1 /* @(#)e_asin.c 5.1 93/09/24 */
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
10 * ====================================================
12 /* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
13 for performance improvement on pipelined processors.
16 #if defined(LIBM_SCCS) && !defined(lint)
17 static char rcsid
[] = "$NetBSD: e_asin.c,v 1.9 1995/05/12 04:57:22 jtc Exp $";
22 * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
23 * we approximate asin(x) on [0,0.5] by
24 * asin(x) = x + x*x^2*R(x^2)
26 * R(x^2) is a rational approximation of (asin(x)-x)/x^3
27 * and its remez error is bounded by
28 * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
31 * asin(x) = pi/2-2*asin(sqrt((1-x)/2))
32 * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
34 * asin(x) = pi/2 - 2*(s+s*z*R(z))
35 * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
36 * For x<=0.98, let pio4_hi = pio2_hi/2, then
38 * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
40 * asin(x) = pi/2 - 2*(s+s*z*R(z))
41 * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
42 * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
45 * if x is NaN, return x itself;
46 * if |x|>1, return NaN with invalid signal.
52 #include "math_private.h"
60 pio2_hi
= 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
61 pio2_lo
= 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
62 pio4_hi
= 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
63 /* coefficient for R(x^2) */
64 pS
[] = {1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
65 -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
66 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
67 -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
68 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
69 3.47933107596021167570e-05}, /* 0x3F023DE1, 0x0DFDF709 */
70 qS
[] = {1.0, -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
71 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
72 -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
73 7.70381505559019352791e-02}; /* 0x3FB3B8C5, 0xB12E9282 */
76 double __ieee754_asin(double x
)
78 double __ieee754_asin(x
)
82 double t
,w
,p
,q
,c
,r
,s
,p1
,p2
,p3
,q1
,q2
,z2
,z4
,z6
;
86 if(ix
>= 0x3ff00000) { /* |x|>= 1 */
89 if(((ix
-0x3ff00000)|lx
)==0)
90 /* asin(1)=+-pi/2 with inexact */
91 return x
*pio2_hi
+x
*pio2_lo
;
92 return (x
-x
)/(x
-x
); /* asin(|x|>1) is NaN */
93 } else if (ix
<0x3fe00000) { /* |x|<0.5 */
94 if(ix
<0x3e400000) { /* if |x| < 2**-27 */
95 if(huge
+x
>one
) return x
;/* return x with inexact if x!=0*/
98 #ifdef DO_NOT_USE_THIS
99 p
= t
*(pS0
+t
*(pS1
+t
*(pS2
+t
*(pS3
+t
*(pS4
+t
*pS5
)))));
100 q
= one
+t
*(qS1
+t
*(qS2
+t
*(qS3
+t
*qS4
)));
102 p1
= t
*pS
[0]; z2
=t
*t
;
103 p2
= pS
[1]+t
*pS
[2]; z4
=z2
*z2
;
104 p3
= pS
[3]+t
*pS
[4]; z6
=z4
*z2
;
107 p
= p1
+ z2
*p2
+ z4
*p3
+ z6
*pS
[5];
108 q
= q1
+ z2
*q2
+ z4
*qS
[4];
117 #ifdef DO_NOT_USE_THIS
118 p
= t
*(pS0
+t
*(pS1
+t
*(pS2
+t
*(pS3
+t
*(pS4
+t
*pS5
)))));
119 q
= one
+t
*(qS1
+t
*(qS2
+t
*(qS3
+t
*qS4
)));
121 p1
= t
*pS
[0]; z2
=t
*t
;
122 p2
= pS
[1]+t
*pS
[2]; z4
=z2
*z2
;
123 p3
= pS
[3]+t
*pS
[4]; z6
=z4
*z2
;
126 p
= p1
+ z2
*p2
+ z4
*p3
+ z6
*pS
[5];
127 q
= q1
+ z2
*q2
+ z4
*qS
[4];
129 s
= __ieee754_sqrt(t
);
130 if(ix
>=0x3FEF3333) { /* if |x| > 0.975 */
132 t
= pio2_hi
-(2.0*(s
+s
*w
)-pio2_lo
);
138 p
= 2.0*s
*r
-(pio2_lo
-2.0*c
);
142 if(hx
>0) return t
; else return -t
;