1 /* Extended-precision floating point cosine on <-pi/4,pi/4>.
2 Copyright (C) 1999-2016 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Based on quad-precision cosine by Jakub Jelinek <jj@ultra.linux.cz>
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; if not, see
18 <http://www.gnu.org/licenses/>. */
21 #include <math_private.h>
23 /* The polynomials have not been optimized for extended-precision and
24 may contain more terms than needed. */
26 static const long double c
[] = {
28 1.00000000000000000000000000000000000E+00L,
30 /* cos x ~ ONE + x^2 ( SCOS1 + SCOS2 * x^2 + ... + SCOS4 * x^6 + SCOS5 * x^8 )
37 -5.00000000000000000000000000000000000E-01L,
38 4.16666666666666666666666666556146073E-02L,
39 -1.38888888888888888888309442601939728E-03L,
40 2.48015873015862382987049502531095061E-05L,
41 -2.75573112601362126593516899592158083E-07L,
43 /* cos x ~ ONE + x^2 ( COS1 + COS2 * x^2 + ... + COS7 * x^12 + COS8 * x^14 )
53 -4.99999999999999999999999999999999759E-01L,
54 4.16666666666666666666666666651287795E-02L,
55 -1.38888888888888888888888742314300284E-03L,
56 2.48015873015873015867694002851118210E-05L,
57 -2.75573192239858811636614709689300351E-07L,
58 2.08767569877762248667431926878073669E-09L,
59 -1.14707451049343817400420280514614892E-11L,
60 4.77810092804389587579843296923533297E-14L,
62 /* sin x ~ ONE * x + x^3 ( SSIN1 + SSIN2 * x^2 + ... + SSIN4 * x^6 + SSIN5 * x^8 )
69 -1.66666666666666666666666666666666659E-01L,
70 8.33333333333333333333333333146298442E-03L,
71 -1.98412698412698412697726277416810661E-04L,
72 2.75573192239848624174178393552189149E-06L,
73 -2.50521016467996193495359189395805639E-08L,
76 #define SINCOSL_COS_HI 0
77 #define SINCOSL_COS_LO 1
78 #define SINCOSL_SIN_HI 2
79 #define SINCOSL_SIN_LO 3
80 extern const long double __sincosl_table
[];
83 __kernel_cosl(long double x
, long double y
)
85 long double h
, l
, z
, sin_l
, cos_l_m1
;
95 /* Argument is small enough to approximate it by a Chebyshev
96 polynomial of degree 16. */
98 if (!((int)x
)) return ONE
; /* generate inexact */
100 return ONE
+ (z
*(COS1
+z
*(COS2
+z
*(COS3
+z
*(COS4
+
101 z
*(COS5
+z
*(COS6
+z
*(COS7
+z
*COS8
))))))));
105 /* So that we don't have to use too large polynomial, we find
106 l and h such that x = l + h, where fabsl(l) <= 1.0/256 with 83
107 possible values for h. We look up cosl(h) and sinl(h) in
108 pre-computed tables, compute cosl(l) and sinl(l) using a
109 Chebyshev polynomial of degree 10(11) and compute
110 cosl(h+l) = cosl(h)cosl(l) - sinl(h)sinl(l). */
111 index
= (int) (128 * (x
- (0.1484375L - 1.0L / 256.0L)));
112 h
= 0.1484375L + index
/ 128.0;
116 sin_l
= l
*(ONE
+z
*(SSIN1
+z
*(SSIN2
+z
*(SSIN3
+z
*(SSIN4
+z
*SSIN5
)))));
117 cos_l_m1
= z
*(SCOS1
+z
*(SCOS2
+z
*(SCOS3
+z
*(SCOS4
+z
*SCOS5
))));
118 return __sincosl_table
[index
+ SINCOSL_COS_HI
]
119 + (__sincosl_table
[index
+ SINCOSL_COS_LO
]
120 - (__sincosl_table
[index
+ SINCOSL_SIN_HI
] * sin_l
121 - __sincosl_table
[index
+ SINCOSL_COS_HI
] * cos_l_m1
));