Update.
[glibc.git] / sysdeps / libm-ieee754 / e_asin.c
blobaa195988483a042e4ccc16547f45b7ac4a2c7104
1 /* @(#)e_asin.c 5.1 93/09/24 */
2 /*
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
9 * is preserved.
10 * ====================================================
12 /* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
13 for performance improvement on pipelined processors.
16 #if defined(LIBM_SCCS) && !defined(lint)
17 static char rcsid[] = "$NetBSD: e_asin.c,v 1.9 1995/05/12 04:57:22 jtc Exp $";
18 #endif
20 /* __ieee754_asin(x)
21 * Method :
22 * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
23 * we approximate asin(x) on [0,0.5] by
24 * asin(x) = x + x*x^2*R(x^2)
25 * where
26 * R(x^2) is a rational approximation of (asin(x)-x)/x^3
27 * and its remez error is bounded by
28 * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
30 * For x in [0.5,1]
31 * asin(x) = pi/2-2*asin(sqrt((1-x)/2))
32 * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
33 * then for x>0.98
34 * asin(x) = pi/2 - 2*(s+s*z*R(z))
35 * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
36 * For x<=0.98, let pio4_hi = pio2_hi/2, then
37 * f = hi part of s;
38 * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
39 * and
40 * asin(x) = pi/2 - 2*(s+s*z*R(z))
41 * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
42 * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
44 * Special cases:
45 * if x is NaN, return x itself;
46 * if |x|>1, return NaN with invalid signal.
51 #include "math.h"
52 #include "math_private.h"
53 #define one qS[0]
54 #ifdef __STDC__
55 static const double
56 #else
57 static double
58 #endif
59 huge = 1.000e+300,
60 pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
61 pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
62 pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
63 /* coefficient for R(x^2) */
64 pS[] = {1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
65 -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
66 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
67 -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
68 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
69 3.47933107596021167570e-05}, /* 0x3F023DE1, 0x0DFDF709 */
70 qS[] = {1.0, -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
71 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
72 -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
73 7.70381505559019352791e-02}; /* 0x3FB3B8C5, 0xB12E9282 */
75 #ifdef __STDC__
76 double __ieee754_asin(double x)
77 #else
78 double __ieee754_asin(x)
79 double x;
80 #endif
82 double t,w,p,q,c,r,s,p1,p2,p3,q1,q2,z2,z4,z6;
83 int32_t hx,ix;
84 GET_HIGH_WORD(hx,x);
85 ix = hx&0x7fffffff;
86 if(ix>= 0x3ff00000) { /* |x|>= 1 */
87 u_int32_t lx;
88 GET_LOW_WORD(lx,x);
89 if(((ix-0x3ff00000)|lx)==0)
90 /* asin(1)=+-pi/2 with inexact */
91 return x*pio2_hi+x*pio2_lo;
92 return (x-x)/(x-x); /* asin(|x|>1) is NaN */
93 } else if (ix<0x3fe00000) { /* |x|<0.5 */
94 if(ix<0x3e400000) { /* if |x| < 2**-27 */
95 if(huge+x>one) return x;/* return x with inexact if x!=0*/
96 } else {
97 t = x*x;
98 #ifdef DO_NOT_USE_THIS
99 p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
100 q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
101 #else
102 p1 = t*pS[0]; z2=t*t;
103 p2 = pS[1]+t*pS[2]; z4=z2*z2;
104 p3 = pS[3]+t*pS[4]; z6=z4*z2;
105 q1 = one+t*qS[1];
106 q2 = qS[2]+t*qS[3];
107 p = p1 + z2*p2 + z4*p3 + z6*pS[5];
108 q = q1 + z2*q2 + z4*qS[4];
109 #endif
110 w = p/q;
111 return x+x*w;
114 /* 1> |x|>= 0.5 */
115 w = one-fabs(x);
116 t = w*0.5;
117 #ifdef DO_NOT_USE_THIS
118 p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
119 q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
120 #else
121 p1 = t*pS[0]; z2=t*t;
122 p2 = pS[1]+t*pS[2]; z4=z2*z2;
123 p3 = pS[3]+t*pS[4]; z6=z4*z2;
124 q1 = one+t*qS[1];
125 q2 = qS[2]+t*qS[3];
126 p = p1 + z2*p2 + z4*p3 + z6*pS[5];
127 q = q1 + z2*q2 + z4*qS[4];
128 #endif
129 s = __ieee754_sqrt(t);
130 if(ix>=0x3FEF3333) { /* if |x| > 0.975 */
131 w = p/q;
132 t = pio2_hi-(2.0*(s+s*w)-pio2_lo);
133 } else {
134 w = s;
135 SET_LOW_WORD(w,0);
136 c = (t-w*w)/(s+w);
137 r = p/q;
138 p = 2.0*s*r-(pio2_lo-2.0*c);
139 q = pio4_hi-2.0*w;
140 t = pio4_hi-(p-q);
142 if(hx>0) return t; else return -t;