, NULL, __WCLONE);
796 free (__pthread_manager_thread_bos);
797 __pthread_manager_thread_bos = __pthread_manager_thread_tos = NULL;
802 #ifndef HAVE_Z_NODELETE
803 static int __pthread_atexit_retcode;
805 static void pthread_atexit_process(void *arg, int retcode)
807 pthread_onexit_process (retcode ?: __pthread_atexit_retcode, arg);
810 static void pthread_atexit_retcode(void *arg, int retcode)
812 __pthread_atexit_retcode = retcode;
814 #endif
816 /* The handler for the RESTART signal just records the signal received
817 in the thread descriptor, and optionally performs a siglongjmp
818 (for pthread_cond_timedwait). */
820 static void pthread_handle_sigrestart(int sig)
822 pthread_descr self = thread_self();
823 THREAD_SETMEM(self, p_signal, sig);
824 if (THREAD_GETMEM(self, p_signal_jmp) != NULL)
825 siglongjmp(*THREAD_GETMEM(self, p_signal_jmp), 1);
828 /* The handler for the CANCEL signal checks for cancellation
829 (in asynchronous mode), for process-wide exit and exec requests.
830 For the thread manager thread, redirect the signal to
831 __pthread_manager_sighandler. */
833 static void pthread_handle_sigcancel(int sig)
835 pthread_descr self = thread_self();
836 sigjmp_buf * jmpbuf;
838 if (self == &__pthread_manager_thread)
840 __pthread_manager_sighandler(sig);
841 return;
843 if (__builtin_expect (__pthread_exit_requested, 0)) {
844 /* Main thread should accumulate times for thread manager and its
845 children, so that timings for main thread account for all threads. */
846 if (self == __pthread_main_thread)
847 waitpid(__pthread_manager_thread.p_pid, NULL, __WCLONE);
848 _exit(__pthread_exit_code);
850 if (__builtin_expect (THREAD_GETMEM(self, p_canceled), 0)
851 && THREAD_GETMEM(self, p_cancelstate) == PTHREAD_CANCEL_ENABLE) {
852 if (THREAD_GETMEM(self, p_canceltype) == PTHREAD_CANCEL_ASYNCHRONOUS)
853 __pthread_do_exit(PTHREAD_CANCELED, CURRENT_STACK_FRAME);
854 jmpbuf = THREAD_GETMEM(self, p_cancel_jmp);
855 if (jmpbuf != NULL) {
856 THREAD_SETMEM(self, p_cancel_jmp, NULL);
857 siglongjmp(*jmpbuf, 1);
862 /* Handler for the DEBUG signal.
863 The debugging strategy is as follows:
864 On reception of a REQ_DEBUG request (sent by new threads created to
865 the thread manager under debugging mode), the thread manager throws
866 __pthread_sig_debug to itself. The debugger (if active) intercepts
867 this signal, takes into account new threads and continue execution
868 of the thread manager by propagating the signal because it doesn't
869 know what it is specifically done for. In the current implementation,
870 the thread manager simply discards it. */
872 static void pthread_handle_sigdebug(int sig)
874 /* Nothing */
877 /* Reset the state of the thread machinery after a fork().
878 Close the pipe used for requests and set the main thread to the forked
879 thread.
880 Notice that we can't free the stack segments, as the forked thread
881 may hold pointers into them. */
883 void __pthread_reset_main_thread()
885 pthread_descr self = thread_self();
886 struct rlimit limit;
888 if (__pthread_manager_request != -1) {
889 /* Free the thread manager stack */
890 free(__pthread_manager_thread_bos);
891 __pthread_manager_thread_bos = __pthread_manager_thread_tos = NULL;
892 /* Close the two ends of the pipe */
893 __libc_close(__pthread_manager_request);
894 __libc_close(__pthread_manager_reader);
895 __pthread_manager_request = __pthread_manager_reader = -1;
898 /* Update the pid of the main thread */
899 THREAD_SETMEM(self, p_pid, __getpid());
900 /* Make the forked thread the main thread */
901 __pthread_main_thread = self;
902 THREAD_SETMEM(self, p_nextlive, self);
903 THREAD_SETMEM(self, p_prevlive, self);
904 /* Now this thread modifies the global variables. */
905 THREAD_SETMEM(self, p_errnop, &_errno);
906 THREAD_SETMEM(self, p_h_errnop, &_h_errno);
907 THREAD_SETMEM(self, p_resp, &_res);
909 if (getrlimit (RLIMIT_STACK, &limit) == 0
910 && limit.rlim_cur != limit.rlim_max) {
911 limit.rlim_cur = limit.rlim_max;
912 setrlimit(RLIMIT_STACK, &limit);
916 /* Process-wide exec() request */
918 void __pthread_kill_other_threads_np(void)
920 struct sigaction sa;
921 /* Terminate all other threads and thread manager */
922 pthread_onexit_process(0, NULL);
923 /* Make current thread the main thread in case the calling thread
924 changes its mind, does not exec(), and creates new threads instead. */
925 __pthread_reset_main_thread();
927 /* Reset the signal handlers behaviour for the signals the
928 implementation uses since this would be passed to the new
929 process. */
930 sigemptyset(&sa.sa_mask);
931 sa.sa_flags = 0;
932 sa.sa_handler = SIG_DFL;
933 __libc_sigaction(__pthread_sig_restart, &sa, NULL);
934 __libc_sigaction(__pthread_sig_cancel, &sa, NULL);
935 if (__pthread_sig_debug > 0)
936 __libc_sigaction(__pthread_sig_debug, &sa, NULL);
938 weak_alias (__pthread_kill_other_threads_np, pthread_kill_other_threads_np)
940 /* Concurrency symbol level. */
941 static int current_level;
943 int __pthread_setconcurrency(int level)
945 /* We don't do anything unless we have found a useful interpretation. */
946 current_level = level;
947 return 0;
949 weak_alias (__pthread_setconcurrency, pthread_setconcurrency)
951 int __pthread_getconcurrency(void)
953 return current_level;
955 weak_alias (__pthread_getconcurrency, pthread_getconcurrency)
957 /* Primitives for controlling thread execution */
959 void __pthread_wait_for_restart_signal(pthread_descr self)
961 sigset_t mask;
963 sigprocmask(SIG_SETMASK, NULL, &mask); /* Get current signal mask */
964 sigdelset(&mask, __pthread_sig_restart); /* Unblock the restart signal */
965 THREAD_SETMEM(self, p_signal, 0);
966 do {
967 sigsuspend(&mask); /* Wait for signal */
968 } while (THREAD_GETMEM(self, p_signal) !=__pthread_sig_restart);
970 READ_MEMORY_BARRIER(); /* See comment in __pthread_restart_new */
973 #if !__ASSUME_REALTIME_SIGNALS
974 /* The _old variants are for 2.0 and early 2.1 kernels which don't have RT
975 signals.
976 On these kernels, we use SIGUSR1 and SIGUSR2 for restart and cancellation.
977 Since the restart signal does not queue, we use an atomic counter to create
978 queuing semantics. This is needed to resolve a rare race condition in
979 pthread_cond_timedwait_relative. */
981 void __pthread_restart_old(pthread_descr th)
983 if (atomic_increment(&th->p_resume_count) == -1)
984 kill(th->p_pid, __pthread_sig_restart);
987 void __pthread_suspend_old(pthread_descr self)
989 if (atomic_decrement(&self->p_resume_count) <= 0)
990 __pthread_wait_for_restart_signal(self);
994 __pthread_timedsuspend_old(pthread_descr self, const struct timespec *abstime)
996 sigset_t unblock, initial_mask;
997 int was_signalled = 0;
998 sigjmp_buf jmpbuf;
1000 if (atomic_decrement(&self->p_resume_count) == 0) {
1001 /* Set up a longjmp handler for the restart signal, unblock
1002 the signal and sleep. */
1004 if (sigsetjmp(jmpbuf, 1) == 0) {
1005 THREAD_SETMEM(self, p_signal_jmp, &jmpbuf);
1006 THREAD_SETMEM(self, p_signal, 0);
1007 /* Unblock the restart signal */
1008 sigemptyset(&unblock);
1009 sigaddset(&unblock, __pthread_sig_restart);
1010 sigprocmask(SIG_UNBLOCK, &unblock, &initial_mask);
1012 while (1) {
1013 struct timeval now;
1014 struct timespec reltime;
1016 /* Compute a time offset relative to now. */
1017 __gettimeofday (&now, NULL);
1018 reltime.tv_nsec = abstime->tv_nsec - now.tv_usec * 1000;
1019 reltime.tv_sec = abstime->tv_sec - now.tv_sec;
1020 if (reltime.tv_nsec < 0) {
1021 reltime.tv_nsec += 1000000000;
1022 reltime.tv_sec -= 1;
1025 /* Sleep for the required duration. If woken by a signal,
1026 resume waiting as required by Single Unix Specification. */
1027 if (reltime.tv_sec < 0 || __libc_nanosleep(&reltime, NULL) == 0)
1028 break;
1031 /* Block the restart signal again */
1032 sigprocmask(SIG_SETMASK, &initial_mask, NULL);
1033 was_signalled = 0;
1034 } else {
1035 was_signalled = 1;
1037 THREAD_SETMEM(self, p_signal_jmp, NULL);
1040 /* Now was_signalled is true if we exited the above code
1041 due to the delivery of a restart signal. In that case,
1042 we know we have been dequeued and resumed and that the
1043 resume count is balanced. Otherwise, there are some
1044 cases to consider. First, try to bump up the resume count
1045 back to zero. If it goes to 1, it means restart() was
1046 invoked on this thread. The signal must be consumed
1047 and the count bumped down and everything is cool. We
1048 can return a 1 to the caller.
1049 Otherwise, no restart was delivered yet, so a potential
1050 race exists; we return a 0 to the caller which must deal
1051 with this race in an appropriate way; for example by
1052 atomically removing the thread from consideration for a
1053 wakeup---if such a thing fails, it means a restart is
1054 being delivered. */
1056 if (!was_signalled) {
1057 if (atomic_increment(&self->p_resume_count) != -1) {
1058 __pthread_wait_for_restart_signal(self);
1059 atomic_decrement(&self->p_resume_count); /* should be zero now! */
1060 /* woke spontaneously and consumed restart signal */
1061 return 1;
1063 /* woke spontaneously but did not consume restart---caller must resolve */
1064 return 0;
1066 /* woken due to restart signal */
1067 return 1;
1069 #endif /* __ASSUME_REALTIME_SIGNALS */
1071 void __pthread_restart_new(pthread_descr th)
1073 /* The barrier is proabably not needed, in which case it still documents
1074 our assumptions. The intent is to commit previous writes to shared
1075 memory so the woken thread will have a consistent view. Complementary
1076 read barriers are present to the suspend functions. */
1077 WRITE_MEMORY_BARRIER();
1078 kill(th->p_pid, __pthread_sig_restart);
1081 /* There is no __pthread_suspend_new because it would just
1082 be a wasteful wrapper for __pthread_wait_for_restart_signal */
1085 __pthread_timedsuspend_new(pthread_descr self, const struct timespec *abstime)
1087 sigset_t unblock, initial_mask;
1088 int was_signalled = 0;
1089 sigjmp_buf jmpbuf;
1091 if (sigsetjmp(jmpbuf, 1) == 0) {
1092 THREAD_SETMEM(self, p_signal_jmp, &jmpbuf);
1093 THREAD_SETMEM(self, p_signal, 0);
1094 /* Unblock the restart signal */
1095 sigemptyset(&unblock);
1096 sigaddset(&unblock, __pthread_sig_restart);
1097 sigprocmask(SIG_UNBLOCK, &unblock, &initial_mask);
1099 while (1) {
1100 struct timeval now;
1101 struct timespec reltime;
1103 /* Compute a time offset relative to now. */
1104 __gettimeofday (&now, NULL);
1105 reltime.tv_nsec = abstime->tv_nsec - now.tv_usec * 1000;
1106 reltime.tv_sec = abstime->tv_sec - now.tv_sec;
1107 if (reltime.tv_nsec < 0) {
1108 reltime.tv_nsec += 1000000000;
1109 reltime.tv_sec -= 1;
1112 /* Sleep for the required duration. If woken by a signal,
1113 resume waiting as required by Single Unix Specification. */
1114 if (reltime.tv_sec < 0 || __libc_nanosleep(&reltime, NULL) == 0)
1115 break;
1118 /* Block the restart signal again */
1119 sigprocmask(SIG_SETMASK, &initial_mask, NULL);
1120 was_signalled = 0;
1121 } else {
1122 was_signalled = 1;
1124 THREAD_SETMEM(self, p_signal_jmp, NULL);
1126 /* Now was_signalled is true if we exited the above code
1127 due to the delivery of a restart signal. In that case,
1128 everything is cool. We have been removed from whatever
1129 we were waiting on by the other thread, and consumed its signal.
1131 Otherwise we this thread woke up spontaneously, or due to a signal other
1132 than restart. This is an ambiguous case that must be resolved by
1133 the caller; the thread is still eligible for a restart wakeup
1134 so there is a race. */
1136 READ_MEMORY_BARRIER(); /* See comment in __pthread_restart_new */
1137 return was_signalled;
1141 /* Debugging aid */
1143 #ifdef DEBUG
1144 #include <stdarg.h>
1146 void __pthread_message(char * fmt, ...)
1148 char buffer[1024];
1149 va_list args;
1150 sprintf(buffer, "%05d : ", __getpid());
1151 va_start(args, fmt);
1152 vsnprintf(buffer + 8, sizeof(buffer) - 8, fmt, args);
1153 va_end(args);
1154 __libc_write(2, buffer, strlen(buffer));
1157 #endif
1160 #ifndef SHARED
1161 /* We need a hook to force the cancelation wrappers and file locking
1162 to be linked in when static libpthread is used. */
1163 extern const int __pthread_provide_wrappers;
1164 static const int *const __pthread_require_wrappers =
1165 &__pthread_provide_wrappers;
1166 extern const int __pthread_provide_lockfile;
1167 static const int *const __pthread_require_lockfile =
1168 &__pthread_provide_lockfile;
1169 #endif