1 /* @(#)k_cos.c 5.1 93/09/24 */
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
10 * ====================================================
12 /* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
13 for performance improvement on pipelined processors.
16 #if defined(LIBM_SCCS) && !defined(lint)
17 static char rcsid
[] = "$NetBSD: k_cos.c,v 1.8 1995/05/10 20:46:22 jtc Exp $";
21 * __kernel_cos( x, y )
22 * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
23 * Input x is assumed to be bounded by ~pi/4 in magnitude.
24 * Input y is the tail of x.
27 * 1. Since cos(-x) = cos(x), we need only to consider positive x.
28 * 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
29 * 3. cos(x) is approximated by a polynomial of degree 14 on
32 * cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
33 * where the remez error is
35 * | 2 4 6 8 10 12 14 | -58
36 * |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
40 * 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then
41 * cos(x) = 1 - x*x/2 + r
42 * since cos(x+y) ~ cos(x) - sin(x)*y
44 * a correction term is necessary in cos(x) and hence
45 * cos(x+y) = 1 - (x*x/2 - (r - x*y))
46 * For better accuracy when x > 0.3, let qx = |x|/4 with
47 * the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
49 * cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
50 * Note that 1-qx and (x*x/2-qx) is EXACT here, and the
51 * magnitude of the latter is at least a quarter of x*x/2,
52 * thus, reducing the rounding error in the subtraction.
56 #include "math_private.h"
64 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
65 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
66 -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
67 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
68 -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
69 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
70 -1.13596475577881948265e-11}; /* 0xBDA8FAE9, 0xBE8838D4 */
73 double __kernel_cos(double x
, double y
)
75 double __kernel_cos(x
, y
)
79 double a
,hz
,z
,r
,qx
,r1
,r2
,r3
,z1
,z2
,z3
;
83 ix
&= 0x7fffffff; /* ix = |x|'s high word*/
84 if(ix
<0x3e400000) { /* if x < 2**27 */
85 if(((int)x
)==0) return C
[0]; /* generate inexact */
87 #ifdef DO_NOT_USE_THIS
88 r
= z
*(C1
+z
*(C2
+z
*(C3
+z
*(C4
+z
*(C5
+z
*C6
)))));
90 r1
=z
*C
[6];r1
=r1
+C
[5];z1
=z
*z
;
91 r2
=z
*C
[4];r2
=r2
+C
[3];z2
=z1
*z
;
92 r3
=z
*C
[2];r3
=r3
+C
[1];z3
=z2
*z1
;
95 if(ix
< 0x3FD33333) /* if |x| < 0.3 */
96 return C
[0] - (0.5*z
- (z
*r
- x
*y
));
98 if(ix
> 0x3fe90000) { /* x > 0.78125 */
101 INSERT_WORDS(qx
,ix
-0x00200000,0); /* x/4 */
105 return a
- (hz
- (z
*r
-x
*y
));