misc: Use 64 bit stat for getusershell (BZ# 29203)
[glibc.git] / malloc / malloc.c
blob09e5ff2bce5d79b3754687db3aef314640d336eb
1 /* Malloc implementation for multiple threads without lock contention.
2 Copyright (C) 1996-2022 Free Software Foundation, Inc.
3 Copyright The GNU Toolchain Authors.
4 This file is part of the GNU C Library.
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public License as
8 published by the Free Software Foundation; either version 2.1 of the
9 License, or (at your option) any later version.
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; see the file COPYING.LIB. If
18 not, see <https://www.gnu.org/licenses/>. */
21 This is a version (aka ptmalloc2) of malloc/free/realloc written by
22 Doug Lea and adapted to multiple threads/arenas by Wolfram Gloger.
24 There have been substantial changes made after the integration into
25 glibc in all parts of the code. Do not look for much commonality
26 with the ptmalloc2 version.
28 * Version ptmalloc2-20011215
29 based on:
30 VERSION 2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)
32 * Quickstart
34 In order to compile this implementation, a Makefile is provided with
35 the ptmalloc2 distribution, which has pre-defined targets for some
36 popular systems (e.g. "make posix" for Posix threads). All that is
37 typically required with regard to compiler flags is the selection of
38 the thread package via defining one out of USE_PTHREADS, USE_THR or
39 USE_SPROC. Check the thread-m.h file for what effects this has.
40 Many/most systems will additionally require USE_TSD_DATA_HACK to be
41 defined, so this is the default for "make posix".
43 * Why use this malloc?
45 This is not the fastest, most space-conserving, most portable, or
46 most tunable malloc ever written. However it is among the fastest
47 while also being among the most space-conserving, portable and tunable.
48 Consistent balance across these factors results in a good general-purpose
49 allocator for malloc-intensive programs.
51 The main properties of the algorithms are:
52 * For large (>= 512 bytes) requests, it is a pure best-fit allocator,
53 with ties normally decided via FIFO (i.e. least recently used).
54 * For small (<= 64 bytes by default) requests, it is a caching
55 allocator, that maintains pools of quickly recycled chunks.
56 * In between, and for combinations of large and small requests, it does
57 the best it can trying to meet both goals at once.
58 * For very large requests (>= 128KB by default), it relies on system
59 memory mapping facilities, if supported.
61 For a longer but slightly out of date high-level description, see
62 http://gee.cs.oswego.edu/dl/html/malloc.html
64 You may already by default be using a C library containing a malloc
65 that is based on some version of this malloc (for example in
66 linux). You might still want to use the one in this file in order to
67 customize settings or to avoid overheads associated with library
68 versions.
70 * Contents, described in more detail in "description of public routines" below.
72 Standard (ANSI/SVID/...) functions:
73 malloc(size_t n);
74 calloc(size_t n_elements, size_t element_size);
75 free(void* p);
76 realloc(void* p, size_t n);
77 memalign(size_t alignment, size_t n);
78 valloc(size_t n);
79 mallinfo()
80 mallopt(int parameter_number, int parameter_value)
82 Additional functions:
83 independent_calloc(size_t n_elements, size_t size, void* chunks[]);
84 independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]);
85 pvalloc(size_t n);
86 malloc_trim(size_t pad);
87 malloc_usable_size(void* p);
88 malloc_stats();
90 * Vital statistics:
92 Supported pointer representation: 4 or 8 bytes
93 Supported size_t representation: 4 or 8 bytes
94 Note that size_t is allowed to be 4 bytes even if pointers are 8.
95 You can adjust this by defining INTERNAL_SIZE_T
97 Alignment: 2 * sizeof(size_t) (default)
98 (i.e., 8 byte alignment with 4byte size_t). This suffices for
99 nearly all current machines and C compilers. However, you can
100 define MALLOC_ALIGNMENT to be wider than this if necessary.
102 Minimum overhead per allocated chunk: 4 or 8 bytes
103 Each malloced chunk has a hidden word of overhead holding size
104 and status information.
106 Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead)
107 8-byte ptrs: 24/32 bytes (including, 4/8 overhead)
109 When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
110 ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
111 needed; 4 (8) for a trailing size field and 8 (16) bytes for
112 free list pointers. Thus, the minimum allocatable size is
113 16/24/32 bytes.
115 Even a request for zero bytes (i.e., malloc(0)) returns a
116 pointer to something of the minimum allocatable size.
118 The maximum overhead wastage (i.e., number of extra bytes
119 allocated than were requested in malloc) is less than or equal
120 to the minimum size, except for requests >= mmap_threshold that
121 are serviced via mmap(), where the worst case wastage is 2 *
122 sizeof(size_t) bytes plus the remainder from a system page (the
123 minimal mmap unit); typically 4096 or 8192 bytes.
125 Maximum allocated size: 4-byte size_t: 2^32 minus about two pages
126 8-byte size_t: 2^64 minus about two pages
128 It is assumed that (possibly signed) size_t values suffice to
129 represent chunk sizes. `Possibly signed' is due to the fact
130 that `size_t' may be defined on a system as either a signed or
131 an unsigned type. The ISO C standard says that it must be
132 unsigned, but a few systems are known not to adhere to this.
133 Additionally, even when size_t is unsigned, sbrk (which is by
134 default used to obtain memory from system) accepts signed
135 arguments, and may not be able to handle size_t-wide arguments
136 with negative sign bit. Generally, values that would
137 appear as negative after accounting for overhead and alignment
138 are supported only via mmap(), which does not have this
139 limitation.
141 Requests for sizes outside the allowed range will perform an optional
142 failure action and then return null. (Requests may also
143 also fail because a system is out of memory.)
145 Thread-safety: thread-safe
147 Compliance: I believe it is compliant with the 1997 Single Unix Specification
148 Also SVID/XPG, ANSI C, and probably others as well.
150 * Synopsis of compile-time options:
152 People have reported using previous versions of this malloc on all
153 versions of Unix, sometimes by tweaking some of the defines
154 below. It has been tested most extensively on Solaris and Linux.
155 People also report using it in stand-alone embedded systems.
157 The implementation is in straight, hand-tuned ANSI C. It is not
158 at all modular. (Sorry!) It uses a lot of macros. To be at all
159 usable, this code should be compiled using an optimizing compiler
160 (for example gcc -O3) that can simplify expressions and control
161 paths. (FAQ: some macros import variables as arguments rather than
162 declare locals because people reported that some debuggers
163 otherwise get confused.)
165 OPTION DEFAULT VALUE
167 Compilation Environment options:
169 HAVE_MREMAP 0
171 Changing default word sizes:
173 INTERNAL_SIZE_T size_t
175 Configuration and functionality options:
177 USE_PUBLIC_MALLOC_WRAPPERS NOT defined
178 USE_MALLOC_LOCK NOT defined
179 MALLOC_DEBUG NOT defined
180 REALLOC_ZERO_BYTES_FREES 1
181 TRIM_FASTBINS 0
183 Options for customizing MORECORE:
185 MORECORE sbrk
186 MORECORE_FAILURE -1
187 MORECORE_CONTIGUOUS 1
188 MORECORE_CANNOT_TRIM NOT defined
189 MORECORE_CLEARS 1
190 MMAP_AS_MORECORE_SIZE (1024 * 1024)
192 Tuning options that are also dynamically changeable via mallopt:
194 DEFAULT_MXFAST 64 (for 32bit), 128 (for 64bit)
195 DEFAULT_TRIM_THRESHOLD 128 * 1024
196 DEFAULT_TOP_PAD 0
197 DEFAULT_MMAP_THRESHOLD 128 * 1024
198 DEFAULT_MMAP_MAX 65536
200 There are several other #defined constants and macros that you
201 probably don't want to touch unless you are extending or adapting malloc. */
204 void* is the pointer type that malloc should say it returns
207 #ifndef void
208 #define void void
209 #endif /*void*/
211 #include <stddef.h> /* for size_t */
212 #include <stdlib.h> /* for getenv(), abort() */
213 #include <unistd.h> /* for __libc_enable_secure */
215 #include <atomic.h>
216 #include <_itoa.h>
217 #include <bits/wordsize.h>
218 #include <sys/sysinfo.h>
220 #include <ldsodefs.h>
222 #include <unistd.h>
223 #include <stdio.h> /* needed for malloc_stats */
224 #include <errno.h>
225 #include <assert.h>
227 #include <shlib-compat.h>
229 /* For uintptr_t. */
230 #include <stdint.h>
232 /* For va_arg, va_start, va_end. */
233 #include <stdarg.h>
235 /* For MIN, MAX, powerof2. */
236 #include <sys/param.h>
238 /* For ALIGN_UP et. al. */
239 #include <libc-pointer-arith.h>
241 /* For DIAG_PUSH/POP_NEEDS_COMMENT et al. */
242 #include <libc-diag.h>
244 /* For memory tagging. */
245 #include <libc-mtag.h>
247 #include <malloc/malloc-internal.h>
249 /* For SINGLE_THREAD_P. */
250 #include <sysdep-cancel.h>
252 #include <libc-internal.h>
254 /* For tcache double-free check. */
255 #include <random-bits.h>
256 #include <sys/random.h>
259 Debugging:
261 Because freed chunks may be overwritten with bookkeeping fields, this
262 malloc will often die when freed memory is overwritten by user
263 programs. This can be very effective (albeit in an annoying way)
264 in helping track down dangling pointers.
266 If you compile with -DMALLOC_DEBUG, a number of assertion checks are
267 enabled that will catch more memory errors. You probably won't be
268 able to make much sense of the actual assertion errors, but they
269 should help you locate incorrectly overwritten memory. The checking
270 is fairly extensive, and will slow down execution
271 noticeably. Calling malloc_stats or mallinfo with MALLOC_DEBUG set
272 will attempt to check every non-mmapped allocated and free chunk in
273 the course of computing the summmaries. (By nature, mmapped regions
274 cannot be checked very much automatically.)
276 Setting MALLOC_DEBUG may also be helpful if you are trying to modify
277 this code. The assertions in the check routines spell out in more
278 detail the assumptions and invariants underlying the algorithms.
280 Setting MALLOC_DEBUG does NOT provide an automated mechanism for
281 checking that all accesses to malloced memory stay within their
282 bounds. However, there are several add-ons and adaptations of this
283 or other mallocs available that do this.
286 #ifndef MALLOC_DEBUG
287 #define MALLOC_DEBUG 0
288 #endif
290 #if IS_IN (libc)
291 #ifndef NDEBUG
292 # define __assert_fail(assertion, file, line, function) \
293 __malloc_assert(assertion, file, line, function)
295 extern const char *__progname;
297 static void
298 __malloc_assert (const char *assertion, const char *file, unsigned int line,
299 const char *function)
301 (void) __fxprintf (NULL, "%s%s%s:%u: %s%sAssertion `%s' failed.\n",
302 __progname, __progname[0] ? ": " : "",
303 file, line,
304 function ? function : "", function ? ": " : "",
305 assertion);
306 fflush (stderr);
307 abort ();
309 #endif
310 #endif
312 #if USE_TCACHE
313 /* We want 64 entries. This is an arbitrary limit, which tunables can reduce. */
314 # define TCACHE_MAX_BINS 64
315 # define MAX_TCACHE_SIZE tidx2usize (TCACHE_MAX_BINS-1)
317 /* Only used to pre-fill the tunables. */
318 # define tidx2usize(idx) (((size_t) idx) * MALLOC_ALIGNMENT + MINSIZE - SIZE_SZ)
320 /* When "x" is from chunksize(). */
321 # define csize2tidx(x) (((x) - MINSIZE + MALLOC_ALIGNMENT - 1) / MALLOC_ALIGNMENT)
322 /* When "x" is a user-provided size. */
323 # define usize2tidx(x) csize2tidx (request2size (x))
325 /* With rounding and alignment, the bins are...
326 idx 0 bytes 0..24 (64-bit) or 0..12 (32-bit)
327 idx 1 bytes 25..40 or 13..20
328 idx 2 bytes 41..56 or 21..28
329 etc. */
331 /* This is another arbitrary limit, which tunables can change. Each
332 tcache bin will hold at most this number of chunks. */
333 # define TCACHE_FILL_COUNT 7
335 /* Maximum chunks in tcache bins for tunables. This value must fit the range
336 of tcache->counts[] entries, else they may overflow. */
337 # define MAX_TCACHE_COUNT UINT16_MAX
338 #endif
340 /* Safe-Linking:
341 Use randomness from ASLR (mmap_base) to protect single-linked lists
342 of Fast-Bins and TCache. That is, mask the "next" pointers of the
343 lists' chunks, and also perform allocation alignment checks on them.
344 This mechanism reduces the risk of pointer hijacking, as was done with
345 Safe-Unlinking in the double-linked lists of Small-Bins.
346 It assumes a minimum page size of 4096 bytes (12 bits). Systems with
347 larger pages provide less entropy, although the pointer mangling
348 still works. */
349 #define PROTECT_PTR(pos, ptr) \
350 ((__typeof (ptr)) ((((size_t) pos) >> 12) ^ ((size_t) ptr)))
351 #define REVEAL_PTR(ptr) PROTECT_PTR (&ptr, ptr)
354 The REALLOC_ZERO_BYTES_FREES macro controls the behavior of realloc (p, 0)
355 when p is nonnull. If the macro is nonzero, the realloc call returns NULL;
356 otherwise, the call returns what malloc (0) would. In either case,
357 p is freed. Glibc uses a nonzero REALLOC_ZERO_BYTES_FREES, which
358 implements common historical practice.
360 ISO C17 says the realloc call has implementation-defined behavior,
361 and it might not even free p.
364 #ifndef REALLOC_ZERO_BYTES_FREES
365 #define REALLOC_ZERO_BYTES_FREES 1
366 #endif
369 TRIM_FASTBINS controls whether free() of a very small chunk can
370 immediately lead to trimming. Setting to true (1) can reduce memory
371 footprint, but will almost always slow down programs that use a lot
372 of small chunks.
374 Define this only if you are willing to give up some speed to more
375 aggressively reduce system-level memory footprint when releasing
376 memory in programs that use many small chunks. You can get
377 essentially the same effect by setting MXFAST to 0, but this can
378 lead to even greater slowdowns in programs using many small chunks.
379 TRIM_FASTBINS is an in-between compile-time option, that disables
380 only those chunks bordering topmost memory from being placed in
381 fastbins.
384 #ifndef TRIM_FASTBINS
385 #define TRIM_FASTBINS 0
386 #endif
388 /* Definition for getting more memory from the OS. */
389 #include "morecore.c"
391 #define MORECORE (*__glibc_morecore)
392 #define MORECORE_FAILURE 0
394 /* Memory tagging. */
396 /* Some systems support the concept of tagging (sometimes known as
397 coloring) memory locations on a fine grained basis. Each memory
398 location is given a color (normally allocated randomly) and
399 pointers are also colored. When the pointer is dereferenced, the
400 pointer's color is checked against the memory's color and if they
401 differ the access is faulted (sometimes lazily).
403 We use this in glibc by maintaining a single color for the malloc
404 data structures that are interleaved with the user data and then
405 assigning separate colors for each block allocation handed out. In
406 this way simple buffer overruns will be rapidly detected. When
407 memory is freed, the memory is recolored back to the glibc default
408 so that simple use-after-free errors can also be detected.
410 If memory is reallocated the buffer is recolored even if the
411 address remains the same. This has a performance impact, but
412 guarantees that the old pointer cannot mistakenly be reused (code
413 that compares old against new will see a mismatch and will then
414 need to behave as though realloc moved the data to a new location).
416 Internal API for memory tagging support.
418 The aim is to keep the code for memory tagging support as close to
419 the normal APIs in glibc as possible, so that if tagging is not
420 enabled in the library, or is disabled at runtime then standard
421 operations can continue to be used. Support macros are used to do
422 this:
424 void *tag_new_zero_region (void *ptr, size_t size)
426 Allocates a new tag, colors the memory with that tag, zeros the
427 memory and returns a pointer that is correctly colored for that
428 location. The non-tagging version will simply call memset with 0.
430 void *tag_region (void *ptr, size_t size)
432 Color the region of memory pointed to by PTR and size SIZE with
433 the color of PTR. Returns the original pointer.
435 void *tag_new_usable (void *ptr)
437 Allocate a new random color and use it to color the user region of
438 a chunk; this may include data from the subsequent chunk's header
439 if tagging is sufficiently fine grained. Returns PTR suitably
440 recolored for accessing the memory there.
442 void *tag_at (void *ptr)
444 Read the current color of the memory at the address pointed to by
445 PTR (ignoring it's current color) and return PTR recolored to that
446 color. PTR must be valid address in all other respects. When
447 tagging is not enabled, it simply returns the original pointer.
450 #ifdef USE_MTAG
451 static bool mtag_enabled = false;
452 static int mtag_mmap_flags = 0;
453 #else
454 # define mtag_enabled false
455 # define mtag_mmap_flags 0
456 #endif
458 static __always_inline void *
459 tag_region (void *ptr, size_t size)
461 if (__glibc_unlikely (mtag_enabled))
462 return __libc_mtag_tag_region (ptr, size);
463 return ptr;
466 static __always_inline void *
467 tag_new_zero_region (void *ptr, size_t size)
469 if (__glibc_unlikely (mtag_enabled))
470 return __libc_mtag_tag_zero_region (__libc_mtag_new_tag (ptr), size);
471 return memset (ptr, 0, size);
474 /* Defined later. */
475 static void *
476 tag_new_usable (void *ptr);
478 static __always_inline void *
479 tag_at (void *ptr)
481 if (__glibc_unlikely (mtag_enabled))
482 return __libc_mtag_address_get_tag (ptr);
483 return ptr;
486 #include <string.h>
489 MORECORE-related declarations. By default, rely on sbrk
494 MORECORE is the name of the routine to call to obtain more memory
495 from the system. See below for general guidance on writing
496 alternative MORECORE functions, as well as a version for WIN32 and a
497 sample version for pre-OSX macos.
500 #ifndef MORECORE
501 #define MORECORE sbrk
502 #endif
505 MORECORE_FAILURE is the value returned upon failure of MORECORE
506 as well as mmap. Since it cannot be an otherwise valid memory address,
507 and must reflect values of standard sys calls, you probably ought not
508 try to redefine it.
511 #ifndef MORECORE_FAILURE
512 #define MORECORE_FAILURE (-1)
513 #endif
516 If MORECORE_CONTIGUOUS is true, take advantage of fact that
517 consecutive calls to MORECORE with positive arguments always return
518 contiguous increasing addresses. This is true of unix sbrk. Even
519 if not defined, when regions happen to be contiguous, malloc will
520 permit allocations spanning regions obtained from different
521 calls. But defining this when applicable enables some stronger
522 consistency checks and space efficiencies.
525 #ifndef MORECORE_CONTIGUOUS
526 #define MORECORE_CONTIGUOUS 1
527 #endif
530 Define MORECORE_CANNOT_TRIM if your version of MORECORE
531 cannot release space back to the system when given negative
532 arguments. This is generally necessary only if you are using
533 a hand-crafted MORECORE function that cannot handle negative arguments.
536 /* #define MORECORE_CANNOT_TRIM */
538 /* MORECORE_CLEARS (default 1)
539 The degree to which the routine mapped to MORECORE zeroes out
540 memory: never (0), only for newly allocated space (1) or always
541 (2). The distinction between (1) and (2) is necessary because on
542 some systems, if the application first decrements and then
543 increments the break value, the contents of the reallocated space
544 are unspecified.
547 #ifndef MORECORE_CLEARS
548 # define MORECORE_CLEARS 1
549 #endif
553 MMAP_AS_MORECORE_SIZE is the minimum mmap size argument to use if
554 sbrk fails, and mmap is used as a backup. The value must be a
555 multiple of page size. This backup strategy generally applies only
556 when systems have "holes" in address space, so sbrk cannot perform
557 contiguous expansion, but there is still space available on system.
558 On systems for which this is known to be useful (i.e. most linux
559 kernels), this occurs only when programs allocate huge amounts of
560 memory. Between this, and the fact that mmap regions tend to be
561 limited, the size should be large, to avoid too many mmap calls and
562 thus avoid running out of kernel resources. */
564 #ifndef MMAP_AS_MORECORE_SIZE
565 #define MMAP_AS_MORECORE_SIZE (1024 * 1024)
566 #endif
569 Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
570 large blocks.
573 #ifndef HAVE_MREMAP
574 #define HAVE_MREMAP 0
575 #endif
578 This version of malloc supports the standard SVID/XPG mallinfo
579 routine that returns a struct containing usage properties and
580 statistics. It should work on any SVID/XPG compliant system that has
581 a /usr/include/malloc.h defining struct mallinfo. (If you'd like to
582 install such a thing yourself, cut out the preliminary declarations
583 as described above and below and save them in a malloc.h file. But
584 there's no compelling reason to bother to do this.)
586 The main declaration needed is the mallinfo struct that is returned
587 (by-copy) by mallinfo(). The SVID/XPG malloinfo struct contains a
588 bunch of fields that are not even meaningful in this version of
589 malloc. These fields are are instead filled by mallinfo() with
590 other numbers that might be of interest.
594 /* ---------- description of public routines ------------ */
596 #if IS_IN (libc)
598 malloc(size_t n)
599 Returns a pointer to a newly allocated chunk of at least n bytes, or null
600 if no space is available. Additionally, on failure, errno is
601 set to ENOMEM on ANSI C systems.
603 If n is zero, malloc returns a minimum-sized chunk. (The minimum
604 size is 16 bytes on most 32bit systems, and 24 or 32 bytes on 64bit
605 systems.) On most systems, size_t is an unsigned type, so calls
606 with negative arguments are interpreted as requests for huge amounts
607 of space, which will often fail. The maximum supported value of n
608 differs across systems, but is in all cases less than the maximum
609 representable value of a size_t.
611 void* __libc_malloc(size_t);
612 libc_hidden_proto (__libc_malloc)
615 free(void* p)
616 Releases the chunk of memory pointed to by p, that had been previously
617 allocated using malloc or a related routine such as realloc.
618 It has no effect if p is null. It can have arbitrary (i.e., bad!)
619 effects if p has already been freed.
621 Unless disabled (using mallopt), freeing very large spaces will
622 when possible, automatically trigger operations that give
623 back unused memory to the system, thus reducing program footprint.
625 void __libc_free(void*);
626 libc_hidden_proto (__libc_free)
629 calloc(size_t n_elements, size_t element_size);
630 Returns a pointer to n_elements * element_size bytes, with all locations
631 set to zero.
633 void* __libc_calloc(size_t, size_t);
636 realloc(void* p, size_t n)
637 Returns a pointer to a chunk of size n that contains the same data
638 as does chunk p up to the minimum of (n, p's size) bytes, or null
639 if no space is available.
641 The returned pointer may or may not be the same as p. The algorithm
642 prefers extending p when possible, otherwise it employs the
643 equivalent of a malloc-copy-free sequence.
645 If p is null, realloc is equivalent to malloc.
647 If space is not available, realloc returns null, errno is set (if on
648 ANSI) and p is NOT freed.
650 if n is for fewer bytes than already held by p, the newly unused
651 space is lopped off and freed if possible. Unless the #define
652 REALLOC_ZERO_BYTES_FREES is set, realloc with a size argument of
653 zero (re)allocates a minimum-sized chunk.
655 Large chunks that were internally obtained via mmap will always be
656 grown using malloc-copy-free sequences unless the system supports
657 MREMAP (currently only linux).
659 The old unix realloc convention of allowing the last-free'd chunk
660 to be used as an argument to realloc is not supported.
662 void* __libc_realloc(void*, size_t);
663 libc_hidden_proto (__libc_realloc)
666 memalign(size_t alignment, size_t n);
667 Returns a pointer to a newly allocated chunk of n bytes, aligned
668 in accord with the alignment argument.
670 The alignment argument should be a power of two. If the argument is
671 not a power of two, the nearest greater power is used.
672 8-byte alignment is guaranteed by normal malloc calls, so don't
673 bother calling memalign with an argument of 8 or less.
675 Overreliance on memalign is a sure way to fragment space.
677 void* __libc_memalign(size_t, size_t);
678 libc_hidden_proto (__libc_memalign)
681 valloc(size_t n);
682 Equivalent to memalign(pagesize, n), where pagesize is the page
683 size of the system. If the pagesize is unknown, 4096 is used.
685 void* __libc_valloc(size_t);
690 mallinfo()
691 Returns (by copy) a struct containing various summary statistics:
693 arena: current total non-mmapped bytes allocated from system
694 ordblks: the number of free chunks
695 smblks: the number of fastbin blocks (i.e., small chunks that
696 have been freed but not use resused or consolidated)
697 hblks: current number of mmapped regions
698 hblkhd: total bytes held in mmapped regions
699 usmblks: always 0
700 fsmblks: total bytes held in fastbin blocks
701 uordblks: current total allocated space (normal or mmapped)
702 fordblks: total free space
703 keepcost: the maximum number of bytes that could ideally be released
704 back to system via malloc_trim. ("ideally" means that
705 it ignores page restrictions etc.)
707 Because these fields are ints, but internal bookkeeping may
708 be kept as longs, the reported values may wrap around zero and
709 thus be inaccurate.
711 struct mallinfo2 __libc_mallinfo2(void);
712 libc_hidden_proto (__libc_mallinfo2)
714 struct mallinfo __libc_mallinfo(void);
718 pvalloc(size_t n);
719 Equivalent to valloc(minimum-page-that-holds(n)), that is,
720 round up n to nearest pagesize.
722 void* __libc_pvalloc(size_t);
725 malloc_trim(size_t pad);
727 If possible, gives memory back to the system (via negative
728 arguments to sbrk) if there is unused memory at the `high' end of
729 the malloc pool. You can call this after freeing large blocks of
730 memory to potentially reduce the system-level memory requirements
731 of a program. However, it cannot guarantee to reduce memory. Under
732 some allocation patterns, some large free blocks of memory will be
733 locked between two used chunks, so they cannot be given back to
734 the system.
736 The `pad' argument to malloc_trim represents the amount of free
737 trailing space to leave untrimmed. If this argument is zero,
738 only the minimum amount of memory to maintain internal data
739 structures will be left (one page or less). Non-zero arguments
740 can be supplied to maintain enough trailing space to service
741 future expected allocations without having to re-obtain memory
742 from the system.
744 Malloc_trim returns 1 if it actually released any memory, else 0.
745 On systems that do not support "negative sbrks", it will always
746 return 0.
748 int __malloc_trim(size_t);
751 malloc_usable_size(void* p);
753 Returns the number of bytes you can actually use in
754 an allocated chunk, which may be more than you requested (although
755 often not) due to alignment and minimum size constraints.
756 You can use this many bytes without worrying about
757 overwriting other allocated objects. This is not a particularly great
758 programming practice. malloc_usable_size can be more useful in
759 debugging and assertions, for example:
761 p = malloc(n);
762 assert(malloc_usable_size(p) >= 256);
765 size_t __malloc_usable_size(void*);
768 malloc_stats();
769 Prints on stderr the amount of space obtained from the system (both
770 via sbrk and mmap), the maximum amount (which may be more than
771 current if malloc_trim and/or munmap got called), and the current
772 number of bytes allocated via malloc (or realloc, etc) but not yet
773 freed. Note that this is the number of bytes allocated, not the
774 number requested. It will be larger than the number requested
775 because of alignment and bookkeeping overhead. Because it includes
776 alignment wastage as being in use, this figure may be greater than
777 zero even when no user-level chunks are allocated.
779 The reported current and maximum system memory can be inaccurate if
780 a program makes other calls to system memory allocation functions
781 (normally sbrk) outside of malloc.
783 malloc_stats prints only the most commonly interesting statistics.
784 More information can be obtained by calling mallinfo.
787 void __malloc_stats(void);
790 posix_memalign(void **memptr, size_t alignment, size_t size);
792 POSIX wrapper like memalign(), checking for validity of size.
794 int __posix_memalign(void **, size_t, size_t);
795 #endif /* IS_IN (libc) */
798 mallopt(int parameter_number, int parameter_value)
799 Sets tunable parameters The format is to provide a
800 (parameter-number, parameter-value) pair. mallopt then sets the
801 corresponding parameter to the argument value if it can (i.e., so
802 long as the value is meaningful), and returns 1 if successful else
803 0. SVID/XPG/ANSI defines four standard param numbers for mallopt,
804 normally defined in malloc.h. Only one of these (M_MXFAST) is used
805 in this malloc. The others (M_NLBLKS, M_GRAIN, M_KEEP) don't apply,
806 so setting them has no effect. But this malloc also supports four
807 other options in mallopt. See below for details. Briefly, supported
808 parameters are as follows (listed defaults are for "typical"
809 configurations).
811 Symbol param # default allowed param values
812 M_MXFAST 1 64 0-80 (0 disables fastbins)
813 M_TRIM_THRESHOLD -1 128*1024 any (-1U disables trimming)
814 M_TOP_PAD -2 0 any
815 M_MMAP_THRESHOLD -3 128*1024 any (or 0 if no MMAP support)
816 M_MMAP_MAX -4 65536 any (0 disables use of mmap)
818 int __libc_mallopt(int, int);
819 #if IS_IN (libc)
820 libc_hidden_proto (__libc_mallopt)
821 #endif
823 /* mallopt tuning options */
826 M_MXFAST is the maximum request size used for "fastbins", special bins
827 that hold returned chunks without consolidating their spaces. This
828 enables future requests for chunks of the same size to be handled
829 very quickly, but can increase fragmentation, and thus increase the
830 overall memory footprint of a program.
832 This malloc manages fastbins very conservatively yet still
833 efficiently, so fragmentation is rarely a problem for values less
834 than or equal to the default. The maximum supported value of MXFAST
835 is 80. You wouldn't want it any higher than this anyway. Fastbins
836 are designed especially for use with many small structs, objects or
837 strings -- the default handles structs/objects/arrays with sizes up
838 to 8 4byte fields, or small strings representing words, tokens,
839 etc. Using fastbins for larger objects normally worsens
840 fragmentation without improving speed.
842 M_MXFAST is set in REQUEST size units. It is internally used in
843 chunksize units, which adds padding and alignment. You can reduce
844 M_MXFAST to 0 to disable all use of fastbins. This causes the malloc
845 algorithm to be a closer approximation of fifo-best-fit in all cases,
846 not just for larger requests, but will generally cause it to be
847 slower.
851 /* M_MXFAST is a standard SVID/XPG tuning option, usually listed in malloc.h */
852 #ifndef M_MXFAST
853 #define M_MXFAST 1
854 #endif
856 #ifndef DEFAULT_MXFAST
857 #define DEFAULT_MXFAST (64 * SIZE_SZ / 4)
858 #endif
862 M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
863 to keep before releasing via malloc_trim in free().
865 Automatic trimming is mainly useful in long-lived programs.
866 Because trimming via sbrk can be slow on some systems, and can
867 sometimes be wasteful (in cases where programs immediately
868 afterward allocate more large chunks) the value should be high
869 enough so that your overall system performance would improve by
870 releasing this much memory.
872 The trim threshold and the mmap control parameters (see below)
873 can be traded off with one another. Trimming and mmapping are
874 two different ways of releasing unused memory back to the
875 system. Between these two, it is often possible to keep
876 system-level demands of a long-lived program down to a bare
877 minimum. For example, in one test suite of sessions measuring
878 the XF86 X server on Linux, using a trim threshold of 128K and a
879 mmap threshold of 192K led to near-minimal long term resource
880 consumption.
882 If you are using this malloc in a long-lived program, it should
883 pay to experiment with these values. As a rough guide, you
884 might set to a value close to the average size of a process
885 (program) running on your system. Releasing this much memory
886 would allow such a process to run in memory. Generally, it's
887 worth it to tune for trimming rather tham memory mapping when a
888 program undergoes phases where several large chunks are
889 allocated and released in ways that can reuse each other's
890 storage, perhaps mixed with phases where there are no such
891 chunks at all. And in well-behaved long-lived programs,
892 controlling release of large blocks via trimming versus mapping
893 is usually faster.
895 However, in most programs, these parameters serve mainly as
896 protection against the system-level effects of carrying around
897 massive amounts of unneeded memory. Since frequent calls to
898 sbrk, mmap, and munmap otherwise degrade performance, the default
899 parameters are set to relatively high values that serve only as
900 safeguards.
902 The trim value It must be greater than page size to have any useful
903 effect. To disable trimming completely, you can set to
904 (unsigned long)(-1)
906 Trim settings interact with fastbin (MXFAST) settings: Unless
907 TRIM_FASTBINS is defined, automatic trimming never takes place upon
908 freeing a chunk with size less than or equal to MXFAST. Trimming is
909 instead delayed until subsequent freeing of larger chunks. However,
910 you can still force an attempted trim by calling malloc_trim.
912 Also, trimming is not generally possible in cases where
913 the main arena is obtained via mmap.
915 Note that the trick some people use of mallocing a huge space and
916 then freeing it at program startup, in an attempt to reserve system
917 memory, doesn't have the intended effect under automatic trimming,
918 since that memory will immediately be returned to the system.
921 #define M_TRIM_THRESHOLD -1
923 #ifndef DEFAULT_TRIM_THRESHOLD
924 #define DEFAULT_TRIM_THRESHOLD (128 * 1024)
925 #endif
928 M_TOP_PAD is the amount of extra `padding' space to allocate or
929 retain whenever sbrk is called. It is used in two ways internally:
931 * When sbrk is called to extend the top of the arena to satisfy
932 a new malloc request, this much padding is added to the sbrk
933 request.
935 * When malloc_trim is called automatically from free(),
936 it is used as the `pad' argument.
938 In both cases, the actual amount of padding is rounded
939 so that the end of the arena is always a system page boundary.
941 The main reason for using padding is to avoid calling sbrk so
942 often. Having even a small pad greatly reduces the likelihood
943 that nearly every malloc request during program start-up (or
944 after trimming) will invoke sbrk, which needlessly wastes
945 time.
947 Automatic rounding-up to page-size units is normally sufficient
948 to avoid measurable overhead, so the default is 0. However, in
949 systems where sbrk is relatively slow, it can pay to increase
950 this value, at the expense of carrying around more memory than
951 the program needs.
954 #define M_TOP_PAD -2
956 #ifndef DEFAULT_TOP_PAD
957 #define DEFAULT_TOP_PAD (0)
958 #endif
961 MMAP_THRESHOLD_MAX and _MIN are the bounds on the dynamically
962 adjusted MMAP_THRESHOLD.
965 #ifndef DEFAULT_MMAP_THRESHOLD_MIN
966 #define DEFAULT_MMAP_THRESHOLD_MIN (128 * 1024)
967 #endif
969 #ifndef DEFAULT_MMAP_THRESHOLD_MAX
970 /* For 32-bit platforms we cannot increase the maximum mmap
971 threshold much because it is also the minimum value for the
972 maximum heap size and its alignment. Going above 512k (i.e., 1M
973 for new heaps) wastes too much address space. */
974 # if __WORDSIZE == 32
975 # define DEFAULT_MMAP_THRESHOLD_MAX (512 * 1024)
976 # else
977 # define DEFAULT_MMAP_THRESHOLD_MAX (4 * 1024 * 1024 * sizeof(long))
978 # endif
979 #endif
982 M_MMAP_THRESHOLD is the request size threshold for using mmap()
983 to service a request. Requests of at least this size that cannot
984 be allocated using already-existing space will be serviced via mmap.
985 (If enough normal freed space already exists it is used instead.)
987 Using mmap segregates relatively large chunks of memory so that
988 they can be individually obtained and released from the host
989 system. A request serviced through mmap is never reused by any
990 other request (at least not directly; the system may just so
991 happen to remap successive requests to the same locations).
993 Segregating space in this way has the benefits that:
995 1. Mmapped space can ALWAYS be individually released back
996 to the system, which helps keep the system level memory
997 demands of a long-lived program low.
998 2. Mapped memory can never become `locked' between
999 other chunks, as can happen with normally allocated chunks, which
1000 means that even trimming via malloc_trim would not release them.
1001 3. On some systems with "holes" in address spaces, mmap can obtain
1002 memory that sbrk cannot.
1004 However, it has the disadvantages that:
1006 1. The space cannot be reclaimed, consolidated, and then
1007 used to service later requests, as happens with normal chunks.
1008 2. It can lead to more wastage because of mmap page alignment
1009 requirements
1010 3. It causes malloc performance to be more dependent on host
1011 system memory management support routines which may vary in
1012 implementation quality and may impose arbitrary
1013 limitations. Generally, servicing a request via normal
1014 malloc steps is faster than going through a system's mmap.
1016 The advantages of mmap nearly always outweigh disadvantages for
1017 "large" chunks, but the value of "large" varies across systems. The
1018 default is an empirically derived value that works well in most
1019 systems.
1022 Update in 2006:
1023 The above was written in 2001. Since then the world has changed a lot.
1024 Memory got bigger. Applications got bigger. The virtual address space
1025 layout in 32 bit linux changed.
1027 In the new situation, brk() and mmap space is shared and there are no
1028 artificial limits on brk size imposed by the kernel. What is more,
1029 applications have started using transient allocations larger than the
1030 128Kb as was imagined in 2001.
1032 The price for mmap is also high now; each time glibc mmaps from the
1033 kernel, the kernel is forced to zero out the memory it gives to the
1034 application. Zeroing memory is expensive and eats a lot of cache and
1035 memory bandwidth. This has nothing to do with the efficiency of the
1036 virtual memory system, by doing mmap the kernel just has no choice but
1037 to zero.
1039 In 2001, the kernel had a maximum size for brk() which was about 800
1040 megabytes on 32 bit x86, at that point brk() would hit the first
1041 mmaped shared libaries and couldn't expand anymore. With current 2.6
1042 kernels, the VA space layout is different and brk() and mmap
1043 both can span the entire heap at will.
1045 Rather than using a static threshold for the brk/mmap tradeoff,
1046 we are now using a simple dynamic one. The goal is still to avoid
1047 fragmentation. The old goals we kept are
1048 1) try to get the long lived large allocations to use mmap()
1049 2) really large allocations should always use mmap()
1050 and we're adding now:
1051 3) transient allocations should use brk() to avoid forcing the kernel
1052 having to zero memory over and over again
1054 The implementation works with a sliding threshold, which is by default
1055 limited to go between 128Kb and 32Mb (64Mb for 64 bitmachines) and starts
1056 out at 128Kb as per the 2001 default.
1058 This allows us to satisfy requirement 1) under the assumption that long
1059 lived allocations are made early in the process' lifespan, before it has
1060 started doing dynamic allocations of the same size (which will
1061 increase the threshold).
1063 The upperbound on the threshold satisfies requirement 2)
1065 The threshold goes up in value when the application frees memory that was
1066 allocated with the mmap allocator. The idea is that once the application
1067 starts freeing memory of a certain size, it's highly probable that this is
1068 a size the application uses for transient allocations. This estimator
1069 is there to satisfy the new third requirement.
1073 #define M_MMAP_THRESHOLD -3
1075 #ifndef DEFAULT_MMAP_THRESHOLD
1076 #define DEFAULT_MMAP_THRESHOLD DEFAULT_MMAP_THRESHOLD_MIN
1077 #endif
1080 M_MMAP_MAX is the maximum number of requests to simultaneously
1081 service using mmap. This parameter exists because
1082 some systems have a limited number of internal tables for
1083 use by mmap, and using more than a few of them may degrade
1084 performance.
1086 The default is set to a value that serves only as a safeguard.
1087 Setting to 0 disables use of mmap for servicing large requests.
1090 #define M_MMAP_MAX -4
1092 #ifndef DEFAULT_MMAP_MAX
1093 #define DEFAULT_MMAP_MAX (65536)
1094 #endif
1096 #include <malloc.h>
1098 #ifndef RETURN_ADDRESS
1099 #define RETURN_ADDRESS(X_) (NULL)
1100 #endif
1102 /* Forward declarations. */
1103 struct malloc_chunk;
1104 typedef struct malloc_chunk* mchunkptr;
1106 /* Internal routines. */
1108 static void* _int_malloc(mstate, size_t);
1109 static void _int_free(mstate, mchunkptr, int);
1110 static void* _int_realloc(mstate, mchunkptr, INTERNAL_SIZE_T,
1111 INTERNAL_SIZE_T);
1112 static void* _int_memalign(mstate, size_t, size_t);
1113 #if IS_IN (libc)
1114 static void* _mid_memalign(size_t, size_t, void *);
1115 #endif
1117 static void malloc_printerr(const char *str) __attribute__ ((noreturn));
1119 static void munmap_chunk(mchunkptr p);
1120 #if HAVE_MREMAP
1121 static mchunkptr mremap_chunk(mchunkptr p, size_t new_size);
1122 #endif
1124 /* ------------------ MMAP support ------------------ */
1127 #include <fcntl.h>
1128 #include <sys/mman.h>
1130 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
1131 # define MAP_ANONYMOUS MAP_ANON
1132 #endif
1134 #ifndef MAP_NORESERVE
1135 # define MAP_NORESERVE 0
1136 #endif
1138 #define MMAP(addr, size, prot, flags) \
1139 __mmap((addr), (size), (prot), (flags)|MAP_ANONYMOUS|MAP_PRIVATE, -1, 0)
1143 ----------------------- Chunk representations -----------------------
1148 This struct declaration is misleading (but accurate and necessary).
1149 It declares a "view" into memory allowing access to necessary
1150 fields at known offsets from a given base. See explanation below.
1153 struct malloc_chunk {
1155 INTERNAL_SIZE_T mchunk_prev_size; /* Size of previous chunk (if free). */
1156 INTERNAL_SIZE_T mchunk_size; /* Size in bytes, including overhead. */
1158 struct malloc_chunk* fd; /* double links -- used only if free. */
1159 struct malloc_chunk* bk;
1161 /* Only used for large blocks: pointer to next larger size. */
1162 struct malloc_chunk* fd_nextsize; /* double links -- used only if free. */
1163 struct malloc_chunk* bk_nextsize;
1168 malloc_chunk details:
1170 (The following includes lightly edited explanations by Colin Plumb.)
1172 Chunks of memory are maintained using a `boundary tag' method as
1173 described in e.g., Knuth or Standish. (See the paper by Paul
1174 Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
1175 survey of such techniques.) Sizes of free chunks are stored both
1176 in the front of each chunk and at the end. This makes
1177 consolidating fragmented chunks into bigger chunks very fast. The
1178 size fields also hold bits representing whether chunks are free or
1179 in use.
1181 An allocated chunk looks like this:
1184 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1185 | Size of previous chunk, if unallocated (P clear) |
1186 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1187 | Size of chunk, in bytes |A|M|P|
1188 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1189 | User data starts here... .
1191 . (malloc_usable_size() bytes) .
1193 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1194 | (size of chunk, but used for application data) |
1195 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1196 | Size of next chunk, in bytes |A|0|1|
1197 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1199 Where "chunk" is the front of the chunk for the purpose of most of
1200 the malloc code, but "mem" is the pointer that is returned to the
1201 user. "Nextchunk" is the beginning of the next contiguous chunk.
1203 Chunks always begin on even word boundaries, so the mem portion
1204 (which is returned to the user) is also on an even word boundary, and
1205 thus at least double-word aligned.
1207 Free chunks are stored in circular doubly-linked lists, and look like this:
1209 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1210 | Size of previous chunk, if unallocated (P clear) |
1211 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1212 `head:' | Size of chunk, in bytes |A|0|P|
1213 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1214 | Forward pointer to next chunk in list |
1215 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1216 | Back pointer to previous chunk in list |
1217 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1218 | Unused space (may be 0 bytes long) .
1221 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1222 `foot:' | Size of chunk, in bytes |
1223 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1224 | Size of next chunk, in bytes |A|0|0|
1225 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1227 The P (PREV_INUSE) bit, stored in the unused low-order bit of the
1228 chunk size (which is always a multiple of two words), is an in-use
1229 bit for the *previous* chunk. If that bit is *clear*, then the
1230 word before the current chunk size contains the previous chunk
1231 size, and can be used to find the front of the previous chunk.
1232 The very first chunk allocated always has this bit set,
1233 preventing access to non-existent (or non-owned) memory. If
1234 prev_inuse is set for any given chunk, then you CANNOT determine
1235 the size of the previous chunk, and might even get a memory
1236 addressing fault when trying to do so.
1238 The A (NON_MAIN_ARENA) bit is cleared for chunks on the initial,
1239 main arena, described by the main_arena variable. When additional
1240 threads are spawned, each thread receives its own arena (up to a
1241 configurable limit, after which arenas are reused for multiple
1242 threads), and the chunks in these arenas have the A bit set. To
1243 find the arena for a chunk on such a non-main arena, heap_for_ptr
1244 performs a bit mask operation and indirection through the ar_ptr
1245 member of the per-heap header heap_info (see arena.c).
1247 Note that the `foot' of the current chunk is actually represented
1248 as the prev_size of the NEXT chunk. This makes it easier to
1249 deal with alignments etc but can be very confusing when trying
1250 to extend or adapt this code.
1252 The three exceptions to all this are:
1254 1. The special chunk `top' doesn't bother using the
1255 trailing size field since there is no next contiguous chunk
1256 that would have to index off it. After initialization, `top'
1257 is forced to always exist. If it would become less than
1258 MINSIZE bytes long, it is replenished.
1260 2. Chunks allocated via mmap, which have the second-lowest-order
1261 bit M (IS_MMAPPED) set in their size fields. Because they are
1262 allocated one-by-one, each must contain its own trailing size
1263 field. If the M bit is set, the other bits are ignored
1264 (because mmapped chunks are neither in an arena, nor adjacent
1265 to a freed chunk). The M bit is also used for chunks which
1266 originally came from a dumped heap via malloc_set_state in
1267 hooks.c.
1269 3. Chunks in fastbins are treated as allocated chunks from the
1270 point of view of the chunk allocator. They are consolidated
1271 with their neighbors only in bulk, in malloc_consolidate.
1275 ---------- Size and alignment checks and conversions ----------
1278 /* Conversion from malloc headers to user pointers, and back. When
1279 using memory tagging the user data and the malloc data structure
1280 headers have distinct tags. Converting fully from one to the other
1281 involves extracting the tag at the other address and creating a
1282 suitable pointer using it. That can be quite expensive. There are
1283 cases when the pointers are not dereferenced (for example only used
1284 for alignment check) so the tags are not relevant, and there are
1285 cases when user data is not tagged distinctly from malloc headers
1286 (user data is untagged because tagging is done late in malloc and
1287 early in free). User memory tagging across internal interfaces:
1289 sysmalloc: Returns untagged memory.
1290 _int_malloc: Returns untagged memory.
1291 _int_free: Takes untagged memory.
1292 _int_memalign: Returns untagged memory.
1293 _int_memalign: Returns untagged memory.
1294 _mid_memalign: Returns tagged memory.
1295 _int_realloc: Takes and returns tagged memory.
1298 /* The chunk header is two SIZE_SZ elements, but this is used widely, so
1299 we define it here for clarity later. */
1300 #define CHUNK_HDR_SZ (2 * SIZE_SZ)
1302 /* Convert a chunk address to a user mem pointer without correcting
1303 the tag. */
1304 #define chunk2mem(p) ((void*)((char*)(p) + CHUNK_HDR_SZ))
1306 /* Convert a chunk address to a user mem pointer and extract the right tag. */
1307 #define chunk2mem_tag(p) ((void*)tag_at ((char*)(p) + CHUNK_HDR_SZ))
1309 /* Convert a user mem pointer to a chunk address and extract the right tag. */
1310 #define mem2chunk(mem) ((mchunkptr)tag_at (((char*)(mem) - CHUNK_HDR_SZ)))
1312 /* The smallest possible chunk */
1313 #define MIN_CHUNK_SIZE (offsetof(struct malloc_chunk, fd_nextsize))
1315 /* The smallest size we can malloc is an aligned minimal chunk */
1317 #define MINSIZE \
1318 (unsigned long)(((MIN_CHUNK_SIZE+MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK))
1320 /* Check if m has acceptable alignment */
1322 #define aligned_OK(m) (((unsigned long)(m) & MALLOC_ALIGN_MASK) == 0)
1324 #define misaligned_chunk(p) \
1325 ((uintptr_t)(MALLOC_ALIGNMENT == CHUNK_HDR_SZ ? (p) : chunk2mem (p)) \
1326 & MALLOC_ALIGN_MASK)
1328 /* pad request bytes into a usable size -- internal version */
1329 /* Note: This must be a macro that evaluates to a compile time constant
1330 if passed a literal constant. */
1331 #define request2size(req) \
1332 (((req) + SIZE_SZ + MALLOC_ALIGN_MASK < MINSIZE) ? \
1333 MINSIZE : \
1334 ((req) + SIZE_SZ + MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK)
1336 /* Check if REQ overflows when padded and aligned and if the resulting value
1337 is less than PTRDIFF_T. Returns TRUE and the requested size or MINSIZE in
1338 case the value is less than MINSIZE on SZ or false if any of the previous
1339 check fail. */
1340 static inline bool
1341 checked_request2size (size_t req, size_t *sz) __nonnull (1)
1343 if (__glibc_unlikely (req > PTRDIFF_MAX))
1344 return false;
1346 /* When using tagged memory, we cannot share the end of the user
1347 block with the header for the next chunk, so ensure that we
1348 allocate blocks that are rounded up to the granule size. Take
1349 care not to overflow from close to MAX_SIZE_T to a small
1350 number. Ideally, this would be part of request2size(), but that
1351 must be a macro that produces a compile time constant if passed
1352 a constant literal. */
1353 if (__glibc_unlikely (mtag_enabled))
1355 /* Ensure this is not evaluated if !mtag_enabled, see gcc PR 99551. */
1356 asm ("");
1358 req = (req + (__MTAG_GRANULE_SIZE - 1)) &
1359 ~(size_t)(__MTAG_GRANULE_SIZE - 1);
1362 *sz = request2size (req);
1363 return true;
1367 --------------- Physical chunk operations ---------------
1371 /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
1372 #define PREV_INUSE 0x1
1374 /* extract inuse bit of previous chunk */
1375 #define prev_inuse(p) ((p)->mchunk_size & PREV_INUSE)
1378 /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
1379 #define IS_MMAPPED 0x2
1381 /* check for mmap()'ed chunk */
1382 #define chunk_is_mmapped(p) ((p)->mchunk_size & IS_MMAPPED)
1385 /* size field is or'ed with NON_MAIN_ARENA if the chunk was obtained
1386 from a non-main arena. This is only set immediately before handing
1387 the chunk to the user, if necessary. */
1388 #define NON_MAIN_ARENA 0x4
1390 /* Check for chunk from main arena. */
1391 #define chunk_main_arena(p) (((p)->mchunk_size & NON_MAIN_ARENA) == 0)
1393 /* Mark a chunk as not being on the main arena. */
1394 #define set_non_main_arena(p) ((p)->mchunk_size |= NON_MAIN_ARENA)
1398 Bits to mask off when extracting size
1400 Note: IS_MMAPPED is intentionally not masked off from size field in
1401 macros for which mmapped chunks should never be seen. This should
1402 cause helpful core dumps to occur if it is tried by accident by
1403 people extending or adapting this malloc.
1405 #define SIZE_BITS (PREV_INUSE | IS_MMAPPED | NON_MAIN_ARENA)
1407 /* Get size, ignoring use bits */
1408 #define chunksize(p) (chunksize_nomask (p) & ~(SIZE_BITS))
1410 /* Like chunksize, but do not mask SIZE_BITS. */
1411 #define chunksize_nomask(p) ((p)->mchunk_size)
1413 /* Ptr to next physical malloc_chunk. */
1414 #define next_chunk(p) ((mchunkptr) (((char *) (p)) + chunksize (p)))
1416 /* Size of the chunk below P. Only valid if !prev_inuse (P). */
1417 #define prev_size(p) ((p)->mchunk_prev_size)
1419 /* Set the size of the chunk below P. Only valid if !prev_inuse (P). */
1420 #define set_prev_size(p, sz) ((p)->mchunk_prev_size = (sz))
1422 /* Ptr to previous physical malloc_chunk. Only valid if !prev_inuse (P). */
1423 #define prev_chunk(p) ((mchunkptr) (((char *) (p)) - prev_size (p)))
1425 /* Treat space at ptr + offset as a chunk */
1426 #define chunk_at_offset(p, s) ((mchunkptr) (((char *) (p)) + (s)))
1428 /* extract p's inuse bit */
1429 #define inuse(p) \
1430 ((((mchunkptr) (((char *) (p)) + chunksize (p)))->mchunk_size) & PREV_INUSE)
1432 /* set/clear chunk as being inuse without otherwise disturbing */
1433 #define set_inuse(p) \
1434 ((mchunkptr) (((char *) (p)) + chunksize (p)))->mchunk_size |= PREV_INUSE
1436 #define clear_inuse(p) \
1437 ((mchunkptr) (((char *) (p)) + chunksize (p)))->mchunk_size &= ~(PREV_INUSE)
1440 /* check/set/clear inuse bits in known places */
1441 #define inuse_bit_at_offset(p, s) \
1442 (((mchunkptr) (((char *) (p)) + (s)))->mchunk_size & PREV_INUSE)
1444 #define set_inuse_bit_at_offset(p, s) \
1445 (((mchunkptr) (((char *) (p)) + (s)))->mchunk_size |= PREV_INUSE)
1447 #define clear_inuse_bit_at_offset(p, s) \
1448 (((mchunkptr) (((char *) (p)) + (s)))->mchunk_size &= ~(PREV_INUSE))
1451 /* Set size at head, without disturbing its use bit */
1452 #define set_head_size(p, s) ((p)->mchunk_size = (((p)->mchunk_size & SIZE_BITS) | (s)))
1454 /* Set size/use field */
1455 #define set_head(p, s) ((p)->mchunk_size = (s))
1457 /* Set size at footer (only when chunk is not in use) */
1458 #define set_foot(p, s) (((mchunkptr) ((char *) (p) + (s)))->mchunk_prev_size = (s))
1460 #pragma GCC poison mchunk_size
1461 #pragma GCC poison mchunk_prev_size
1463 /* This is the size of the real usable data in the chunk. Not valid for
1464 dumped heap chunks. */
1465 #define memsize(p) \
1466 (__MTAG_GRANULE_SIZE > SIZE_SZ && __glibc_unlikely (mtag_enabled) ? \
1467 chunksize (p) - CHUNK_HDR_SZ : \
1468 chunksize (p) - CHUNK_HDR_SZ + (chunk_is_mmapped (p) ? 0 : SIZE_SZ))
1470 /* If memory tagging is enabled the layout changes to accommodate the granule
1471 size, this is wasteful for small allocations so not done by default.
1472 Both the chunk header and user data has to be granule aligned. */
1473 _Static_assert (__MTAG_GRANULE_SIZE <= CHUNK_HDR_SZ,
1474 "memory tagging is not supported with large granule.");
1476 static __always_inline void *
1477 tag_new_usable (void *ptr)
1479 if (__glibc_unlikely (mtag_enabled) && ptr)
1481 mchunkptr cp = mem2chunk(ptr);
1482 ptr = __libc_mtag_tag_region (__libc_mtag_new_tag (ptr), memsize (cp));
1484 return ptr;
1488 -------------------- Internal data structures --------------------
1490 All internal state is held in an instance of malloc_state defined
1491 below. There are no other static variables, except in two optional
1492 cases:
1493 * If USE_MALLOC_LOCK is defined, the mALLOC_MUTEx declared above.
1494 * If mmap doesn't support MAP_ANONYMOUS, a dummy file descriptor
1495 for mmap.
1497 Beware of lots of tricks that minimize the total bookkeeping space
1498 requirements. The result is a little over 1K bytes (for 4byte
1499 pointers and size_t.)
1503 Bins
1505 An array of bin headers for free chunks. Each bin is doubly
1506 linked. The bins are approximately proportionally (log) spaced.
1507 There are a lot of these bins (128). This may look excessive, but
1508 works very well in practice. Most bins hold sizes that are
1509 unusual as malloc request sizes, but are more usual for fragments
1510 and consolidated sets of chunks, which is what these bins hold, so
1511 they can be found quickly. All procedures maintain the invariant
1512 that no consolidated chunk physically borders another one, so each
1513 chunk in a list is known to be preceeded and followed by either
1514 inuse chunks or the ends of memory.
1516 Chunks in bins are kept in size order, with ties going to the
1517 approximately least recently used chunk. Ordering isn't needed
1518 for the small bins, which all contain the same-sized chunks, but
1519 facilitates best-fit allocation for larger chunks. These lists
1520 are just sequential. Keeping them in order almost never requires
1521 enough traversal to warrant using fancier ordered data
1522 structures.
1524 Chunks of the same size are linked with the most
1525 recently freed at the front, and allocations are taken from the
1526 back. This results in LRU (FIFO) allocation order, which tends
1527 to give each chunk an equal opportunity to be consolidated with
1528 adjacent freed chunks, resulting in larger free chunks and less
1529 fragmentation.
1531 To simplify use in double-linked lists, each bin header acts
1532 as a malloc_chunk. This avoids special-casing for headers.
1533 But to conserve space and improve locality, we allocate
1534 only the fd/bk pointers of bins, and then use repositioning tricks
1535 to treat these as the fields of a malloc_chunk*.
1538 typedef struct malloc_chunk *mbinptr;
1540 /* addressing -- note that bin_at(0) does not exist */
1541 #define bin_at(m, i) \
1542 (mbinptr) (((char *) &((m)->bins[((i) - 1) * 2])) \
1543 - offsetof (struct malloc_chunk, fd))
1545 /* analog of ++bin */
1546 #define next_bin(b) ((mbinptr) ((char *) (b) + (sizeof (mchunkptr) << 1)))
1548 /* Reminders about list directionality within bins */
1549 #define first(b) ((b)->fd)
1550 #define last(b) ((b)->bk)
1553 Indexing
1555 Bins for sizes < 512 bytes contain chunks of all the same size, spaced
1556 8 bytes apart. Larger bins are approximately logarithmically spaced:
1558 64 bins of size 8
1559 32 bins of size 64
1560 16 bins of size 512
1561 8 bins of size 4096
1562 4 bins of size 32768
1563 2 bins of size 262144
1564 1 bin of size what's left
1566 There is actually a little bit of slop in the numbers in bin_index
1567 for the sake of speed. This makes no difference elsewhere.
1569 The bins top out around 1MB because we expect to service large
1570 requests via mmap.
1572 Bin 0 does not exist. Bin 1 is the unordered list; if that would be
1573 a valid chunk size the small bins are bumped up one.
1576 #define NBINS 128
1577 #define NSMALLBINS 64
1578 #define SMALLBIN_WIDTH MALLOC_ALIGNMENT
1579 #define SMALLBIN_CORRECTION (MALLOC_ALIGNMENT > CHUNK_HDR_SZ)
1580 #define MIN_LARGE_SIZE ((NSMALLBINS - SMALLBIN_CORRECTION) * SMALLBIN_WIDTH)
1582 #define in_smallbin_range(sz) \
1583 ((unsigned long) (sz) < (unsigned long) MIN_LARGE_SIZE)
1585 #define smallbin_index(sz) \
1586 ((SMALLBIN_WIDTH == 16 ? (((unsigned) (sz)) >> 4) : (((unsigned) (sz)) >> 3))\
1587 + SMALLBIN_CORRECTION)
1589 #define largebin_index_32(sz) \
1590 (((((unsigned long) (sz)) >> 6) <= 38) ? 56 + (((unsigned long) (sz)) >> 6) :\
1591 ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\
1592 ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\
1593 ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\
1594 ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\
1595 126)
1597 #define largebin_index_32_big(sz) \
1598 (((((unsigned long) (sz)) >> 6) <= 45) ? 49 + (((unsigned long) (sz)) >> 6) :\
1599 ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\
1600 ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\
1601 ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\
1602 ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\
1603 126)
1605 // XXX It remains to be seen whether it is good to keep the widths of
1606 // XXX the buckets the same or whether it should be scaled by a factor
1607 // XXX of two as well.
1608 #define largebin_index_64(sz) \
1609 (((((unsigned long) (sz)) >> 6) <= 48) ? 48 + (((unsigned long) (sz)) >> 6) :\
1610 ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\
1611 ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\
1612 ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\
1613 ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\
1614 126)
1616 #define largebin_index(sz) \
1617 (SIZE_SZ == 8 ? largebin_index_64 (sz) \
1618 : MALLOC_ALIGNMENT == 16 ? largebin_index_32_big (sz) \
1619 : largebin_index_32 (sz))
1621 #define bin_index(sz) \
1622 ((in_smallbin_range (sz)) ? smallbin_index (sz) : largebin_index (sz))
1624 /* Take a chunk off a bin list. */
1625 static void
1626 unlink_chunk (mstate av, mchunkptr p)
1628 if (chunksize (p) != prev_size (next_chunk (p)))
1629 malloc_printerr ("corrupted size vs. prev_size");
1631 mchunkptr fd = p->fd;
1632 mchunkptr bk = p->bk;
1634 if (__builtin_expect (fd->bk != p || bk->fd != p, 0))
1635 malloc_printerr ("corrupted double-linked list");
1637 fd->bk = bk;
1638 bk->fd = fd;
1639 if (!in_smallbin_range (chunksize_nomask (p)) && p->fd_nextsize != NULL)
1641 if (p->fd_nextsize->bk_nextsize != p
1642 || p->bk_nextsize->fd_nextsize != p)
1643 malloc_printerr ("corrupted double-linked list (not small)");
1645 if (fd->fd_nextsize == NULL)
1647 if (p->fd_nextsize == p)
1648 fd->fd_nextsize = fd->bk_nextsize = fd;
1649 else
1651 fd->fd_nextsize = p->fd_nextsize;
1652 fd->bk_nextsize = p->bk_nextsize;
1653 p->fd_nextsize->bk_nextsize = fd;
1654 p->bk_nextsize->fd_nextsize = fd;
1657 else
1659 p->fd_nextsize->bk_nextsize = p->bk_nextsize;
1660 p->bk_nextsize->fd_nextsize = p->fd_nextsize;
1666 Unsorted chunks
1668 All remainders from chunk splits, as well as all returned chunks,
1669 are first placed in the "unsorted" bin. They are then placed
1670 in regular bins after malloc gives them ONE chance to be used before
1671 binning. So, basically, the unsorted_chunks list acts as a queue,
1672 with chunks being placed on it in free (and malloc_consolidate),
1673 and taken off (to be either used or placed in bins) in malloc.
1675 The NON_MAIN_ARENA flag is never set for unsorted chunks, so it
1676 does not have to be taken into account in size comparisons.
1679 /* The otherwise unindexable 1-bin is used to hold unsorted chunks. */
1680 #define unsorted_chunks(M) (bin_at (M, 1))
1685 The top-most available chunk (i.e., the one bordering the end of
1686 available memory) is treated specially. It is never included in
1687 any bin, is used only if no other chunk is available, and is
1688 released back to the system if it is very large (see
1689 M_TRIM_THRESHOLD). Because top initially
1690 points to its own bin with initial zero size, thus forcing
1691 extension on the first malloc request, we avoid having any special
1692 code in malloc to check whether it even exists yet. But we still
1693 need to do so when getting memory from system, so we make
1694 initial_top treat the bin as a legal but unusable chunk during the
1695 interval between initialization and the first call to
1696 sysmalloc. (This is somewhat delicate, since it relies on
1697 the 2 preceding words to be zero during this interval as well.)
1700 /* Conveniently, the unsorted bin can be used as dummy top on first call */
1701 #define initial_top(M) (unsorted_chunks (M))
1704 Binmap
1706 To help compensate for the large number of bins, a one-level index
1707 structure is used for bin-by-bin searching. `binmap' is a
1708 bitvector recording whether bins are definitely empty so they can
1709 be skipped over during during traversals. The bits are NOT always
1710 cleared as soon as bins are empty, but instead only
1711 when they are noticed to be empty during traversal in malloc.
1714 /* Conservatively use 32 bits per map word, even if on 64bit system */
1715 #define BINMAPSHIFT 5
1716 #define BITSPERMAP (1U << BINMAPSHIFT)
1717 #define BINMAPSIZE (NBINS / BITSPERMAP)
1719 #define idx2block(i) ((i) >> BINMAPSHIFT)
1720 #define idx2bit(i) ((1U << ((i) & ((1U << BINMAPSHIFT) - 1))))
1722 #define mark_bin(m, i) ((m)->binmap[idx2block (i)] |= idx2bit (i))
1723 #define unmark_bin(m, i) ((m)->binmap[idx2block (i)] &= ~(idx2bit (i)))
1724 #define get_binmap(m, i) ((m)->binmap[idx2block (i)] & idx2bit (i))
1727 Fastbins
1729 An array of lists holding recently freed small chunks. Fastbins
1730 are not doubly linked. It is faster to single-link them, and
1731 since chunks are never removed from the middles of these lists,
1732 double linking is not necessary. Also, unlike regular bins, they
1733 are not even processed in FIFO order (they use faster LIFO) since
1734 ordering doesn't much matter in the transient contexts in which
1735 fastbins are normally used.
1737 Chunks in fastbins keep their inuse bit set, so they cannot
1738 be consolidated with other free chunks. malloc_consolidate
1739 releases all chunks in fastbins and consolidates them with
1740 other free chunks.
1743 typedef struct malloc_chunk *mfastbinptr;
1744 #define fastbin(ar_ptr, idx) ((ar_ptr)->fastbinsY[idx])
1746 /* offset 2 to use otherwise unindexable first 2 bins */
1747 #define fastbin_index(sz) \
1748 ((((unsigned int) (sz)) >> (SIZE_SZ == 8 ? 4 : 3)) - 2)
1751 /* The maximum fastbin request size we support */
1752 #define MAX_FAST_SIZE (80 * SIZE_SZ / 4)
1754 #define NFASTBINS (fastbin_index (request2size (MAX_FAST_SIZE)) + 1)
1757 FASTBIN_CONSOLIDATION_THRESHOLD is the size of a chunk in free()
1758 that triggers automatic consolidation of possibly-surrounding
1759 fastbin chunks. This is a heuristic, so the exact value should not
1760 matter too much. It is defined at half the default trim threshold as a
1761 compromise heuristic to only attempt consolidation if it is likely
1762 to lead to trimming. However, it is not dynamically tunable, since
1763 consolidation reduces fragmentation surrounding large chunks even
1764 if trimming is not used.
1767 #define FASTBIN_CONSOLIDATION_THRESHOLD (65536UL)
1770 NONCONTIGUOUS_BIT indicates that MORECORE does not return contiguous
1771 regions. Otherwise, contiguity is exploited in merging together,
1772 when possible, results from consecutive MORECORE calls.
1774 The initial value comes from MORECORE_CONTIGUOUS, but is
1775 changed dynamically if mmap is ever used as an sbrk substitute.
1778 #define NONCONTIGUOUS_BIT (2U)
1780 #define contiguous(M) (((M)->flags & NONCONTIGUOUS_BIT) == 0)
1781 #define noncontiguous(M) (((M)->flags & NONCONTIGUOUS_BIT) != 0)
1782 #define set_noncontiguous(M) ((M)->flags |= NONCONTIGUOUS_BIT)
1783 #define set_contiguous(M) ((M)->flags &= ~NONCONTIGUOUS_BIT)
1785 /* Maximum size of memory handled in fastbins. */
1786 static INTERNAL_SIZE_T global_max_fast;
1789 Set value of max_fast.
1790 Use impossibly small value if 0.
1791 Precondition: there are no existing fastbin chunks in the main arena.
1792 Since do_check_malloc_state () checks this, we call malloc_consolidate ()
1793 before changing max_fast. Note other arenas will leak their fast bin
1794 entries if max_fast is reduced.
1797 #define set_max_fast(s) \
1798 global_max_fast = (((size_t) (s) <= MALLOC_ALIGN_MASK - SIZE_SZ) \
1799 ? MIN_CHUNK_SIZE / 2 : ((s + SIZE_SZ) & ~MALLOC_ALIGN_MASK))
1801 static inline INTERNAL_SIZE_T
1802 get_max_fast (void)
1804 /* Tell the GCC optimizers that global_max_fast is never larger
1805 than MAX_FAST_SIZE. This avoids out-of-bounds array accesses in
1806 _int_malloc after constant propagation of the size parameter.
1807 (The code never executes because malloc preserves the
1808 global_max_fast invariant, but the optimizers may not recognize
1809 this.) */
1810 if (global_max_fast > MAX_FAST_SIZE)
1811 __builtin_unreachable ();
1812 return global_max_fast;
1816 ----------- Internal state representation and initialization -----------
1820 have_fastchunks indicates that there are probably some fastbin chunks.
1821 It is set true on entering a chunk into any fastbin, and cleared early in
1822 malloc_consolidate. The value is approximate since it may be set when there
1823 are no fastbin chunks, or it may be clear even if there are fastbin chunks
1824 available. Given it's sole purpose is to reduce number of redundant calls to
1825 malloc_consolidate, it does not affect correctness. As a result we can safely
1826 use relaxed atomic accesses.
1830 struct malloc_state
1832 /* Serialize access. */
1833 __libc_lock_define (, mutex);
1835 /* Flags (formerly in max_fast). */
1836 int flags;
1838 /* Set if the fastbin chunks contain recently inserted free blocks. */
1839 /* Note this is a bool but not all targets support atomics on booleans. */
1840 int have_fastchunks;
1842 /* Fastbins */
1843 mfastbinptr fastbinsY[NFASTBINS];
1845 /* Base of the topmost chunk -- not otherwise kept in a bin */
1846 mchunkptr top;
1848 /* The remainder from the most recent split of a small request */
1849 mchunkptr last_remainder;
1851 /* Normal bins packed as described above */
1852 mchunkptr bins[NBINS * 2 - 2];
1854 /* Bitmap of bins */
1855 unsigned int binmap[BINMAPSIZE];
1857 /* Linked list */
1858 struct malloc_state *next;
1860 /* Linked list for free arenas. Access to this field is serialized
1861 by free_list_lock in arena.c. */
1862 struct malloc_state *next_free;
1864 /* Number of threads attached to this arena. 0 if the arena is on
1865 the free list. Access to this field is serialized by
1866 free_list_lock in arena.c. */
1867 INTERNAL_SIZE_T attached_threads;
1869 /* Memory allocated from the system in this arena. */
1870 INTERNAL_SIZE_T system_mem;
1871 INTERNAL_SIZE_T max_system_mem;
1874 struct malloc_par
1876 /* Tunable parameters */
1877 unsigned long trim_threshold;
1878 INTERNAL_SIZE_T top_pad;
1879 INTERNAL_SIZE_T mmap_threshold;
1880 INTERNAL_SIZE_T arena_test;
1881 INTERNAL_SIZE_T arena_max;
1883 #if HAVE_TUNABLES
1884 /* Transparent Large Page support. */
1885 INTERNAL_SIZE_T thp_pagesize;
1886 /* A value different than 0 means to align mmap allocation to hp_pagesize
1887 add hp_flags on flags. */
1888 INTERNAL_SIZE_T hp_pagesize;
1889 int hp_flags;
1890 #endif
1892 /* Memory map support */
1893 int n_mmaps;
1894 int n_mmaps_max;
1895 int max_n_mmaps;
1896 /* the mmap_threshold is dynamic, until the user sets
1897 it manually, at which point we need to disable any
1898 dynamic behavior. */
1899 int no_dyn_threshold;
1901 /* Statistics */
1902 INTERNAL_SIZE_T mmapped_mem;
1903 INTERNAL_SIZE_T max_mmapped_mem;
1905 /* First address handed out by MORECORE/sbrk. */
1906 char *sbrk_base;
1908 #if USE_TCACHE
1909 /* Maximum number of buckets to use. */
1910 size_t tcache_bins;
1911 size_t tcache_max_bytes;
1912 /* Maximum number of chunks in each bucket. */
1913 size_t tcache_count;
1914 /* Maximum number of chunks to remove from the unsorted list, which
1915 aren't used to prefill the cache. */
1916 size_t tcache_unsorted_limit;
1917 #endif
1920 /* There are several instances of this struct ("arenas") in this
1921 malloc. If you are adapting this malloc in a way that does NOT use
1922 a static or mmapped malloc_state, you MUST explicitly zero-fill it
1923 before using. This malloc relies on the property that malloc_state
1924 is initialized to all zeroes (as is true of C statics). */
1926 static struct malloc_state main_arena =
1928 .mutex = _LIBC_LOCK_INITIALIZER,
1929 .next = &main_arena,
1930 .attached_threads = 1
1933 /* There is only one instance of the malloc parameters. */
1935 static struct malloc_par mp_ =
1937 .top_pad = DEFAULT_TOP_PAD,
1938 .n_mmaps_max = DEFAULT_MMAP_MAX,
1939 .mmap_threshold = DEFAULT_MMAP_THRESHOLD,
1940 .trim_threshold = DEFAULT_TRIM_THRESHOLD,
1941 #define NARENAS_FROM_NCORES(n) ((n) * (sizeof (long) == 4 ? 2 : 8))
1942 .arena_test = NARENAS_FROM_NCORES (1)
1943 #if USE_TCACHE
1945 .tcache_count = TCACHE_FILL_COUNT,
1946 .tcache_bins = TCACHE_MAX_BINS,
1947 .tcache_max_bytes = tidx2usize (TCACHE_MAX_BINS-1),
1948 .tcache_unsorted_limit = 0 /* No limit. */
1949 #endif
1953 Initialize a malloc_state struct.
1955 This is called from ptmalloc_init () or from _int_new_arena ()
1956 when creating a new arena.
1959 static void
1960 malloc_init_state (mstate av)
1962 int i;
1963 mbinptr bin;
1965 /* Establish circular links for normal bins */
1966 for (i = 1; i < NBINS; ++i)
1968 bin = bin_at (av, i);
1969 bin->fd = bin->bk = bin;
1972 #if MORECORE_CONTIGUOUS
1973 if (av != &main_arena)
1974 #endif
1975 set_noncontiguous (av);
1976 if (av == &main_arena)
1977 set_max_fast (DEFAULT_MXFAST);
1978 atomic_store_relaxed (&av->have_fastchunks, false);
1980 av->top = initial_top (av);
1984 Other internal utilities operating on mstates
1987 static void *sysmalloc (INTERNAL_SIZE_T, mstate);
1988 static int systrim (size_t, mstate);
1989 static void malloc_consolidate (mstate);
1992 /* -------------- Early definitions for debugging hooks ---------------- */
1994 /* This function is called from the arena shutdown hook, to free the
1995 thread cache (if it exists). */
1996 static void tcache_thread_shutdown (void);
1998 /* ------------------ Testing support ----------------------------------*/
2000 static int perturb_byte;
2002 static void
2003 alloc_perturb (char *p, size_t n)
2005 if (__glibc_unlikely (perturb_byte))
2006 memset (p, perturb_byte ^ 0xff, n);
2009 static void
2010 free_perturb (char *p, size_t n)
2012 if (__glibc_unlikely (perturb_byte))
2013 memset (p, perturb_byte, n);
2018 #include <stap-probe.h>
2020 /* ----------- Routines dealing with transparent huge pages ----------- */
2022 static inline void
2023 madvise_thp (void *p, INTERNAL_SIZE_T size)
2025 #if HAVE_TUNABLES && defined (MADV_HUGEPAGE)
2026 /* Do not consider areas smaller than a huge page or if the tunable is
2027 not active. */
2028 if (mp_.thp_pagesize == 0 || size < mp_.thp_pagesize)
2029 return;
2031 /* Linux requires the input address to be page-aligned, and unaligned
2032 inputs happens only for initial data segment. */
2033 if (__glibc_unlikely (!PTR_IS_ALIGNED (p, GLRO (dl_pagesize))))
2035 void *q = PTR_ALIGN_DOWN (p, GLRO (dl_pagesize));
2036 size += PTR_DIFF (p, q);
2037 p = q;
2040 __madvise (p, size, MADV_HUGEPAGE);
2041 #endif
2044 /* ------------------- Support for multiple arenas -------------------- */
2045 #include "arena.c"
2048 Debugging support
2050 These routines make a number of assertions about the states
2051 of data structures that should be true at all times. If any
2052 are not true, it's very likely that a user program has somehow
2053 trashed memory. (It's also possible that there is a coding error
2054 in malloc. In which case, please report it!)
2057 #if !MALLOC_DEBUG
2059 # define check_chunk(A, P)
2060 # define check_free_chunk(A, P)
2061 # define check_inuse_chunk(A, P)
2062 # define check_remalloced_chunk(A, P, N)
2063 # define check_malloced_chunk(A, P, N)
2064 # define check_malloc_state(A)
2066 #else
2068 # define check_chunk(A, P) do_check_chunk (A, P)
2069 # define check_free_chunk(A, P) do_check_free_chunk (A, P)
2070 # define check_inuse_chunk(A, P) do_check_inuse_chunk (A, P)
2071 # define check_remalloced_chunk(A, P, N) do_check_remalloced_chunk (A, P, N)
2072 # define check_malloced_chunk(A, P, N) do_check_malloced_chunk (A, P, N)
2073 # define check_malloc_state(A) do_check_malloc_state (A)
2076 Properties of all chunks
2079 static void
2080 do_check_chunk (mstate av, mchunkptr p)
2082 unsigned long sz = chunksize (p);
2083 /* min and max possible addresses assuming contiguous allocation */
2084 char *max_address = (char *) (av->top) + chunksize (av->top);
2085 char *min_address = max_address - av->system_mem;
2087 if (!chunk_is_mmapped (p))
2089 /* Has legal address ... */
2090 if (p != av->top)
2092 if (contiguous (av))
2094 assert (((char *) p) >= min_address);
2095 assert (((char *) p + sz) <= ((char *) (av->top)));
2098 else
2100 /* top size is always at least MINSIZE */
2101 assert ((unsigned long) (sz) >= MINSIZE);
2102 /* top predecessor always marked inuse */
2103 assert (prev_inuse (p));
2106 else
2108 /* address is outside main heap */
2109 if (contiguous (av) && av->top != initial_top (av))
2111 assert (((char *) p) < min_address || ((char *) p) >= max_address);
2113 /* chunk is page-aligned */
2114 assert (((prev_size (p) + sz) & (GLRO (dl_pagesize) - 1)) == 0);
2115 /* mem is aligned */
2116 assert (aligned_OK (chunk2mem (p)));
2121 Properties of free chunks
2124 static void
2125 do_check_free_chunk (mstate av, mchunkptr p)
2127 INTERNAL_SIZE_T sz = chunksize_nomask (p) & ~(PREV_INUSE | NON_MAIN_ARENA);
2128 mchunkptr next = chunk_at_offset (p, sz);
2130 do_check_chunk (av, p);
2132 /* Chunk must claim to be free ... */
2133 assert (!inuse (p));
2134 assert (!chunk_is_mmapped (p));
2136 /* Unless a special marker, must have OK fields */
2137 if ((unsigned long) (sz) >= MINSIZE)
2139 assert ((sz & MALLOC_ALIGN_MASK) == 0);
2140 assert (aligned_OK (chunk2mem (p)));
2141 /* ... matching footer field */
2142 assert (prev_size (next_chunk (p)) == sz);
2143 /* ... and is fully consolidated */
2144 assert (prev_inuse (p));
2145 assert (next == av->top || inuse (next));
2147 /* ... and has minimally sane links */
2148 assert (p->fd->bk == p);
2149 assert (p->bk->fd == p);
2151 else /* markers are always of size SIZE_SZ */
2152 assert (sz == SIZE_SZ);
2156 Properties of inuse chunks
2159 static void
2160 do_check_inuse_chunk (mstate av, mchunkptr p)
2162 mchunkptr next;
2164 do_check_chunk (av, p);
2166 if (chunk_is_mmapped (p))
2167 return; /* mmapped chunks have no next/prev */
2169 /* Check whether it claims to be in use ... */
2170 assert (inuse (p));
2172 next = next_chunk (p);
2174 /* ... and is surrounded by OK chunks.
2175 Since more things can be checked with free chunks than inuse ones,
2176 if an inuse chunk borders them and debug is on, it's worth doing them.
2178 if (!prev_inuse (p))
2180 /* Note that we cannot even look at prev unless it is not inuse */
2181 mchunkptr prv = prev_chunk (p);
2182 assert (next_chunk (prv) == p);
2183 do_check_free_chunk (av, prv);
2186 if (next == av->top)
2188 assert (prev_inuse (next));
2189 assert (chunksize (next) >= MINSIZE);
2191 else if (!inuse (next))
2192 do_check_free_chunk (av, next);
2196 Properties of chunks recycled from fastbins
2199 static void
2200 do_check_remalloced_chunk (mstate av, mchunkptr p, INTERNAL_SIZE_T s)
2202 INTERNAL_SIZE_T sz = chunksize_nomask (p) & ~(PREV_INUSE | NON_MAIN_ARENA);
2204 if (!chunk_is_mmapped (p))
2206 assert (av == arena_for_chunk (p));
2207 if (chunk_main_arena (p))
2208 assert (av == &main_arena);
2209 else
2210 assert (av != &main_arena);
2213 do_check_inuse_chunk (av, p);
2215 /* Legal size ... */
2216 assert ((sz & MALLOC_ALIGN_MASK) == 0);
2217 assert ((unsigned long) (sz) >= MINSIZE);
2218 /* ... and alignment */
2219 assert (aligned_OK (chunk2mem (p)));
2220 /* chunk is less than MINSIZE more than request */
2221 assert ((long) (sz) - (long) (s) >= 0);
2222 assert ((long) (sz) - (long) (s + MINSIZE) < 0);
2226 Properties of nonrecycled chunks at the point they are malloced
2229 static void
2230 do_check_malloced_chunk (mstate av, mchunkptr p, INTERNAL_SIZE_T s)
2232 /* same as recycled case ... */
2233 do_check_remalloced_chunk (av, p, s);
2236 ... plus, must obey implementation invariant that prev_inuse is
2237 always true of any allocated chunk; i.e., that each allocated
2238 chunk borders either a previously allocated and still in-use
2239 chunk, or the base of its memory arena. This is ensured
2240 by making all allocations from the `lowest' part of any found
2241 chunk. This does not necessarily hold however for chunks
2242 recycled via fastbins.
2245 assert (prev_inuse (p));
2250 Properties of malloc_state.
2252 This may be useful for debugging malloc, as well as detecting user
2253 programmer errors that somehow write into malloc_state.
2255 If you are extending or experimenting with this malloc, you can
2256 probably figure out how to hack this routine to print out or
2257 display chunk addresses, sizes, bins, and other instrumentation.
2260 static void
2261 do_check_malloc_state (mstate av)
2263 int i;
2264 mchunkptr p;
2265 mchunkptr q;
2266 mbinptr b;
2267 unsigned int idx;
2268 INTERNAL_SIZE_T size;
2269 unsigned long total = 0;
2270 int max_fast_bin;
2272 /* internal size_t must be no wider than pointer type */
2273 assert (sizeof (INTERNAL_SIZE_T) <= sizeof (char *));
2275 /* alignment is a power of 2 */
2276 assert ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT - 1)) == 0);
2278 /* Check the arena is initialized. */
2279 assert (av->top != 0);
2281 /* No memory has been allocated yet, so doing more tests is not possible. */
2282 if (av->top == initial_top (av))
2283 return;
2285 /* pagesize is a power of 2 */
2286 assert (powerof2(GLRO (dl_pagesize)));
2288 /* A contiguous main_arena is consistent with sbrk_base. */
2289 if (av == &main_arena && contiguous (av))
2290 assert ((char *) mp_.sbrk_base + av->system_mem ==
2291 (char *) av->top + chunksize (av->top));
2293 /* properties of fastbins */
2295 /* max_fast is in allowed range */
2296 assert ((get_max_fast () & ~1) <= request2size (MAX_FAST_SIZE));
2298 max_fast_bin = fastbin_index (get_max_fast ());
2300 for (i = 0; i < NFASTBINS; ++i)
2302 p = fastbin (av, i);
2304 /* The following test can only be performed for the main arena.
2305 While mallopt calls malloc_consolidate to get rid of all fast
2306 bins (especially those larger than the new maximum) this does
2307 only happen for the main arena. Trying to do this for any
2308 other arena would mean those arenas have to be locked and
2309 malloc_consolidate be called for them. This is excessive. And
2310 even if this is acceptable to somebody it still cannot solve
2311 the problem completely since if the arena is locked a
2312 concurrent malloc call might create a new arena which then
2313 could use the newly invalid fast bins. */
2315 /* all bins past max_fast are empty */
2316 if (av == &main_arena && i > max_fast_bin)
2317 assert (p == 0);
2319 while (p != 0)
2321 if (__glibc_unlikely (misaligned_chunk (p)))
2322 malloc_printerr ("do_check_malloc_state(): "
2323 "unaligned fastbin chunk detected");
2324 /* each chunk claims to be inuse */
2325 do_check_inuse_chunk (av, p);
2326 total += chunksize (p);
2327 /* chunk belongs in this bin */
2328 assert (fastbin_index (chunksize (p)) == i);
2329 p = REVEAL_PTR (p->fd);
2333 /* check normal bins */
2334 for (i = 1; i < NBINS; ++i)
2336 b = bin_at (av, i);
2338 /* binmap is accurate (except for bin 1 == unsorted_chunks) */
2339 if (i >= 2)
2341 unsigned int binbit = get_binmap (av, i);
2342 int empty = last (b) == b;
2343 if (!binbit)
2344 assert (empty);
2345 else if (!empty)
2346 assert (binbit);
2349 for (p = last (b); p != b; p = p->bk)
2351 /* each chunk claims to be free */
2352 do_check_free_chunk (av, p);
2353 size = chunksize (p);
2354 total += size;
2355 if (i >= 2)
2357 /* chunk belongs in bin */
2358 idx = bin_index (size);
2359 assert (idx == i);
2360 /* lists are sorted */
2361 assert (p->bk == b ||
2362 (unsigned long) chunksize (p->bk) >= (unsigned long) chunksize (p));
2364 if (!in_smallbin_range (size))
2366 if (p->fd_nextsize != NULL)
2368 if (p->fd_nextsize == p)
2369 assert (p->bk_nextsize == p);
2370 else
2372 if (p->fd_nextsize == first (b))
2373 assert (chunksize (p) < chunksize (p->fd_nextsize));
2374 else
2375 assert (chunksize (p) > chunksize (p->fd_nextsize));
2377 if (p == first (b))
2378 assert (chunksize (p) > chunksize (p->bk_nextsize));
2379 else
2380 assert (chunksize (p) < chunksize (p->bk_nextsize));
2383 else
2384 assert (p->bk_nextsize == NULL);
2387 else if (!in_smallbin_range (size))
2388 assert (p->fd_nextsize == NULL && p->bk_nextsize == NULL);
2389 /* chunk is followed by a legal chain of inuse chunks */
2390 for (q = next_chunk (p);
2391 (q != av->top && inuse (q) &&
2392 (unsigned long) (chunksize (q)) >= MINSIZE);
2393 q = next_chunk (q))
2394 do_check_inuse_chunk (av, q);
2398 /* top chunk is OK */
2399 check_chunk (av, av->top);
2401 #endif
2404 /* ----------------- Support for debugging hooks -------------------- */
2405 #if IS_IN (libc)
2406 #include "hooks.c"
2407 #endif
2410 /* ----------- Routines dealing with system allocation -------------- */
2413 sysmalloc handles malloc cases requiring more memory from the system.
2414 On entry, it is assumed that av->top does not have enough
2415 space to service request for nb bytes, thus requiring that av->top
2416 be extended or replaced.
2419 static void *
2420 sysmalloc_mmap (INTERNAL_SIZE_T nb, size_t pagesize, int extra_flags, mstate av)
2422 long int size;
2425 Round up size to nearest page. For mmapped chunks, the overhead is one
2426 SIZE_SZ unit larger than for normal chunks, because there is no
2427 following chunk whose prev_size field could be used.
2429 See the front_misalign handling below, for glibc there is no need for
2430 further alignments unless we have have high alignment.
2432 if (MALLOC_ALIGNMENT == CHUNK_HDR_SZ)
2433 size = ALIGN_UP (nb + SIZE_SZ, pagesize);
2434 else
2435 size = ALIGN_UP (nb + SIZE_SZ + MALLOC_ALIGN_MASK, pagesize);
2437 /* Don't try if size wraps around 0. */
2438 if ((unsigned long) (size) <= (unsigned long) (nb))
2439 return MAP_FAILED;
2441 char *mm = (char *) MMAP (0, size,
2442 mtag_mmap_flags | PROT_READ | PROT_WRITE,
2443 extra_flags);
2444 if (mm == MAP_FAILED)
2445 return mm;
2447 #ifdef MAP_HUGETLB
2448 if (!(extra_flags & MAP_HUGETLB))
2449 madvise_thp (mm, size);
2450 #endif
2453 The offset to the start of the mmapped region is stored in the prev_size
2454 field of the chunk. This allows us to adjust returned start address to
2455 meet alignment requirements here and in memalign(), and still be able to
2456 compute proper address argument for later munmap in free() and realloc().
2459 INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of new space */
2461 if (MALLOC_ALIGNMENT == CHUNK_HDR_SZ)
2463 /* For glibc, chunk2mem increases the address by CHUNK_HDR_SZ and
2464 MALLOC_ALIGN_MASK is CHUNK_HDR_SZ-1. Each mmap'ed area is page
2465 aligned and therefore definitely MALLOC_ALIGN_MASK-aligned. */
2466 assert (((INTERNAL_SIZE_T) chunk2mem (mm) & MALLOC_ALIGN_MASK) == 0);
2467 front_misalign = 0;
2469 else
2470 front_misalign = (INTERNAL_SIZE_T) chunk2mem (mm) & MALLOC_ALIGN_MASK;
2472 mchunkptr p; /* the allocated/returned chunk */
2474 if (front_misalign > 0)
2476 ptrdiff_t correction = MALLOC_ALIGNMENT - front_misalign;
2477 p = (mchunkptr) (mm + correction);
2478 set_prev_size (p, correction);
2479 set_head (p, (size - correction) | IS_MMAPPED);
2481 else
2483 p = (mchunkptr) mm;
2484 set_prev_size (p, 0);
2485 set_head (p, size | IS_MMAPPED);
2488 /* update statistics */
2489 int new = atomic_exchange_and_add (&mp_.n_mmaps, 1) + 1;
2490 atomic_max (&mp_.max_n_mmaps, new);
2492 unsigned long sum;
2493 sum = atomic_exchange_and_add (&mp_.mmapped_mem, size) + size;
2494 atomic_max (&mp_.max_mmapped_mem, sum);
2496 check_chunk (av, p);
2498 return chunk2mem (p);
2502 Allocate memory using mmap() based on S and NB requested size, aligning to
2503 PAGESIZE if required. The EXTRA_FLAGS is used on mmap() call. If the call
2504 succeedes S is updated with the allocated size. This is used as a fallback
2505 if MORECORE fails.
2507 static void *
2508 sysmalloc_mmap_fallback (long int *s, INTERNAL_SIZE_T nb,
2509 INTERNAL_SIZE_T old_size, size_t minsize,
2510 size_t pagesize, int extra_flags, mstate av)
2512 long int size = *s;
2514 /* Cannot merge with old top, so add its size back in */
2515 if (contiguous (av))
2516 size = ALIGN_UP (size + old_size, pagesize);
2518 /* If we are relying on mmap as backup, then use larger units */
2519 if ((unsigned long) (size) < minsize)
2520 size = minsize;
2522 /* Don't try if size wraps around 0 */
2523 if ((unsigned long) (size) <= (unsigned long) (nb))
2524 return MORECORE_FAILURE;
2526 char *mbrk = (char *) (MMAP (0, size,
2527 mtag_mmap_flags | PROT_READ | PROT_WRITE,
2528 extra_flags));
2529 if (mbrk == MAP_FAILED)
2530 return MAP_FAILED;
2532 #ifdef MAP_HUGETLB
2533 if (!(extra_flags & MAP_HUGETLB))
2534 madvise_thp (mbrk, size);
2535 #endif
2537 /* Record that we no longer have a contiguous sbrk region. After the first
2538 time mmap is used as backup, we do not ever rely on contiguous space
2539 since this could incorrectly bridge regions. */
2540 set_noncontiguous (av);
2542 *s = size;
2543 return mbrk;
2546 static void *
2547 sysmalloc (INTERNAL_SIZE_T nb, mstate av)
2549 mchunkptr old_top; /* incoming value of av->top */
2550 INTERNAL_SIZE_T old_size; /* its size */
2551 char *old_end; /* its end address */
2553 long size; /* arg to first MORECORE or mmap call */
2554 char *brk; /* return value from MORECORE */
2556 long correction; /* arg to 2nd MORECORE call */
2557 char *snd_brk; /* 2nd return val */
2559 INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of new space */
2560 INTERNAL_SIZE_T end_misalign; /* partial page left at end of new space */
2561 char *aligned_brk; /* aligned offset into brk */
2563 mchunkptr p; /* the allocated/returned chunk */
2564 mchunkptr remainder; /* remainder from allocation */
2565 unsigned long remainder_size; /* its size */
2568 size_t pagesize = GLRO (dl_pagesize);
2569 bool tried_mmap = false;
2573 If have mmap, and the request size meets the mmap threshold, and
2574 the system supports mmap, and there are few enough currently
2575 allocated mmapped regions, try to directly map this request
2576 rather than expanding top.
2579 if (av == NULL
2580 || ((unsigned long) (nb) >= (unsigned long) (mp_.mmap_threshold)
2581 && (mp_.n_mmaps < mp_.n_mmaps_max)))
2583 char *mm;
2584 #if HAVE_TUNABLES
2585 if (mp_.hp_pagesize > 0 && nb >= mp_.hp_pagesize)
2587 /* There is no need to isse the THP madvise call if Huge Pages are
2588 used directly. */
2589 mm = sysmalloc_mmap (nb, mp_.hp_pagesize, mp_.hp_flags, av);
2590 if (mm != MAP_FAILED)
2591 return mm;
2593 #endif
2594 mm = sysmalloc_mmap (nb, pagesize, 0, av);
2595 if (mm != MAP_FAILED)
2596 return mm;
2597 tried_mmap = true;
2600 /* There are no usable arenas and mmap also failed. */
2601 if (av == NULL)
2602 return 0;
2604 /* Record incoming configuration of top */
2606 old_top = av->top;
2607 old_size = chunksize (old_top);
2608 old_end = (char *) (chunk_at_offset (old_top, old_size));
2610 brk = snd_brk = (char *) (MORECORE_FAILURE);
2613 If not the first time through, we require old_size to be
2614 at least MINSIZE and to have prev_inuse set.
2617 assert ((old_top == initial_top (av) && old_size == 0) ||
2618 ((unsigned long) (old_size) >= MINSIZE &&
2619 prev_inuse (old_top) &&
2620 ((unsigned long) old_end & (pagesize - 1)) == 0));
2622 /* Precondition: not enough current space to satisfy nb request */
2623 assert ((unsigned long) (old_size) < (unsigned long) (nb + MINSIZE));
2626 if (av != &main_arena)
2628 heap_info *old_heap, *heap;
2629 size_t old_heap_size;
2631 /* First try to extend the current heap. */
2632 old_heap = heap_for_ptr (old_top);
2633 old_heap_size = old_heap->size;
2634 if ((long) (MINSIZE + nb - old_size) > 0
2635 && grow_heap (old_heap, MINSIZE + nb - old_size) == 0)
2637 av->system_mem += old_heap->size - old_heap_size;
2638 set_head (old_top, (((char *) old_heap + old_heap->size) - (char *) old_top)
2639 | PREV_INUSE);
2641 else if ((heap = new_heap (nb + (MINSIZE + sizeof (*heap)), mp_.top_pad)))
2643 /* Use a newly allocated heap. */
2644 heap->ar_ptr = av;
2645 heap->prev = old_heap;
2646 av->system_mem += heap->size;
2647 /* Set up the new top. */
2648 top (av) = chunk_at_offset (heap, sizeof (*heap));
2649 set_head (top (av), (heap->size - sizeof (*heap)) | PREV_INUSE);
2651 /* Setup fencepost and free the old top chunk with a multiple of
2652 MALLOC_ALIGNMENT in size. */
2653 /* The fencepost takes at least MINSIZE bytes, because it might
2654 become the top chunk again later. Note that a footer is set
2655 up, too, although the chunk is marked in use. */
2656 old_size = (old_size - MINSIZE) & ~MALLOC_ALIGN_MASK;
2657 set_head (chunk_at_offset (old_top, old_size + CHUNK_HDR_SZ),
2658 0 | PREV_INUSE);
2659 if (old_size >= MINSIZE)
2661 set_head (chunk_at_offset (old_top, old_size),
2662 CHUNK_HDR_SZ | PREV_INUSE);
2663 set_foot (chunk_at_offset (old_top, old_size), CHUNK_HDR_SZ);
2664 set_head (old_top, old_size | PREV_INUSE | NON_MAIN_ARENA);
2665 _int_free (av, old_top, 1);
2667 else
2669 set_head (old_top, (old_size + CHUNK_HDR_SZ) | PREV_INUSE);
2670 set_foot (old_top, (old_size + CHUNK_HDR_SZ));
2673 else if (!tried_mmap)
2675 /* We can at least try to use to mmap memory. If new_heap fails
2676 it is unlikely that trying to allocate huge pages will
2677 succeed. */
2678 char *mm = sysmalloc_mmap (nb, pagesize, 0, av);
2679 if (mm != MAP_FAILED)
2680 return mm;
2683 else /* av == main_arena */
2686 { /* Request enough space for nb + pad + overhead */
2687 size = nb + mp_.top_pad + MINSIZE;
2690 If contiguous, we can subtract out existing space that we hope to
2691 combine with new space. We add it back later only if
2692 we don't actually get contiguous space.
2695 if (contiguous (av))
2696 size -= old_size;
2699 Round to a multiple of page size or huge page size.
2700 If MORECORE is not contiguous, this ensures that we only call it
2701 with whole-page arguments. And if MORECORE is contiguous and
2702 this is not first time through, this preserves page-alignment of
2703 previous calls. Otherwise, we correct to page-align below.
2706 #if HAVE_TUNABLES && defined (MADV_HUGEPAGE)
2707 /* Defined in brk.c. */
2708 extern void *__curbrk;
2709 if (__glibc_unlikely (mp_.thp_pagesize != 0))
2711 uintptr_t top = ALIGN_UP ((uintptr_t) __curbrk + size,
2712 mp_.thp_pagesize);
2713 size = top - (uintptr_t) __curbrk;
2715 else
2716 #endif
2717 size = ALIGN_UP (size, GLRO(dl_pagesize));
2720 Don't try to call MORECORE if argument is so big as to appear
2721 negative. Note that since mmap takes size_t arg, it may succeed
2722 below even if we cannot call MORECORE.
2725 if (size > 0)
2727 brk = (char *) (MORECORE (size));
2728 if (brk != (char *) (MORECORE_FAILURE))
2729 madvise_thp (brk, size);
2730 LIBC_PROBE (memory_sbrk_more, 2, brk, size);
2733 if (brk == (char *) (MORECORE_FAILURE))
2736 If have mmap, try using it as a backup when MORECORE fails or
2737 cannot be used. This is worth doing on systems that have "holes" in
2738 address space, so sbrk cannot extend to give contiguous space, but
2739 space is available elsewhere. Note that we ignore mmap max count
2740 and threshold limits, since the space will not be used as a
2741 segregated mmap region.
2744 char *mbrk = MAP_FAILED;
2745 #if HAVE_TUNABLES
2746 if (mp_.hp_pagesize > 0)
2747 mbrk = sysmalloc_mmap_fallback (&size, nb, old_size,
2748 mp_.hp_pagesize, mp_.hp_pagesize,
2749 mp_.hp_flags, av);
2750 #endif
2751 if (mbrk == MAP_FAILED)
2752 mbrk = sysmalloc_mmap_fallback (&size, nb, old_size, pagesize,
2753 MMAP_AS_MORECORE_SIZE, 0, av);
2754 if (mbrk != MAP_FAILED)
2756 /* We do not need, and cannot use, another sbrk call to find end */
2757 brk = mbrk;
2758 snd_brk = brk + size;
2762 if (brk != (char *) (MORECORE_FAILURE))
2764 if (mp_.sbrk_base == 0)
2765 mp_.sbrk_base = brk;
2766 av->system_mem += size;
2769 If MORECORE extends previous space, we can likewise extend top size.
2772 if (brk == old_end && snd_brk == (char *) (MORECORE_FAILURE))
2773 set_head (old_top, (size + old_size) | PREV_INUSE);
2775 else if (contiguous (av) && old_size && brk < old_end)
2776 /* Oops! Someone else killed our space.. Can't touch anything. */
2777 malloc_printerr ("break adjusted to free malloc space");
2780 Otherwise, make adjustments:
2782 * If the first time through or noncontiguous, we need to call sbrk
2783 just to find out where the end of memory lies.
2785 * We need to ensure that all returned chunks from malloc will meet
2786 MALLOC_ALIGNMENT
2788 * If there was an intervening foreign sbrk, we need to adjust sbrk
2789 request size to account for fact that we will not be able to
2790 combine new space with existing space in old_top.
2792 * Almost all systems internally allocate whole pages at a time, in
2793 which case we might as well use the whole last page of request.
2794 So we allocate enough more memory to hit a page boundary now,
2795 which in turn causes future contiguous calls to page-align.
2798 else
2800 front_misalign = 0;
2801 end_misalign = 0;
2802 correction = 0;
2803 aligned_brk = brk;
2805 /* handle contiguous cases */
2806 if (contiguous (av))
2808 /* Count foreign sbrk as system_mem. */
2809 if (old_size)
2810 av->system_mem += brk - old_end;
2812 /* Guarantee alignment of first new chunk made from this space */
2814 front_misalign = (INTERNAL_SIZE_T) chunk2mem (brk) & MALLOC_ALIGN_MASK;
2815 if (front_misalign > 0)
2818 Skip over some bytes to arrive at an aligned position.
2819 We don't need to specially mark these wasted front bytes.
2820 They will never be accessed anyway because
2821 prev_inuse of av->top (and any chunk created from its start)
2822 is always true after initialization.
2825 correction = MALLOC_ALIGNMENT - front_misalign;
2826 aligned_brk += correction;
2830 If this isn't adjacent to existing space, then we will not
2831 be able to merge with old_top space, so must add to 2nd request.
2834 correction += old_size;
2836 /* Extend the end address to hit a page boundary */
2837 end_misalign = (INTERNAL_SIZE_T) (brk + size + correction);
2838 correction += (ALIGN_UP (end_misalign, pagesize)) - end_misalign;
2840 assert (correction >= 0);
2841 snd_brk = (char *) (MORECORE (correction));
2844 If can't allocate correction, try to at least find out current
2845 brk. It might be enough to proceed without failing.
2847 Note that if second sbrk did NOT fail, we assume that space
2848 is contiguous with first sbrk. This is a safe assumption unless
2849 program is multithreaded but doesn't use locks and a foreign sbrk
2850 occurred between our first and second calls.
2853 if (snd_brk == (char *) (MORECORE_FAILURE))
2855 correction = 0;
2856 snd_brk = (char *) (MORECORE (0));
2858 else
2859 madvise_thp (snd_brk, correction);
2862 /* handle non-contiguous cases */
2863 else
2865 if (MALLOC_ALIGNMENT == CHUNK_HDR_SZ)
2866 /* MORECORE/mmap must correctly align */
2867 assert (((unsigned long) chunk2mem (brk) & MALLOC_ALIGN_MASK) == 0);
2868 else
2870 front_misalign = (INTERNAL_SIZE_T) chunk2mem (brk) & MALLOC_ALIGN_MASK;
2871 if (front_misalign > 0)
2874 Skip over some bytes to arrive at an aligned position.
2875 We don't need to specially mark these wasted front bytes.
2876 They will never be accessed anyway because
2877 prev_inuse of av->top (and any chunk created from its start)
2878 is always true after initialization.
2881 aligned_brk += MALLOC_ALIGNMENT - front_misalign;
2885 /* Find out current end of memory */
2886 if (snd_brk == (char *) (MORECORE_FAILURE))
2888 snd_brk = (char *) (MORECORE (0));
2892 /* Adjust top based on results of second sbrk */
2893 if (snd_brk != (char *) (MORECORE_FAILURE))
2895 av->top = (mchunkptr) aligned_brk;
2896 set_head (av->top, (snd_brk - aligned_brk + correction) | PREV_INUSE);
2897 av->system_mem += correction;
2900 If not the first time through, we either have a
2901 gap due to foreign sbrk or a non-contiguous region. Insert a
2902 double fencepost at old_top to prevent consolidation with space
2903 we don't own. These fenceposts are artificial chunks that are
2904 marked as inuse and are in any case too small to use. We need
2905 two to make sizes and alignments work out.
2908 if (old_size != 0)
2911 Shrink old_top to insert fenceposts, keeping size a
2912 multiple of MALLOC_ALIGNMENT. We know there is at least
2913 enough space in old_top to do this.
2915 old_size = (old_size - 2 * CHUNK_HDR_SZ) & ~MALLOC_ALIGN_MASK;
2916 set_head (old_top, old_size | PREV_INUSE);
2919 Note that the following assignments completely overwrite
2920 old_top when old_size was previously MINSIZE. This is
2921 intentional. We need the fencepost, even if old_top otherwise gets
2922 lost.
2924 set_head (chunk_at_offset (old_top, old_size),
2925 CHUNK_HDR_SZ | PREV_INUSE);
2926 set_head (chunk_at_offset (old_top,
2927 old_size + CHUNK_HDR_SZ),
2928 CHUNK_HDR_SZ | PREV_INUSE);
2930 /* If possible, release the rest. */
2931 if (old_size >= MINSIZE)
2933 _int_free (av, old_top, 1);
2939 } /* if (av != &main_arena) */
2941 if ((unsigned long) av->system_mem > (unsigned long) (av->max_system_mem))
2942 av->max_system_mem = av->system_mem;
2943 check_malloc_state (av);
2945 /* finally, do the allocation */
2946 p = av->top;
2947 size = chunksize (p);
2949 /* check that one of the above allocation paths succeeded */
2950 if ((unsigned long) (size) >= (unsigned long) (nb + MINSIZE))
2952 remainder_size = size - nb;
2953 remainder = chunk_at_offset (p, nb);
2954 av->top = remainder;
2955 set_head (p, nb | PREV_INUSE | (av != &main_arena ? NON_MAIN_ARENA : 0));
2956 set_head (remainder, remainder_size | PREV_INUSE);
2957 check_malloced_chunk (av, p, nb);
2958 return chunk2mem (p);
2961 /* catch all failure paths */
2962 __set_errno (ENOMEM);
2963 return 0;
2968 systrim is an inverse of sorts to sysmalloc. It gives memory back
2969 to the system (via negative arguments to sbrk) if there is unused
2970 memory at the `high' end of the malloc pool. It is called
2971 automatically by free() when top space exceeds the trim
2972 threshold. It is also called by the public malloc_trim routine. It
2973 returns 1 if it actually released any memory, else 0.
2976 static int
2977 systrim (size_t pad, mstate av)
2979 long top_size; /* Amount of top-most memory */
2980 long extra; /* Amount to release */
2981 long released; /* Amount actually released */
2982 char *current_brk; /* address returned by pre-check sbrk call */
2983 char *new_brk; /* address returned by post-check sbrk call */
2984 long top_area;
2986 top_size = chunksize (av->top);
2988 top_area = top_size - MINSIZE - 1;
2989 if (top_area <= pad)
2990 return 0;
2992 /* Release in pagesize units and round down to the nearest page. */
2993 #if HAVE_TUNABLES && defined (MADV_HUGEPAGE)
2994 if (__glibc_unlikely (mp_.thp_pagesize != 0))
2995 extra = ALIGN_DOWN (top_area - pad, mp_.thp_pagesize);
2996 else
2997 #endif
2998 extra = ALIGN_DOWN (top_area - pad, GLRO(dl_pagesize));
3000 if (extra == 0)
3001 return 0;
3004 Only proceed if end of memory is where we last set it.
3005 This avoids problems if there were foreign sbrk calls.
3007 current_brk = (char *) (MORECORE (0));
3008 if (current_brk == (char *) (av->top) + top_size)
3011 Attempt to release memory. We ignore MORECORE return value,
3012 and instead call again to find out where new end of memory is.
3013 This avoids problems if first call releases less than we asked,
3014 of if failure somehow altered brk value. (We could still
3015 encounter problems if it altered brk in some very bad way,
3016 but the only thing we can do is adjust anyway, which will cause
3017 some downstream failure.)
3020 MORECORE (-extra);
3021 new_brk = (char *) (MORECORE (0));
3023 LIBC_PROBE (memory_sbrk_less, 2, new_brk, extra);
3025 if (new_brk != (char *) MORECORE_FAILURE)
3027 released = (long) (current_brk - new_brk);
3029 if (released != 0)
3031 /* Success. Adjust top. */
3032 av->system_mem -= released;
3033 set_head (av->top, (top_size - released) | PREV_INUSE);
3034 check_malloc_state (av);
3035 return 1;
3039 return 0;
3042 static void
3043 munmap_chunk (mchunkptr p)
3045 size_t pagesize = GLRO (dl_pagesize);
3046 INTERNAL_SIZE_T size = chunksize (p);
3048 assert (chunk_is_mmapped (p));
3050 uintptr_t mem = (uintptr_t) chunk2mem (p);
3051 uintptr_t block = (uintptr_t) p - prev_size (p);
3052 size_t total_size = prev_size (p) + size;
3053 /* Unfortunately we have to do the compilers job by hand here. Normally
3054 we would test BLOCK and TOTAL-SIZE separately for compliance with the
3055 page size. But gcc does not recognize the optimization possibility
3056 (in the moment at least) so we combine the two values into one before
3057 the bit test. */
3058 if (__glibc_unlikely ((block | total_size) & (pagesize - 1)) != 0
3059 || __glibc_unlikely (!powerof2 (mem & (pagesize - 1))))
3060 malloc_printerr ("munmap_chunk(): invalid pointer");
3062 atomic_decrement (&mp_.n_mmaps);
3063 atomic_add (&mp_.mmapped_mem, -total_size);
3065 /* If munmap failed the process virtual memory address space is in a
3066 bad shape. Just leave the block hanging around, the process will
3067 terminate shortly anyway since not much can be done. */
3068 __munmap ((char *) block, total_size);
3071 #if HAVE_MREMAP
3073 static mchunkptr
3074 mremap_chunk (mchunkptr p, size_t new_size)
3076 size_t pagesize = GLRO (dl_pagesize);
3077 INTERNAL_SIZE_T offset = prev_size (p);
3078 INTERNAL_SIZE_T size = chunksize (p);
3079 char *cp;
3081 assert (chunk_is_mmapped (p));
3083 uintptr_t block = (uintptr_t) p - offset;
3084 uintptr_t mem = (uintptr_t) chunk2mem(p);
3085 size_t total_size = offset + size;
3086 if (__glibc_unlikely ((block | total_size) & (pagesize - 1)) != 0
3087 || __glibc_unlikely (!powerof2 (mem & (pagesize - 1))))
3088 malloc_printerr("mremap_chunk(): invalid pointer");
3090 /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
3091 new_size = ALIGN_UP (new_size + offset + SIZE_SZ, pagesize);
3093 /* No need to remap if the number of pages does not change. */
3094 if (total_size == new_size)
3095 return p;
3097 cp = (char *) __mremap ((char *) block, total_size, new_size,
3098 MREMAP_MAYMOVE);
3100 if (cp == MAP_FAILED)
3101 return 0;
3103 madvise_thp (cp, new_size);
3105 p = (mchunkptr) (cp + offset);
3107 assert (aligned_OK (chunk2mem (p)));
3109 assert (prev_size (p) == offset);
3110 set_head (p, (new_size - offset) | IS_MMAPPED);
3112 INTERNAL_SIZE_T new;
3113 new = atomic_exchange_and_add (&mp_.mmapped_mem, new_size - size - offset)
3114 + new_size - size - offset;
3115 atomic_max (&mp_.max_mmapped_mem, new);
3116 return p;
3118 #endif /* HAVE_MREMAP */
3120 /*------------------------ Public wrappers. --------------------------------*/
3122 #if USE_TCACHE
3124 /* We overlay this structure on the user-data portion of a chunk when
3125 the chunk is stored in the per-thread cache. */
3126 typedef struct tcache_entry
3128 struct tcache_entry *next;
3129 /* This field exists to detect double frees. */
3130 uintptr_t key;
3131 } tcache_entry;
3133 /* There is one of these for each thread, which contains the
3134 per-thread cache (hence "tcache_perthread_struct"). Keeping
3135 overall size low is mildly important. Note that COUNTS and ENTRIES
3136 are redundant (we could have just counted the linked list each
3137 time), this is for performance reasons. */
3138 typedef struct tcache_perthread_struct
3140 uint16_t counts[TCACHE_MAX_BINS];
3141 tcache_entry *entries[TCACHE_MAX_BINS];
3142 } tcache_perthread_struct;
3144 static __thread bool tcache_shutting_down = false;
3145 static __thread tcache_perthread_struct *tcache = NULL;
3147 /* Process-wide key to try and catch a double-free in the same thread. */
3148 static uintptr_t tcache_key;
3150 /* The value of tcache_key does not really have to be a cryptographically
3151 secure random number. It only needs to be arbitrary enough so that it does
3152 not collide with values present in applications. If a collision does happen
3153 consistently enough, it could cause a degradation in performance since the
3154 entire list is checked to check if the block indeed has been freed the
3155 second time. The odds of this happening are exceedingly low though, about 1
3156 in 2^wordsize. There is probably a higher chance of the performance
3157 degradation being due to a double free where the first free happened in a
3158 different thread; that's a case this check does not cover. */
3159 static void
3160 tcache_key_initialize (void)
3162 if (__getrandom (&tcache_key, sizeof(tcache_key), GRND_NONBLOCK)
3163 != sizeof (tcache_key))
3165 tcache_key = random_bits ();
3166 #if __WORDSIZE == 64
3167 tcache_key = (tcache_key << 32) | random_bits ();
3168 #endif
3172 /* Caller must ensure that we know tc_idx is valid and there's room
3173 for more chunks. */
3174 static __always_inline void
3175 tcache_put (mchunkptr chunk, size_t tc_idx)
3177 tcache_entry *e = (tcache_entry *) chunk2mem (chunk);
3179 /* Mark this chunk as "in the tcache" so the test in _int_free will
3180 detect a double free. */
3181 e->key = tcache_key;
3183 e->next = PROTECT_PTR (&e->next, tcache->entries[tc_idx]);
3184 tcache->entries[tc_idx] = e;
3185 ++(tcache->counts[tc_idx]);
3188 /* Caller must ensure that we know tc_idx is valid and there's
3189 available chunks to remove. */
3190 static __always_inline void *
3191 tcache_get (size_t tc_idx)
3193 tcache_entry *e = tcache->entries[tc_idx];
3194 if (__glibc_unlikely (!aligned_OK (e)))
3195 malloc_printerr ("malloc(): unaligned tcache chunk detected");
3196 tcache->entries[tc_idx] = REVEAL_PTR (e->next);
3197 --(tcache->counts[tc_idx]);
3198 e->key = 0;
3199 return (void *) e;
3202 static void
3203 tcache_thread_shutdown (void)
3205 int i;
3206 tcache_perthread_struct *tcache_tmp = tcache;
3208 tcache_shutting_down = true;
3210 if (!tcache)
3211 return;
3213 /* Disable the tcache and prevent it from being reinitialized. */
3214 tcache = NULL;
3216 /* Free all of the entries and the tcache itself back to the arena
3217 heap for coalescing. */
3218 for (i = 0; i < TCACHE_MAX_BINS; ++i)
3220 while (tcache_tmp->entries[i])
3222 tcache_entry *e = tcache_tmp->entries[i];
3223 if (__glibc_unlikely (!aligned_OK (e)))
3224 malloc_printerr ("tcache_thread_shutdown(): "
3225 "unaligned tcache chunk detected");
3226 tcache_tmp->entries[i] = REVEAL_PTR (e->next);
3227 __libc_free (e);
3231 __libc_free (tcache_tmp);
3234 static void
3235 tcache_init(void)
3237 mstate ar_ptr;
3238 void *victim = 0;
3239 const size_t bytes = sizeof (tcache_perthread_struct);
3241 if (tcache_shutting_down)
3242 return;
3244 arena_get (ar_ptr, bytes);
3245 victim = _int_malloc (ar_ptr, bytes);
3246 if (!victim && ar_ptr != NULL)
3248 ar_ptr = arena_get_retry (ar_ptr, bytes);
3249 victim = _int_malloc (ar_ptr, bytes);
3253 if (ar_ptr != NULL)
3254 __libc_lock_unlock (ar_ptr->mutex);
3256 /* In a low memory situation, we may not be able to allocate memory
3257 - in which case, we just keep trying later. However, we
3258 typically do this very early, so either there is sufficient
3259 memory, or there isn't enough memory to do non-trivial
3260 allocations anyway. */
3261 if (victim)
3263 tcache = (tcache_perthread_struct *) victim;
3264 memset (tcache, 0, sizeof (tcache_perthread_struct));
3269 # define MAYBE_INIT_TCACHE() \
3270 if (__glibc_unlikely (tcache == NULL)) \
3271 tcache_init();
3273 #else /* !USE_TCACHE */
3274 # define MAYBE_INIT_TCACHE()
3276 static void
3277 tcache_thread_shutdown (void)
3279 /* Nothing to do if there is no thread cache. */
3282 #endif /* !USE_TCACHE */
3284 #if IS_IN (libc)
3285 void *
3286 __libc_malloc (size_t bytes)
3288 mstate ar_ptr;
3289 void *victim;
3291 _Static_assert (PTRDIFF_MAX <= SIZE_MAX / 2,
3292 "PTRDIFF_MAX is not more than half of SIZE_MAX");
3294 if (!__malloc_initialized)
3295 ptmalloc_init ();
3296 #if USE_TCACHE
3297 /* int_free also calls request2size, be careful to not pad twice. */
3298 size_t tbytes;
3299 if (!checked_request2size (bytes, &tbytes))
3301 __set_errno (ENOMEM);
3302 return NULL;
3304 size_t tc_idx = csize2tidx (tbytes);
3306 MAYBE_INIT_TCACHE ();
3308 DIAG_PUSH_NEEDS_COMMENT;
3309 if (tc_idx < mp_.tcache_bins
3310 && tcache
3311 && tcache->counts[tc_idx] > 0)
3313 victim = tcache_get (tc_idx);
3314 return tag_new_usable (victim);
3316 DIAG_POP_NEEDS_COMMENT;
3317 #endif
3319 if (SINGLE_THREAD_P)
3321 victim = tag_new_usable (_int_malloc (&main_arena, bytes));
3322 assert (!victim || chunk_is_mmapped (mem2chunk (victim)) ||
3323 &main_arena == arena_for_chunk (mem2chunk (victim)));
3324 return victim;
3327 arena_get (ar_ptr, bytes);
3329 victim = _int_malloc (ar_ptr, bytes);
3330 /* Retry with another arena only if we were able to find a usable arena
3331 before. */
3332 if (!victim && ar_ptr != NULL)
3334 LIBC_PROBE (memory_malloc_retry, 1, bytes);
3335 ar_ptr = arena_get_retry (ar_ptr, bytes);
3336 victim = _int_malloc (ar_ptr, bytes);
3339 if (ar_ptr != NULL)
3340 __libc_lock_unlock (ar_ptr->mutex);
3342 victim = tag_new_usable (victim);
3344 assert (!victim || chunk_is_mmapped (mem2chunk (victim)) ||
3345 ar_ptr == arena_for_chunk (mem2chunk (victim)));
3346 return victim;
3348 libc_hidden_def (__libc_malloc)
3350 void
3351 __libc_free (void *mem)
3353 mstate ar_ptr;
3354 mchunkptr p; /* chunk corresponding to mem */
3356 if (mem == 0) /* free(0) has no effect */
3357 return;
3359 /* Quickly check that the freed pointer matches the tag for the memory.
3360 This gives a useful double-free detection. */
3361 if (__glibc_unlikely (mtag_enabled))
3362 *(volatile char *)mem;
3364 int err = errno;
3366 p = mem2chunk (mem);
3368 if (chunk_is_mmapped (p)) /* release mmapped memory. */
3370 /* See if the dynamic brk/mmap threshold needs adjusting.
3371 Dumped fake mmapped chunks do not affect the threshold. */
3372 if (!mp_.no_dyn_threshold
3373 && chunksize_nomask (p) > mp_.mmap_threshold
3374 && chunksize_nomask (p) <= DEFAULT_MMAP_THRESHOLD_MAX)
3376 mp_.mmap_threshold = chunksize (p);
3377 mp_.trim_threshold = 2 * mp_.mmap_threshold;
3378 LIBC_PROBE (memory_mallopt_free_dyn_thresholds, 2,
3379 mp_.mmap_threshold, mp_.trim_threshold);
3381 munmap_chunk (p);
3383 else
3385 MAYBE_INIT_TCACHE ();
3387 /* Mark the chunk as belonging to the library again. */
3388 (void)tag_region (chunk2mem (p), memsize (p));
3390 ar_ptr = arena_for_chunk (p);
3391 _int_free (ar_ptr, p, 0);
3394 __set_errno (err);
3396 libc_hidden_def (__libc_free)
3398 void *
3399 __libc_realloc (void *oldmem, size_t bytes)
3401 mstate ar_ptr;
3402 INTERNAL_SIZE_T nb; /* padded request size */
3404 void *newp; /* chunk to return */
3406 if (!__malloc_initialized)
3407 ptmalloc_init ();
3409 #if REALLOC_ZERO_BYTES_FREES
3410 if (bytes == 0 && oldmem != NULL)
3412 __libc_free (oldmem); return 0;
3414 #endif
3416 /* realloc of null is supposed to be same as malloc */
3417 if (oldmem == 0)
3418 return __libc_malloc (bytes);
3420 /* Perform a quick check to ensure that the pointer's tag matches the
3421 memory's tag. */
3422 if (__glibc_unlikely (mtag_enabled))
3423 *(volatile char*) oldmem;
3425 /* chunk corresponding to oldmem */
3426 const mchunkptr oldp = mem2chunk (oldmem);
3427 /* its size */
3428 const INTERNAL_SIZE_T oldsize = chunksize (oldp);
3430 if (chunk_is_mmapped (oldp))
3431 ar_ptr = NULL;
3432 else
3434 MAYBE_INIT_TCACHE ();
3435 ar_ptr = arena_for_chunk (oldp);
3438 /* Little security check which won't hurt performance: the allocator
3439 never wrapps around at the end of the address space. Therefore
3440 we can exclude some size values which might appear here by
3441 accident or by "design" from some intruder. */
3442 if ((__builtin_expect ((uintptr_t) oldp > (uintptr_t) -oldsize, 0)
3443 || __builtin_expect (misaligned_chunk (oldp), 0)))
3444 malloc_printerr ("realloc(): invalid pointer");
3446 if (!checked_request2size (bytes, &nb))
3448 __set_errno (ENOMEM);
3449 return NULL;
3452 if (chunk_is_mmapped (oldp))
3454 void *newmem;
3456 #if HAVE_MREMAP
3457 newp = mremap_chunk (oldp, nb);
3458 if (newp)
3460 void *newmem = chunk2mem_tag (newp);
3461 /* Give the new block a different tag. This helps to ensure
3462 that stale handles to the previous mapping are not
3463 reused. There's a performance hit for both us and the
3464 caller for doing this, so we might want to
3465 reconsider. */
3466 return tag_new_usable (newmem);
3468 #endif
3469 /* Note the extra SIZE_SZ overhead. */
3470 if (oldsize - SIZE_SZ >= nb)
3471 return oldmem; /* do nothing */
3473 /* Must alloc, copy, free. */
3474 newmem = __libc_malloc (bytes);
3475 if (newmem == 0)
3476 return 0; /* propagate failure */
3478 memcpy (newmem, oldmem, oldsize - CHUNK_HDR_SZ);
3479 munmap_chunk (oldp);
3480 return newmem;
3483 if (SINGLE_THREAD_P)
3485 newp = _int_realloc (ar_ptr, oldp, oldsize, nb);
3486 assert (!newp || chunk_is_mmapped (mem2chunk (newp)) ||
3487 ar_ptr == arena_for_chunk (mem2chunk (newp)));
3489 return newp;
3492 __libc_lock_lock (ar_ptr->mutex);
3494 newp = _int_realloc (ar_ptr, oldp, oldsize, nb);
3496 __libc_lock_unlock (ar_ptr->mutex);
3497 assert (!newp || chunk_is_mmapped (mem2chunk (newp)) ||
3498 ar_ptr == arena_for_chunk (mem2chunk (newp)));
3500 if (newp == NULL)
3502 /* Try harder to allocate memory in other arenas. */
3503 LIBC_PROBE (memory_realloc_retry, 2, bytes, oldmem);
3504 newp = __libc_malloc (bytes);
3505 if (newp != NULL)
3507 size_t sz = memsize (oldp);
3508 memcpy (newp, oldmem, sz);
3509 (void) tag_region (chunk2mem (oldp), sz);
3510 _int_free (ar_ptr, oldp, 0);
3514 return newp;
3516 libc_hidden_def (__libc_realloc)
3518 void *
3519 __libc_memalign (size_t alignment, size_t bytes)
3521 if (!__malloc_initialized)
3522 ptmalloc_init ();
3524 void *address = RETURN_ADDRESS (0);
3525 return _mid_memalign (alignment, bytes, address);
3528 static void *
3529 _mid_memalign (size_t alignment, size_t bytes, void *address)
3531 mstate ar_ptr;
3532 void *p;
3534 /* If we need less alignment than we give anyway, just relay to malloc. */
3535 if (alignment <= MALLOC_ALIGNMENT)
3536 return __libc_malloc (bytes);
3538 /* Otherwise, ensure that it is at least a minimum chunk size */
3539 if (alignment < MINSIZE)
3540 alignment = MINSIZE;
3542 /* If the alignment is greater than SIZE_MAX / 2 + 1 it cannot be a
3543 power of 2 and will cause overflow in the check below. */
3544 if (alignment > SIZE_MAX / 2 + 1)
3546 __set_errno (EINVAL);
3547 return 0;
3551 /* Make sure alignment is power of 2. */
3552 if (!powerof2 (alignment))
3554 size_t a = MALLOC_ALIGNMENT * 2;
3555 while (a < alignment)
3556 a <<= 1;
3557 alignment = a;
3560 if (SINGLE_THREAD_P)
3562 p = _int_memalign (&main_arena, alignment, bytes);
3563 assert (!p || chunk_is_mmapped (mem2chunk (p)) ||
3564 &main_arena == arena_for_chunk (mem2chunk (p)));
3565 return tag_new_usable (p);
3568 arena_get (ar_ptr, bytes + alignment + MINSIZE);
3570 p = _int_memalign (ar_ptr, alignment, bytes);
3571 if (!p && ar_ptr != NULL)
3573 LIBC_PROBE (memory_memalign_retry, 2, bytes, alignment);
3574 ar_ptr = arena_get_retry (ar_ptr, bytes);
3575 p = _int_memalign (ar_ptr, alignment, bytes);
3578 if (ar_ptr != NULL)
3579 __libc_lock_unlock (ar_ptr->mutex);
3581 assert (!p || chunk_is_mmapped (mem2chunk (p)) ||
3582 ar_ptr == arena_for_chunk (mem2chunk (p)));
3583 return tag_new_usable (p);
3585 /* For ISO C11. */
3586 weak_alias (__libc_memalign, aligned_alloc)
3587 libc_hidden_def (__libc_memalign)
3589 void *
3590 __libc_valloc (size_t bytes)
3592 if (!__malloc_initialized)
3593 ptmalloc_init ();
3595 void *address = RETURN_ADDRESS (0);
3596 size_t pagesize = GLRO (dl_pagesize);
3597 return _mid_memalign (pagesize, bytes, address);
3600 void *
3601 __libc_pvalloc (size_t bytes)
3603 if (!__malloc_initialized)
3604 ptmalloc_init ();
3606 void *address = RETURN_ADDRESS (0);
3607 size_t pagesize = GLRO (dl_pagesize);
3608 size_t rounded_bytes;
3609 /* ALIGN_UP with overflow check. */
3610 if (__glibc_unlikely (__builtin_add_overflow (bytes,
3611 pagesize - 1,
3612 &rounded_bytes)))
3614 __set_errno (ENOMEM);
3615 return 0;
3617 rounded_bytes = rounded_bytes & -(pagesize - 1);
3619 return _mid_memalign (pagesize, rounded_bytes, address);
3622 void *
3623 __libc_calloc (size_t n, size_t elem_size)
3625 mstate av;
3626 mchunkptr oldtop;
3627 INTERNAL_SIZE_T sz, oldtopsize;
3628 void *mem;
3629 unsigned long clearsize;
3630 unsigned long nclears;
3631 INTERNAL_SIZE_T *d;
3632 ptrdiff_t bytes;
3634 if (__glibc_unlikely (__builtin_mul_overflow (n, elem_size, &bytes)))
3636 __set_errno (ENOMEM);
3637 return NULL;
3640 sz = bytes;
3642 if (!__malloc_initialized)
3643 ptmalloc_init ();
3645 MAYBE_INIT_TCACHE ();
3647 if (SINGLE_THREAD_P)
3648 av = &main_arena;
3649 else
3650 arena_get (av, sz);
3652 if (av)
3654 /* Check if we hand out the top chunk, in which case there may be no
3655 need to clear. */
3656 #if MORECORE_CLEARS
3657 oldtop = top (av);
3658 oldtopsize = chunksize (top (av));
3659 # if MORECORE_CLEARS < 2
3660 /* Only newly allocated memory is guaranteed to be cleared. */
3661 if (av == &main_arena &&
3662 oldtopsize < mp_.sbrk_base + av->max_system_mem - (char *) oldtop)
3663 oldtopsize = (mp_.sbrk_base + av->max_system_mem - (char *) oldtop);
3664 # endif
3665 if (av != &main_arena)
3667 heap_info *heap = heap_for_ptr (oldtop);
3668 if (oldtopsize < (char *) heap + heap->mprotect_size - (char *) oldtop)
3669 oldtopsize = (char *) heap + heap->mprotect_size - (char *) oldtop;
3671 #endif
3673 else
3675 /* No usable arenas. */
3676 oldtop = 0;
3677 oldtopsize = 0;
3679 mem = _int_malloc (av, sz);
3681 assert (!mem || chunk_is_mmapped (mem2chunk (mem)) ||
3682 av == arena_for_chunk (mem2chunk (mem)));
3684 if (!SINGLE_THREAD_P)
3686 if (mem == 0 && av != NULL)
3688 LIBC_PROBE (memory_calloc_retry, 1, sz);
3689 av = arena_get_retry (av, sz);
3690 mem = _int_malloc (av, sz);
3693 if (av != NULL)
3694 __libc_lock_unlock (av->mutex);
3697 /* Allocation failed even after a retry. */
3698 if (mem == 0)
3699 return 0;
3701 mchunkptr p = mem2chunk (mem);
3703 /* If we are using memory tagging, then we need to set the tags
3704 regardless of MORECORE_CLEARS, so we zero the whole block while
3705 doing so. */
3706 if (__glibc_unlikely (mtag_enabled))
3707 return tag_new_zero_region (mem, memsize (p));
3709 INTERNAL_SIZE_T csz = chunksize (p);
3711 /* Two optional cases in which clearing not necessary */
3712 if (chunk_is_mmapped (p))
3714 if (__builtin_expect (perturb_byte, 0))
3715 return memset (mem, 0, sz);
3717 return mem;
3720 #if MORECORE_CLEARS
3721 if (perturb_byte == 0 && (p == oldtop && csz > oldtopsize))
3723 /* clear only the bytes from non-freshly-sbrked memory */
3724 csz = oldtopsize;
3726 #endif
3728 /* Unroll clear of <= 36 bytes (72 if 8byte sizes). We know that
3729 contents have an odd number of INTERNAL_SIZE_T-sized words;
3730 minimally 3. */
3731 d = (INTERNAL_SIZE_T *) mem;
3732 clearsize = csz - SIZE_SZ;
3733 nclears = clearsize / sizeof (INTERNAL_SIZE_T);
3734 assert (nclears >= 3);
3736 if (nclears > 9)
3737 return memset (d, 0, clearsize);
3739 else
3741 *(d + 0) = 0;
3742 *(d + 1) = 0;
3743 *(d + 2) = 0;
3744 if (nclears > 4)
3746 *(d + 3) = 0;
3747 *(d + 4) = 0;
3748 if (nclears > 6)
3750 *(d + 5) = 0;
3751 *(d + 6) = 0;
3752 if (nclears > 8)
3754 *(d + 7) = 0;
3755 *(d + 8) = 0;
3761 return mem;
3763 #endif /* IS_IN (libc) */
3766 ------------------------------ malloc ------------------------------
3769 static void *
3770 _int_malloc (mstate av, size_t bytes)
3772 INTERNAL_SIZE_T nb; /* normalized request size */
3773 unsigned int idx; /* associated bin index */
3774 mbinptr bin; /* associated bin */
3776 mchunkptr victim; /* inspected/selected chunk */
3777 INTERNAL_SIZE_T size; /* its size */
3778 int victim_index; /* its bin index */
3780 mchunkptr remainder; /* remainder from a split */
3781 unsigned long remainder_size; /* its size */
3783 unsigned int block; /* bit map traverser */
3784 unsigned int bit; /* bit map traverser */
3785 unsigned int map; /* current word of binmap */
3787 mchunkptr fwd; /* misc temp for linking */
3788 mchunkptr bck; /* misc temp for linking */
3790 #if USE_TCACHE
3791 size_t tcache_unsorted_count; /* count of unsorted chunks processed */
3792 #endif
3795 Convert request size to internal form by adding SIZE_SZ bytes
3796 overhead plus possibly more to obtain necessary alignment and/or
3797 to obtain a size of at least MINSIZE, the smallest allocatable
3798 size. Also, checked_request2size returns false for request sizes
3799 that are so large that they wrap around zero when padded and
3800 aligned.
3803 if (!checked_request2size (bytes, &nb))
3805 __set_errno (ENOMEM);
3806 return NULL;
3809 /* There are no usable arenas. Fall back to sysmalloc to get a chunk from
3810 mmap. */
3811 if (__glibc_unlikely (av == NULL))
3813 void *p = sysmalloc (nb, av);
3814 if (p != NULL)
3815 alloc_perturb (p, bytes);
3816 return p;
3820 If the size qualifies as a fastbin, first check corresponding bin.
3821 This code is safe to execute even if av is not yet initialized, so we
3822 can try it without checking, which saves some time on this fast path.
3825 #define REMOVE_FB(fb, victim, pp) \
3826 do \
3828 victim = pp; \
3829 if (victim == NULL) \
3830 break; \
3831 pp = REVEAL_PTR (victim->fd); \
3832 if (__glibc_unlikely (pp != NULL && misaligned_chunk (pp))) \
3833 malloc_printerr ("malloc(): unaligned fastbin chunk detected"); \
3835 while ((pp = catomic_compare_and_exchange_val_acq (fb, pp, victim)) \
3836 != victim); \
3838 if ((unsigned long) (nb) <= (unsigned long) (get_max_fast ()))
3840 idx = fastbin_index (nb);
3841 mfastbinptr *fb = &fastbin (av, idx);
3842 mchunkptr pp;
3843 victim = *fb;
3845 if (victim != NULL)
3847 if (__glibc_unlikely (misaligned_chunk (victim)))
3848 malloc_printerr ("malloc(): unaligned fastbin chunk detected 2");
3850 if (SINGLE_THREAD_P)
3851 *fb = REVEAL_PTR (victim->fd);
3852 else
3853 REMOVE_FB (fb, pp, victim);
3854 if (__glibc_likely (victim != NULL))
3856 size_t victim_idx = fastbin_index (chunksize (victim));
3857 if (__builtin_expect (victim_idx != idx, 0))
3858 malloc_printerr ("malloc(): memory corruption (fast)");
3859 check_remalloced_chunk (av, victim, nb);
3860 #if USE_TCACHE
3861 /* While we're here, if we see other chunks of the same size,
3862 stash them in the tcache. */
3863 size_t tc_idx = csize2tidx (nb);
3864 if (tcache && tc_idx < mp_.tcache_bins)
3866 mchunkptr tc_victim;
3868 /* While bin not empty and tcache not full, copy chunks. */
3869 while (tcache->counts[tc_idx] < mp_.tcache_count
3870 && (tc_victim = *fb) != NULL)
3872 if (__glibc_unlikely (misaligned_chunk (tc_victim)))
3873 malloc_printerr ("malloc(): unaligned fastbin chunk detected 3");
3874 if (SINGLE_THREAD_P)
3875 *fb = REVEAL_PTR (tc_victim->fd);
3876 else
3878 REMOVE_FB (fb, pp, tc_victim);
3879 if (__glibc_unlikely (tc_victim == NULL))
3880 break;
3882 tcache_put (tc_victim, tc_idx);
3885 #endif
3886 void *p = chunk2mem (victim);
3887 alloc_perturb (p, bytes);
3888 return p;
3894 If a small request, check regular bin. Since these "smallbins"
3895 hold one size each, no searching within bins is necessary.
3896 (For a large request, we need to wait until unsorted chunks are
3897 processed to find best fit. But for small ones, fits are exact
3898 anyway, so we can check now, which is faster.)
3901 if (in_smallbin_range (nb))
3903 idx = smallbin_index (nb);
3904 bin = bin_at (av, idx);
3906 if ((victim = last (bin)) != bin)
3908 bck = victim->bk;
3909 if (__glibc_unlikely (bck->fd != victim))
3910 malloc_printerr ("malloc(): smallbin double linked list corrupted");
3911 set_inuse_bit_at_offset (victim, nb);
3912 bin->bk = bck;
3913 bck->fd = bin;
3915 if (av != &main_arena)
3916 set_non_main_arena (victim);
3917 check_malloced_chunk (av, victim, nb);
3918 #if USE_TCACHE
3919 /* While we're here, if we see other chunks of the same size,
3920 stash them in the tcache. */
3921 size_t tc_idx = csize2tidx (nb);
3922 if (tcache && tc_idx < mp_.tcache_bins)
3924 mchunkptr tc_victim;
3926 /* While bin not empty and tcache not full, copy chunks over. */
3927 while (tcache->counts[tc_idx] < mp_.tcache_count
3928 && (tc_victim = last (bin)) != bin)
3930 if (tc_victim != 0)
3932 bck = tc_victim->bk;
3933 set_inuse_bit_at_offset (tc_victim, nb);
3934 if (av != &main_arena)
3935 set_non_main_arena (tc_victim);
3936 bin->bk = bck;
3937 bck->fd = bin;
3939 tcache_put (tc_victim, tc_idx);
3943 #endif
3944 void *p = chunk2mem (victim);
3945 alloc_perturb (p, bytes);
3946 return p;
3951 If this is a large request, consolidate fastbins before continuing.
3952 While it might look excessive to kill all fastbins before
3953 even seeing if there is space available, this avoids
3954 fragmentation problems normally associated with fastbins.
3955 Also, in practice, programs tend to have runs of either small or
3956 large requests, but less often mixtures, so consolidation is not
3957 invoked all that often in most programs. And the programs that
3958 it is called frequently in otherwise tend to fragment.
3961 else
3963 idx = largebin_index (nb);
3964 if (atomic_load_relaxed (&av->have_fastchunks))
3965 malloc_consolidate (av);
3969 Process recently freed or remaindered chunks, taking one only if
3970 it is exact fit, or, if this a small request, the chunk is remainder from
3971 the most recent non-exact fit. Place other traversed chunks in
3972 bins. Note that this step is the only place in any routine where
3973 chunks are placed in bins.
3975 The outer loop here is needed because we might not realize until
3976 near the end of malloc that we should have consolidated, so must
3977 do so and retry. This happens at most once, and only when we would
3978 otherwise need to expand memory to service a "small" request.
3981 #if USE_TCACHE
3982 INTERNAL_SIZE_T tcache_nb = 0;
3983 size_t tc_idx = csize2tidx (nb);
3984 if (tcache && tc_idx < mp_.tcache_bins)
3985 tcache_nb = nb;
3986 int return_cached = 0;
3988 tcache_unsorted_count = 0;
3989 #endif
3991 for (;; )
3993 int iters = 0;
3994 while ((victim = unsorted_chunks (av)->bk) != unsorted_chunks (av))
3996 bck = victim->bk;
3997 size = chunksize (victim);
3998 mchunkptr next = chunk_at_offset (victim, size);
4000 if (__glibc_unlikely (size <= CHUNK_HDR_SZ)
4001 || __glibc_unlikely (size > av->system_mem))
4002 malloc_printerr ("malloc(): invalid size (unsorted)");
4003 if (__glibc_unlikely (chunksize_nomask (next) < CHUNK_HDR_SZ)
4004 || __glibc_unlikely (chunksize_nomask (next) > av->system_mem))
4005 malloc_printerr ("malloc(): invalid next size (unsorted)");
4006 if (__glibc_unlikely ((prev_size (next) & ~(SIZE_BITS)) != size))
4007 malloc_printerr ("malloc(): mismatching next->prev_size (unsorted)");
4008 if (__glibc_unlikely (bck->fd != victim)
4009 || __glibc_unlikely (victim->fd != unsorted_chunks (av)))
4010 malloc_printerr ("malloc(): unsorted double linked list corrupted");
4011 if (__glibc_unlikely (prev_inuse (next)))
4012 malloc_printerr ("malloc(): invalid next->prev_inuse (unsorted)");
4015 If a small request, try to use last remainder if it is the
4016 only chunk in unsorted bin. This helps promote locality for
4017 runs of consecutive small requests. This is the only
4018 exception to best-fit, and applies only when there is
4019 no exact fit for a small chunk.
4022 if (in_smallbin_range (nb) &&
4023 bck == unsorted_chunks (av) &&
4024 victim == av->last_remainder &&
4025 (unsigned long) (size) > (unsigned long) (nb + MINSIZE))
4027 /* split and reattach remainder */
4028 remainder_size = size - nb;
4029 remainder = chunk_at_offset (victim, nb);
4030 unsorted_chunks (av)->bk = unsorted_chunks (av)->fd = remainder;
4031 av->last_remainder = remainder;
4032 remainder->bk = remainder->fd = unsorted_chunks (av);
4033 if (!in_smallbin_range (remainder_size))
4035 remainder->fd_nextsize = NULL;
4036 remainder->bk_nextsize = NULL;
4039 set_head (victim, nb | PREV_INUSE |
4040 (av != &main_arena ? NON_MAIN_ARENA : 0));
4041 set_head (remainder, remainder_size | PREV_INUSE);
4042 set_foot (remainder, remainder_size);
4044 check_malloced_chunk (av, victim, nb);
4045 void *p = chunk2mem (victim);
4046 alloc_perturb (p, bytes);
4047 return p;
4050 /* remove from unsorted list */
4051 if (__glibc_unlikely (bck->fd != victim))
4052 malloc_printerr ("malloc(): corrupted unsorted chunks 3");
4053 unsorted_chunks (av)->bk = bck;
4054 bck->fd = unsorted_chunks (av);
4056 /* Take now instead of binning if exact fit */
4058 if (size == nb)
4060 set_inuse_bit_at_offset (victim, size);
4061 if (av != &main_arena)
4062 set_non_main_arena (victim);
4063 #if USE_TCACHE
4064 /* Fill cache first, return to user only if cache fills.
4065 We may return one of these chunks later. */
4066 if (tcache_nb
4067 && tcache->counts[tc_idx] < mp_.tcache_count)
4069 tcache_put (victim, tc_idx);
4070 return_cached = 1;
4071 continue;
4073 else
4075 #endif
4076 check_malloced_chunk (av, victim, nb);
4077 void *p = chunk2mem (victim);
4078 alloc_perturb (p, bytes);
4079 return p;
4080 #if USE_TCACHE
4082 #endif
4085 /* place chunk in bin */
4087 if (in_smallbin_range (size))
4089 victim_index = smallbin_index (size);
4090 bck = bin_at (av, victim_index);
4091 fwd = bck->fd;
4093 else
4095 victim_index = largebin_index (size);
4096 bck = bin_at (av, victim_index);
4097 fwd = bck->fd;
4099 /* maintain large bins in sorted order */
4100 if (fwd != bck)
4102 /* Or with inuse bit to speed comparisons */
4103 size |= PREV_INUSE;
4104 /* if smaller than smallest, bypass loop below */
4105 assert (chunk_main_arena (bck->bk));
4106 if ((unsigned long) (size)
4107 < (unsigned long) chunksize_nomask (bck->bk))
4109 fwd = bck;
4110 bck = bck->bk;
4112 victim->fd_nextsize = fwd->fd;
4113 victim->bk_nextsize = fwd->fd->bk_nextsize;
4114 fwd->fd->bk_nextsize = victim->bk_nextsize->fd_nextsize = victim;
4116 else
4118 assert (chunk_main_arena (fwd));
4119 while ((unsigned long) size < chunksize_nomask (fwd))
4121 fwd = fwd->fd_nextsize;
4122 assert (chunk_main_arena (fwd));
4125 if ((unsigned long) size
4126 == (unsigned long) chunksize_nomask (fwd))
4127 /* Always insert in the second position. */
4128 fwd = fwd->fd;
4129 else
4131 victim->fd_nextsize = fwd;
4132 victim->bk_nextsize = fwd->bk_nextsize;
4133 if (__glibc_unlikely (fwd->bk_nextsize->fd_nextsize != fwd))
4134 malloc_printerr ("malloc(): largebin double linked list corrupted (nextsize)");
4135 fwd->bk_nextsize = victim;
4136 victim->bk_nextsize->fd_nextsize = victim;
4138 bck = fwd->bk;
4139 if (bck->fd != fwd)
4140 malloc_printerr ("malloc(): largebin double linked list corrupted (bk)");
4143 else
4144 victim->fd_nextsize = victim->bk_nextsize = victim;
4147 mark_bin (av, victim_index);
4148 victim->bk = bck;
4149 victim->fd = fwd;
4150 fwd->bk = victim;
4151 bck->fd = victim;
4153 #if USE_TCACHE
4154 /* If we've processed as many chunks as we're allowed while
4155 filling the cache, return one of the cached ones. */
4156 ++tcache_unsorted_count;
4157 if (return_cached
4158 && mp_.tcache_unsorted_limit > 0
4159 && tcache_unsorted_count > mp_.tcache_unsorted_limit)
4161 return tcache_get (tc_idx);
4163 #endif
4165 #define MAX_ITERS 10000
4166 if (++iters >= MAX_ITERS)
4167 break;
4170 #if USE_TCACHE
4171 /* If all the small chunks we found ended up cached, return one now. */
4172 if (return_cached)
4174 return tcache_get (tc_idx);
4176 #endif
4179 If a large request, scan through the chunks of current bin in
4180 sorted order to find smallest that fits. Use the skip list for this.
4183 if (!in_smallbin_range (nb))
4185 bin = bin_at (av, idx);
4187 /* skip scan if empty or largest chunk is too small */
4188 if ((victim = first (bin)) != bin
4189 && (unsigned long) chunksize_nomask (victim)
4190 >= (unsigned long) (nb))
4192 victim = victim->bk_nextsize;
4193 while (((unsigned long) (size = chunksize (victim)) <
4194 (unsigned long) (nb)))
4195 victim = victim->bk_nextsize;
4197 /* Avoid removing the first entry for a size so that the skip
4198 list does not have to be rerouted. */
4199 if (victim != last (bin)
4200 && chunksize_nomask (victim)
4201 == chunksize_nomask (victim->fd))
4202 victim = victim->fd;
4204 remainder_size = size - nb;
4205 unlink_chunk (av, victim);
4207 /* Exhaust */
4208 if (remainder_size < MINSIZE)
4210 set_inuse_bit_at_offset (victim, size);
4211 if (av != &main_arena)
4212 set_non_main_arena (victim);
4214 /* Split */
4215 else
4217 remainder = chunk_at_offset (victim, nb);
4218 /* We cannot assume the unsorted list is empty and therefore
4219 have to perform a complete insert here. */
4220 bck = unsorted_chunks (av);
4221 fwd = bck->fd;
4222 if (__glibc_unlikely (fwd->bk != bck))
4223 malloc_printerr ("malloc(): corrupted unsorted chunks");
4224 remainder->bk = bck;
4225 remainder->fd = fwd;
4226 bck->fd = remainder;
4227 fwd->bk = remainder;
4228 if (!in_smallbin_range (remainder_size))
4230 remainder->fd_nextsize = NULL;
4231 remainder->bk_nextsize = NULL;
4233 set_head (victim, nb | PREV_INUSE |
4234 (av != &main_arena ? NON_MAIN_ARENA : 0));
4235 set_head (remainder, remainder_size | PREV_INUSE);
4236 set_foot (remainder, remainder_size);
4238 check_malloced_chunk (av, victim, nb);
4239 void *p = chunk2mem (victim);
4240 alloc_perturb (p, bytes);
4241 return p;
4246 Search for a chunk by scanning bins, starting with next largest
4247 bin. This search is strictly by best-fit; i.e., the smallest
4248 (with ties going to approximately the least recently used) chunk
4249 that fits is selected.
4251 The bitmap avoids needing to check that most blocks are nonempty.
4252 The particular case of skipping all bins during warm-up phases
4253 when no chunks have been returned yet is faster than it might look.
4256 ++idx;
4257 bin = bin_at (av, idx);
4258 block = idx2block (idx);
4259 map = av->binmap[block];
4260 bit = idx2bit (idx);
4262 for (;; )
4264 /* Skip rest of block if there are no more set bits in this block. */
4265 if (bit > map || bit == 0)
4269 if (++block >= BINMAPSIZE) /* out of bins */
4270 goto use_top;
4272 while ((map = av->binmap[block]) == 0);
4274 bin = bin_at (av, (block << BINMAPSHIFT));
4275 bit = 1;
4278 /* Advance to bin with set bit. There must be one. */
4279 while ((bit & map) == 0)
4281 bin = next_bin (bin);
4282 bit <<= 1;
4283 assert (bit != 0);
4286 /* Inspect the bin. It is likely to be non-empty */
4287 victim = last (bin);
4289 /* If a false alarm (empty bin), clear the bit. */
4290 if (victim == bin)
4292 av->binmap[block] = map &= ~bit; /* Write through */
4293 bin = next_bin (bin);
4294 bit <<= 1;
4297 else
4299 size = chunksize (victim);
4301 /* We know the first chunk in this bin is big enough to use. */
4302 assert ((unsigned long) (size) >= (unsigned long) (nb));
4304 remainder_size = size - nb;
4306 /* unlink */
4307 unlink_chunk (av, victim);
4309 /* Exhaust */
4310 if (remainder_size < MINSIZE)
4312 set_inuse_bit_at_offset (victim, size);
4313 if (av != &main_arena)
4314 set_non_main_arena (victim);
4317 /* Split */
4318 else
4320 remainder = chunk_at_offset (victim, nb);
4322 /* We cannot assume the unsorted list is empty and therefore
4323 have to perform a complete insert here. */
4324 bck = unsorted_chunks (av);
4325 fwd = bck->fd;
4326 if (__glibc_unlikely (fwd->bk != bck))
4327 malloc_printerr ("malloc(): corrupted unsorted chunks 2");
4328 remainder->bk = bck;
4329 remainder->fd = fwd;
4330 bck->fd = remainder;
4331 fwd->bk = remainder;
4333 /* advertise as last remainder */
4334 if (in_smallbin_range (nb))
4335 av->last_remainder = remainder;
4336 if (!in_smallbin_range (remainder_size))
4338 remainder->fd_nextsize = NULL;
4339 remainder->bk_nextsize = NULL;
4341 set_head (victim, nb | PREV_INUSE |
4342 (av != &main_arena ? NON_MAIN_ARENA : 0));
4343 set_head (remainder, remainder_size | PREV_INUSE);
4344 set_foot (remainder, remainder_size);
4346 check_malloced_chunk (av, victim, nb);
4347 void *p = chunk2mem (victim);
4348 alloc_perturb (p, bytes);
4349 return p;
4353 use_top:
4355 If large enough, split off the chunk bordering the end of memory
4356 (held in av->top). Note that this is in accord with the best-fit
4357 search rule. In effect, av->top is treated as larger (and thus
4358 less well fitting) than any other available chunk since it can
4359 be extended to be as large as necessary (up to system
4360 limitations).
4362 We require that av->top always exists (i.e., has size >=
4363 MINSIZE) after initialization, so if it would otherwise be
4364 exhausted by current request, it is replenished. (The main
4365 reason for ensuring it exists is that we may need MINSIZE space
4366 to put in fenceposts in sysmalloc.)
4369 victim = av->top;
4370 size = chunksize (victim);
4372 if (__glibc_unlikely (size > av->system_mem))
4373 malloc_printerr ("malloc(): corrupted top size");
4375 if ((unsigned long) (size) >= (unsigned long) (nb + MINSIZE))
4377 remainder_size = size - nb;
4378 remainder = chunk_at_offset (victim, nb);
4379 av->top = remainder;
4380 set_head (victim, nb | PREV_INUSE |
4381 (av != &main_arena ? NON_MAIN_ARENA : 0));
4382 set_head (remainder, remainder_size | PREV_INUSE);
4384 check_malloced_chunk (av, victim, nb);
4385 void *p = chunk2mem (victim);
4386 alloc_perturb (p, bytes);
4387 return p;
4390 /* When we are using atomic ops to free fast chunks we can get
4391 here for all block sizes. */
4392 else if (atomic_load_relaxed (&av->have_fastchunks))
4394 malloc_consolidate (av);
4395 /* restore original bin index */
4396 if (in_smallbin_range (nb))
4397 idx = smallbin_index (nb);
4398 else
4399 idx = largebin_index (nb);
4403 Otherwise, relay to handle system-dependent cases
4405 else
4407 void *p = sysmalloc (nb, av);
4408 if (p != NULL)
4409 alloc_perturb (p, bytes);
4410 return p;
4416 ------------------------------ free ------------------------------
4419 static void
4420 _int_free (mstate av, mchunkptr p, int have_lock)
4422 INTERNAL_SIZE_T size; /* its size */
4423 mfastbinptr *fb; /* associated fastbin */
4424 mchunkptr nextchunk; /* next contiguous chunk */
4425 INTERNAL_SIZE_T nextsize; /* its size */
4426 int nextinuse; /* true if nextchunk is used */
4427 INTERNAL_SIZE_T prevsize; /* size of previous contiguous chunk */
4428 mchunkptr bck; /* misc temp for linking */
4429 mchunkptr fwd; /* misc temp for linking */
4431 size = chunksize (p);
4433 /* Little security check which won't hurt performance: the
4434 allocator never wrapps around at the end of the address space.
4435 Therefore we can exclude some size values which might appear
4436 here by accident or by "design" from some intruder. */
4437 if (__builtin_expect ((uintptr_t) p > (uintptr_t) -size, 0)
4438 || __builtin_expect (misaligned_chunk (p), 0))
4439 malloc_printerr ("free(): invalid pointer");
4440 /* We know that each chunk is at least MINSIZE bytes in size or a
4441 multiple of MALLOC_ALIGNMENT. */
4442 if (__glibc_unlikely (size < MINSIZE || !aligned_OK (size)))
4443 malloc_printerr ("free(): invalid size");
4445 check_inuse_chunk(av, p);
4447 #if USE_TCACHE
4449 size_t tc_idx = csize2tidx (size);
4450 if (tcache != NULL && tc_idx < mp_.tcache_bins)
4452 /* Check to see if it's already in the tcache. */
4453 tcache_entry *e = (tcache_entry *) chunk2mem (p);
4455 /* This test succeeds on double free. However, we don't 100%
4456 trust it (it also matches random payload data at a 1 in
4457 2^<size_t> chance), so verify it's not an unlikely
4458 coincidence before aborting. */
4459 if (__glibc_unlikely (e->key == tcache_key))
4461 tcache_entry *tmp;
4462 size_t cnt = 0;
4463 LIBC_PROBE (memory_tcache_double_free, 2, e, tc_idx);
4464 for (tmp = tcache->entries[tc_idx];
4465 tmp;
4466 tmp = REVEAL_PTR (tmp->next), ++cnt)
4468 if (cnt >= mp_.tcache_count)
4469 malloc_printerr ("free(): too many chunks detected in tcache");
4470 if (__glibc_unlikely (!aligned_OK (tmp)))
4471 malloc_printerr ("free(): unaligned chunk detected in tcache 2");
4472 if (tmp == e)
4473 malloc_printerr ("free(): double free detected in tcache 2");
4474 /* If we get here, it was a coincidence. We've wasted a
4475 few cycles, but don't abort. */
4479 if (tcache->counts[tc_idx] < mp_.tcache_count)
4481 tcache_put (p, tc_idx);
4482 return;
4486 #endif
4489 If eligible, place chunk on a fastbin so it can be found
4490 and used quickly in malloc.
4493 if ((unsigned long)(size) <= (unsigned long)(get_max_fast ())
4495 #if TRIM_FASTBINS
4497 If TRIM_FASTBINS set, don't place chunks
4498 bordering top into fastbins
4500 && (chunk_at_offset(p, size) != av->top)
4501 #endif
4504 if (__builtin_expect (chunksize_nomask (chunk_at_offset (p, size))
4505 <= CHUNK_HDR_SZ, 0)
4506 || __builtin_expect (chunksize (chunk_at_offset (p, size))
4507 >= av->system_mem, 0))
4509 bool fail = true;
4510 /* We might not have a lock at this point and concurrent modifications
4511 of system_mem might result in a false positive. Redo the test after
4512 getting the lock. */
4513 if (!have_lock)
4515 __libc_lock_lock (av->mutex);
4516 fail = (chunksize_nomask (chunk_at_offset (p, size)) <= CHUNK_HDR_SZ
4517 || chunksize (chunk_at_offset (p, size)) >= av->system_mem);
4518 __libc_lock_unlock (av->mutex);
4521 if (fail)
4522 malloc_printerr ("free(): invalid next size (fast)");
4525 free_perturb (chunk2mem(p), size - CHUNK_HDR_SZ);
4527 atomic_store_relaxed (&av->have_fastchunks, true);
4528 unsigned int idx = fastbin_index(size);
4529 fb = &fastbin (av, idx);
4531 /* Atomically link P to its fastbin: P->FD = *FB; *FB = P; */
4532 mchunkptr old = *fb, old2;
4534 if (SINGLE_THREAD_P)
4536 /* Check that the top of the bin is not the record we are going to
4537 add (i.e., double free). */
4538 if (__builtin_expect (old == p, 0))
4539 malloc_printerr ("double free or corruption (fasttop)");
4540 p->fd = PROTECT_PTR (&p->fd, old);
4541 *fb = p;
4543 else
4546 /* Check that the top of the bin is not the record we are going to
4547 add (i.e., double free). */
4548 if (__builtin_expect (old == p, 0))
4549 malloc_printerr ("double free or corruption (fasttop)");
4550 old2 = old;
4551 p->fd = PROTECT_PTR (&p->fd, old);
4553 while ((old = catomic_compare_and_exchange_val_rel (fb, p, old2))
4554 != old2);
4556 /* Check that size of fastbin chunk at the top is the same as
4557 size of the chunk that we are adding. We can dereference OLD
4558 only if we have the lock, otherwise it might have already been
4559 allocated again. */
4560 if (have_lock && old != NULL
4561 && __builtin_expect (fastbin_index (chunksize (old)) != idx, 0))
4562 malloc_printerr ("invalid fastbin entry (free)");
4566 Consolidate other non-mmapped chunks as they arrive.
4569 else if (!chunk_is_mmapped(p)) {
4571 /* If we're single-threaded, don't lock the arena. */
4572 if (SINGLE_THREAD_P)
4573 have_lock = true;
4575 if (!have_lock)
4576 __libc_lock_lock (av->mutex);
4578 nextchunk = chunk_at_offset(p, size);
4580 /* Lightweight tests: check whether the block is already the
4581 top block. */
4582 if (__glibc_unlikely (p == av->top))
4583 malloc_printerr ("double free or corruption (top)");
4584 /* Or whether the next chunk is beyond the boundaries of the arena. */
4585 if (__builtin_expect (contiguous (av)
4586 && (char *) nextchunk
4587 >= ((char *) av->top + chunksize(av->top)), 0))
4588 malloc_printerr ("double free or corruption (out)");
4589 /* Or whether the block is actually not marked used. */
4590 if (__glibc_unlikely (!prev_inuse(nextchunk)))
4591 malloc_printerr ("double free or corruption (!prev)");
4593 nextsize = chunksize(nextchunk);
4594 if (__builtin_expect (chunksize_nomask (nextchunk) <= CHUNK_HDR_SZ, 0)
4595 || __builtin_expect (nextsize >= av->system_mem, 0))
4596 malloc_printerr ("free(): invalid next size (normal)");
4598 free_perturb (chunk2mem(p), size - CHUNK_HDR_SZ);
4600 /* consolidate backward */
4601 if (!prev_inuse(p)) {
4602 prevsize = prev_size (p);
4603 size += prevsize;
4604 p = chunk_at_offset(p, -((long) prevsize));
4605 if (__glibc_unlikely (chunksize(p) != prevsize))
4606 malloc_printerr ("corrupted size vs. prev_size while consolidating");
4607 unlink_chunk (av, p);
4610 if (nextchunk != av->top) {
4611 /* get and clear inuse bit */
4612 nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
4614 /* consolidate forward */
4615 if (!nextinuse) {
4616 unlink_chunk (av, nextchunk);
4617 size += nextsize;
4618 } else
4619 clear_inuse_bit_at_offset(nextchunk, 0);
4622 Place the chunk in unsorted chunk list. Chunks are
4623 not placed into regular bins until after they have
4624 been given one chance to be used in malloc.
4627 bck = unsorted_chunks(av);
4628 fwd = bck->fd;
4629 if (__glibc_unlikely (fwd->bk != bck))
4630 malloc_printerr ("free(): corrupted unsorted chunks");
4631 p->fd = fwd;
4632 p->bk = bck;
4633 if (!in_smallbin_range(size))
4635 p->fd_nextsize = NULL;
4636 p->bk_nextsize = NULL;
4638 bck->fd = p;
4639 fwd->bk = p;
4641 set_head(p, size | PREV_INUSE);
4642 set_foot(p, size);
4644 check_free_chunk(av, p);
4648 If the chunk borders the current high end of memory,
4649 consolidate into top
4652 else {
4653 size += nextsize;
4654 set_head(p, size | PREV_INUSE);
4655 av->top = p;
4656 check_chunk(av, p);
4660 If freeing a large space, consolidate possibly-surrounding
4661 chunks. Then, if the total unused topmost memory exceeds trim
4662 threshold, ask malloc_trim to reduce top.
4664 Unless max_fast is 0, we don't know if there are fastbins
4665 bordering top, so we cannot tell for sure whether threshold
4666 has been reached unless fastbins are consolidated. But we
4667 don't want to consolidate on each free. As a compromise,
4668 consolidation is performed if FASTBIN_CONSOLIDATION_THRESHOLD
4669 is reached.
4672 if ((unsigned long)(size) >= FASTBIN_CONSOLIDATION_THRESHOLD) {
4673 if (atomic_load_relaxed (&av->have_fastchunks))
4674 malloc_consolidate(av);
4676 if (av == &main_arena) {
4677 #ifndef MORECORE_CANNOT_TRIM
4678 if ((unsigned long)(chunksize(av->top)) >=
4679 (unsigned long)(mp_.trim_threshold))
4680 systrim(mp_.top_pad, av);
4681 #endif
4682 } else {
4683 /* Always try heap_trim(), even if the top chunk is not
4684 large, because the corresponding heap might go away. */
4685 heap_info *heap = heap_for_ptr(top(av));
4687 assert(heap->ar_ptr == av);
4688 heap_trim(heap, mp_.top_pad);
4692 if (!have_lock)
4693 __libc_lock_unlock (av->mutex);
4696 If the chunk was allocated via mmap, release via munmap().
4699 else {
4700 munmap_chunk (p);
4705 ------------------------- malloc_consolidate -------------------------
4707 malloc_consolidate is a specialized version of free() that tears
4708 down chunks held in fastbins. Free itself cannot be used for this
4709 purpose since, among other things, it might place chunks back onto
4710 fastbins. So, instead, we need to use a minor variant of the same
4711 code.
4714 static void malloc_consolidate(mstate av)
4716 mfastbinptr* fb; /* current fastbin being consolidated */
4717 mfastbinptr* maxfb; /* last fastbin (for loop control) */
4718 mchunkptr p; /* current chunk being consolidated */
4719 mchunkptr nextp; /* next chunk to consolidate */
4720 mchunkptr unsorted_bin; /* bin header */
4721 mchunkptr first_unsorted; /* chunk to link to */
4723 /* These have same use as in free() */
4724 mchunkptr nextchunk;
4725 INTERNAL_SIZE_T size;
4726 INTERNAL_SIZE_T nextsize;
4727 INTERNAL_SIZE_T prevsize;
4728 int nextinuse;
4730 atomic_store_relaxed (&av->have_fastchunks, false);
4732 unsorted_bin = unsorted_chunks(av);
4735 Remove each chunk from fast bin and consolidate it, placing it
4736 then in unsorted bin. Among other reasons for doing this,
4737 placing in unsorted bin avoids needing to calculate actual bins
4738 until malloc is sure that chunks aren't immediately going to be
4739 reused anyway.
4742 maxfb = &fastbin (av, NFASTBINS - 1);
4743 fb = &fastbin (av, 0);
4744 do {
4745 p = atomic_exchange_acq (fb, NULL);
4746 if (p != 0) {
4747 do {
4749 if (__glibc_unlikely (misaligned_chunk (p)))
4750 malloc_printerr ("malloc_consolidate(): "
4751 "unaligned fastbin chunk detected");
4753 unsigned int idx = fastbin_index (chunksize (p));
4754 if ((&fastbin (av, idx)) != fb)
4755 malloc_printerr ("malloc_consolidate(): invalid chunk size");
4758 check_inuse_chunk(av, p);
4759 nextp = REVEAL_PTR (p->fd);
4761 /* Slightly streamlined version of consolidation code in free() */
4762 size = chunksize (p);
4763 nextchunk = chunk_at_offset(p, size);
4764 nextsize = chunksize(nextchunk);
4766 if (!prev_inuse(p)) {
4767 prevsize = prev_size (p);
4768 size += prevsize;
4769 p = chunk_at_offset(p, -((long) prevsize));
4770 if (__glibc_unlikely (chunksize(p) != prevsize))
4771 malloc_printerr ("corrupted size vs. prev_size in fastbins");
4772 unlink_chunk (av, p);
4775 if (nextchunk != av->top) {
4776 nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
4778 if (!nextinuse) {
4779 size += nextsize;
4780 unlink_chunk (av, nextchunk);
4781 } else
4782 clear_inuse_bit_at_offset(nextchunk, 0);
4784 first_unsorted = unsorted_bin->fd;
4785 unsorted_bin->fd = p;
4786 first_unsorted->bk = p;
4788 if (!in_smallbin_range (size)) {
4789 p->fd_nextsize = NULL;
4790 p->bk_nextsize = NULL;
4793 set_head(p, size | PREV_INUSE);
4794 p->bk = unsorted_bin;
4795 p->fd = first_unsorted;
4796 set_foot(p, size);
4799 else {
4800 size += nextsize;
4801 set_head(p, size | PREV_INUSE);
4802 av->top = p;
4805 } while ( (p = nextp) != 0);
4808 } while (fb++ != maxfb);
4812 ------------------------------ realloc ------------------------------
4815 static void *
4816 _int_realloc (mstate av, mchunkptr oldp, INTERNAL_SIZE_T oldsize,
4817 INTERNAL_SIZE_T nb)
4819 mchunkptr newp; /* chunk to return */
4820 INTERNAL_SIZE_T newsize; /* its size */
4821 void* newmem; /* corresponding user mem */
4823 mchunkptr next; /* next contiguous chunk after oldp */
4825 mchunkptr remainder; /* extra space at end of newp */
4826 unsigned long remainder_size; /* its size */
4828 /* oldmem size */
4829 if (__builtin_expect (chunksize_nomask (oldp) <= CHUNK_HDR_SZ, 0)
4830 || __builtin_expect (oldsize >= av->system_mem, 0))
4831 malloc_printerr ("realloc(): invalid old size");
4833 check_inuse_chunk (av, oldp);
4835 /* All callers already filter out mmap'ed chunks. */
4836 assert (!chunk_is_mmapped (oldp));
4838 next = chunk_at_offset (oldp, oldsize);
4839 INTERNAL_SIZE_T nextsize = chunksize (next);
4840 if (__builtin_expect (chunksize_nomask (next) <= CHUNK_HDR_SZ, 0)
4841 || __builtin_expect (nextsize >= av->system_mem, 0))
4842 malloc_printerr ("realloc(): invalid next size");
4844 if ((unsigned long) (oldsize) >= (unsigned long) (nb))
4846 /* already big enough; split below */
4847 newp = oldp;
4848 newsize = oldsize;
4851 else
4853 /* Try to expand forward into top */
4854 if (next == av->top &&
4855 (unsigned long) (newsize = oldsize + nextsize) >=
4856 (unsigned long) (nb + MINSIZE))
4858 set_head_size (oldp, nb | (av != &main_arena ? NON_MAIN_ARENA : 0));
4859 av->top = chunk_at_offset (oldp, nb);
4860 set_head (av->top, (newsize - nb) | PREV_INUSE);
4861 check_inuse_chunk (av, oldp);
4862 return tag_new_usable (chunk2mem (oldp));
4865 /* Try to expand forward into next chunk; split off remainder below */
4866 else if (next != av->top &&
4867 !inuse (next) &&
4868 (unsigned long) (newsize = oldsize + nextsize) >=
4869 (unsigned long) (nb))
4871 newp = oldp;
4872 unlink_chunk (av, next);
4875 /* allocate, copy, free */
4876 else
4878 newmem = _int_malloc (av, nb - MALLOC_ALIGN_MASK);
4879 if (newmem == 0)
4880 return 0; /* propagate failure */
4882 newp = mem2chunk (newmem);
4883 newsize = chunksize (newp);
4886 Avoid copy if newp is next chunk after oldp.
4888 if (newp == next)
4890 newsize += oldsize;
4891 newp = oldp;
4893 else
4895 void *oldmem = chunk2mem (oldp);
4896 size_t sz = memsize (oldp);
4897 (void) tag_region (oldmem, sz);
4898 newmem = tag_new_usable (newmem);
4899 memcpy (newmem, oldmem, sz);
4900 _int_free (av, oldp, 1);
4901 check_inuse_chunk (av, newp);
4902 return newmem;
4907 /* If possible, free extra space in old or extended chunk */
4909 assert ((unsigned long) (newsize) >= (unsigned long) (nb));
4911 remainder_size = newsize - nb;
4913 if (remainder_size < MINSIZE) /* not enough extra to split off */
4915 set_head_size (newp, newsize | (av != &main_arena ? NON_MAIN_ARENA : 0));
4916 set_inuse_bit_at_offset (newp, newsize);
4918 else /* split remainder */
4920 remainder = chunk_at_offset (newp, nb);
4921 /* Clear any user-space tags before writing the header. */
4922 remainder = tag_region (remainder, remainder_size);
4923 set_head_size (newp, nb | (av != &main_arena ? NON_MAIN_ARENA : 0));
4924 set_head (remainder, remainder_size | PREV_INUSE |
4925 (av != &main_arena ? NON_MAIN_ARENA : 0));
4926 /* Mark remainder as inuse so free() won't complain */
4927 set_inuse_bit_at_offset (remainder, remainder_size);
4928 _int_free (av, remainder, 1);
4931 check_inuse_chunk (av, newp);
4932 return tag_new_usable (chunk2mem (newp));
4936 ------------------------------ memalign ------------------------------
4939 static void *
4940 _int_memalign (mstate av, size_t alignment, size_t bytes)
4942 INTERNAL_SIZE_T nb; /* padded request size */
4943 char *m; /* memory returned by malloc call */
4944 mchunkptr p; /* corresponding chunk */
4945 char *brk; /* alignment point within p */
4946 mchunkptr newp; /* chunk to return */
4947 INTERNAL_SIZE_T newsize; /* its size */
4948 INTERNAL_SIZE_T leadsize; /* leading space before alignment point */
4949 mchunkptr remainder; /* spare room at end to split off */
4950 unsigned long remainder_size; /* its size */
4951 INTERNAL_SIZE_T size;
4955 if (!checked_request2size (bytes, &nb))
4957 __set_errno (ENOMEM);
4958 return NULL;
4962 Strategy: find a spot within that chunk that meets the alignment
4963 request, and then possibly free the leading and trailing space.
4966 /* Call malloc with worst case padding to hit alignment. */
4968 m = (char *) (_int_malloc (av, nb + alignment + MINSIZE));
4970 if (m == 0)
4971 return 0; /* propagate failure */
4973 p = mem2chunk (m);
4975 if ((((unsigned long) (m)) % alignment) != 0) /* misaligned */
4977 { /*
4978 Find an aligned spot inside chunk. Since we need to give back
4979 leading space in a chunk of at least MINSIZE, if the first
4980 calculation places us at a spot with less than MINSIZE leader,
4981 we can move to the next aligned spot -- we've allocated enough
4982 total room so that this is always possible.
4984 brk = (char *) mem2chunk (((unsigned long) (m + alignment - 1)) &
4985 - ((signed long) alignment));
4986 if ((unsigned long) (brk - (char *) (p)) < MINSIZE)
4987 brk += alignment;
4989 newp = (mchunkptr) brk;
4990 leadsize = brk - (char *) (p);
4991 newsize = chunksize (p) - leadsize;
4993 /* For mmapped chunks, just adjust offset */
4994 if (chunk_is_mmapped (p))
4996 set_prev_size (newp, prev_size (p) + leadsize);
4997 set_head (newp, newsize | IS_MMAPPED);
4998 return chunk2mem (newp);
5001 /* Otherwise, give back leader, use the rest */
5002 set_head (newp, newsize | PREV_INUSE |
5003 (av != &main_arena ? NON_MAIN_ARENA : 0));
5004 set_inuse_bit_at_offset (newp, newsize);
5005 set_head_size (p, leadsize | (av != &main_arena ? NON_MAIN_ARENA : 0));
5006 _int_free (av, p, 1);
5007 p = newp;
5009 assert (newsize >= nb &&
5010 (((unsigned long) (chunk2mem (p))) % alignment) == 0);
5013 /* Also give back spare room at the end */
5014 if (!chunk_is_mmapped (p))
5016 size = chunksize (p);
5017 if ((unsigned long) (size) > (unsigned long) (nb + MINSIZE))
5019 remainder_size = size - nb;
5020 remainder = chunk_at_offset (p, nb);
5021 set_head (remainder, remainder_size | PREV_INUSE |
5022 (av != &main_arena ? NON_MAIN_ARENA : 0));
5023 set_head_size (p, nb);
5024 _int_free (av, remainder, 1);
5028 check_inuse_chunk (av, p);
5029 return chunk2mem (p);
5034 ------------------------------ malloc_trim ------------------------------
5037 static int
5038 mtrim (mstate av, size_t pad)
5040 /* Ensure all blocks are consolidated. */
5041 malloc_consolidate (av);
5043 const size_t ps = GLRO (dl_pagesize);
5044 int psindex = bin_index (ps);
5045 const size_t psm1 = ps - 1;
5047 int result = 0;
5048 for (int i = 1; i < NBINS; ++i)
5049 if (i == 1 || i >= psindex)
5051 mbinptr bin = bin_at (av, i);
5053 for (mchunkptr p = last (bin); p != bin; p = p->bk)
5055 INTERNAL_SIZE_T size = chunksize (p);
5057 if (size > psm1 + sizeof (struct malloc_chunk))
5059 /* See whether the chunk contains at least one unused page. */
5060 char *paligned_mem = (char *) (((uintptr_t) p
5061 + sizeof (struct malloc_chunk)
5062 + psm1) & ~psm1);
5064 assert ((char *) chunk2mem (p) + 2 * CHUNK_HDR_SZ
5065 <= paligned_mem);
5066 assert ((char *) p + size > paligned_mem);
5068 /* This is the size we could potentially free. */
5069 size -= paligned_mem - (char *) p;
5071 if (size > psm1)
5073 #if MALLOC_DEBUG
5074 /* When debugging we simulate destroying the memory
5075 content. */
5076 memset (paligned_mem, 0x89, size & ~psm1);
5077 #endif
5078 __madvise (paligned_mem, size & ~psm1, MADV_DONTNEED);
5080 result = 1;
5086 #ifndef MORECORE_CANNOT_TRIM
5087 return result | (av == &main_arena ? systrim (pad, av) : 0);
5089 #else
5090 return result;
5091 #endif
5096 __malloc_trim (size_t s)
5098 int result = 0;
5100 if (!__malloc_initialized)
5101 ptmalloc_init ();
5103 mstate ar_ptr = &main_arena;
5106 __libc_lock_lock (ar_ptr->mutex);
5107 result |= mtrim (ar_ptr, s);
5108 __libc_lock_unlock (ar_ptr->mutex);
5110 ar_ptr = ar_ptr->next;
5112 while (ar_ptr != &main_arena);
5114 return result;
5119 ------------------------- malloc_usable_size -------------------------
5122 static size_t
5123 musable (void *mem)
5125 mchunkptr p = mem2chunk (mem);
5127 if (chunk_is_mmapped (p))
5128 return chunksize (p) - CHUNK_HDR_SZ;
5129 else if (inuse (p))
5130 return memsize (p);
5132 return 0;
5135 #if IS_IN (libc)
5136 size_t
5137 __malloc_usable_size (void *m)
5139 if (m == NULL)
5140 return 0;
5141 return musable (m);
5143 #endif
5146 ------------------------------ mallinfo ------------------------------
5147 Accumulate malloc statistics for arena AV into M.
5149 static void
5150 int_mallinfo (mstate av, struct mallinfo2 *m)
5152 size_t i;
5153 mbinptr b;
5154 mchunkptr p;
5155 INTERNAL_SIZE_T avail;
5156 INTERNAL_SIZE_T fastavail;
5157 int nblocks;
5158 int nfastblocks;
5160 check_malloc_state (av);
5162 /* Account for top */
5163 avail = chunksize (av->top);
5164 nblocks = 1; /* top always exists */
5166 /* traverse fastbins */
5167 nfastblocks = 0;
5168 fastavail = 0;
5170 for (i = 0; i < NFASTBINS; ++i)
5172 for (p = fastbin (av, i);
5173 p != 0;
5174 p = REVEAL_PTR (p->fd))
5176 if (__glibc_unlikely (misaligned_chunk (p)))
5177 malloc_printerr ("int_mallinfo(): "
5178 "unaligned fastbin chunk detected");
5179 ++nfastblocks;
5180 fastavail += chunksize (p);
5184 avail += fastavail;
5186 /* traverse regular bins */
5187 for (i = 1; i < NBINS; ++i)
5189 b = bin_at (av, i);
5190 for (p = last (b); p != b; p = p->bk)
5192 ++nblocks;
5193 avail += chunksize (p);
5197 m->smblks += nfastblocks;
5198 m->ordblks += nblocks;
5199 m->fordblks += avail;
5200 m->uordblks += av->system_mem - avail;
5201 m->arena += av->system_mem;
5202 m->fsmblks += fastavail;
5203 if (av == &main_arena)
5205 m->hblks = mp_.n_mmaps;
5206 m->hblkhd = mp_.mmapped_mem;
5207 m->usmblks = 0;
5208 m->keepcost = chunksize (av->top);
5213 struct mallinfo2
5214 __libc_mallinfo2 (void)
5216 struct mallinfo2 m;
5217 mstate ar_ptr;
5219 if (!__malloc_initialized)
5220 ptmalloc_init ();
5222 memset (&m, 0, sizeof (m));
5223 ar_ptr = &main_arena;
5226 __libc_lock_lock (ar_ptr->mutex);
5227 int_mallinfo (ar_ptr, &m);
5228 __libc_lock_unlock (ar_ptr->mutex);
5230 ar_ptr = ar_ptr->next;
5232 while (ar_ptr != &main_arena);
5234 return m;
5236 libc_hidden_def (__libc_mallinfo2)
5238 struct mallinfo
5239 __libc_mallinfo (void)
5241 struct mallinfo m;
5242 struct mallinfo2 m2 = __libc_mallinfo2 ();
5244 m.arena = m2.arena;
5245 m.ordblks = m2.ordblks;
5246 m.smblks = m2.smblks;
5247 m.hblks = m2.hblks;
5248 m.hblkhd = m2.hblkhd;
5249 m.usmblks = m2.usmblks;
5250 m.fsmblks = m2.fsmblks;
5251 m.uordblks = m2.uordblks;
5252 m.fordblks = m2.fordblks;
5253 m.keepcost = m2.keepcost;
5255 return m;
5260 ------------------------------ malloc_stats ------------------------------
5263 void
5264 __malloc_stats (void)
5266 int i;
5267 mstate ar_ptr;
5268 unsigned int in_use_b = mp_.mmapped_mem, system_b = in_use_b;
5270 if (!__malloc_initialized)
5271 ptmalloc_init ();
5272 _IO_flockfile (stderr);
5273 int old_flags2 = stderr->_flags2;
5274 stderr->_flags2 |= _IO_FLAGS2_NOTCANCEL;
5275 for (i = 0, ar_ptr = &main_arena;; i++)
5277 struct mallinfo2 mi;
5279 memset (&mi, 0, sizeof (mi));
5280 __libc_lock_lock (ar_ptr->mutex);
5281 int_mallinfo (ar_ptr, &mi);
5282 fprintf (stderr, "Arena %d:\n", i);
5283 fprintf (stderr, "system bytes = %10u\n", (unsigned int) mi.arena);
5284 fprintf (stderr, "in use bytes = %10u\n", (unsigned int) mi.uordblks);
5285 #if MALLOC_DEBUG > 1
5286 if (i > 0)
5287 dump_heap (heap_for_ptr (top (ar_ptr)));
5288 #endif
5289 system_b += mi.arena;
5290 in_use_b += mi.uordblks;
5291 __libc_lock_unlock (ar_ptr->mutex);
5292 ar_ptr = ar_ptr->next;
5293 if (ar_ptr == &main_arena)
5294 break;
5296 fprintf (stderr, "Total (incl. mmap):\n");
5297 fprintf (stderr, "system bytes = %10u\n", system_b);
5298 fprintf (stderr, "in use bytes = %10u\n", in_use_b);
5299 fprintf (stderr, "max mmap regions = %10u\n", (unsigned int) mp_.max_n_mmaps);
5300 fprintf (stderr, "max mmap bytes = %10lu\n",
5301 (unsigned long) mp_.max_mmapped_mem);
5302 stderr->_flags2 = old_flags2;
5303 _IO_funlockfile (stderr);
5308 ------------------------------ mallopt ------------------------------
5310 static __always_inline int
5311 do_set_trim_threshold (size_t value)
5313 LIBC_PROBE (memory_mallopt_trim_threshold, 3, value, mp_.trim_threshold,
5314 mp_.no_dyn_threshold);
5315 mp_.trim_threshold = value;
5316 mp_.no_dyn_threshold = 1;
5317 return 1;
5320 static __always_inline int
5321 do_set_top_pad (size_t value)
5323 LIBC_PROBE (memory_mallopt_top_pad, 3, value, mp_.top_pad,
5324 mp_.no_dyn_threshold);
5325 mp_.top_pad = value;
5326 mp_.no_dyn_threshold = 1;
5327 return 1;
5330 static __always_inline int
5331 do_set_mmap_threshold (size_t value)
5333 LIBC_PROBE (memory_mallopt_mmap_threshold, 3, value, mp_.mmap_threshold,
5334 mp_.no_dyn_threshold);
5335 mp_.mmap_threshold = value;
5336 mp_.no_dyn_threshold = 1;
5337 return 1;
5340 static __always_inline int
5341 do_set_mmaps_max (int32_t value)
5343 LIBC_PROBE (memory_mallopt_mmap_max, 3, value, mp_.n_mmaps_max,
5344 mp_.no_dyn_threshold);
5345 mp_.n_mmaps_max = value;
5346 mp_.no_dyn_threshold = 1;
5347 return 1;
5350 static __always_inline int
5351 do_set_mallopt_check (int32_t value)
5353 return 1;
5356 static __always_inline int
5357 do_set_perturb_byte (int32_t value)
5359 LIBC_PROBE (memory_mallopt_perturb, 2, value, perturb_byte);
5360 perturb_byte = value;
5361 return 1;
5364 static __always_inline int
5365 do_set_arena_test (size_t value)
5367 LIBC_PROBE (memory_mallopt_arena_test, 2, value, mp_.arena_test);
5368 mp_.arena_test = value;
5369 return 1;
5372 static __always_inline int
5373 do_set_arena_max (size_t value)
5375 LIBC_PROBE (memory_mallopt_arena_max, 2, value, mp_.arena_max);
5376 mp_.arena_max = value;
5377 return 1;
5380 #if USE_TCACHE
5381 static __always_inline int
5382 do_set_tcache_max (size_t value)
5384 if (value <= MAX_TCACHE_SIZE)
5386 LIBC_PROBE (memory_tunable_tcache_max_bytes, 2, value, mp_.tcache_max_bytes);
5387 mp_.tcache_max_bytes = value;
5388 mp_.tcache_bins = csize2tidx (request2size(value)) + 1;
5389 return 1;
5391 return 0;
5394 static __always_inline int
5395 do_set_tcache_count (size_t value)
5397 if (value <= MAX_TCACHE_COUNT)
5399 LIBC_PROBE (memory_tunable_tcache_count, 2, value, mp_.tcache_count);
5400 mp_.tcache_count = value;
5401 return 1;
5403 return 0;
5406 static __always_inline int
5407 do_set_tcache_unsorted_limit (size_t value)
5409 LIBC_PROBE (memory_tunable_tcache_unsorted_limit, 2, value, mp_.tcache_unsorted_limit);
5410 mp_.tcache_unsorted_limit = value;
5411 return 1;
5413 #endif
5415 static __always_inline int
5416 do_set_mxfast (size_t value)
5418 if (value <= MAX_FAST_SIZE)
5420 LIBC_PROBE (memory_mallopt_mxfast, 2, value, get_max_fast ());
5421 set_max_fast (value);
5422 return 1;
5424 return 0;
5427 #if HAVE_TUNABLES
5428 static __always_inline int
5429 do_set_hugetlb (size_t value)
5431 if (value == 1)
5433 enum malloc_thp_mode_t thp_mode = __malloc_thp_mode ();
5435 Only enable THP madvise usage if system does support it and
5436 has 'madvise' mode. Otherwise the madvise() call is wasteful.
5438 if (thp_mode == malloc_thp_mode_madvise)
5439 mp_.thp_pagesize = __malloc_default_thp_pagesize ();
5441 else if (value >= 2)
5442 __malloc_hugepage_config (value == 2 ? 0 : value, &mp_.hp_pagesize,
5443 &mp_.hp_flags);
5444 return 0;
5446 #endif
5449 __libc_mallopt (int param_number, int value)
5451 mstate av = &main_arena;
5452 int res = 1;
5454 if (!__malloc_initialized)
5455 ptmalloc_init ();
5456 __libc_lock_lock (av->mutex);
5458 LIBC_PROBE (memory_mallopt, 2, param_number, value);
5460 /* We must consolidate main arena before changing max_fast
5461 (see definition of set_max_fast). */
5462 malloc_consolidate (av);
5464 /* Many of these helper functions take a size_t. We do not worry
5465 about overflow here, because negative int values will wrap to
5466 very large size_t values and the helpers have sufficient range
5467 checking for such conversions. Many of these helpers are also
5468 used by the tunables macros in arena.c. */
5470 switch (param_number)
5472 case M_MXFAST:
5473 res = do_set_mxfast (value);
5474 break;
5476 case M_TRIM_THRESHOLD:
5477 res = do_set_trim_threshold (value);
5478 break;
5480 case M_TOP_PAD:
5481 res = do_set_top_pad (value);
5482 break;
5484 case M_MMAP_THRESHOLD:
5485 res = do_set_mmap_threshold (value);
5486 break;
5488 case M_MMAP_MAX:
5489 res = do_set_mmaps_max (value);
5490 break;
5492 case M_CHECK_ACTION:
5493 res = do_set_mallopt_check (value);
5494 break;
5496 case M_PERTURB:
5497 res = do_set_perturb_byte (value);
5498 break;
5500 case M_ARENA_TEST:
5501 if (value > 0)
5502 res = do_set_arena_test (value);
5503 break;
5505 case M_ARENA_MAX:
5506 if (value > 0)
5507 res = do_set_arena_max (value);
5508 break;
5510 __libc_lock_unlock (av->mutex);
5511 return res;
5513 libc_hidden_def (__libc_mallopt)
5517 -------------------- Alternative MORECORE functions --------------------
5522 General Requirements for MORECORE.
5524 The MORECORE function must have the following properties:
5526 If MORECORE_CONTIGUOUS is false:
5528 * MORECORE must allocate in multiples of pagesize. It will
5529 only be called with arguments that are multiples of pagesize.
5531 * MORECORE(0) must return an address that is at least
5532 MALLOC_ALIGNMENT aligned. (Page-aligning always suffices.)
5534 else (i.e. If MORECORE_CONTIGUOUS is true):
5536 * Consecutive calls to MORECORE with positive arguments
5537 return increasing addresses, indicating that space has been
5538 contiguously extended.
5540 * MORECORE need not allocate in multiples of pagesize.
5541 Calls to MORECORE need not have args of multiples of pagesize.
5543 * MORECORE need not page-align.
5545 In either case:
5547 * MORECORE may allocate more memory than requested. (Or even less,
5548 but this will generally result in a malloc failure.)
5550 * MORECORE must not allocate memory when given argument zero, but
5551 instead return one past the end address of memory from previous
5552 nonzero call. This malloc does NOT call MORECORE(0)
5553 until at least one call with positive arguments is made, so
5554 the initial value returned is not important.
5556 * Even though consecutive calls to MORECORE need not return contiguous
5557 addresses, it must be OK for malloc'ed chunks to span multiple
5558 regions in those cases where they do happen to be contiguous.
5560 * MORECORE need not handle negative arguments -- it may instead
5561 just return MORECORE_FAILURE when given negative arguments.
5562 Negative arguments are always multiples of pagesize. MORECORE
5563 must not misinterpret negative args as large positive unsigned
5564 args. You can suppress all such calls from even occurring by defining
5565 MORECORE_CANNOT_TRIM,
5567 There is some variation across systems about the type of the
5568 argument to sbrk/MORECORE. If size_t is unsigned, then it cannot
5569 actually be size_t, because sbrk supports negative args, so it is
5570 normally the signed type of the same width as size_t (sometimes
5571 declared as "intptr_t", and sometimes "ptrdiff_t"). It doesn't much
5572 matter though. Internally, we use "long" as arguments, which should
5573 work across all reasonable possibilities.
5575 Additionally, if MORECORE ever returns failure for a positive
5576 request, then mmap is used as a noncontiguous system allocator. This
5577 is a useful backup strategy for systems with holes in address spaces
5578 -- in this case sbrk cannot contiguously expand the heap, but mmap
5579 may be able to map noncontiguous space.
5581 If you'd like mmap to ALWAYS be used, you can define MORECORE to be
5582 a function that always returns MORECORE_FAILURE.
5584 If you are using this malloc with something other than sbrk (or its
5585 emulation) to supply memory regions, you probably want to set
5586 MORECORE_CONTIGUOUS as false. As an example, here is a custom
5587 allocator kindly contributed for pre-OSX macOS. It uses virtually
5588 but not necessarily physically contiguous non-paged memory (locked
5589 in, present and won't get swapped out). You can use it by
5590 uncommenting this section, adding some #includes, and setting up the
5591 appropriate defines above:
5593 *#define MORECORE osMoreCore
5594 *#define MORECORE_CONTIGUOUS 0
5596 There is also a shutdown routine that should somehow be called for
5597 cleanup upon program exit.
5599 *#define MAX_POOL_ENTRIES 100
5600 *#define MINIMUM_MORECORE_SIZE (64 * 1024)
5601 static int next_os_pool;
5602 void *our_os_pools[MAX_POOL_ENTRIES];
5604 void *osMoreCore(int size)
5606 void *ptr = 0;
5607 static void *sbrk_top = 0;
5609 if (size > 0)
5611 if (size < MINIMUM_MORECORE_SIZE)
5612 size = MINIMUM_MORECORE_SIZE;
5613 if (CurrentExecutionLevel() == kTaskLevel)
5614 ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
5615 if (ptr == 0)
5617 return (void *) MORECORE_FAILURE;
5619 // save ptrs so they can be freed during cleanup
5620 our_os_pools[next_os_pool] = ptr;
5621 next_os_pool++;
5622 ptr = (void *) ((((unsigned long) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
5623 sbrk_top = (char *) ptr + size;
5624 return ptr;
5626 else if (size < 0)
5628 // we don't currently support shrink behavior
5629 return (void *) MORECORE_FAILURE;
5631 else
5633 return sbrk_top;
5637 // cleanup any allocated memory pools
5638 // called as last thing before shutting down driver
5640 void osCleanupMem(void)
5642 void **ptr;
5644 for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
5645 if (*ptr)
5647 PoolDeallocate(*ptr);
5648 * ptr = 0;
5655 /* Helper code. */
5657 extern char **__libc_argv attribute_hidden;
5659 static void
5660 malloc_printerr (const char *str)
5662 #if IS_IN (libc)
5663 __libc_message (do_abort, "%s\n", str);
5664 #else
5665 __libc_fatal (str);
5666 #endif
5667 __builtin_unreachable ();
5670 #if IS_IN (libc)
5671 /* We need a wrapper function for one of the additions of POSIX. */
5673 __posix_memalign (void **memptr, size_t alignment, size_t size)
5675 void *mem;
5677 if (!__malloc_initialized)
5678 ptmalloc_init ();
5680 /* Test whether the SIZE argument is valid. It must be a power of
5681 two multiple of sizeof (void *). */
5682 if (alignment % sizeof (void *) != 0
5683 || !powerof2 (alignment / sizeof (void *))
5684 || alignment == 0)
5685 return EINVAL;
5688 void *address = RETURN_ADDRESS (0);
5689 mem = _mid_memalign (alignment, size, address);
5691 if (mem != NULL)
5693 *memptr = mem;
5694 return 0;
5697 return ENOMEM;
5699 weak_alias (__posix_memalign, posix_memalign)
5700 #endif
5704 __malloc_info (int options, FILE *fp)
5706 /* For now, at least. */
5707 if (options != 0)
5708 return EINVAL;
5710 int n = 0;
5711 size_t total_nblocks = 0;
5712 size_t total_nfastblocks = 0;
5713 size_t total_avail = 0;
5714 size_t total_fastavail = 0;
5715 size_t total_system = 0;
5716 size_t total_max_system = 0;
5717 size_t total_aspace = 0;
5718 size_t total_aspace_mprotect = 0;
5722 if (!__malloc_initialized)
5723 ptmalloc_init ();
5725 fputs ("<malloc version=\"1\">\n", fp);
5727 /* Iterate over all arenas currently in use. */
5728 mstate ar_ptr = &main_arena;
5731 fprintf (fp, "<heap nr=\"%d\">\n<sizes>\n", n++);
5733 size_t nblocks = 0;
5734 size_t nfastblocks = 0;
5735 size_t avail = 0;
5736 size_t fastavail = 0;
5737 struct
5739 size_t from;
5740 size_t to;
5741 size_t total;
5742 size_t count;
5743 } sizes[NFASTBINS + NBINS - 1];
5744 #define nsizes (sizeof (sizes) / sizeof (sizes[0]))
5746 __libc_lock_lock (ar_ptr->mutex);
5748 /* Account for top chunk. The top-most available chunk is
5749 treated specially and is never in any bin. See "initial_top"
5750 comments. */
5751 avail = chunksize (ar_ptr->top);
5752 nblocks = 1; /* Top always exists. */
5754 for (size_t i = 0; i < NFASTBINS; ++i)
5756 mchunkptr p = fastbin (ar_ptr, i);
5757 if (p != NULL)
5759 size_t nthissize = 0;
5760 size_t thissize = chunksize (p);
5762 while (p != NULL)
5764 if (__glibc_unlikely (misaligned_chunk (p)))
5765 malloc_printerr ("__malloc_info(): "
5766 "unaligned fastbin chunk detected");
5767 ++nthissize;
5768 p = REVEAL_PTR (p->fd);
5771 fastavail += nthissize * thissize;
5772 nfastblocks += nthissize;
5773 sizes[i].from = thissize - (MALLOC_ALIGNMENT - 1);
5774 sizes[i].to = thissize;
5775 sizes[i].count = nthissize;
5777 else
5778 sizes[i].from = sizes[i].to = sizes[i].count = 0;
5780 sizes[i].total = sizes[i].count * sizes[i].to;
5784 mbinptr bin;
5785 struct malloc_chunk *r;
5787 for (size_t i = 1; i < NBINS; ++i)
5789 bin = bin_at (ar_ptr, i);
5790 r = bin->fd;
5791 sizes[NFASTBINS - 1 + i].from = ~((size_t) 0);
5792 sizes[NFASTBINS - 1 + i].to = sizes[NFASTBINS - 1 + i].total
5793 = sizes[NFASTBINS - 1 + i].count = 0;
5795 if (r != NULL)
5796 while (r != bin)
5798 size_t r_size = chunksize_nomask (r);
5799 ++sizes[NFASTBINS - 1 + i].count;
5800 sizes[NFASTBINS - 1 + i].total += r_size;
5801 sizes[NFASTBINS - 1 + i].from
5802 = MIN (sizes[NFASTBINS - 1 + i].from, r_size);
5803 sizes[NFASTBINS - 1 + i].to = MAX (sizes[NFASTBINS - 1 + i].to,
5804 r_size);
5806 r = r->fd;
5809 if (sizes[NFASTBINS - 1 + i].count == 0)
5810 sizes[NFASTBINS - 1 + i].from = 0;
5811 nblocks += sizes[NFASTBINS - 1 + i].count;
5812 avail += sizes[NFASTBINS - 1 + i].total;
5815 size_t heap_size = 0;
5816 size_t heap_mprotect_size = 0;
5817 size_t heap_count = 0;
5818 if (ar_ptr != &main_arena)
5820 /* Iterate over the arena heaps from back to front. */
5821 heap_info *heap = heap_for_ptr (top (ar_ptr));
5824 heap_size += heap->size;
5825 heap_mprotect_size += heap->mprotect_size;
5826 heap = heap->prev;
5827 ++heap_count;
5829 while (heap != NULL);
5832 __libc_lock_unlock (ar_ptr->mutex);
5834 total_nfastblocks += nfastblocks;
5835 total_fastavail += fastavail;
5837 total_nblocks += nblocks;
5838 total_avail += avail;
5840 for (size_t i = 0; i < nsizes; ++i)
5841 if (sizes[i].count != 0 && i != NFASTBINS)
5842 fprintf (fp, "\
5843 <size from=\"%zu\" to=\"%zu\" total=\"%zu\" count=\"%zu\"/>\n",
5844 sizes[i].from, sizes[i].to, sizes[i].total, sizes[i].count);
5846 if (sizes[NFASTBINS].count != 0)
5847 fprintf (fp, "\
5848 <unsorted from=\"%zu\" to=\"%zu\" total=\"%zu\" count=\"%zu\"/>\n",
5849 sizes[NFASTBINS].from, sizes[NFASTBINS].to,
5850 sizes[NFASTBINS].total, sizes[NFASTBINS].count);
5852 total_system += ar_ptr->system_mem;
5853 total_max_system += ar_ptr->max_system_mem;
5855 fprintf (fp,
5856 "</sizes>\n<total type=\"fast\" count=\"%zu\" size=\"%zu\"/>\n"
5857 "<total type=\"rest\" count=\"%zu\" size=\"%zu\"/>\n"
5858 "<system type=\"current\" size=\"%zu\"/>\n"
5859 "<system type=\"max\" size=\"%zu\"/>\n",
5860 nfastblocks, fastavail, nblocks, avail,
5861 ar_ptr->system_mem, ar_ptr->max_system_mem);
5863 if (ar_ptr != &main_arena)
5865 fprintf (fp,
5866 "<aspace type=\"total\" size=\"%zu\"/>\n"
5867 "<aspace type=\"mprotect\" size=\"%zu\"/>\n"
5868 "<aspace type=\"subheaps\" size=\"%zu\"/>\n",
5869 heap_size, heap_mprotect_size, heap_count);
5870 total_aspace += heap_size;
5871 total_aspace_mprotect += heap_mprotect_size;
5873 else
5875 fprintf (fp,
5876 "<aspace type=\"total\" size=\"%zu\"/>\n"
5877 "<aspace type=\"mprotect\" size=\"%zu\"/>\n",
5878 ar_ptr->system_mem, ar_ptr->system_mem);
5879 total_aspace += ar_ptr->system_mem;
5880 total_aspace_mprotect += ar_ptr->system_mem;
5883 fputs ("</heap>\n", fp);
5884 ar_ptr = ar_ptr->next;
5886 while (ar_ptr != &main_arena);
5888 fprintf (fp,
5889 "<total type=\"fast\" count=\"%zu\" size=\"%zu\"/>\n"
5890 "<total type=\"rest\" count=\"%zu\" size=\"%zu\"/>\n"
5891 "<total type=\"mmap\" count=\"%d\" size=\"%zu\"/>\n"
5892 "<system type=\"current\" size=\"%zu\"/>\n"
5893 "<system type=\"max\" size=\"%zu\"/>\n"
5894 "<aspace type=\"total\" size=\"%zu\"/>\n"
5895 "<aspace type=\"mprotect\" size=\"%zu\"/>\n"
5896 "</malloc>\n",
5897 total_nfastblocks, total_fastavail, total_nblocks, total_avail,
5898 mp_.n_mmaps, mp_.mmapped_mem,
5899 total_system, total_max_system,
5900 total_aspace, total_aspace_mprotect);
5902 return 0;
5904 #if IS_IN (libc)
5905 weak_alias (__malloc_info, malloc_info)
5907 strong_alias (__libc_calloc, __calloc) weak_alias (__libc_calloc, calloc)
5908 strong_alias (__libc_free, __free) strong_alias (__libc_free, free)
5909 strong_alias (__libc_malloc, __malloc) strong_alias (__libc_malloc, malloc)
5910 strong_alias (__libc_memalign, __memalign)
5911 weak_alias (__libc_memalign, memalign)
5912 strong_alias (__libc_realloc, __realloc) strong_alias (__libc_realloc, realloc)
5913 strong_alias (__libc_valloc, __valloc) weak_alias (__libc_valloc, valloc)
5914 strong_alias (__libc_pvalloc, __pvalloc) weak_alias (__libc_pvalloc, pvalloc)
5915 strong_alias (__libc_mallinfo, __mallinfo)
5916 weak_alias (__libc_mallinfo, mallinfo)
5917 strong_alias (__libc_mallinfo2, __mallinfo2)
5918 weak_alias (__libc_mallinfo2, mallinfo2)
5919 strong_alias (__libc_mallopt, __mallopt) weak_alias (__libc_mallopt, mallopt)
5921 weak_alias (__malloc_stats, malloc_stats)
5922 weak_alias (__malloc_usable_size, malloc_usable_size)
5923 weak_alias (__malloc_trim, malloc_trim)
5924 #endif
5926 #if SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_26)
5927 compat_symbol (libc, __libc_free, cfree, GLIBC_2_0);
5928 #endif
5930 /* ------------------------------------------------------------
5931 History:
5933 [see ftp://g.oswego.edu/pub/misc/malloc.c for the history of dlmalloc]
5937 * Local variables:
5938 * c-basic-offset: 2
5939 * End: