Use relaxed atomics for malloc have_fastchunks
[glibc.git] / malloc / malloc.c
blob670c9f73f8e39632f4d018eeb1b186507531a2ba
1 /* Malloc implementation for multiple threads without lock contention.
2 Copyright (C) 1996-2017 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Wolfram Gloger <wg@malloc.de>
5 and Doug Lea <dl@cs.oswego.edu>, 2001.
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public License as
9 published by the Free Software Foundation; either version 2.1 of the
10 License, or (at your option) any later version.
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Lesser General Public License for more details.
17 You should have received a copy of the GNU Lesser General Public
18 License along with the GNU C Library; see the file COPYING.LIB. If
19 not, see <http://www.gnu.org/licenses/>. */
22 This is a version (aka ptmalloc2) of malloc/free/realloc written by
23 Doug Lea and adapted to multiple threads/arenas by Wolfram Gloger.
25 There have been substantial changes made after the integration into
26 glibc in all parts of the code. Do not look for much commonality
27 with the ptmalloc2 version.
29 * Version ptmalloc2-20011215
30 based on:
31 VERSION 2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)
33 * Quickstart
35 In order to compile this implementation, a Makefile is provided with
36 the ptmalloc2 distribution, which has pre-defined targets for some
37 popular systems (e.g. "make posix" for Posix threads). All that is
38 typically required with regard to compiler flags is the selection of
39 the thread package via defining one out of USE_PTHREADS, USE_THR or
40 USE_SPROC. Check the thread-m.h file for what effects this has.
41 Many/most systems will additionally require USE_TSD_DATA_HACK to be
42 defined, so this is the default for "make posix".
44 * Why use this malloc?
46 This is not the fastest, most space-conserving, most portable, or
47 most tunable malloc ever written. However it is among the fastest
48 while also being among the most space-conserving, portable and tunable.
49 Consistent balance across these factors results in a good general-purpose
50 allocator for malloc-intensive programs.
52 The main properties of the algorithms are:
53 * For large (>= 512 bytes) requests, it is a pure best-fit allocator,
54 with ties normally decided via FIFO (i.e. least recently used).
55 * For small (<= 64 bytes by default) requests, it is a caching
56 allocator, that maintains pools of quickly recycled chunks.
57 * In between, and for combinations of large and small requests, it does
58 the best it can trying to meet both goals at once.
59 * For very large requests (>= 128KB by default), it relies on system
60 memory mapping facilities, if supported.
62 For a longer but slightly out of date high-level description, see
63 http://gee.cs.oswego.edu/dl/html/malloc.html
65 You may already by default be using a C library containing a malloc
66 that is based on some version of this malloc (for example in
67 linux). You might still want to use the one in this file in order to
68 customize settings or to avoid overheads associated with library
69 versions.
71 * Contents, described in more detail in "description of public routines" below.
73 Standard (ANSI/SVID/...) functions:
74 malloc(size_t n);
75 calloc(size_t n_elements, size_t element_size);
76 free(void* p);
77 realloc(void* p, size_t n);
78 memalign(size_t alignment, size_t n);
79 valloc(size_t n);
80 mallinfo()
81 mallopt(int parameter_number, int parameter_value)
83 Additional functions:
84 independent_calloc(size_t n_elements, size_t size, void* chunks[]);
85 independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]);
86 pvalloc(size_t n);
87 malloc_trim(size_t pad);
88 malloc_usable_size(void* p);
89 malloc_stats();
91 * Vital statistics:
93 Supported pointer representation: 4 or 8 bytes
94 Supported size_t representation: 4 or 8 bytes
95 Note that size_t is allowed to be 4 bytes even if pointers are 8.
96 You can adjust this by defining INTERNAL_SIZE_T
98 Alignment: 2 * sizeof(size_t) (default)
99 (i.e., 8 byte alignment with 4byte size_t). This suffices for
100 nearly all current machines and C compilers. However, you can
101 define MALLOC_ALIGNMENT to be wider than this if necessary.
103 Minimum overhead per allocated chunk: 4 or 8 bytes
104 Each malloced chunk has a hidden word of overhead holding size
105 and status information.
107 Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead)
108 8-byte ptrs: 24/32 bytes (including, 4/8 overhead)
110 When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
111 ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
112 needed; 4 (8) for a trailing size field and 8 (16) bytes for
113 free list pointers. Thus, the minimum allocatable size is
114 16/24/32 bytes.
116 Even a request for zero bytes (i.e., malloc(0)) returns a
117 pointer to something of the minimum allocatable size.
119 The maximum overhead wastage (i.e., number of extra bytes
120 allocated than were requested in malloc) is less than or equal
121 to the minimum size, except for requests >= mmap_threshold that
122 are serviced via mmap(), where the worst case wastage is 2 *
123 sizeof(size_t) bytes plus the remainder from a system page (the
124 minimal mmap unit); typically 4096 or 8192 bytes.
126 Maximum allocated size: 4-byte size_t: 2^32 minus about two pages
127 8-byte size_t: 2^64 minus about two pages
129 It is assumed that (possibly signed) size_t values suffice to
130 represent chunk sizes. `Possibly signed' is due to the fact
131 that `size_t' may be defined on a system as either a signed or
132 an unsigned type. The ISO C standard says that it must be
133 unsigned, but a few systems are known not to adhere to this.
134 Additionally, even when size_t is unsigned, sbrk (which is by
135 default used to obtain memory from system) accepts signed
136 arguments, and may not be able to handle size_t-wide arguments
137 with negative sign bit. Generally, values that would
138 appear as negative after accounting for overhead and alignment
139 are supported only via mmap(), which does not have this
140 limitation.
142 Requests for sizes outside the allowed range will perform an optional
143 failure action and then return null. (Requests may also
144 also fail because a system is out of memory.)
146 Thread-safety: thread-safe
148 Compliance: I believe it is compliant with the 1997 Single Unix Specification
149 Also SVID/XPG, ANSI C, and probably others as well.
151 * Synopsis of compile-time options:
153 People have reported using previous versions of this malloc on all
154 versions of Unix, sometimes by tweaking some of the defines
155 below. It has been tested most extensively on Solaris and Linux.
156 People also report using it in stand-alone embedded systems.
158 The implementation is in straight, hand-tuned ANSI C. It is not
159 at all modular. (Sorry!) It uses a lot of macros. To be at all
160 usable, this code should be compiled using an optimizing compiler
161 (for example gcc -O3) that can simplify expressions and control
162 paths. (FAQ: some macros import variables as arguments rather than
163 declare locals because people reported that some debuggers
164 otherwise get confused.)
166 OPTION DEFAULT VALUE
168 Compilation Environment options:
170 HAVE_MREMAP 0
172 Changing default word sizes:
174 INTERNAL_SIZE_T size_t
176 Configuration and functionality options:
178 USE_PUBLIC_MALLOC_WRAPPERS NOT defined
179 USE_MALLOC_LOCK NOT defined
180 MALLOC_DEBUG NOT defined
181 REALLOC_ZERO_BYTES_FREES 1
182 TRIM_FASTBINS 0
184 Options for customizing MORECORE:
186 MORECORE sbrk
187 MORECORE_FAILURE -1
188 MORECORE_CONTIGUOUS 1
189 MORECORE_CANNOT_TRIM NOT defined
190 MORECORE_CLEARS 1
191 MMAP_AS_MORECORE_SIZE (1024 * 1024)
193 Tuning options that are also dynamically changeable via mallopt:
195 DEFAULT_MXFAST 64 (for 32bit), 128 (for 64bit)
196 DEFAULT_TRIM_THRESHOLD 128 * 1024
197 DEFAULT_TOP_PAD 0
198 DEFAULT_MMAP_THRESHOLD 128 * 1024
199 DEFAULT_MMAP_MAX 65536
201 There are several other #defined constants and macros that you
202 probably don't want to touch unless you are extending or adapting malloc. */
205 void* is the pointer type that malloc should say it returns
208 #ifndef void
209 #define void void
210 #endif /*void*/
212 #include <stddef.h> /* for size_t */
213 #include <stdlib.h> /* for getenv(), abort() */
214 #include <unistd.h> /* for __libc_enable_secure */
216 #include <atomic.h>
217 #include <_itoa.h>
218 #include <bits/wordsize.h>
219 #include <sys/sysinfo.h>
221 #include <ldsodefs.h>
223 #include <unistd.h>
224 #include <stdio.h> /* needed for malloc_stats */
225 #include <errno.h>
227 #include <shlib-compat.h>
229 /* For uintptr_t. */
230 #include <stdint.h>
232 /* For va_arg, va_start, va_end. */
233 #include <stdarg.h>
235 /* For MIN, MAX, powerof2. */
236 #include <sys/param.h>
238 /* For ALIGN_UP et. al. */
239 #include <libc-pointer-arith.h>
241 /* For DIAG_PUSH/POP_NEEDS_COMMENT et al. */
242 #include <libc-diag.h>
244 #include <malloc/malloc-internal.h>
247 Debugging:
249 Because freed chunks may be overwritten with bookkeeping fields, this
250 malloc will often die when freed memory is overwritten by user
251 programs. This can be very effective (albeit in an annoying way)
252 in helping track down dangling pointers.
254 If you compile with -DMALLOC_DEBUG, a number of assertion checks are
255 enabled that will catch more memory errors. You probably won't be
256 able to make much sense of the actual assertion errors, but they
257 should help you locate incorrectly overwritten memory. The checking
258 is fairly extensive, and will slow down execution
259 noticeably. Calling malloc_stats or mallinfo with MALLOC_DEBUG set
260 will attempt to check every non-mmapped allocated and free chunk in
261 the course of computing the summmaries. (By nature, mmapped regions
262 cannot be checked very much automatically.)
264 Setting MALLOC_DEBUG may also be helpful if you are trying to modify
265 this code. The assertions in the check routines spell out in more
266 detail the assumptions and invariants underlying the algorithms.
268 Setting MALLOC_DEBUG does NOT provide an automated mechanism for
269 checking that all accesses to malloced memory stay within their
270 bounds. However, there are several add-ons and adaptations of this
271 or other mallocs available that do this.
274 #ifndef MALLOC_DEBUG
275 #define MALLOC_DEBUG 0
276 #endif
278 #ifdef NDEBUG
279 # define assert(expr) ((void) 0)
280 #else
281 # define assert(expr) \
282 ((expr) \
283 ? ((void) 0) \
284 : __malloc_assert (#expr, __FILE__, __LINE__, __func__))
286 extern const char *__progname;
288 static void
289 __malloc_assert (const char *assertion, const char *file, unsigned int line,
290 const char *function)
292 (void) __fxprintf (NULL, "%s%s%s:%u: %s%sAssertion `%s' failed.\n",
293 __progname, __progname[0] ? ": " : "",
294 file, line,
295 function ? function : "", function ? ": " : "",
296 assertion);
297 fflush (stderr);
298 abort ();
300 #endif
302 #if USE_TCACHE
303 /* We want 64 entries. This is an arbitrary limit, which tunables can reduce. */
304 # define TCACHE_MAX_BINS 64
305 # define MAX_TCACHE_SIZE tidx2usize (TCACHE_MAX_BINS-1)
307 /* Only used to pre-fill the tunables. */
308 # define tidx2usize(idx) (((size_t) idx) * MALLOC_ALIGNMENT + MINSIZE - SIZE_SZ)
310 /* When "x" is from chunksize(). */
311 # define csize2tidx(x) (((x) - MINSIZE + MALLOC_ALIGNMENT - 1) / MALLOC_ALIGNMENT)
312 /* When "x" is a user-provided size. */
313 # define usize2tidx(x) csize2tidx (request2size (x))
315 /* With rounding and alignment, the bins are...
316 idx 0 bytes 0..24 (64-bit) or 0..12 (32-bit)
317 idx 1 bytes 25..40 or 13..20
318 idx 2 bytes 41..56 or 21..28
319 etc. */
321 /* This is another arbitrary limit, which tunables can change. Each
322 tcache bin will hold at most this number of chunks. */
323 # define TCACHE_FILL_COUNT 7
324 #endif
328 REALLOC_ZERO_BYTES_FREES should be set if a call to
329 realloc with zero bytes should be the same as a call to free.
330 This is required by the C standard. Otherwise, since this malloc
331 returns a unique pointer for malloc(0), so does realloc(p, 0).
334 #ifndef REALLOC_ZERO_BYTES_FREES
335 #define REALLOC_ZERO_BYTES_FREES 1
336 #endif
339 TRIM_FASTBINS controls whether free() of a very small chunk can
340 immediately lead to trimming. Setting to true (1) can reduce memory
341 footprint, but will almost always slow down programs that use a lot
342 of small chunks.
344 Define this only if you are willing to give up some speed to more
345 aggressively reduce system-level memory footprint when releasing
346 memory in programs that use many small chunks. You can get
347 essentially the same effect by setting MXFAST to 0, but this can
348 lead to even greater slowdowns in programs using many small chunks.
349 TRIM_FASTBINS is an in-between compile-time option, that disables
350 only those chunks bordering topmost memory from being placed in
351 fastbins.
354 #ifndef TRIM_FASTBINS
355 #define TRIM_FASTBINS 0
356 #endif
359 /* Definition for getting more memory from the OS. */
360 #define MORECORE (*__morecore)
361 #define MORECORE_FAILURE 0
362 void * __default_morecore (ptrdiff_t);
363 void *(*__morecore)(ptrdiff_t) = __default_morecore;
366 #include <string.h>
369 MORECORE-related declarations. By default, rely on sbrk
374 MORECORE is the name of the routine to call to obtain more memory
375 from the system. See below for general guidance on writing
376 alternative MORECORE functions, as well as a version for WIN32 and a
377 sample version for pre-OSX macos.
380 #ifndef MORECORE
381 #define MORECORE sbrk
382 #endif
385 MORECORE_FAILURE is the value returned upon failure of MORECORE
386 as well as mmap. Since it cannot be an otherwise valid memory address,
387 and must reflect values of standard sys calls, you probably ought not
388 try to redefine it.
391 #ifndef MORECORE_FAILURE
392 #define MORECORE_FAILURE (-1)
393 #endif
396 If MORECORE_CONTIGUOUS is true, take advantage of fact that
397 consecutive calls to MORECORE with positive arguments always return
398 contiguous increasing addresses. This is true of unix sbrk. Even
399 if not defined, when regions happen to be contiguous, malloc will
400 permit allocations spanning regions obtained from different
401 calls. But defining this when applicable enables some stronger
402 consistency checks and space efficiencies.
405 #ifndef MORECORE_CONTIGUOUS
406 #define MORECORE_CONTIGUOUS 1
407 #endif
410 Define MORECORE_CANNOT_TRIM if your version of MORECORE
411 cannot release space back to the system when given negative
412 arguments. This is generally necessary only if you are using
413 a hand-crafted MORECORE function that cannot handle negative arguments.
416 /* #define MORECORE_CANNOT_TRIM */
418 /* MORECORE_CLEARS (default 1)
419 The degree to which the routine mapped to MORECORE zeroes out
420 memory: never (0), only for newly allocated space (1) or always
421 (2). The distinction between (1) and (2) is necessary because on
422 some systems, if the application first decrements and then
423 increments the break value, the contents of the reallocated space
424 are unspecified.
427 #ifndef MORECORE_CLEARS
428 # define MORECORE_CLEARS 1
429 #endif
433 MMAP_AS_MORECORE_SIZE is the minimum mmap size argument to use if
434 sbrk fails, and mmap is used as a backup. The value must be a
435 multiple of page size. This backup strategy generally applies only
436 when systems have "holes" in address space, so sbrk cannot perform
437 contiguous expansion, but there is still space available on system.
438 On systems for which this is known to be useful (i.e. most linux
439 kernels), this occurs only when programs allocate huge amounts of
440 memory. Between this, and the fact that mmap regions tend to be
441 limited, the size should be large, to avoid too many mmap calls and
442 thus avoid running out of kernel resources. */
444 #ifndef MMAP_AS_MORECORE_SIZE
445 #define MMAP_AS_MORECORE_SIZE (1024 * 1024)
446 #endif
449 Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
450 large blocks.
453 #ifndef HAVE_MREMAP
454 #define HAVE_MREMAP 0
455 #endif
457 /* We may need to support __malloc_initialize_hook for backwards
458 compatibility. */
460 #if SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_24)
461 # define HAVE_MALLOC_INIT_HOOK 1
462 #else
463 # define HAVE_MALLOC_INIT_HOOK 0
464 #endif
468 This version of malloc supports the standard SVID/XPG mallinfo
469 routine that returns a struct containing usage properties and
470 statistics. It should work on any SVID/XPG compliant system that has
471 a /usr/include/malloc.h defining struct mallinfo. (If you'd like to
472 install such a thing yourself, cut out the preliminary declarations
473 as described above and below and save them in a malloc.h file. But
474 there's no compelling reason to bother to do this.)
476 The main declaration needed is the mallinfo struct that is returned
477 (by-copy) by mallinfo(). The SVID/XPG malloinfo struct contains a
478 bunch of fields that are not even meaningful in this version of
479 malloc. These fields are are instead filled by mallinfo() with
480 other numbers that might be of interest.
484 /* ---------- description of public routines ------------ */
487 malloc(size_t n)
488 Returns a pointer to a newly allocated chunk of at least n bytes, or null
489 if no space is available. Additionally, on failure, errno is
490 set to ENOMEM on ANSI C systems.
492 If n is zero, malloc returns a minumum-sized chunk. (The minimum
493 size is 16 bytes on most 32bit systems, and 24 or 32 bytes on 64bit
494 systems.) On most systems, size_t is an unsigned type, so calls
495 with negative arguments are interpreted as requests for huge amounts
496 of space, which will often fail. The maximum supported value of n
497 differs across systems, but is in all cases less than the maximum
498 representable value of a size_t.
500 void* __libc_malloc(size_t);
501 libc_hidden_proto (__libc_malloc)
504 free(void* p)
505 Releases the chunk of memory pointed to by p, that had been previously
506 allocated using malloc or a related routine such as realloc.
507 It has no effect if p is null. It can have arbitrary (i.e., bad!)
508 effects if p has already been freed.
510 Unless disabled (using mallopt), freeing very large spaces will
511 when possible, automatically trigger operations that give
512 back unused memory to the system, thus reducing program footprint.
514 void __libc_free(void*);
515 libc_hidden_proto (__libc_free)
518 calloc(size_t n_elements, size_t element_size);
519 Returns a pointer to n_elements * element_size bytes, with all locations
520 set to zero.
522 void* __libc_calloc(size_t, size_t);
525 realloc(void* p, size_t n)
526 Returns a pointer to a chunk of size n that contains the same data
527 as does chunk p up to the minimum of (n, p's size) bytes, or null
528 if no space is available.
530 The returned pointer may or may not be the same as p. The algorithm
531 prefers extending p when possible, otherwise it employs the
532 equivalent of a malloc-copy-free sequence.
534 If p is null, realloc is equivalent to malloc.
536 If space is not available, realloc returns null, errno is set (if on
537 ANSI) and p is NOT freed.
539 if n is for fewer bytes than already held by p, the newly unused
540 space is lopped off and freed if possible. Unless the #define
541 REALLOC_ZERO_BYTES_FREES is set, realloc with a size argument of
542 zero (re)allocates a minimum-sized chunk.
544 Large chunks that were internally obtained via mmap will always be
545 grown using malloc-copy-free sequences unless the system supports
546 MREMAP (currently only linux).
548 The old unix realloc convention of allowing the last-free'd chunk
549 to be used as an argument to realloc is not supported.
551 void* __libc_realloc(void*, size_t);
552 libc_hidden_proto (__libc_realloc)
555 memalign(size_t alignment, size_t n);
556 Returns a pointer to a newly allocated chunk of n bytes, aligned
557 in accord with the alignment argument.
559 The alignment argument should be a power of two. If the argument is
560 not a power of two, the nearest greater power is used.
561 8-byte alignment is guaranteed by normal malloc calls, so don't
562 bother calling memalign with an argument of 8 or less.
564 Overreliance on memalign is a sure way to fragment space.
566 void* __libc_memalign(size_t, size_t);
567 libc_hidden_proto (__libc_memalign)
570 valloc(size_t n);
571 Equivalent to memalign(pagesize, n), where pagesize is the page
572 size of the system. If the pagesize is unknown, 4096 is used.
574 void* __libc_valloc(size_t);
579 mallopt(int parameter_number, int parameter_value)
580 Sets tunable parameters The format is to provide a
581 (parameter-number, parameter-value) pair. mallopt then sets the
582 corresponding parameter to the argument value if it can (i.e., so
583 long as the value is meaningful), and returns 1 if successful else
584 0. SVID/XPG/ANSI defines four standard param numbers for mallopt,
585 normally defined in malloc.h. Only one of these (M_MXFAST) is used
586 in this malloc. The others (M_NLBLKS, M_GRAIN, M_KEEP) don't apply,
587 so setting them has no effect. But this malloc also supports four
588 other options in mallopt. See below for details. Briefly, supported
589 parameters are as follows (listed defaults are for "typical"
590 configurations).
592 Symbol param # default allowed param values
593 M_MXFAST 1 64 0-80 (0 disables fastbins)
594 M_TRIM_THRESHOLD -1 128*1024 any (-1U disables trimming)
595 M_TOP_PAD -2 0 any
596 M_MMAP_THRESHOLD -3 128*1024 any (or 0 if no MMAP support)
597 M_MMAP_MAX -4 65536 any (0 disables use of mmap)
599 int __libc_mallopt(int, int);
600 libc_hidden_proto (__libc_mallopt)
604 mallinfo()
605 Returns (by copy) a struct containing various summary statistics:
607 arena: current total non-mmapped bytes allocated from system
608 ordblks: the number of free chunks
609 smblks: the number of fastbin blocks (i.e., small chunks that
610 have been freed but not use resused or consolidated)
611 hblks: current number of mmapped regions
612 hblkhd: total bytes held in mmapped regions
613 usmblks: always 0
614 fsmblks: total bytes held in fastbin blocks
615 uordblks: current total allocated space (normal or mmapped)
616 fordblks: total free space
617 keepcost: the maximum number of bytes that could ideally be released
618 back to system via malloc_trim. ("ideally" means that
619 it ignores page restrictions etc.)
621 Because these fields are ints, but internal bookkeeping may
622 be kept as longs, the reported values may wrap around zero and
623 thus be inaccurate.
625 struct mallinfo __libc_mallinfo(void);
629 pvalloc(size_t n);
630 Equivalent to valloc(minimum-page-that-holds(n)), that is,
631 round up n to nearest pagesize.
633 void* __libc_pvalloc(size_t);
636 malloc_trim(size_t pad);
638 If possible, gives memory back to the system (via negative
639 arguments to sbrk) if there is unused memory at the `high' end of
640 the malloc pool. You can call this after freeing large blocks of
641 memory to potentially reduce the system-level memory requirements
642 of a program. However, it cannot guarantee to reduce memory. Under
643 some allocation patterns, some large free blocks of memory will be
644 locked between two used chunks, so they cannot be given back to
645 the system.
647 The `pad' argument to malloc_trim represents the amount of free
648 trailing space to leave untrimmed. If this argument is zero,
649 only the minimum amount of memory to maintain internal data
650 structures will be left (one page or less). Non-zero arguments
651 can be supplied to maintain enough trailing space to service
652 future expected allocations without having to re-obtain memory
653 from the system.
655 Malloc_trim returns 1 if it actually released any memory, else 0.
656 On systems that do not support "negative sbrks", it will always
657 return 0.
659 int __malloc_trim(size_t);
662 malloc_usable_size(void* p);
664 Returns the number of bytes you can actually use in
665 an allocated chunk, which may be more than you requested (although
666 often not) due to alignment and minimum size constraints.
667 You can use this many bytes without worrying about
668 overwriting other allocated objects. This is not a particularly great
669 programming practice. malloc_usable_size can be more useful in
670 debugging and assertions, for example:
672 p = malloc(n);
673 assert(malloc_usable_size(p) >= 256);
676 size_t __malloc_usable_size(void*);
679 malloc_stats();
680 Prints on stderr the amount of space obtained from the system (both
681 via sbrk and mmap), the maximum amount (which may be more than
682 current if malloc_trim and/or munmap got called), and the current
683 number of bytes allocated via malloc (or realloc, etc) but not yet
684 freed. Note that this is the number of bytes allocated, not the
685 number requested. It will be larger than the number requested
686 because of alignment and bookkeeping overhead. Because it includes
687 alignment wastage as being in use, this figure may be greater than
688 zero even when no user-level chunks are allocated.
690 The reported current and maximum system memory can be inaccurate if
691 a program makes other calls to system memory allocation functions
692 (normally sbrk) outside of malloc.
694 malloc_stats prints only the most commonly interesting statistics.
695 More information can be obtained by calling mallinfo.
698 void __malloc_stats(void);
701 malloc_get_state(void);
703 Returns the state of all malloc variables in an opaque data
704 structure.
706 void* __malloc_get_state(void);
709 malloc_set_state(void* state);
711 Restore the state of all malloc variables from data obtained with
712 malloc_get_state().
714 int __malloc_set_state(void*);
717 posix_memalign(void **memptr, size_t alignment, size_t size);
719 POSIX wrapper like memalign(), checking for validity of size.
721 int __posix_memalign(void **, size_t, size_t);
723 /* mallopt tuning options */
726 M_MXFAST is the maximum request size used for "fastbins", special bins
727 that hold returned chunks without consolidating their spaces. This
728 enables future requests for chunks of the same size to be handled
729 very quickly, but can increase fragmentation, and thus increase the
730 overall memory footprint of a program.
732 This malloc manages fastbins very conservatively yet still
733 efficiently, so fragmentation is rarely a problem for values less
734 than or equal to the default. The maximum supported value of MXFAST
735 is 80. You wouldn't want it any higher than this anyway. Fastbins
736 are designed especially for use with many small structs, objects or
737 strings -- the default handles structs/objects/arrays with sizes up
738 to 8 4byte fields, or small strings representing words, tokens,
739 etc. Using fastbins for larger objects normally worsens
740 fragmentation without improving speed.
742 M_MXFAST is set in REQUEST size units. It is internally used in
743 chunksize units, which adds padding and alignment. You can reduce
744 M_MXFAST to 0 to disable all use of fastbins. This causes the malloc
745 algorithm to be a closer approximation of fifo-best-fit in all cases,
746 not just for larger requests, but will generally cause it to be
747 slower.
751 /* M_MXFAST is a standard SVID/XPG tuning option, usually listed in malloc.h */
752 #ifndef M_MXFAST
753 #define M_MXFAST 1
754 #endif
756 #ifndef DEFAULT_MXFAST
757 #define DEFAULT_MXFAST (64 * SIZE_SZ / 4)
758 #endif
762 M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
763 to keep before releasing via malloc_trim in free().
765 Automatic trimming is mainly useful in long-lived programs.
766 Because trimming via sbrk can be slow on some systems, and can
767 sometimes be wasteful (in cases where programs immediately
768 afterward allocate more large chunks) the value should be high
769 enough so that your overall system performance would improve by
770 releasing this much memory.
772 The trim threshold and the mmap control parameters (see below)
773 can be traded off with one another. Trimming and mmapping are
774 two different ways of releasing unused memory back to the
775 system. Between these two, it is often possible to keep
776 system-level demands of a long-lived program down to a bare
777 minimum. For example, in one test suite of sessions measuring
778 the XF86 X server on Linux, using a trim threshold of 128K and a
779 mmap threshold of 192K led to near-minimal long term resource
780 consumption.
782 If you are using this malloc in a long-lived program, it should
783 pay to experiment with these values. As a rough guide, you
784 might set to a value close to the average size of a process
785 (program) running on your system. Releasing this much memory
786 would allow such a process to run in memory. Generally, it's
787 worth it to tune for trimming rather tham memory mapping when a
788 program undergoes phases where several large chunks are
789 allocated and released in ways that can reuse each other's
790 storage, perhaps mixed with phases where there are no such
791 chunks at all. And in well-behaved long-lived programs,
792 controlling release of large blocks via trimming versus mapping
793 is usually faster.
795 However, in most programs, these parameters serve mainly as
796 protection against the system-level effects of carrying around
797 massive amounts of unneeded memory. Since frequent calls to
798 sbrk, mmap, and munmap otherwise degrade performance, the default
799 parameters are set to relatively high values that serve only as
800 safeguards.
802 The trim value It must be greater than page size to have any useful
803 effect. To disable trimming completely, you can set to
804 (unsigned long)(-1)
806 Trim settings interact with fastbin (MXFAST) settings: Unless
807 TRIM_FASTBINS is defined, automatic trimming never takes place upon
808 freeing a chunk with size less than or equal to MXFAST. Trimming is
809 instead delayed until subsequent freeing of larger chunks. However,
810 you can still force an attempted trim by calling malloc_trim.
812 Also, trimming is not generally possible in cases where
813 the main arena is obtained via mmap.
815 Note that the trick some people use of mallocing a huge space and
816 then freeing it at program startup, in an attempt to reserve system
817 memory, doesn't have the intended effect under automatic trimming,
818 since that memory will immediately be returned to the system.
821 #define M_TRIM_THRESHOLD -1
823 #ifndef DEFAULT_TRIM_THRESHOLD
824 #define DEFAULT_TRIM_THRESHOLD (128 * 1024)
825 #endif
828 M_TOP_PAD is the amount of extra `padding' space to allocate or
829 retain whenever sbrk is called. It is used in two ways internally:
831 * When sbrk is called to extend the top of the arena to satisfy
832 a new malloc request, this much padding is added to the sbrk
833 request.
835 * When malloc_trim is called automatically from free(),
836 it is used as the `pad' argument.
838 In both cases, the actual amount of padding is rounded
839 so that the end of the arena is always a system page boundary.
841 The main reason for using padding is to avoid calling sbrk so
842 often. Having even a small pad greatly reduces the likelihood
843 that nearly every malloc request during program start-up (or
844 after trimming) will invoke sbrk, which needlessly wastes
845 time.
847 Automatic rounding-up to page-size units is normally sufficient
848 to avoid measurable overhead, so the default is 0. However, in
849 systems where sbrk is relatively slow, it can pay to increase
850 this value, at the expense of carrying around more memory than
851 the program needs.
854 #define M_TOP_PAD -2
856 #ifndef DEFAULT_TOP_PAD
857 #define DEFAULT_TOP_PAD (0)
858 #endif
861 MMAP_THRESHOLD_MAX and _MIN are the bounds on the dynamically
862 adjusted MMAP_THRESHOLD.
865 #ifndef DEFAULT_MMAP_THRESHOLD_MIN
866 #define DEFAULT_MMAP_THRESHOLD_MIN (128 * 1024)
867 #endif
869 #ifndef DEFAULT_MMAP_THRESHOLD_MAX
870 /* For 32-bit platforms we cannot increase the maximum mmap
871 threshold much because it is also the minimum value for the
872 maximum heap size and its alignment. Going above 512k (i.e., 1M
873 for new heaps) wastes too much address space. */
874 # if __WORDSIZE == 32
875 # define DEFAULT_MMAP_THRESHOLD_MAX (512 * 1024)
876 # else
877 # define DEFAULT_MMAP_THRESHOLD_MAX (4 * 1024 * 1024 * sizeof(long))
878 # endif
879 #endif
882 M_MMAP_THRESHOLD is the request size threshold for using mmap()
883 to service a request. Requests of at least this size that cannot
884 be allocated using already-existing space will be serviced via mmap.
885 (If enough normal freed space already exists it is used instead.)
887 Using mmap segregates relatively large chunks of memory so that
888 they can be individually obtained and released from the host
889 system. A request serviced through mmap is never reused by any
890 other request (at least not directly; the system may just so
891 happen to remap successive requests to the same locations).
893 Segregating space in this way has the benefits that:
895 1. Mmapped space can ALWAYS be individually released back
896 to the system, which helps keep the system level memory
897 demands of a long-lived program low.
898 2. Mapped memory can never become `locked' between
899 other chunks, as can happen with normally allocated chunks, which
900 means that even trimming via malloc_trim would not release them.
901 3. On some systems with "holes" in address spaces, mmap can obtain
902 memory that sbrk cannot.
904 However, it has the disadvantages that:
906 1. The space cannot be reclaimed, consolidated, and then
907 used to service later requests, as happens with normal chunks.
908 2. It can lead to more wastage because of mmap page alignment
909 requirements
910 3. It causes malloc performance to be more dependent on host
911 system memory management support routines which may vary in
912 implementation quality and may impose arbitrary
913 limitations. Generally, servicing a request via normal
914 malloc steps is faster than going through a system's mmap.
916 The advantages of mmap nearly always outweigh disadvantages for
917 "large" chunks, but the value of "large" varies across systems. The
918 default is an empirically derived value that works well in most
919 systems.
922 Update in 2006:
923 The above was written in 2001. Since then the world has changed a lot.
924 Memory got bigger. Applications got bigger. The virtual address space
925 layout in 32 bit linux changed.
927 In the new situation, brk() and mmap space is shared and there are no
928 artificial limits on brk size imposed by the kernel. What is more,
929 applications have started using transient allocations larger than the
930 128Kb as was imagined in 2001.
932 The price for mmap is also high now; each time glibc mmaps from the
933 kernel, the kernel is forced to zero out the memory it gives to the
934 application. Zeroing memory is expensive and eats a lot of cache and
935 memory bandwidth. This has nothing to do with the efficiency of the
936 virtual memory system, by doing mmap the kernel just has no choice but
937 to zero.
939 In 2001, the kernel had a maximum size for brk() which was about 800
940 megabytes on 32 bit x86, at that point brk() would hit the first
941 mmaped shared libaries and couldn't expand anymore. With current 2.6
942 kernels, the VA space layout is different and brk() and mmap
943 both can span the entire heap at will.
945 Rather than using a static threshold for the brk/mmap tradeoff,
946 we are now using a simple dynamic one. The goal is still to avoid
947 fragmentation. The old goals we kept are
948 1) try to get the long lived large allocations to use mmap()
949 2) really large allocations should always use mmap()
950 and we're adding now:
951 3) transient allocations should use brk() to avoid forcing the kernel
952 having to zero memory over and over again
954 The implementation works with a sliding threshold, which is by default
955 limited to go between 128Kb and 32Mb (64Mb for 64 bitmachines) and starts
956 out at 128Kb as per the 2001 default.
958 This allows us to satisfy requirement 1) under the assumption that long
959 lived allocations are made early in the process' lifespan, before it has
960 started doing dynamic allocations of the same size (which will
961 increase the threshold).
963 The upperbound on the threshold satisfies requirement 2)
965 The threshold goes up in value when the application frees memory that was
966 allocated with the mmap allocator. The idea is that once the application
967 starts freeing memory of a certain size, it's highly probable that this is
968 a size the application uses for transient allocations. This estimator
969 is there to satisfy the new third requirement.
973 #define M_MMAP_THRESHOLD -3
975 #ifndef DEFAULT_MMAP_THRESHOLD
976 #define DEFAULT_MMAP_THRESHOLD DEFAULT_MMAP_THRESHOLD_MIN
977 #endif
980 M_MMAP_MAX is the maximum number of requests to simultaneously
981 service using mmap. This parameter exists because
982 some systems have a limited number of internal tables for
983 use by mmap, and using more than a few of them may degrade
984 performance.
986 The default is set to a value that serves only as a safeguard.
987 Setting to 0 disables use of mmap for servicing large requests.
990 #define M_MMAP_MAX -4
992 #ifndef DEFAULT_MMAP_MAX
993 #define DEFAULT_MMAP_MAX (65536)
994 #endif
996 #include <malloc.h>
998 #ifndef RETURN_ADDRESS
999 #define RETURN_ADDRESS(X_) (NULL)
1000 #endif
1002 /* Forward declarations. */
1003 struct malloc_chunk;
1004 typedef struct malloc_chunk* mchunkptr;
1006 /* Internal routines. */
1008 static void* _int_malloc(mstate, size_t);
1009 static void _int_free(mstate, mchunkptr, int);
1010 static void* _int_realloc(mstate, mchunkptr, INTERNAL_SIZE_T,
1011 INTERNAL_SIZE_T);
1012 static void* _int_memalign(mstate, size_t, size_t);
1013 static void* _mid_memalign(size_t, size_t, void *);
1015 static void malloc_printerr(const char *str) __attribute__ ((noreturn));
1017 static void* mem2mem_check(void *p, size_t sz);
1018 static void top_check(void);
1019 static void munmap_chunk(mchunkptr p);
1020 #if HAVE_MREMAP
1021 static mchunkptr mremap_chunk(mchunkptr p, size_t new_size);
1022 #endif
1024 static void* malloc_check(size_t sz, const void *caller);
1025 static void free_check(void* mem, const void *caller);
1026 static void* realloc_check(void* oldmem, size_t bytes,
1027 const void *caller);
1028 static void* memalign_check(size_t alignment, size_t bytes,
1029 const void *caller);
1031 /* ------------------ MMAP support ------------------ */
1034 #include <fcntl.h>
1035 #include <sys/mman.h>
1037 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
1038 # define MAP_ANONYMOUS MAP_ANON
1039 #endif
1041 #ifndef MAP_NORESERVE
1042 # define MAP_NORESERVE 0
1043 #endif
1045 #define MMAP(addr, size, prot, flags) \
1046 __mmap((addr), (size), (prot), (flags)|MAP_ANONYMOUS|MAP_PRIVATE, -1, 0)
1050 ----------------------- Chunk representations -----------------------
1055 This struct declaration is misleading (but accurate and necessary).
1056 It declares a "view" into memory allowing access to necessary
1057 fields at known offsets from a given base. See explanation below.
1060 struct malloc_chunk {
1062 INTERNAL_SIZE_T mchunk_prev_size; /* Size of previous chunk (if free). */
1063 INTERNAL_SIZE_T mchunk_size; /* Size in bytes, including overhead. */
1065 struct malloc_chunk* fd; /* double links -- used only if free. */
1066 struct malloc_chunk* bk;
1068 /* Only used for large blocks: pointer to next larger size. */
1069 struct malloc_chunk* fd_nextsize; /* double links -- used only if free. */
1070 struct malloc_chunk* bk_nextsize;
1075 malloc_chunk details:
1077 (The following includes lightly edited explanations by Colin Plumb.)
1079 Chunks of memory are maintained using a `boundary tag' method as
1080 described in e.g., Knuth or Standish. (See the paper by Paul
1081 Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
1082 survey of such techniques.) Sizes of free chunks are stored both
1083 in the front of each chunk and at the end. This makes
1084 consolidating fragmented chunks into bigger chunks very fast. The
1085 size fields also hold bits representing whether chunks are free or
1086 in use.
1088 An allocated chunk looks like this:
1091 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1092 | Size of previous chunk, if unallocated (P clear) |
1093 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1094 | Size of chunk, in bytes |A|M|P|
1095 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1096 | User data starts here... .
1098 . (malloc_usable_size() bytes) .
1100 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1101 | (size of chunk, but used for application data) |
1102 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1103 | Size of next chunk, in bytes |A|0|1|
1104 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1106 Where "chunk" is the front of the chunk for the purpose of most of
1107 the malloc code, but "mem" is the pointer that is returned to the
1108 user. "Nextchunk" is the beginning of the next contiguous chunk.
1110 Chunks always begin on even word boundaries, so the mem portion
1111 (which is returned to the user) is also on an even word boundary, and
1112 thus at least double-word aligned.
1114 Free chunks are stored in circular doubly-linked lists, and look like this:
1116 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1117 | Size of previous chunk, if unallocated (P clear) |
1118 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1119 `head:' | Size of chunk, in bytes |A|0|P|
1120 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1121 | Forward pointer to next chunk in list |
1122 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1123 | Back pointer to previous chunk in list |
1124 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1125 | Unused space (may be 0 bytes long) .
1128 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1129 `foot:' | Size of chunk, in bytes |
1130 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1131 | Size of next chunk, in bytes |A|0|0|
1132 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1134 The P (PREV_INUSE) bit, stored in the unused low-order bit of the
1135 chunk size (which is always a multiple of two words), is an in-use
1136 bit for the *previous* chunk. If that bit is *clear*, then the
1137 word before the current chunk size contains the previous chunk
1138 size, and can be used to find the front of the previous chunk.
1139 The very first chunk allocated always has this bit set,
1140 preventing access to non-existent (or non-owned) memory. If
1141 prev_inuse is set for any given chunk, then you CANNOT determine
1142 the size of the previous chunk, and might even get a memory
1143 addressing fault when trying to do so.
1145 The A (NON_MAIN_ARENA) bit is cleared for chunks on the initial,
1146 main arena, described by the main_arena variable. When additional
1147 threads are spawned, each thread receives its own arena (up to a
1148 configurable limit, after which arenas are reused for multiple
1149 threads), and the chunks in these arenas have the A bit set. To
1150 find the arena for a chunk on such a non-main arena, heap_for_ptr
1151 performs a bit mask operation and indirection through the ar_ptr
1152 member of the per-heap header heap_info (see arena.c).
1154 Note that the `foot' of the current chunk is actually represented
1155 as the prev_size of the NEXT chunk. This makes it easier to
1156 deal with alignments etc but can be very confusing when trying
1157 to extend or adapt this code.
1159 The three exceptions to all this are:
1161 1. The special chunk `top' doesn't bother using the
1162 trailing size field since there is no next contiguous chunk
1163 that would have to index off it. After initialization, `top'
1164 is forced to always exist. If it would become less than
1165 MINSIZE bytes long, it is replenished.
1167 2. Chunks allocated via mmap, which have the second-lowest-order
1168 bit M (IS_MMAPPED) set in their size fields. Because they are
1169 allocated one-by-one, each must contain its own trailing size
1170 field. If the M bit is set, the other bits are ignored
1171 (because mmapped chunks are neither in an arena, nor adjacent
1172 to a freed chunk). The M bit is also used for chunks which
1173 originally came from a dumped heap via malloc_set_state in
1174 hooks.c.
1176 3. Chunks in fastbins are treated as allocated chunks from the
1177 point of view of the chunk allocator. They are consolidated
1178 with their neighbors only in bulk, in malloc_consolidate.
1182 ---------- Size and alignment checks and conversions ----------
1185 /* conversion from malloc headers to user pointers, and back */
1187 #define chunk2mem(p) ((void*)((char*)(p) + 2*SIZE_SZ))
1188 #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
1190 /* The smallest possible chunk */
1191 #define MIN_CHUNK_SIZE (offsetof(struct malloc_chunk, fd_nextsize))
1193 /* The smallest size we can malloc is an aligned minimal chunk */
1195 #define MINSIZE \
1196 (unsigned long)(((MIN_CHUNK_SIZE+MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK))
1198 /* Check if m has acceptable alignment */
1200 #define aligned_OK(m) (((unsigned long)(m) & MALLOC_ALIGN_MASK) == 0)
1202 #define misaligned_chunk(p) \
1203 ((uintptr_t)(MALLOC_ALIGNMENT == 2 * SIZE_SZ ? (p) : chunk2mem (p)) \
1204 & MALLOC_ALIGN_MASK)
1208 Check if a request is so large that it would wrap around zero when
1209 padded and aligned. To simplify some other code, the bound is made
1210 low enough so that adding MINSIZE will also not wrap around zero.
1213 #define REQUEST_OUT_OF_RANGE(req) \
1214 ((unsigned long) (req) >= \
1215 (unsigned long) (INTERNAL_SIZE_T) (-2 * MINSIZE))
1217 /* pad request bytes into a usable size -- internal version */
1219 #define request2size(req) \
1220 (((req) + SIZE_SZ + MALLOC_ALIGN_MASK < MINSIZE) ? \
1221 MINSIZE : \
1222 ((req) + SIZE_SZ + MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK)
1224 /* Same, except also perform argument check */
1226 #define checked_request2size(req, sz) \
1227 if (REQUEST_OUT_OF_RANGE (req)) { \
1228 __set_errno (ENOMEM); \
1229 return 0; \
1231 (sz) = request2size (req);
1234 --------------- Physical chunk operations ---------------
1238 /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
1239 #define PREV_INUSE 0x1
1241 /* extract inuse bit of previous chunk */
1242 #define prev_inuse(p) ((p)->mchunk_size & PREV_INUSE)
1245 /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
1246 #define IS_MMAPPED 0x2
1248 /* check for mmap()'ed chunk */
1249 #define chunk_is_mmapped(p) ((p)->mchunk_size & IS_MMAPPED)
1252 /* size field is or'ed with NON_MAIN_ARENA if the chunk was obtained
1253 from a non-main arena. This is only set immediately before handing
1254 the chunk to the user, if necessary. */
1255 #define NON_MAIN_ARENA 0x4
1257 /* Check for chunk from main arena. */
1258 #define chunk_main_arena(p) (((p)->mchunk_size & NON_MAIN_ARENA) == 0)
1260 /* Mark a chunk as not being on the main arena. */
1261 #define set_non_main_arena(p) ((p)->mchunk_size |= NON_MAIN_ARENA)
1265 Bits to mask off when extracting size
1267 Note: IS_MMAPPED is intentionally not masked off from size field in
1268 macros for which mmapped chunks should never be seen. This should
1269 cause helpful core dumps to occur if it is tried by accident by
1270 people extending or adapting this malloc.
1272 #define SIZE_BITS (PREV_INUSE | IS_MMAPPED | NON_MAIN_ARENA)
1274 /* Get size, ignoring use bits */
1275 #define chunksize(p) (chunksize_nomask (p) & ~(SIZE_BITS))
1277 /* Like chunksize, but do not mask SIZE_BITS. */
1278 #define chunksize_nomask(p) ((p)->mchunk_size)
1280 /* Ptr to next physical malloc_chunk. */
1281 #define next_chunk(p) ((mchunkptr) (((char *) (p)) + chunksize (p)))
1283 /* Size of the chunk below P. Only valid if prev_inuse (P). */
1284 #define prev_size(p) ((p)->mchunk_prev_size)
1286 /* Set the size of the chunk below P. Only valid if prev_inuse (P). */
1287 #define set_prev_size(p, sz) ((p)->mchunk_prev_size = (sz))
1289 /* Ptr to previous physical malloc_chunk. Only valid if prev_inuse (P). */
1290 #define prev_chunk(p) ((mchunkptr) (((char *) (p)) - prev_size (p)))
1292 /* Treat space at ptr + offset as a chunk */
1293 #define chunk_at_offset(p, s) ((mchunkptr) (((char *) (p)) + (s)))
1295 /* extract p's inuse bit */
1296 #define inuse(p) \
1297 ((((mchunkptr) (((char *) (p)) + chunksize (p)))->mchunk_size) & PREV_INUSE)
1299 /* set/clear chunk as being inuse without otherwise disturbing */
1300 #define set_inuse(p) \
1301 ((mchunkptr) (((char *) (p)) + chunksize (p)))->mchunk_size |= PREV_INUSE
1303 #define clear_inuse(p) \
1304 ((mchunkptr) (((char *) (p)) + chunksize (p)))->mchunk_size &= ~(PREV_INUSE)
1307 /* check/set/clear inuse bits in known places */
1308 #define inuse_bit_at_offset(p, s) \
1309 (((mchunkptr) (((char *) (p)) + (s)))->mchunk_size & PREV_INUSE)
1311 #define set_inuse_bit_at_offset(p, s) \
1312 (((mchunkptr) (((char *) (p)) + (s)))->mchunk_size |= PREV_INUSE)
1314 #define clear_inuse_bit_at_offset(p, s) \
1315 (((mchunkptr) (((char *) (p)) + (s)))->mchunk_size &= ~(PREV_INUSE))
1318 /* Set size at head, without disturbing its use bit */
1319 #define set_head_size(p, s) ((p)->mchunk_size = (((p)->mchunk_size & SIZE_BITS) | (s)))
1321 /* Set size/use field */
1322 #define set_head(p, s) ((p)->mchunk_size = (s))
1324 /* Set size at footer (only when chunk is not in use) */
1325 #define set_foot(p, s) (((mchunkptr) ((char *) (p) + (s)))->mchunk_prev_size = (s))
1328 #pragma GCC poison mchunk_size
1329 #pragma GCC poison mchunk_prev_size
1332 -------------------- Internal data structures --------------------
1334 All internal state is held in an instance of malloc_state defined
1335 below. There are no other static variables, except in two optional
1336 cases:
1337 * If USE_MALLOC_LOCK is defined, the mALLOC_MUTEx declared above.
1338 * If mmap doesn't support MAP_ANONYMOUS, a dummy file descriptor
1339 for mmap.
1341 Beware of lots of tricks that minimize the total bookkeeping space
1342 requirements. The result is a little over 1K bytes (for 4byte
1343 pointers and size_t.)
1347 Bins
1349 An array of bin headers for free chunks. Each bin is doubly
1350 linked. The bins are approximately proportionally (log) spaced.
1351 There are a lot of these bins (128). This may look excessive, but
1352 works very well in practice. Most bins hold sizes that are
1353 unusual as malloc request sizes, but are more usual for fragments
1354 and consolidated sets of chunks, which is what these bins hold, so
1355 they can be found quickly. All procedures maintain the invariant
1356 that no consolidated chunk physically borders another one, so each
1357 chunk in a list is known to be preceeded and followed by either
1358 inuse chunks or the ends of memory.
1360 Chunks in bins are kept in size order, with ties going to the
1361 approximately least recently used chunk. Ordering isn't needed
1362 for the small bins, which all contain the same-sized chunks, but
1363 facilitates best-fit allocation for larger chunks. These lists
1364 are just sequential. Keeping them in order almost never requires
1365 enough traversal to warrant using fancier ordered data
1366 structures.
1368 Chunks of the same size are linked with the most
1369 recently freed at the front, and allocations are taken from the
1370 back. This results in LRU (FIFO) allocation order, which tends
1371 to give each chunk an equal opportunity to be consolidated with
1372 adjacent freed chunks, resulting in larger free chunks and less
1373 fragmentation.
1375 To simplify use in double-linked lists, each bin header acts
1376 as a malloc_chunk. This avoids special-casing for headers.
1377 But to conserve space and improve locality, we allocate
1378 only the fd/bk pointers of bins, and then use repositioning tricks
1379 to treat these as the fields of a malloc_chunk*.
1382 typedef struct malloc_chunk *mbinptr;
1384 /* addressing -- note that bin_at(0) does not exist */
1385 #define bin_at(m, i) \
1386 (mbinptr) (((char *) &((m)->bins[((i) - 1) * 2])) \
1387 - offsetof (struct malloc_chunk, fd))
1389 /* analog of ++bin */
1390 #define next_bin(b) ((mbinptr) ((char *) (b) + (sizeof (mchunkptr) << 1)))
1392 /* Reminders about list directionality within bins */
1393 #define first(b) ((b)->fd)
1394 #define last(b) ((b)->bk)
1396 /* Take a chunk off a bin list */
1397 #define unlink(AV, P, BK, FD) { \
1398 if (__builtin_expect (chunksize(P) != prev_size (next_chunk(P)), 0)) \
1399 malloc_printerr ("corrupted size vs. prev_size"); \
1400 FD = P->fd; \
1401 BK = P->bk; \
1402 if (__builtin_expect (FD->bk != P || BK->fd != P, 0)) \
1403 malloc_printerr ("corrupted double-linked list"); \
1404 else { \
1405 FD->bk = BK; \
1406 BK->fd = FD; \
1407 if (!in_smallbin_range (chunksize_nomask (P)) \
1408 && __builtin_expect (P->fd_nextsize != NULL, 0)) { \
1409 if (__builtin_expect (P->fd_nextsize->bk_nextsize != P, 0) \
1410 || __builtin_expect (P->bk_nextsize->fd_nextsize != P, 0)) \
1411 malloc_printerr ("corrupted double-linked list (not small)"); \
1412 if (FD->fd_nextsize == NULL) { \
1413 if (P->fd_nextsize == P) \
1414 FD->fd_nextsize = FD->bk_nextsize = FD; \
1415 else { \
1416 FD->fd_nextsize = P->fd_nextsize; \
1417 FD->bk_nextsize = P->bk_nextsize; \
1418 P->fd_nextsize->bk_nextsize = FD; \
1419 P->bk_nextsize->fd_nextsize = FD; \
1421 } else { \
1422 P->fd_nextsize->bk_nextsize = P->bk_nextsize; \
1423 P->bk_nextsize->fd_nextsize = P->fd_nextsize; \
1430 Indexing
1432 Bins for sizes < 512 bytes contain chunks of all the same size, spaced
1433 8 bytes apart. Larger bins are approximately logarithmically spaced:
1435 64 bins of size 8
1436 32 bins of size 64
1437 16 bins of size 512
1438 8 bins of size 4096
1439 4 bins of size 32768
1440 2 bins of size 262144
1441 1 bin of size what's left
1443 There is actually a little bit of slop in the numbers in bin_index
1444 for the sake of speed. This makes no difference elsewhere.
1446 The bins top out around 1MB because we expect to service large
1447 requests via mmap.
1449 Bin 0 does not exist. Bin 1 is the unordered list; if that would be
1450 a valid chunk size the small bins are bumped up one.
1453 #define NBINS 128
1454 #define NSMALLBINS 64
1455 #define SMALLBIN_WIDTH MALLOC_ALIGNMENT
1456 #define SMALLBIN_CORRECTION (MALLOC_ALIGNMENT > 2 * SIZE_SZ)
1457 #define MIN_LARGE_SIZE ((NSMALLBINS - SMALLBIN_CORRECTION) * SMALLBIN_WIDTH)
1459 #define in_smallbin_range(sz) \
1460 ((unsigned long) (sz) < (unsigned long) MIN_LARGE_SIZE)
1462 #define smallbin_index(sz) \
1463 ((SMALLBIN_WIDTH == 16 ? (((unsigned) (sz)) >> 4) : (((unsigned) (sz)) >> 3))\
1464 + SMALLBIN_CORRECTION)
1466 #define largebin_index_32(sz) \
1467 (((((unsigned long) (sz)) >> 6) <= 38) ? 56 + (((unsigned long) (sz)) >> 6) :\
1468 ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\
1469 ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\
1470 ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\
1471 ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\
1472 126)
1474 #define largebin_index_32_big(sz) \
1475 (((((unsigned long) (sz)) >> 6) <= 45) ? 49 + (((unsigned long) (sz)) >> 6) :\
1476 ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\
1477 ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\
1478 ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\
1479 ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\
1480 126)
1482 // XXX It remains to be seen whether it is good to keep the widths of
1483 // XXX the buckets the same or whether it should be scaled by a factor
1484 // XXX of two as well.
1485 #define largebin_index_64(sz) \
1486 (((((unsigned long) (sz)) >> 6) <= 48) ? 48 + (((unsigned long) (sz)) >> 6) :\
1487 ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\
1488 ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\
1489 ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\
1490 ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\
1491 126)
1493 #define largebin_index(sz) \
1494 (SIZE_SZ == 8 ? largebin_index_64 (sz) \
1495 : MALLOC_ALIGNMENT == 16 ? largebin_index_32_big (sz) \
1496 : largebin_index_32 (sz))
1498 #define bin_index(sz) \
1499 ((in_smallbin_range (sz)) ? smallbin_index (sz) : largebin_index (sz))
1503 Unsorted chunks
1505 All remainders from chunk splits, as well as all returned chunks,
1506 are first placed in the "unsorted" bin. They are then placed
1507 in regular bins after malloc gives them ONE chance to be used before
1508 binning. So, basically, the unsorted_chunks list acts as a queue,
1509 with chunks being placed on it in free (and malloc_consolidate),
1510 and taken off (to be either used or placed in bins) in malloc.
1512 The NON_MAIN_ARENA flag is never set for unsorted chunks, so it
1513 does not have to be taken into account in size comparisons.
1516 /* The otherwise unindexable 1-bin is used to hold unsorted chunks. */
1517 #define unsorted_chunks(M) (bin_at (M, 1))
1522 The top-most available chunk (i.e., the one bordering the end of
1523 available memory) is treated specially. It is never included in
1524 any bin, is used only if no other chunk is available, and is
1525 released back to the system if it is very large (see
1526 M_TRIM_THRESHOLD). Because top initially
1527 points to its own bin with initial zero size, thus forcing
1528 extension on the first malloc request, we avoid having any special
1529 code in malloc to check whether it even exists yet. But we still
1530 need to do so when getting memory from system, so we make
1531 initial_top treat the bin as a legal but unusable chunk during the
1532 interval between initialization and the first call to
1533 sysmalloc. (This is somewhat delicate, since it relies on
1534 the 2 preceding words to be zero during this interval as well.)
1537 /* Conveniently, the unsorted bin can be used as dummy top on first call */
1538 #define initial_top(M) (unsorted_chunks (M))
1541 Binmap
1543 To help compensate for the large number of bins, a one-level index
1544 structure is used for bin-by-bin searching. `binmap' is a
1545 bitvector recording whether bins are definitely empty so they can
1546 be skipped over during during traversals. The bits are NOT always
1547 cleared as soon as bins are empty, but instead only
1548 when they are noticed to be empty during traversal in malloc.
1551 /* Conservatively use 32 bits per map word, even if on 64bit system */
1552 #define BINMAPSHIFT 5
1553 #define BITSPERMAP (1U << BINMAPSHIFT)
1554 #define BINMAPSIZE (NBINS / BITSPERMAP)
1556 #define idx2block(i) ((i) >> BINMAPSHIFT)
1557 #define idx2bit(i) ((1U << ((i) & ((1U << BINMAPSHIFT) - 1))))
1559 #define mark_bin(m, i) ((m)->binmap[idx2block (i)] |= idx2bit (i))
1560 #define unmark_bin(m, i) ((m)->binmap[idx2block (i)] &= ~(idx2bit (i)))
1561 #define get_binmap(m, i) ((m)->binmap[idx2block (i)] & idx2bit (i))
1564 Fastbins
1566 An array of lists holding recently freed small chunks. Fastbins
1567 are not doubly linked. It is faster to single-link them, and
1568 since chunks are never removed from the middles of these lists,
1569 double linking is not necessary. Also, unlike regular bins, they
1570 are not even processed in FIFO order (they use faster LIFO) since
1571 ordering doesn't much matter in the transient contexts in which
1572 fastbins are normally used.
1574 Chunks in fastbins keep their inuse bit set, so they cannot
1575 be consolidated with other free chunks. malloc_consolidate
1576 releases all chunks in fastbins and consolidates them with
1577 other free chunks.
1580 typedef struct malloc_chunk *mfastbinptr;
1581 #define fastbin(ar_ptr, idx) ((ar_ptr)->fastbinsY[idx])
1583 /* offset 2 to use otherwise unindexable first 2 bins */
1584 #define fastbin_index(sz) \
1585 ((((unsigned int) (sz)) >> (SIZE_SZ == 8 ? 4 : 3)) - 2)
1588 /* The maximum fastbin request size we support */
1589 #define MAX_FAST_SIZE (80 * SIZE_SZ / 4)
1591 #define NFASTBINS (fastbin_index (request2size (MAX_FAST_SIZE)) + 1)
1594 FASTBIN_CONSOLIDATION_THRESHOLD is the size of a chunk in free()
1595 that triggers automatic consolidation of possibly-surrounding
1596 fastbin chunks. This is a heuristic, so the exact value should not
1597 matter too much. It is defined at half the default trim threshold as a
1598 compromise heuristic to only attempt consolidation if it is likely
1599 to lead to trimming. However, it is not dynamically tunable, since
1600 consolidation reduces fragmentation surrounding large chunks even
1601 if trimming is not used.
1604 #define FASTBIN_CONSOLIDATION_THRESHOLD (65536UL)
1607 NONCONTIGUOUS_BIT indicates that MORECORE does not return contiguous
1608 regions. Otherwise, contiguity is exploited in merging together,
1609 when possible, results from consecutive MORECORE calls.
1611 The initial value comes from MORECORE_CONTIGUOUS, but is
1612 changed dynamically if mmap is ever used as an sbrk substitute.
1615 #define NONCONTIGUOUS_BIT (2U)
1617 #define contiguous(M) (((M)->flags & NONCONTIGUOUS_BIT) == 0)
1618 #define noncontiguous(M) (((M)->flags & NONCONTIGUOUS_BIT) != 0)
1619 #define set_noncontiguous(M) ((M)->flags |= NONCONTIGUOUS_BIT)
1620 #define set_contiguous(M) ((M)->flags &= ~NONCONTIGUOUS_BIT)
1622 /* Maximum size of memory handled in fastbins. */
1623 static INTERNAL_SIZE_T global_max_fast;
1626 Set value of max_fast.
1627 Use impossibly small value if 0.
1628 Precondition: there are no existing fastbin chunks.
1629 Setting the value clears fastchunk bit but preserves noncontiguous bit.
1632 #define set_max_fast(s) \
1633 global_max_fast = (((s) == 0) \
1634 ? SMALLBIN_WIDTH : ((s + SIZE_SZ) & ~MALLOC_ALIGN_MASK))
1636 static inline INTERNAL_SIZE_T
1637 get_max_fast (void)
1639 /* Tell the GCC optimizers that global_max_fast is never larger
1640 than MAX_FAST_SIZE. This avoids out-of-bounds array accesses in
1641 _int_malloc after constant propagation of the size parameter.
1642 (The code never executes because malloc preserves the
1643 global_max_fast invariant, but the optimizers may not recognize
1644 this.) */
1645 if (global_max_fast > MAX_FAST_SIZE)
1646 __builtin_unreachable ();
1647 return global_max_fast;
1651 ----------- Internal state representation and initialization -----------
1655 have_fastchunks indicates that there are probably some fastbin chunks.
1656 It is set true on entering a chunk into any fastbin, and cleared early in
1657 malloc_consolidate. The value is approximate since it may be set when there
1658 are no fastbin chunks, or it may be clear even if there are fastbin chunks
1659 available. Given it's sole purpose is to reduce number of redundant calls to
1660 malloc_consolidate, it does not affect correctness. As a result we can safely
1661 use relaxed atomic accesses.
1665 struct malloc_state
1667 /* Serialize access. */
1668 __libc_lock_define (, mutex);
1670 /* Flags (formerly in max_fast). */
1671 int flags;
1673 /* Set if the fastbin chunks contain recently inserted free blocks. */
1674 bool have_fastchunks;
1676 /* Fastbins */
1677 mfastbinptr fastbinsY[NFASTBINS];
1679 /* Base of the topmost chunk -- not otherwise kept in a bin */
1680 mchunkptr top;
1682 /* The remainder from the most recent split of a small request */
1683 mchunkptr last_remainder;
1685 /* Normal bins packed as described above */
1686 mchunkptr bins[NBINS * 2 - 2];
1688 /* Bitmap of bins */
1689 unsigned int binmap[BINMAPSIZE];
1691 /* Linked list */
1692 struct malloc_state *next;
1694 /* Linked list for free arenas. Access to this field is serialized
1695 by free_list_lock in arena.c. */
1696 struct malloc_state *next_free;
1698 /* Number of threads attached to this arena. 0 if the arena is on
1699 the free list. Access to this field is serialized by
1700 free_list_lock in arena.c. */
1701 INTERNAL_SIZE_T attached_threads;
1703 /* Memory allocated from the system in this arena. */
1704 INTERNAL_SIZE_T system_mem;
1705 INTERNAL_SIZE_T max_system_mem;
1708 struct malloc_par
1710 /* Tunable parameters */
1711 unsigned long trim_threshold;
1712 INTERNAL_SIZE_T top_pad;
1713 INTERNAL_SIZE_T mmap_threshold;
1714 INTERNAL_SIZE_T arena_test;
1715 INTERNAL_SIZE_T arena_max;
1717 /* Memory map support */
1718 int n_mmaps;
1719 int n_mmaps_max;
1720 int max_n_mmaps;
1721 /* the mmap_threshold is dynamic, until the user sets
1722 it manually, at which point we need to disable any
1723 dynamic behavior. */
1724 int no_dyn_threshold;
1726 /* Statistics */
1727 INTERNAL_SIZE_T mmapped_mem;
1728 INTERNAL_SIZE_T max_mmapped_mem;
1730 /* First address handed out by MORECORE/sbrk. */
1731 char *sbrk_base;
1733 #if USE_TCACHE
1734 /* Maximum number of buckets to use. */
1735 size_t tcache_bins;
1736 size_t tcache_max_bytes;
1737 /* Maximum number of chunks in each bucket. */
1738 size_t tcache_count;
1739 /* Maximum number of chunks to remove from the unsorted list, which
1740 aren't used to prefill the cache. */
1741 size_t tcache_unsorted_limit;
1742 #endif
1745 /* There are several instances of this struct ("arenas") in this
1746 malloc. If you are adapting this malloc in a way that does NOT use
1747 a static or mmapped malloc_state, you MUST explicitly zero-fill it
1748 before using. This malloc relies on the property that malloc_state
1749 is initialized to all zeroes (as is true of C statics). */
1751 static struct malloc_state main_arena =
1753 .mutex = _LIBC_LOCK_INITIALIZER,
1754 .next = &main_arena,
1755 .attached_threads = 1
1758 /* These variables are used for undumping support. Chunked are marked
1759 as using mmap, but we leave them alone if they fall into this
1760 range. NB: The chunk size for these chunks only includes the
1761 initial size field (of SIZE_SZ bytes), there is no trailing size
1762 field (unlike with regular mmapped chunks). */
1763 static mchunkptr dumped_main_arena_start; /* Inclusive. */
1764 static mchunkptr dumped_main_arena_end; /* Exclusive. */
1766 /* True if the pointer falls into the dumped arena. Use this after
1767 chunk_is_mmapped indicates a chunk is mmapped. */
1768 #define DUMPED_MAIN_ARENA_CHUNK(p) \
1769 ((p) >= dumped_main_arena_start && (p) < dumped_main_arena_end)
1771 /* There is only one instance of the malloc parameters. */
1773 static struct malloc_par mp_ =
1775 .top_pad = DEFAULT_TOP_PAD,
1776 .n_mmaps_max = DEFAULT_MMAP_MAX,
1777 .mmap_threshold = DEFAULT_MMAP_THRESHOLD,
1778 .trim_threshold = DEFAULT_TRIM_THRESHOLD,
1779 #define NARENAS_FROM_NCORES(n) ((n) * (sizeof (long) == 4 ? 2 : 8))
1780 .arena_test = NARENAS_FROM_NCORES (1)
1781 #if USE_TCACHE
1783 .tcache_count = TCACHE_FILL_COUNT,
1784 .tcache_bins = TCACHE_MAX_BINS,
1785 .tcache_max_bytes = tidx2usize (TCACHE_MAX_BINS-1),
1786 .tcache_unsorted_limit = 0 /* No limit. */
1787 #endif
1791 Initialize a malloc_state struct.
1793 This is called only from within malloc_consolidate, which needs
1794 be called in the same contexts anyway. It is never called directly
1795 outside of malloc_consolidate because some optimizing compilers try
1796 to inline it at all call points, which turns out not to be an
1797 optimization at all. (Inlining it in malloc_consolidate is fine though.)
1800 static void
1801 malloc_init_state (mstate av)
1803 int i;
1804 mbinptr bin;
1806 /* Establish circular links for normal bins */
1807 for (i = 1; i < NBINS; ++i)
1809 bin = bin_at (av, i);
1810 bin->fd = bin->bk = bin;
1813 #if MORECORE_CONTIGUOUS
1814 if (av != &main_arena)
1815 #endif
1816 set_noncontiguous (av);
1817 if (av == &main_arena)
1818 set_max_fast (DEFAULT_MXFAST);
1819 atomic_store_relaxed (&av->have_fastchunks, false);
1821 av->top = initial_top (av);
1825 Other internal utilities operating on mstates
1828 static void *sysmalloc (INTERNAL_SIZE_T, mstate);
1829 static int systrim (size_t, mstate);
1830 static void malloc_consolidate (mstate);
1833 /* -------------- Early definitions for debugging hooks ---------------- */
1835 /* Define and initialize the hook variables. These weak definitions must
1836 appear before any use of the variables in a function (arena.c uses one). */
1837 #ifndef weak_variable
1838 /* In GNU libc we want the hook variables to be weak definitions to
1839 avoid a problem with Emacs. */
1840 # define weak_variable weak_function
1841 #endif
1843 /* Forward declarations. */
1844 static void *malloc_hook_ini (size_t sz,
1845 const void *caller) __THROW;
1846 static void *realloc_hook_ini (void *ptr, size_t sz,
1847 const void *caller) __THROW;
1848 static void *memalign_hook_ini (size_t alignment, size_t sz,
1849 const void *caller) __THROW;
1851 #if HAVE_MALLOC_INIT_HOOK
1852 void weak_variable (*__malloc_initialize_hook) (void) = NULL;
1853 compat_symbol (libc, __malloc_initialize_hook,
1854 __malloc_initialize_hook, GLIBC_2_0);
1855 #endif
1857 void weak_variable (*__free_hook) (void *__ptr,
1858 const void *) = NULL;
1859 void *weak_variable (*__malloc_hook)
1860 (size_t __size, const void *) = malloc_hook_ini;
1861 void *weak_variable (*__realloc_hook)
1862 (void *__ptr, size_t __size, const void *)
1863 = realloc_hook_ini;
1864 void *weak_variable (*__memalign_hook)
1865 (size_t __alignment, size_t __size, const void *)
1866 = memalign_hook_ini;
1867 void weak_variable (*__after_morecore_hook) (void) = NULL;
1870 /* ------------------ Testing support ----------------------------------*/
1872 static int perturb_byte;
1874 static void
1875 alloc_perturb (char *p, size_t n)
1877 if (__glibc_unlikely (perturb_byte))
1878 memset (p, perturb_byte ^ 0xff, n);
1881 static void
1882 free_perturb (char *p, size_t n)
1884 if (__glibc_unlikely (perturb_byte))
1885 memset (p, perturb_byte, n);
1890 #include <stap-probe.h>
1892 /* ------------------- Support for multiple arenas -------------------- */
1893 #include "arena.c"
1896 Debugging support
1898 These routines make a number of assertions about the states
1899 of data structures that should be true at all times. If any
1900 are not true, it's very likely that a user program has somehow
1901 trashed memory. (It's also possible that there is a coding error
1902 in malloc. In which case, please report it!)
1905 #if !MALLOC_DEBUG
1907 # define check_chunk(A, P)
1908 # define check_free_chunk(A, P)
1909 # define check_inuse_chunk(A, P)
1910 # define check_remalloced_chunk(A, P, N)
1911 # define check_malloced_chunk(A, P, N)
1912 # define check_malloc_state(A)
1914 #else
1916 # define check_chunk(A, P) do_check_chunk (A, P)
1917 # define check_free_chunk(A, P) do_check_free_chunk (A, P)
1918 # define check_inuse_chunk(A, P) do_check_inuse_chunk (A, P)
1919 # define check_remalloced_chunk(A, P, N) do_check_remalloced_chunk (A, P, N)
1920 # define check_malloced_chunk(A, P, N) do_check_malloced_chunk (A, P, N)
1921 # define check_malloc_state(A) do_check_malloc_state (A)
1924 Properties of all chunks
1927 static void
1928 do_check_chunk (mstate av, mchunkptr p)
1930 unsigned long sz = chunksize (p);
1931 /* min and max possible addresses assuming contiguous allocation */
1932 char *max_address = (char *) (av->top) + chunksize (av->top);
1933 char *min_address = max_address - av->system_mem;
1935 if (!chunk_is_mmapped (p))
1937 /* Has legal address ... */
1938 if (p != av->top)
1940 if (contiguous (av))
1942 assert (((char *) p) >= min_address);
1943 assert (((char *) p + sz) <= ((char *) (av->top)));
1946 else
1948 /* top size is always at least MINSIZE */
1949 assert ((unsigned long) (sz) >= MINSIZE);
1950 /* top predecessor always marked inuse */
1951 assert (prev_inuse (p));
1954 else if (!DUMPED_MAIN_ARENA_CHUNK (p))
1956 /* address is outside main heap */
1957 if (contiguous (av) && av->top != initial_top (av))
1959 assert (((char *) p) < min_address || ((char *) p) >= max_address);
1961 /* chunk is page-aligned */
1962 assert (((prev_size (p) + sz) & (GLRO (dl_pagesize) - 1)) == 0);
1963 /* mem is aligned */
1964 assert (aligned_OK (chunk2mem (p)));
1969 Properties of free chunks
1972 static void
1973 do_check_free_chunk (mstate av, mchunkptr p)
1975 INTERNAL_SIZE_T sz = p->size & ~(PREV_INUSE | NON_MAIN_ARENA);
1976 mchunkptr next = chunk_at_offset (p, sz);
1978 do_check_chunk (av, p);
1980 /* Chunk must claim to be free ... */
1981 assert (!inuse (p));
1982 assert (!chunk_is_mmapped (p));
1984 /* Unless a special marker, must have OK fields */
1985 if ((unsigned long) (sz) >= MINSIZE)
1987 assert ((sz & MALLOC_ALIGN_MASK) == 0);
1988 assert (aligned_OK (chunk2mem (p)));
1989 /* ... matching footer field */
1990 assert (prev_size (p) == sz);
1991 /* ... and is fully consolidated */
1992 assert (prev_inuse (p));
1993 assert (next == av->top || inuse (next));
1995 /* ... and has minimally sane links */
1996 assert (p->fd->bk == p);
1997 assert (p->bk->fd == p);
1999 else /* markers are always of size SIZE_SZ */
2000 assert (sz == SIZE_SZ);
2004 Properties of inuse chunks
2007 static void
2008 do_check_inuse_chunk (mstate av, mchunkptr p)
2010 mchunkptr next;
2012 do_check_chunk (av, p);
2014 if (chunk_is_mmapped (p))
2015 return; /* mmapped chunks have no next/prev */
2017 /* Check whether it claims to be in use ... */
2018 assert (inuse (p));
2020 next = next_chunk (p);
2022 /* ... and is surrounded by OK chunks.
2023 Since more things can be checked with free chunks than inuse ones,
2024 if an inuse chunk borders them and debug is on, it's worth doing them.
2026 if (!prev_inuse (p))
2028 /* Note that we cannot even look at prev unless it is not inuse */
2029 mchunkptr prv = prev_chunk (p);
2030 assert (next_chunk (prv) == p);
2031 do_check_free_chunk (av, prv);
2034 if (next == av->top)
2036 assert (prev_inuse (next));
2037 assert (chunksize (next) >= MINSIZE);
2039 else if (!inuse (next))
2040 do_check_free_chunk (av, next);
2044 Properties of chunks recycled from fastbins
2047 static void
2048 do_check_remalloced_chunk (mstate av, mchunkptr p, INTERNAL_SIZE_T s)
2050 INTERNAL_SIZE_T sz = p->size & ~(PREV_INUSE | NON_MAIN_ARENA);
2052 if (!chunk_is_mmapped (p))
2054 assert (av == arena_for_chunk (p));
2055 if (chunk_main_arena (p))
2056 assert (av == &main_arena);
2057 else
2058 assert (av != &main_arena);
2061 do_check_inuse_chunk (av, p);
2063 /* Legal size ... */
2064 assert ((sz & MALLOC_ALIGN_MASK) == 0);
2065 assert ((unsigned long) (sz) >= MINSIZE);
2066 /* ... and alignment */
2067 assert (aligned_OK (chunk2mem (p)));
2068 /* chunk is less than MINSIZE more than request */
2069 assert ((long) (sz) - (long) (s) >= 0);
2070 assert ((long) (sz) - (long) (s + MINSIZE) < 0);
2074 Properties of nonrecycled chunks at the point they are malloced
2077 static void
2078 do_check_malloced_chunk (mstate av, mchunkptr p, INTERNAL_SIZE_T s)
2080 /* same as recycled case ... */
2081 do_check_remalloced_chunk (av, p, s);
2084 ... plus, must obey implementation invariant that prev_inuse is
2085 always true of any allocated chunk; i.e., that each allocated
2086 chunk borders either a previously allocated and still in-use
2087 chunk, or the base of its memory arena. This is ensured
2088 by making all allocations from the `lowest' part of any found
2089 chunk. This does not necessarily hold however for chunks
2090 recycled via fastbins.
2093 assert (prev_inuse (p));
2098 Properties of malloc_state.
2100 This may be useful for debugging malloc, as well as detecting user
2101 programmer errors that somehow write into malloc_state.
2103 If you are extending or experimenting with this malloc, you can
2104 probably figure out how to hack this routine to print out or
2105 display chunk addresses, sizes, bins, and other instrumentation.
2108 static void
2109 do_check_malloc_state (mstate av)
2111 int i;
2112 mchunkptr p;
2113 mchunkptr q;
2114 mbinptr b;
2115 unsigned int idx;
2116 INTERNAL_SIZE_T size;
2117 unsigned long total = 0;
2118 int max_fast_bin;
2120 /* internal size_t must be no wider than pointer type */
2121 assert (sizeof (INTERNAL_SIZE_T) <= sizeof (char *));
2123 /* alignment is a power of 2 */
2124 assert ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT - 1)) == 0);
2126 /* cannot run remaining checks until fully initialized */
2127 if (av->top == 0 || av->top == initial_top (av))
2128 return;
2130 /* pagesize is a power of 2 */
2131 assert (powerof2(GLRO (dl_pagesize)));
2133 /* A contiguous main_arena is consistent with sbrk_base. */
2134 if (av == &main_arena && contiguous (av))
2135 assert ((char *) mp_.sbrk_base + av->system_mem ==
2136 (char *) av->top + chunksize (av->top));
2138 /* properties of fastbins */
2140 /* max_fast is in allowed range */
2141 assert ((get_max_fast () & ~1) <= request2size (MAX_FAST_SIZE));
2143 max_fast_bin = fastbin_index (get_max_fast ());
2145 for (i = 0; i < NFASTBINS; ++i)
2147 p = fastbin (av, i);
2149 /* The following test can only be performed for the main arena.
2150 While mallopt calls malloc_consolidate to get rid of all fast
2151 bins (especially those larger than the new maximum) this does
2152 only happen for the main arena. Trying to do this for any
2153 other arena would mean those arenas have to be locked and
2154 malloc_consolidate be called for them. This is excessive. And
2155 even if this is acceptable to somebody it still cannot solve
2156 the problem completely since if the arena is locked a
2157 concurrent malloc call might create a new arena which then
2158 could use the newly invalid fast bins. */
2160 /* all bins past max_fast are empty */
2161 if (av == &main_arena && i > max_fast_bin)
2162 assert (p == 0);
2164 while (p != 0)
2166 /* each chunk claims to be inuse */
2167 do_check_inuse_chunk (av, p);
2168 total += chunksize (p);
2169 /* chunk belongs in this bin */
2170 assert (fastbin_index (chunksize (p)) == i);
2171 p = p->fd;
2175 /* check normal bins */
2176 for (i = 1; i < NBINS; ++i)
2178 b = bin_at (av, i);
2180 /* binmap is accurate (except for bin 1 == unsorted_chunks) */
2181 if (i >= 2)
2183 unsigned int binbit = get_binmap (av, i);
2184 int empty = last (b) == b;
2185 if (!binbit)
2186 assert (empty);
2187 else if (!empty)
2188 assert (binbit);
2191 for (p = last (b); p != b; p = p->bk)
2193 /* each chunk claims to be free */
2194 do_check_free_chunk (av, p);
2195 size = chunksize (p);
2196 total += size;
2197 if (i >= 2)
2199 /* chunk belongs in bin */
2200 idx = bin_index (size);
2201 assert (idx == i);
2202 /* lists are sorted */
2203 assert (p->bk == b ||
2204 (unsigned long) chunksize (p->bk) >= (unsigned long) chunksize (p));
2206 if (!in_smallbin_range (size))
2208 if (p->fd_nextsize != NULL)
2210 if (p->fd_nextsize == p)
2211 assert (p->bk_nextsize == p);
2212 else
2214 if (p->fd_nextsize == first (b))
2215 assert (chunksize (p) < chunksize (p->fd_nextsize));
2216 else
2217 assert (chunksize (p) > chunksize (p->fd_nextsize));
2219 if (p == first (b))
2220 assert (chunksize (p) > chunksize (p->bk_nextsize));
2221 else
2222 assert (chunksize (p) < chunksize (p->bk_nextsize));
2225 else
2226 assert (p->bk_nextsize == NULL);
2229 else if (!in_smallbin_range (size))
2230 assert (p->fd_nextsize == NULL && p->bk_nextsize == NULL);
2231 /* chunk is followed by a legal chain of inuse chunks */
2232 for (q = next_chunk (p);
2233 (q != av->top && inuse (q) &&
2234 (unsigned long) (chunksize (q)) >= MINSIZE);
2235 q = next_chunk (q))
2236 do_check_inuse_chunk (av, q);
2240 /* top chunk is OK */
2241 check_chunk (av, av->top);
2243 #endif
2246 /* ----------------- Support for debugging hooks -------------------- */
2247 #include "hooks.c"
2250 /* ----------- Routines dealing with system allocation -------------- */
2253 sysmalloc handles malloc cases requiring more memory from the system.
2254 On entry, it is assumed that av->top does not have enough
2255 space to service request for nb bytes, thus requiring that av->top
2256 be extended or replaced.
2259 static void *
2260 sysmalloc (INTERNAL_SIZE_T nb, mstate av)
2262 mchunkptr old_top; /* incoming value of av->top */
2263 INTERNAL_SIZE_T old_size; /* its size */
2264 char *old_end; /* its end address */
2266 long size; /* arg to first MORECORE or mmap call */
2267 char *brk; /* return value from MORECORE */
2269 long correction; /* arg to 2nd MORECORE call */
2270 char *snd_brk; /* 2nd return val */
2272 INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of new space */
2273 INTERNAL_SIZE_T end_misalign; /* partial page left at end of new space */
2274 char *aligned_brk; /* aligned offset into brk */
2276 mchunkptr p; /* the allocated/returned chunk */
2277 mchunkptr remainder; /* remainder from allocation */
2278 unsigned long remainder_size; /* its size */
2281 size_t pagesize = GLRO (dl_pagesize);
2282 bool tried_mmap = false;
2286 If have mmap, and the request size meets the mmap threshold, and
2287 the system supports mmap, and there are few enough currently
2288 allocated mmapped regions, try to directly map this request
2289 rather than expanding top.
2292 if (av == NULL
2293 || ((unsigned long) (nb) >= (unsigned long) (mp_.mmap_threshold)
2294 && (mp_.n_mmaps < mp_.n_mmaps_max)))
2296 char *mm; /* return value from mmap call*/
2298 try_mmap:
2300 Round up size to nearest page. For mmapped chunks, the overhead
2301 is one SIZE_SZ unit larger than for normal chunks, because there
2302 is no following chunk whose prev_size field could be used.
2304 See the front_misalign handling below, for glibc there is no
2305 need for further alignments unless we have have high alignment.
2307 if (MALLOC_ALIGNMENT == 2 * SIZE_SZ)
2308 size = ALIGN_UP (nb + SIZE_SZ, pagesize);
2309 else
2310 size = ALIGN_UP (nb + SIZE_SZ + MALLOC_ALIGN_MASK, pagesize);
2311 tried_mmap = true;
2313 /* Don't try if size wraps around 0 */
2314 if ((unsigned long) (size) > (unsigned long) (nb))
2316 mm = (char *) (MMAP (0, size, PROT_READ | PROT_WRITE, 0));
2318 if (mm != MAP_FAILED)
2321 The offset to the start of the mmapped region is stored
2322 in the prev_size field of the chunk. This allows us to adjust
2323 returned start address to meet alignment requirements here
2324 and in memalign(), and still be able to compute proper
2325 address argument for later munmap in free() and realloc().
2328 if (MALLOC_ALIGNMENT == 2 * SIZE_SZ)
2330 /* For glibc, chunk2mem increases the address by 2*SIZE_SZ and
2331 MALLOC_ALIGN_MASK is 2*SIZE_SZ-1. Each mmap'ed area is page
2332 aligned and therefore definitely MALLOC_ALIGN_MASK-aligned. */
2333 assert (((INTERNAL_SIZE_T) chunk2mem (mm) & MALLOC_ALIGN_MASK) == 0);
2334 front_misalign = 0;
2336 else
2337 front_misalign = (INTERNAL_SIZE_T) chunk2mem (mm) & MALLOC_ALIGN_MASK;
2338 if (front_misalign > 0)
2340 correction = MALLOC_ALIGNMENT - front_misalign;
2341 p = (mchunkptr) (mm + correction);
2342 set_prev_size (p, correction);
2343 set_head (p, (size - correction) | IS_MMAPPED);
2345 else
2347 p = (mchunkptr) mm;
2348 set_prev_size (p, 0);
2349 set_head (p, size | IS_MMAPPED);
2352 /* update statistics */
2354 int new = atomic_exchange_and_add (&mp_.n_mmaps, 1) + 1;
2355 atomic_max (&mp_.max_n_mmaps, new);
2357 unsigned long sum;
2358 sum = atomic_exchange_and_add (&mp_.mmapped_mem, size) + size;
2359 atomic_max (&mp_.max_mmapped_mem, sum);
2361 check_chunk (av, p);
2363 return chunk2mem (p);
2368 /* There are no usable arenas and mmap also failed. */
2369 if (av == NULL)
2370 return 0;
2372 /* Record incoming configuration of top */
2374 old_top = av->top;
2375 old_size = chunksize (old_top);
2376 old_end = (char *) (chunk_at_offset (old_top, old_size));
2378 brk = snd_brk = (char *) (MORECORE_FAILURE);
2381 If not the first time through, we require old_size to be
2382 at least MINSIZE and to have prev_inuse set.
2385 assert ((old_top == initial_top (av) && old_size == 0) ||
2386 ((unsigned long) (old_size) >= MINSIZE &&
2387 prev_inuse (old_top) &&
2388 ((unsigned long) old_end & (pagesize - 1)) == 0));
2390 /* Precondition: not enough current space to satisfy nb request */
2391 assert ((unsigned long) (old_size) < (unsigned long) (nb + MINSIZE));
2394 if (av != &main_arena)
2396 heap_info *old_heap, *heap;
2397 size_t old_heap_size;
2399 /* First try to extend the current heap. */
2400 old_heap = heap_for_ptr (old_top);
2401 old_heap_size = old_heap->size;
2402 if ((long) (MINSIZE + nb - old_size) > 0
2403 && grow_heap (old_heap, MINSIZE + nb - old_size) == 0)
2405 av->system_mem += old_heap->size - old_heap_size;
2406 set_head (old_top, (((char *) old_heap + old_heap->size) - (char *) old_top)
2407 | PREV_INUSE);
2409 else if ((heap = new_heap (nb + (MINSIZE + sizeof (*heap)), mp_.top_pad)))
2411 /* Use a newly allocated heap. */
2412 heap->ar_ptr = av;
2413 heap->prev = old_heap;
2414 av->system_mem += heap->size;
2415 /* Set up the new top. */
2416 top (av) = chunk_at_offset (heap, sizeof (*heap));
2417 set_head (top (av), (heap->size - sizeof (*heap)) | PREV_INUSE);
2419 /* Setup fencepost and free the old top chunk with a multiple of
2420 MALLOC_ALIGNMENT in size. */
2421 /* The fencepost takes at least MINSIZE bytes, because it might
2422 become the top chunk again later. Note that a footer is set
2423 up, too, although the chunk is marked in use. */
2424 old_size = (old_size - MINSIZE) & ~MALLOC_ALIGN_MASK;
2425 set_head (chunk_at_offset (old_top, old_size + 2 * SIZE_SZ), 0 | PREV_INUSE);
2426 if (old_size >= MINSIZE)
2428 set_head (chunk_at_offset (old_top, old_size), (2 * SIZE_SZ) | PREV_INUSE);
2429 set_foot (chunk_at_offset (old_top, old_size), (2 * SIZE_SZ));
2430 set_head (old_top, old_size | PREV_INUSE | NON_MAIN_ARENA);
2431 _int_free (av, old_top, 1);
2433 else
2435 set_head (old_top, (old_size + 2 * SIZE_SZ) | PREV_INUSE);
2436 set_foot (old_top, (old_size + 2 * SIZE_SZ));
2439 else if (!tried_mmap)
2440 /* We can at least try to use to mmap memory. */
2441 goto try_mmap;
2443 else /* av == main_arena */
2446 { /* Request enough space for nb + pad + overhead */
2447 size = nb + mp_.top_pad + MINSIZE;
2450 If contiguous, we can subtract out existing space that we hope to
2451 combine with new space. We add it back later only if
2452 we don't actually get contiguous space.
2455 if (contiguous (av))
2456 size -= old_size;
2459 Round to a multiple of page size.
2460 If MORECORE is not contiguous, this ensures that we only call it
2461 with whole-page arguments. And if MORECORE is contiguous and
2462 this is not first time through, this preserves page-alignment of
2463 previous calls. Otherwise, we correct to page-align below.
2466 size = ALIGN_UP (size, pagesize);
2469 Don't try to call MORECORE if argument is so big as to appear
2470 negative. Note that since mmap takes size_t arg, it may succeed
2471 below even if we cannot call MORECORE.
2474 if (size > 0)
2476 brk = (char *) (MORECORE (size));
2477 LIBC_PROBE (memory_sbrk_more, 2, brk, size);
2480 if (brk != (char *) (MORECORE_FAILURE))
2482 /* Call the `morecore' hook if necessary. */
2483 void (*hook) (void) = atomic_forced_read (__after_morecore_hook);
2484 if (__builtin_expect (hook != NULL, 0))
2485 (*hook)();
2487 else
2490 If have mmap, try using it as a backup when MORECORE fails or
2491 cannot be used. This is worth doing on systems that have "holes" in
2492 address space, so sbrk cannot extend to give contiguous space, but
2493 space is available elsewhere. Note that we ignore mmap max count
2494 and threshold limits, since the space will not be used as a
2495 segregated mmap region.
2498 /* Cannot merge with old top, so add its size back in */
2499 if (contiguous (av))
2500 size = ALIGN_UP (size + old_size, pagesize);
2502 /* If we are relying on mmap as backup, then use larger units */
2503 if ((unsigned long) (size) < (unsigned long) (MMAP_AS_MORECORE_SIZE))
2504 size = MMAP_AS_MORECORE_SIZE;
2506 /* Don't try if size wraps around 0 */
2507 if ((unsigned long) (size) > (unsigned long) (nb))
2509 char *mbrk = (char *) (MMAP (0, size, PROT_READ | PROT_WRITE, 0));
2511 if (mbrk != MAP_FAILED)
2513 /* We do not need, and cannot use, another sbrk call to find end */
2514 brk = mbrk;
2515 snd_brk = brk + size;
2518 Record that we no longer have a contiguous sbrk region.
2519 After the first time mmap is used as backup, we do not
2520 ever rely on contiguous space since this could incorrectly
2521 bridge regions.
2523 set_noncontiguous (av);
2528 if (brk != (char *) (MORECORE_FAILURE))
2530 if (mp_.sbrk_base == 0)
2531 mp_.sbrk_base = brk;
2532 av->system_mem += size;
2535 If MORECORE extends previous space, we can likewise extend top size.
2538 if (brk == old_end && snd_brk == (char *) (MORECORE_FAILURE))
2539 set_head (old_top, (size + old_size) | PREV_INUSE);
2541 else if (contiguous (av) && old_size && brk < old_end)
2542 /* Oops! Someone else killed our space.. Can't touch anything. */
2543 malloc_printerr ("break adjusted to free malloc space");
2546 Otherwise, make adjustments:
2548 * If the first time through or noncontiguous, we need to call sbrk
2549 just to find out where the end of memory lies.
2551 * We need to ensure that all returned chunks from malloc will meet
2552 MALLOC_ALIGNMENT
2554 * If there was an intervening foreign sbrk, we need to adjust sbrk
2555 request size to account for fact that we will not be able to
2556 combine new space with existing space in old_top.
2558 * Almost all systems internally allocate whole pages at a time, in
2559 which case we might as well use the whole last page of request.
2560 So we allocate enough more memory to hit a page boundary now,
2561 which in turn causes future contiguous calls to page-align.
2564 else
2566 front_misalign = 0;
2567 end_misalign = 0;
2568 correction = 0;
2569 aligned_brk = brk;
2571 /* handle contiguous cases */
2572 if (contiguous (av))
2574 /* Count foreign sbrk as system_mem. */
2575 if (old_size)
2576 av->system_mem += brk - old_end;
2578 /* Guarantee alignment of first new chunk made from this space */
2580 front_misalign = (INTERNAL_SIZE_T) chunk2mem (brk) & MALLOC_ALIGN_MASK;
2581 if (front_misalign > 0)
2584 Skip over some bytes to arrive at an aligned position.
2585 We don't need to specially mark these wasted front bytes.
2586 They will never be accessed anyway because
2587 prev_inuse of av->top (and any chunk created from its start)
2588 is always true after initialization.
2591 correction = MALLOC_ALIGNMENT - front_misalign;
2592 aligned_brk += correction;
2596 If this isn't adjacent to existing space, then we will not
2597 be able to merge with old_top space, so must add to 2nd request.
2600 correction += old_size;
2602 /* Extend the end address to hit a page boundary */
2603 end_misalign = (INTERNAL_SIZE_T) (brk + size + correction);
2604 correction += (ALIGN_UP (end_misalign, pagesize)) - end_misalign;
2606 assert (correction >= 0);
2607 snd_brk = (char *) (MORECORE (correction));
2610 If can't allocate correction, try to at least find out current
2611 brk. It might be enough to proceed without failing.
2613 Note that if second sbrk did NOT fail, we assume that space
2614 is contiguous with first sbrk. This is a safe assumption unless
2615 program is multithreaded but doesn't use locks and a foreign sbrk
2616 occurred between our first and second calls.
2619 if (snd_brk == (char *) (MORECORE_FAILURE))
2621 correction = 0;
2622 snd_brk = (char *) (MORECORE (0));
2624 else
2626 /* Call the `morecore' hook if necessary. */
2627 void (*hook) (void) = atomic_forced_read (__after_morecore_hook);
2628 if (__builtin_expect (hook != NULL, 0))
2629 (*hook)();
2633 /* handle non-contiguous cases */
2634 else
2636 if (MALLOC_ALIGNMENT == 2 * SIZE_SZ)
2637 /* MORECORE/mmap must correctly align */
2638 assert (((unsigned long) chunk2mem (brk) & MALLOC_ALIGN_MASK) == 0);
2639 else
2641 front_misalign = (INTERNAL_SIZE_T) chunk2mem (brk) & MALLOC_ALIGN_MASK;
2642 if (front_misalign > 0)
2645 Skip over some bytes to arrive at an aligned position.
2646 We don't need to specially mark these wasted front bytes.
2647 They will never be accessed anyway because
2648 prev_inuse of av->top (and any chunk created from its start)
2649 is always true after initialization.
2652 aligned_brk += MALLOC_ALIGNMENT - front_misalign;
2656 /* Find out current end of memory */
2657 if (snd_brk == (char *) (MORECORE_FAILURE))
2659 snd_brk = (char *) (MORECORE (0));
2663 /* Adjust top based on results of second sbrk */
2664 if (snd_brk != (char *) (MORECORE_FAILURE))
2666 av->top = (mchunkptr) aligned_brk;
2667 set_head (av->top, (snd_brk - aligned_brk + correction) | PREV_INUSE);
2668 av->system_mem += correction;
2671 If not the first time through, we either have a
2672 gap due to foreign sbrk or a non-contiguous region. Insert a
2673 double fencepost at old_top to prevent consolidation with space
2674 we don't own. These fenceposts are artificial chunks that are
2675 marked as inuse and are in any case too small to use. We need
2676 two to make sizes and alignments work out.
2679 if (old_size != 0)
2682 Shrink old_top to insert fenceposts, keeping size a
2683 multiple of MALLOC_ALIGNMENT. We know there is at least
2684 enough space in old_top to do this.
2686 old_size = (old_size - 4 * SIZE_SZ) & ~MALLOC_ALIGN_MASK;
2687 set_head (old_top, old_size | PREV_INUSE);
2690 Note that the following assignments completely overwrite
2691 old_top when old_size was previously MINSIZE. This is
2692 intentional. We need the fencepost, even if old_top otherwise gets
2693 lost.
2695 set_head (chunk_at_offset (old_top, old_size),
2696 (2 * SIZE_SZ) | PREV_INUSE);
2697 set_head (chunk_at_offset (old_top, old_size + 2 * SIZE_SZ),
2698 (2 * SIZE_SZ) | PREV_INUSE);
2700 /* If possible, release the rest. */
2701 if (old_size >= MINSIZE)
2703 _int_free (av, old_top, 1);
2709 } /* if (av != &main_arena) */
2711 if ((unsigned long) av->system_mem > (unsigned long) (av->max_system_mem))
2712 av->max_system_mem = av->system_mem;
2713 check_malloc_state (av);
2715 /* finally, do the allocation */
2716 p = av->top;
2717 size = chunksize (p);
2719 /* check that one of the above allocation paths succeeded */
2720 if ((unsigned long) (size) >= (unsigned long) (nb + MINSIZE))
2722 remainder_size = size - nb;
2723 remainder = chunk_at_offset (p, nb);
2724 av->top = remainder;
2725 set_head (p, nb | PREV_INUSE | (av != &main_arena ? NON_MAIN_ARENA : 0));
2726 set_head (remainder, remainder_size | PREV_INUSE);
2727 check_malloced_chunk (av, p, nb);
2728 return chunk2mem (p);
2731 /* catch all failure paths */
2732 __set_errno (ENOMEM);
2733 return 0;
2738 systrim is an inverse of sorts to sysmalloc. It gives memory back
2739 to the system (via negative arguments to sbrk) if there is unused
2740 memory at the `high' end of the malloc pool. It is called
2741 automatically by free() when top space exceeds the trim
2742 threshold. It is also called by the public malloc_trim routine. It
2743 returns 1 if it actually released any memory, else 0.
2746 static int
2747 systrim (size_t pad, mstate av)
2749 long top_size; /* Amount of top-most memory */
2750 long extra; /* Amount to release */
2751 long released; /* Amount actually released */
2752 char *current_brk; /* address returned by pre-check sbrk call */
2753 char *new_brk; /* address returned by post-check sbrk call */
2754 size_t pagesize;
2755 long top_area;
2757 pagesize = GLRO (dl_pagesize);
2758 top_size = chunksize (av->top);
2760 top_area = top_size - MINSIZE - 1;
2761 if (top_area <= pad)
2762 return 0;
2764 /* Release in pagesize units and round down to the nearest page. */
2765 extra = ALIGN_DOWN(top_area - pad, pagesize);
2767 if (extra == 0)
2768 return 0;
2771 Only proceed if end of memory is where we last set it.
2772 This avoids problems if there were foreign sbrk calls.
2774 current_brk = (char *) (MORECORE (0));
2775 if (current_brk == (char *) (av->top) + top_size)
2778 Attempt to release memory. We ignore MORECORE return value,
2779 and instead call again to find out where new end of memory is.
2780 This avoids problems if first call releases less than we asked,
2781 of if failure somehow altered brk value. (We could still
2782 encounter problems if it altered brk in some very bad way,
2783 but the only thing we can do is adjust anyway, which will cause
2784 some downstream failure.)
2787 MORECORE (-extra);
2788 /* Call the `morecore' hook if necessary. */
2789 void (*hook) (void) = atomic_forced_read (__after_morecore_hook);
2790 if (__builtin_expect (hook != NULL, 0))
2791 (*hook)();
2792 new_brk = (char *) (MORECORE (0));
2794 LIBC_PROBE (memory_sbrk_less, 2, new_brk, extra);
2796 if (new_brk != (char *) MORECORE_FAILURE)
2798 released = (long) (current_brk - new_brk);
2800 if (released != 0)
2802 /* Success. Adjust top. */
2803 av->system_mem -= released;
2804 set_head (av->top, (top_size - released) | PREV_INUSE);
2805 check_malloc_state (av);
2806 return 1;
2810 return 0;
2813 static void
2814 munmap_chunk (mchunkptr p)
2816 INTERNAL_SIZE_T size = chunksize (p);
2818 assert (chunk_is_mmapped (p));
2820 /* Do nothing if the chunk is a faked mmapped chunk in the dumped
2821 main arena. We never free this memory. */
2822 if (DUMPED_MAIN_ARENA_CHUNK (p))
2823 return;
2825 uintptr_t block = (uintptr_t) p - prev_size (p);
2826 size_t total_size = prev_size (p) + size;
2827 /* Unfortunately we have to do the compilers job by hand here. Normally
2828 we would test BLOCK and TOTAL-SIZE separately for compliance with the
2829 page size. But gcc does not recognize the optimization possibility
2830 (in the moment at least) so we combine the two values into one before
2831 the bit test. */
2832 if (__builtin_expect (((block | total_size) & (GLRO (dl_pagesize) - 1)) != 0, 0))
2833 malloc_printerr ("munmap_chunk(): invalid pointer");
2835 atomic_decrement (&mp_.n_mmaps);
2836 atomic_add (&mp_.mmapped_mem, -total_size);
2838 /* If munmap failed the process virtual memory address space is in a
2839 bad shape. Just leave the block hanging around, the process will
2840 terminate shortly anyway since not much can be done. */
2841 __munmap ((char *) block, total_size);
2844 #if HAVE_MREMAP
2846 static mchunkptr
2847 mremap_chunk (mchunkptr p, size_t new_size)
2849 size_t pagesize = GLRO (dl_pagesize);
2850 INTERNAL_SIZE_T offset = prev_size (p);
2851 INTERNAL_SIZE_T size = chunksize (p);
2852 char *cp;
2854 assert (chunk_is_mmapped (p));
2855 assert (((size + offset) & (GLRO (dl_pagesize) - 1)) == 0);
2857 /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
2858 new_size = ALIGN_UP (new_size + offset + SIZE_SZ, pagesize);
2860 /* No need to remap if the number of pages does not change. */
2861 if (size + offset == new_size)
2862 return p;
2864 cp = (char *) __mremap ((char *) p - offset, size + offset, new_size,
2865 MREMAP_MAYMOVE);
2867 if (cp == MAP_FAILED)
2868 return 0;
2870 p = (mchunkptr) (cp + offset);
2872 assert (aligned_OK (chunk2mem (p)));
2874 assert (prev_size (p) == offset);
2875 set_head (p, (new_size - offset) | IS_MMAPPED);
2877 INTERNAL_SIZE_T new;
2878 new = atomic_exchange_and_add (&mp_.mmapped_mem, new_size - size - offset)
2879 + new_size - size - offset;
2880 atomic_max (&mp_.max_mmapped_mem, new);
2881 return p;
2883 #endif /* HAVE_MREMAP */
2885 /*------------------------ Public wrappers. --------------------------------*/
2887 #if USE_TCACHE
2889 /* We overlay this structure on the user-data portion of a chunk when
2890 the chunk is stored in the per-thread cache. */
2891 typedef struct tcache_entry
2893 struct tcache_entry *next;
2894 } tcache_entry;
2896 /* There is one of these for each thread, which contains the
2897 per-thread cache (hence "tcache_perthread_struct"). Keeping
2898 overall size low is mildly important. Note that COUNTS and ENTRIES
2899 are redundant (we could have just counted the linked list each
2900 time), this is for performance reasons. */
2901 typedef struct tcache_perthread_struct
2903 char counts[TCACHE_MAX_BINS];
2904 tcache_entry *entries[TCACHE_MAX_BINS];
2905 } tcache_perthread_struct;
2907 static __thread bool tcache_shutting_down = false;
2908 static __thread tcache_perthread_struct *tcache = NULL;
2910 /* Caller must ensure that we know tc_idx is valid and there's room
2911 for more chunks. */
2912 static __always_inline void
2913 tcache_put (mchunkptr chunk, size_t tc_idx)
2915 tcache_entry *e = (tcache_entry *) chunk2mem (chunk);
2916 assert (tc_idx < TCACHE_MAX_BINS);
2917 e->next = tcache->entries[tc_idx];
2918 tcache->entries[tc_idx] = e;
2919 ++(tcache->counts[tc_idx]);
2922 /* Caller must ensure that we know tc_idx is valid and there's
2923 available chunks to remove. */
2924 static __always_inline void *
2925 tcache_get (size_t tc_idx)
2927 tcache_entry *e = tcache->entries[tc_idx];
2928 assert (tc_idx < TCACHE_MAX_BINS);
2929 assert (tcache->entries[tc_idx] > 0);
2930 tcache->entries[tc_idx] = e->next;
2931 --(tcache->counts[tc_idx]);
2932 return (void *) e;
2935 static void __attribute__ ((section ("__libc_thread_freeres_fn")))
2936 tcache_thread_freeres (void)
2938 int i;
2939 tcache_perthread_struct *tcache_tmp = tcache;
2941 if (!tcache)
2942 return;
2944 /* Disable the tcache and prevent it from being reinitialized. */
2945 tcache = NULL;
2946 tcache_shutting_down = true;
2948 /* Free all of the entries and the tcache itself back to the arena
2949 heap for coalescing. */
2950 for (i = 0; i < TCACHE_MAX_BINS; ++i)
2952 while (tcache_tmp->entries[i])
2954 tcache_entry *e = tcache_tmp->entries[i];
2955 tcache_tmp->entries[i] = e->next;
2956 __libc_free (e);
2960 __libc_free (tcache_tmp);
2962 text_set_element (__libc_thread_subfreeres, tcache_thread_freeres);
2964 static void
2965 tcache_init(void)
2967 mstate ar_ptr;
2968 void *victim = 0;
2969 const size_t bytes = sizeof (tcache_perthread_struct);
2971 if (tcache_shutting_down)
2972 return;
2974 arena_get (ar_ptr, bytes);
2975 victim = _int_malloc (ar_ptr, bytes);
2976 if (!victim && ar_ptr != NULL)
2978 ar_ptr = arena_get_retry (ar_ptr, bytes);
2979 victim = _int_malloc (ar_ptr, bytes);
2983 if (ar_ptr != NULL)
2984 __libc_lock_unlock (ar_ptr->mutex);
2986 /* In a low memory situation, we may not be able to allocate memory
2987 - in which case, we just keep trying later. However, we
2988 typically do this very early, so either there is sufficient
2989 memory, or there isn't enough memory to do non-trivial
2990 allocations anyway. */
2991 if (victim)
2993 tcache = (tcache_perthread_struct *) victim;
2994 memset (tcache, 0, sizeof (tcache_perthread_struct));
2999 #define MAYBE_INIT_TCACHE() \
3000 if (__glibc_unlikely (tcache == NULL)) \
3001 tcache_init();
3003 #else
3004 #define MAYBE_INIT_TCACHE()
3005 #endif
3007 void *
3008 __libc_malloc (size_t bytes)
3010 mstate ar_ptr;
3011 void *victim;
3013 void *(*hook) (size_t, const void *)
3014 = atomic_forced_read (__malloc_hook);
3015 if (__builtin_expect (hook != NULL, 0))
3016 return (*hook)(bytes, RETURN_ADDRESS (0));
3017 #if USE_TCACHE
3018 /* int_free also calls request2size, be careful to not pad twice. */
3019 size_t tbytes = request2size (bytes);
3020 size_t tc_idx = csize2tidx (tbytes);
3022 MAYBE_INIT_TCACHE ();
3024 DIAG_PUSH_NEEDS_COMMENT;
3025 if (tc_idx < mp_.tcache_bins
3026 /*&& tc_idx < TCACHE_MAX_BINS*/ /* to appease gcc */
3027 && tcache
3028 && tcache->entries[tc_idx] != NULL)
3030 return tcache_get (tc_idx);
3032 DIAG_POP_NEEDS_COMMENT;
3033 #endif
3035 arena_get (ar_ptr, bytes);
3037 victim = _int_malloc (ar_ptr, bytes);
3038 /* Retry with another arena only if we were able to find a usable arena
3039 before. */
3040 if (!victim && ar_ptr != NULL)
3042 LIBC_PROBE (memory_malloc_retry, 1, bytes);
3043 ar_ptr = arena_get_retry (ar_ptr, bytes);
3044 victim = _int_malloc (ar_ptr, bytes);
3047 if (ar_ptr != NULL)
3048 __libc_lock_unlock (ar_ptr->mutex);
3050 assert (!victim || chunk_is_mmapped (mem2chunk (victim)) ||
3051 ar_ptr == arena_for_chunk (mem2chunk (victim)));
3052 return victim;
3054 libc_hidden_def (__libc_malloc)
3056 void
3057 __libc_free (void *mem)
3059 mstate ar_ptr;
3060 mchunkptr p; /* chunk corresponding to mem */
3062 void (*hook) (void *, const void *)
3063 = atomic_forced_read (__free_hook);
3064 if (__builtin_expect (hook != NULL, 0))
3066 (*hook)(mem, RETURN_ADDRESS (0));
3067 return;
3070 if (mem == 0) /* free(0) has no effect */
3071 return;
3073 p = mem2chunk (mem);
3075 if (chunk_is_mmapped (p)) /* release mmapped memory. */
3077 /* See if the dynamic brk/mmap threshold needs adjusting.
3078 Dumped fake mmapped chunks do not affect the threshold. */
3079 if (!mp_.no_dyn_threshold
3080 && chunksize_nomask (p) > mp_.mmap_threshold
3081 && chunksize_nomask (p) <= DEFAULT_MMAP_THRESHOLD_MAX
3082 && !DUMPED_MAIN_ARENA_CHUNK (p))
3084 mp_.mmap_threshold = chunksize (p);
3085 mp_.trim_threshold = 2 * mp_.mmap_threshold;
3086 LIBC_PROBE (memory_mallopt_free_dyn_thresholds, 2,
3087 mp_.mmap_threshold, mp_.trim_threshold);
3089 munmap_chunk (p);
3090 return;
3093 MAYBE_INIT_TCACHE ();
3095 ar_ptr = arena_for_chunk (p);
3096 _int_free (ar_ptr, p, 0);
3098 libc_hidden_def (__libc_free)
3100 void *
3101 __libc_realloc (void *oldmem, size_t bytes)
3103 mstate ar_ptr;
3104 INTERNAL_SIZE_T nb; /* padded request size */
3106 void *newp; /* chunk to return */
3108 void *(*hook) (void *, size_t, const void *) =
3109 atomic_forced_read (__realloc_hook);
3110 if (__builtin_expect (hook != NULL, 0))
3111 return (*hook)(oldmem, bytes, RETURN_ADDRESS (0));
3113 #if REALLOC_ZERO_BYTES_FREES
3114 if (bytes == 0 && oldmem != NULL)
3116 __libc_free (oldmem); return 0;
3118 #endif
3120 /* realloc of null is supposed to be same as malloc */
3121 if (oldmem == 0)
3122 return __libc_malloc (bytes);
3124 /* chunk corresponding to oldmem */
3125 const mchunkptr oldp = mem2chunk (oldmem);
3126 /* its size */
3127 const INTERNAL_SIZE_T oldsize = chunksize (oldp);
3129 if (chunk_is_mmapped (oldp))
3130 ar_ptr = NULL;
3131 else
3133 MAYBE_INIT_TCACHE ();
3134 ar_ptr = arena_for_chunk (oldp);
3137 /* Little security check which won't hurt performance: the allocator
3138 never wrapps around at the end of the address space. Therefore
3139 we can exclude some size values which might appear here by
3140 accident or by "design" from some intruder. We need to bypass
3141 this check for dumped fake mmap chunks from the old main arena
3142 because the new malloc may provide additional alignment. */
3143 if ((__builtin_expect ((uintptr_t) oldp > (uintptr_t) -oldsize, 0)
3144 || __builtin_expect (misaligned_chunk (oldp), 0))
3145 && !DUMPED_MAIN_ARENA_CHUNK (oldp))
3146 malloc_printerr ("realloc(): invalid pointer");
3148 checked_request2size (bytes, nb);
3150 if (chunk_is_mmapped (oldp))
3152 /* If this is a faked mmapped chunk from the dumped main arena,
3153 always make a copy (and do not free the old chunk). */
3154 if (DUMPED_MAIN_ARENA_CHUNK (oldp))
3156 /* Must alloc, copy, free. */
3157 void *newmem = __libc_malloc (bytes);
3158 if (newmem == 0)
3159 return NULL;
3160 /* Copy as many bytes as are available from the old chunk
3161 and fit into the new size. NB: The overhead for faked
3162 mmapped chunks is only SIZE_SZ, not 2 * SIZE_SZ as for
3163 regular mmapped chunks. */
3164 if (bytes > oldsize - SIZE_SZ)
3165 bytes = oldsize - SIZE_SZ;
3166 memcpy (newmem, oldmem, bytes);
3167 return newmem;
3170 void *newmem;
3172 #if HAVE_MREMAP
3173 newp = mremap_chunk (oldp, nb);
3174 if (newp)
3175 return chunk2mem (newp);
3176 #endif
3177 /* Note the extra SIZE_SZ overhead. */
3178 if (oldsize - SIZE_SZ >= nb)
3179 return oldmem; /* do nothing */
3181 /* Must alloc, copy, free. */
3182 newmem = __libc_malloc (bytes);
3183 if (newmem == 0)
3184 return 0; /* propagate failure */
3186 memcpy (newmem, oldmem, oldsize - 2 * SIZE_SZ);
3187 munmap_chunk (oldp);
3188 return newmem;
3191 __libc_lock_lock (ar_ptr->mutex);
3193 newp = _int_realloc (ar_ptr, oldp, oldsize, nb);
3195 __libc_lock_unlock (ar_ptr->mutex);
3196 assert (!newp || chunk_is_mmapped (mem2chunk (newp)) ||
3197 ar_ptr == arena_for_chunk (mem2chunk (newp)));
3199 if (newp == NULL)
3201 /* Try harder to allocate memory in other arenas. */
3202 LIBC_PROBE (memory_realloc_retry, 2, bytes, oldmem);
3203 newp = __libc_malloc (bytes);
3204 if (newp != NULL)
3206 memcpy (newp, oldmem, oldsize - SIZE_SZ);
3207 _int_free (ar_ptr, oldp, 0);
3211 return newp;
3213 libc_hidden_def (__libc_realloc)
3215 void *
3216 __libc_memalign (size_t alignment, size_t bytes)
3218 void *address = RETURN_ADDRESS (0);
3219 return _mid_memalign (alignment, bytes, address);
3222 static void *
3223 _mid_memalign (size_t alignment, size_t bytes, void *address)
3225 mstate ar_ptr;
3226 void *p;
3228 void *(*hook) (size_t, size_t, const void *) =
3229 atomic_forced_read (__memalign_hook);
3230 if (__builtin_expect (hook != NULL, 0))
3231 return (*hook)(alignment, bytes, address);
3233 /* If we need less alignment than we give anyway, just relay to malloc. */
3234 if (alignment <= MALLOC_ALIGNMENT)
3235 return __libc_malloc (bytes);
3237 /* Otherwise, ensure that it is at least a minimum chunk size */
3238 if (alignment < MINSIZE)
3239 alignment = MINSIZE;
3241 /* If the alignment is greater than SIZE_MAX / 2 + 1 it cannot be a
3242 power of 2 and will cause overflow in the check below. */
3243 if (alignment > SIZE_MAX / 2 + 1)
3245 __set_errno (EINVAL);
3246 return 0;
3249 /* Check for overflow. */
3250 if (bytes > SIZE_MAX - alignment - MINSIZE)
3252 __set_errno (ENOMEM);
3253 return 0;
3257 /* Make sure alignment is power of 2. */
3258 if (!powerof2 (alignment))
3260 size_t a = MALLOC_ALIGNMENT * 2;
3261 while (a < alignment)
3262 a <<= 1;
3263 alignment = a;
3266 arena_get (ar_ptr, bytes + alignment + MINSIZE);
3268 p = _int_memalign (ar_ptr, alignment, bytes);
3269 if (!p && ar_ptr != NULL)
3271 LIBC_PROBE (memory_memalign_retry, 2, bytes, alignment);
3272 ar_ptr = arena_get_retry (ar_ptr, bytes);
3273 p = _int_memalign (ar_ptr, alignment, bytes);
3276 if (ar_ptr != NULL)
3277 __libc_lock_unlock (ar_ptr->mutex);
3279 assert (!p || chunk_is_mmapped (mem2chunk (p)) ||
3280 ar_ptr == arena_for_chunk (mem2chunk (p)));
3281 return p;
3283 /* For ISO C11. */
3284 weak_alias (__libc_memalign, aligned_alloc)
3285 libc_hidden_def (__libc_memalign)
3287 void *
3288 __libc_valloc (size_t bytes)
3290 if (__malloc_initialized < 0)
3291 ptmalloc_init ();
3293 void *address = RETURN_ADDRESS (0);
3294 size_t pagesize = GLRO (dl_pagesize);
3295 return _mid_memalign (pagesize, bytes, address);
3298 void *
3299 __libc_pvalloc (size_t bytes)
3301 if (__malloc_initialized < 0)
3302 ptmalloc_init ();
3304 void *address = RETURN_ADDRESS (0);
3305 size_t pagesize = GLRO (dl_pagesize);
3306 size_t rounded_bytes = ALIGN_UP (bytes, pagesize);
3308 /* Check for overflow. */
3309 if (bytes > SIZE_MAX - 2 * pagesize - MINSIZE)
3311 __set_errno (ENOMEM);
3312 return 0;
3315 return _mid_memalign (pagesize, rounded_bytes, address);
3318 void *
3319 __libc_calloc (size_t n, size_t elem_size)
3321 mstate av;
3322 mchunkptr oldtop, p;
3323 INTERNAL_SIZE_T bytes, sz, csz, oldtopsize;
3324 void *mem;
3325 unsigned long clearsize;
3326 unsigned long nclears;
3327 INTERNAL_SIZE_T *d;
3329 /* size_t is unsigned so the behavior on overflow is defined. */
3330 bytes = n * elem_size;
3331 #define HALF_INTERNAL_SIZE_T \
3332 (((INTERNAL_SIZE_T) 1) << (8 * sizeof (INTERNAL_SIZE_T) / 2))
3333 if (__builtin_expect ((n | elem_size) >= HALF_INTERNAL_SIZE_T, 0))
3335 if (elem_size != 0 && bytes / elem_size != n)
3337 __set_errno (ENOMEM);
3338 return 0;
3342 void *(*hook) (size_t, const void *) =
3343 atomic_forced_read (__malloc_hook);
3344 if (__builtin_expect (hook != NULL, 0))
3346 sz = bytes;
3347 mem = (*hook)(sz, RETURN_ADDRESS (0));
3348 if (mem == 0)
3349 return 0;
3351 return memset (mem, 0, sz);
3354 sz = bytes;
3356 MAYBE_INIT_TCACHE ();
3358 arena_get (av, sz);
3359 if (av)
3361 /* Check if we hand out the top chunk, in which case there may be no
3362 need to clear. */
3363 #if MORECORE_CLEARS
3364 oldtop = top (av);
3365 oldtopsize = chunksize (top (av));
3366 # if MORECORE_CLEARS < 2
3367 /* Only newly allocated memory is guaranteed to be cleared. */
3368 if (av == &main_arena &&
3369 oldtopsize < mp_.sbrk_base + av->max_system_mem - (char *) oldtop)
3370 oldtopsize = (mp_.sbrk_base + av->max_system_mem - (char *) oldtop);
3371 # endif
3372 if (av != &main_arena)
3374 heap_info *heap = heap_for_ptr (oldtop);
3375 if (oldtopsize < (char *) heap + heap->mprotect_size - (char *) oldtop)
3376 oldtopsize = (char *) heap + heap->mprotect_size - (char *) oldtop;
3378 #endif
3380 else
3382 /* No usable arenas. */
3383 oldtop = 0;
3384 oldtopsize = 0;
3386 mem = _int_malloc (av, sz);
3389 assert (!mem || chunk_is_mmapped (mem2chunk (mem)) ||
3390 av == arena_for_chunk (mem2chunk (mem)));
3392 if (mem == 0 && av != NULL)
3394 LIBC_PROBE (memory_calloc_retry, 1, sz);
3395 av = arena_get_retry (av, sz);
3396 mem = _int_malloc (av, sz);
3399 if (av != NULL)
3400 __libc_lock_unlock (av->mutex);
3402 /* Allocation failed even after a retry. */
3403 if (mem == 0)
3404 return 0;
3406 p = mem2chunk (mem);
3408 /* Two optional cases in which clearing not necessary */
3409 if (chunk_is_mmapped (p))
3411 if (__builtin_expect (perturb_byte, 0))
3412 return memset (mem, 0, sz);
3414 return mem;
3417 csz = chunksize (p);
3419 #if MORECORE_CLEARS
3420 if (perturb_byte == 0 && (p == oldtop && csz > oldtopsize))
3422 /* clear only the bytes from non-freshly-sbrked memory */
3423 csz = oldtopsize;
3425 #endif
3427 /* Unroll clear of <= 36 bytes (72 if 8byte sizes). We know that
3428 contents have an odd number of INTERNAL_SIZE_T-sized words;
3429 minimally 3. */
3430 d = (INTERNAL_SIZE_T *) mem;
3431 clearsize = csz - SIZE_SZ;
3432 nclears = clearsize / sizeof (INTERNAL_SIZE_T);
3433 assert (nclears >= 3);
3435 if (nclears > 9)
3436 return memset (d, 0, clearsize);
3438 else
3440 *(d + 0) = 0;
3441 *(d + 1) = 0;
3442 *(d + 2) = 0;
3443 if (nclears > 4)
3445 *(d + 3) = 0;
3446 *(d + 4) = 0;
3447 if (nclears > 6)
3449 *(d + 5) = 0;
3450 *(d + 6) = 0;
3451 if (nclears > 8)
3453 *(d + 7) = 0;
3454 *(d + 8) = 0;
3460 return mem;
3464 ------------------------------ malloc ------------------------------
3467 static void *
3468 _int_malloc (mstate av, size_t bytes)
3470 INTERNAL_SIZE_T nb; /* normalized request size */
3471 unsigned int idx; /* associated bin index */
3472 mbinptr bin; /* associated bin */
3474 mchunkptr victim; /* inspected/selected chunk */
3475 INTERNAL_SIZE_T size; /* its size */
3476 int victim_index; /* its bin index */
3478 mchunkptr remainder; /* remainder from a split */
3479 unsigned long remainder_size; /* its size */
3481 unsigned int block; /* bit map traverser */
3482 unsigned int bit; /* bit map traverser */
3483 unsigned int map; /* current word of binmap */
3485 mchunkptr fwd; /* misc temp for linking */
3486 mchunkptr bck; /* misc temp for linking */
3488 #if USE_TCACHE
3489 size_t tcache_unsorted_count; /* count of unsorted chunks processed */
3490 #endif
3493 Convert request size to internal form by adding SIZE_SZ bytes
3494 overhead plus possibly more to obtain necessary alignment and/or
3495 to obtain a size of at least MINSIZE, the smallest allocatable
3496 size. Also, checked_request2size traps (returning 0) request sizes
3497 that are so large that they wrap around zero when padded and
3498 aligned.
3501 checked_request2size (bytes, nb);
3503 /* There are no usable arenas. Fall back to sysmalloc to get a chunk from
3504 mmap. */
3505 if (__glibc_unlikely (av == NULL))
3507 void *p = sysmalloc (nb, av);
3508 if (p != NULL)
3509 alloc_perturb (p, bytes);
3510 return p;
3514 If the size qualifies as a fastbin, first check corresponding bin.
3515 This code is safe to execute even if av is not yet initialized, so we
3516 can try it without checking, which saves some time on this fast path.
3519 #define REMOVE_FB(fb, victim, pp) \
3520 do \
3522 victim = pp; \
3523 if (victim == NULL) \
3524 break; \
3526 while ((pp = catomic_compare_and_exchange_val_acq (fb, victim->fd, victim)) \
3527 != victim); \
3529 if ((unsigned long) (nb) <= (unsigned long) (get_max_fast ()))
3531 idx = fastbin_index (nb);
3532 mfastbinptr *fb = &fastbin (av, idx);
3533 mchunkptr pp = *fb;
3534 REMOVE_FB (fb, victim, pp);
3535 if (victim != 0)
3537 if (__builtin_expect (fastbin_index (chunksize (victim)) != idx, 0))
3538 malloc_printerr ("malloc(): memory corruption (fast)");
3539 check_remalloced_chunk (av, victim, nb);
3540 #if USE_TCACHE
3541 /* While we're here, if we see other chunks of the same size,
3542 stash them in the tcache. */
3543 size_t tc_idx = csize2tidx (nb);
3544 if (tcache && tc_idx < mp_.tcache_bins)
3546 mchunkptr tc_victim;
3548 /* While bin not empty and tcache not full, copy chunks over. */
3549 while (tcache->counts[tc_idx] < mp_.tcache_count
3550 && (pp = *fb) != NULL)
3552 REMOVE_FB (fb, tc_victim, pp);
3553 if (tc_victim != 0)
3555 tcache_put (tc_victim, tc_idx);
3559 #endif
3560 void *p = chunk2mem (victim);
3561 alloc_perturb (p, bytes);
3562 return p;
3567 If a small request, check regular bin. Since these "smallbins"
3568 hold one size each, no searching within bins is necessary.
3569 (For a large request, we need to wait until unsorted chunks are
3570 processed to find best fit. But for small ones, fits are exact
3571 anyway, so we can check now, which is faster.)
3574 if (in_smallbin_range (nb))
3576 idx = smallbin_index (nb);
3577 bin = bin_at (av, idx);
3579 if ((victim = last (bin)) != bin)
3581 if (victim == 0) /* initialization check */
3582 malloc_consolidate (av);
3583 else
3585 bck = victim->bk;
3586 if (__glibc_unlikely (bck->fd != victim))
3587 malloc_printerr
3588 ("malloc(): smallbin double linked list corrupted");
3589 set_inuse_bit_at_offset (victim, nb);
3590 bin->bk = bck;
3591 bck->fd = bin;
3593 if (av != &main_arena)
3594 set_non_main_arena (victim);
3595 check_malloced_chunk (av, victim, nb);
3596 #if USE_TCACHE
3597 /* While we're here, if we see other chunks of the same size,
3598 stash them in the tcache. */
3599 size_t tc_idx = csize2tidx (nb);
3600 if (tcache && tc_idx < mp_.tcache_bins)
3602 mchunkptr tc_victim;
3604 /* While bin not empty and tcache not full, copy chunks over. */
3605 while (tcache->counts[tc_idx] < mp_.tcache_count
3606 && (tc_victim = last (bin)) != bin)
3608 if (tc_victim != 0)
3610 bck = tc_victim->bk;
3611 set_inuse_bit_at_offset (tc_victim, nb);
3612 if (av != &main_arena)
3613 set_non_main_arena (tc_victim);
3614 bin->bk = bck;
3615 bck->fd = bin;
3617 tcache_put (tc_victim, tc_idx);
3621 #endif
3622 void *p = chunk2mem (victim);
3623 alloc_perturb (p, bytes);
3624 return p;
3630 If this is a large request, consolidate fastbins before continuing.
3631 While it might look excessive to kill all fastbins before
3632 even seeing if there is space available, this avoids
3633 fragmentation problems normally associated with fastbins.
3634 Also, in practice, programs tend to have runs of either small or
3635 large requests, but less often mixtures, so consolidation is not
3636 invoked all that often in most programs. And the programs that
3637 it is called frequently in otherwise tend to fragment.
3640 else
3642 idx = largebin_index (nb);
3643 if (atomic_load_relaxed (&av->have_fastchunks))
3644 malloc_consolidate (av);
3648 Process recently freed or remaindered chunks, taking one only if
3649 it is exact fit, or, if this a small request, the chunk is remainder from
3650 the most recent non-exact fit. Place other traversed chunks in
3651 bins. Note that this step is the only place in any routine where
3652 chunks are placed in bins.
3654 The outer loop here is needed because we might not realize until
3655 near the end of malloc that we should have consolidated, so must
3656 do so and retry. This happens at most once, and only when we would
3657 otherwise need to expand memory to service a "small" request.
3660 #if USE_TCACHE
3661 INTERNAL_SIZE_T tcache_nb = 0;
3662 size_t tc_idx = csize2tidx (nb);
3663 if (tcache && tc_idx < mp_.tcache_bins)
3664 tcache_nb = nb;
3665 int return_cached = 0;
3667 tcache_unsorted_count = 0;
3668 #endif
3670 for (;; )
3672 int iters = 0;
3673 while ((victim = unsorted_chunks (av)->bk) != unsorted_chunks (av))
3675 bck = victim->bk;
3676 if (__builtin_expect (chunksize_nomask (victim) <= 2 * SIZE_SZ, 0)
3677 || __builtin_expect (chunksize_nomask (victim)
3678 > av->system_mem, 0))
3679 malloc_printerr ("malloc(): memory corruption");
3680 size = chunksize (victim);
3683 If a small request, try to use last remainder if it is the
3684 only chunk in unsorted bin. This helps promote locality for
3685 runs of consecutive small requests. This is the only
3686 exception to best-fit, and applies only when there is
3687 no exact fit for a small chunk.
3690 if (in_smallbin_range (nb) &&
3691 bck == unsorted_chunks (av) &&
3692 victim == av->last_remainder &&
3693 (unsigned long) (size) > (unsigned long) (nb + MINSIZE))
3695 /* split and reattach remainder */
3696 remainder_size = size - nb;
3697 remainder = chunk_at_offset (victim, nb);
3698 unsorted_chunks (av)->bk = unsorted_chunks (av)->fd = remainder;
3699 av->last_remainder = remainder;
3700 remainder->bk = remainder->fd = unsorted_chunks (av);
3701 if (!in_smallbin_range (remainder_size))
3703 remainder->fd_nextsize = NULL;
3704 remainder->bk_nextsize = NULL;
3707 set_head (victim, nb | PREV_INUSE |
3708 (av != &main_arena ? NON_MAIN_ARENA : 0));
3709 set_head (remainder, remainder_size | PREV_INUSE);
3710 set_foot (remainder, remainder_size);
3712 check_malloced_chunk (av, victim, nb);
3713 void *p = chunk2mem (victim);
3714 alloc_perturb (p, bytes);
3715 return p;
3718 /* remove from unsorted list */
3719 unsorted_chunks (av)->bk = bck;
3720 bck->fd = unsorted_chunks (av);
3722 /* Take now instead of binning if exact fit */
3724 if (size == nb)
3726 set_inuse_bit_at_offset (victim, size);
3727 if (av != &main_arena)
3728 set_non_main_arena (victim);
3729 #if USE_TCACHE
3730 /* Fill cache first, return to user only if cache fills.
3731 We may return one of these chunks later. */
3732 if (tcache_nb
3733 && tcache->counts[tc_idx] < mp_.tcache_count)
3735 tcache_put (victim, tc_idx);
3736 return_cached = 1;
3737 continue;
3739 else
3741 #endif
3742 check_malloced_chunk (av, victim, nb);
3743 void *p = chunk2mem (victim);
3744 alloc_perturb (p, bytes);
3745 return p;
3746 #if USE_TCACHE
3748 #endif
3751 /* place chunk in bin */
3753 if (in_smallbin_range (size))
3755 victim_index = smallbin_index (size);
3756 bck = bin_at (av, victim_index);
3757 fwd = bck->fd;
3759 else
3761 victim_index = largebin_index (size);
3762 bck = bin_at (av, victim_index);
3763 fwd = bck->fd;
3765 /* maintain large bins in sorted order */
3766 if (fwd != bck)
3768 /* Or with inuse bit to speed comparisons */
3769 size |= PREV_INUSE;
3770 /* if smaller than smallest, bypass loop below */
3771 assert (chunk_main_arena (bck->bk));
3772 if ((unsigned long) (size)
3773 < (unsigned long) chunksize_nomask (bck->bk))
3775 fwd = bck;
3776 bck = bck->bk;
3778 victim->fd_nextsize = fwd->fd;
3779 victim->bk_nextsize = fwd->fd->bk_nextsize;
3780 fwd->fd->bk_nextsize = victim->bk_nextsize->fd_nextsize = victim;
3782 else
3784 assert (chunk_main_arena (fwd));
3785 while ((unsigned long) size < chunksize_nomask (fwd))
3787 fwd = fwd->fd_nextsize;
3788 assert (chunk_main_arena (fwd));
3791 if ((unsigned long) size
3792 == (unsigned long) chunksize_nomask (fwd))
3793 /* Always insert in the second position. */
3794 fwd = fwd->fd;
3795 else
3797 victim->fd_nextsize = fwd;
3798 victim->bk_nextsize = fwd->bk_nextsize;
3799 fwd->bk_nextsize = victim;
3800 victim->bk_nextsize->fd_nextsize = victim;
3802 bck = fwd->bk;
3805 else
3806 victim->fd_nextsize = victim->bk_nextsize = victim;
3809 mark_bin (av, victim_index);
3810 victim->bk = bck;
3811 victim->fd = fwd;
3812 fwd->bk = victim;
3813 bck->fd = victim;
3815 #if USE_TCACHE
3816 /* If we've processed as many chunks as we're allowed while
3817 filling the cache, return one of the cached ones. */
3818 ++tcache_unsorted_count;
3819 if (return_cached
3820 && mp_.tcache_unsorted_limit > 0
3821 && tcache_unsorted_count > mp_.tcache_unsorted_limit)
3823 return tcache_get (tc_idx);
3825 #endif
3827 #define MAX_ITERS 10000
3828 if (++iters >= MAX_ITERS)
3829 break;
3832 #if USE_TCACHE
3833 /* If all the small chunks we found ended up cached, return one now. */
3834 if (return_cached)
3836 return tcache_get (tc_idx);
3838 #endif
3841 If a large request, scan through the chunks of current bin in
3842 sorted order to find smallest that fits. Use the skip list for this.
3845 if (!in_smallbin_range (nb))
3847 bin = bin_at (av, idx);
3849 /* skip scan if empty or largest chunk is too small */
3850 if ((victim = first (bin)) != bin
3851 && (unsigned long) chunksize_nomask (victim)
3852 >= (unsigned long) (nb))
3854 victim = victim->bk_nextsize;
3855 while (((unsigned long) (size = chunksize (victim)) <
3856 (unsigned long) (nb)))
3857 victim = victim->bk_nextsize;
3859 /* Avoid removing the first entry for a size so that the skip
3860 list does not have to be rerouted. */
3861 if (victim != last (bin)
3862 && chunksize_nomask (victim)
3863 == chunksize_nomask (victim->fd))
3864 victim = victim->fd;
3866 remainder_size = size - nb;
3867 unlink (av, victim, bck, fwd);
3869 /* Exhaust */
3870 if (remainder_size < MINSIZE)
3872 set_inuse_bit_at_offset (victim, size);
3873 if (av != &main_arena)
3874 set_non_main_arena (victim);
3876 /* Split */
3877 else
3879 remainder = chunk_at_offset (victim, nb);
3880 /* We cannot assume the unsorted list is empty and therefore
3881 have to perform a complete insert here. */
3882 bck = unsorted_chunks (av);
3883 fwd = bck->fd;
3884 if (__glibc_unlikely (fwd->bk != bck))
3885 malloc_printerr ("malloc(): corrupted unsorted chunks");
3886 remainder->bk = bck;
3887 remainder->fd = fwd;
3888 bck->fd = remainder;
3889 fwd->bk = remainder;
3890 if (!in_smallbin_range (remainder_size))
3892 remainder->fd_nextsize = NULL;
3893 remainder->bk_nextsize = NULL;
3895 set_head (victim, nb | PREV_INUSE |
3896 (av != &main_arena ? NON_MAIN_ARENA : 0));
3897 set_head (remainder, remainder_size | PREV_INUSE);
3898 set_foot (remainder, remainder_size);
3900 check_malloced_chunk (av, victim, nb);
3901 void *p = chunk2mem (victim);
3902 alloc_perturb (p, bytes);
3903 return p;
3908 Search for a chunk by scanning bins, starting with next largest
3909 bin. This search is strictly by best-fit; i.e., the smallest
3910 (with ties going to approximately the least recently used) chunk
3911 that fits is selected.
3913 The bitmap avoids needing to check that most blocks are nonempty.
3914 The particular case of skipping all bins during warm-up phases
3915 when no chunks have been returned yet is faster than it might look.
3918 ++idx;
3919 bin = bin_at (av, idx);
3920 block = idx2block (idx);
3921 map = av->binmap[block];
3922 bit = idx2bit (idx);
3924 for (;; )
3926 /* Skip rest of block if there are no more set bits in this block. */
3927 if (bit > map || bit == 0)
3931 if (++block >= BINMAPSIZE) /* out of bins */
3932 goto use_top;
3934 while ((map = av->binmap[block]) == 0);
3936 bin = bin_at (av, (block << BINMAPSHIFT));
3937 bit = 1;
3940 /* Advance to bin with set bit. There must be one. */
3941 while ((bit & map) == 0)
3943 bin = next_bin (bin);
3944 bit <<= 1;
3945 assert (bit != 0);
3948 /* Inspect the bin. It is likely to be non-empty */
3949 victim = last (bin);
3951 /* If a false alarm (empty bin), clear the bit. */
3952 if (victim == bin)
3954 av->binmap[block] = map &= ~bit; /* Write through */
3955 bin = next_bin (bin);
3956 bit <<= 1;
3959 else
3961 size = chunksize (victim);
3963 /* We know the first chunk in this bin is big enough to use. */
3964 assert ((unsigned long) (size) >= (unsigned long) (nb));
3966 remainder_size = size - nb;
3968 /* unlink */
3969 unlink (av, victim, bck, fwd);
3971 /* Exhaust */
3972 if (remainder_size < MINSIZE)
3974 set_inuse_bit_at_offset (victim, size);
3975 if (av != &main_arena)
3976 set_non_main_arena (victim);
3979 /* Split */
3980 else
3982 remainder = chunk_at_offset (victim, nb);
3984 /* We cannot assume the unsorted list is empty and therefore
3985 have to perform a complete insert here. */
3986 bck = unsorted_chunks (av);
3987 fwd = bck->fd;
3988 if (__glibc_unlikely (fwd->bk != bck))
3989 malloc_printerr ("malloc(): corrupted unsorted chunks 2");
3990 remainder->bk = bck;
3991 remainder->fd = fwd;
3992 bck->fd = remainder;
3993 fwd->bk = remainder;
3995 /* advertise as last remainder */
3996 if (in_smallbin_range (nb))
3997 av->last_remainder = remainder;
3998 if (!in_smallbin_range (remainder_size))
4000 remainder->fd_nextsize = NULL;
4001 remainder->bk_nextsize = NULL;
4003 set_head (victim, nb | PREV_INUSE |
4004 (av != &main_arena ? NON_MAIN_ARENA : 0));
4005 set_head (remainder, remainder_size | PREV_INUSE);
4006 set_foot (remainder, remainder_size);
4008 check_malloced_chunk (av, victim, nb);
4009 void *p = chunk2mem (victim);
4010 alloc_perturb (p, bytes);
4011 return p;
4015 use_top:
4017 If large enough, split off the chunk bordering the end of memory
4018 (held in av->top). Note that this is in accord with the best-fit
4019 search rule. In effect, av->top is treated as larger (and thus
4020 less well fitting) than any other available chunk since it can
4021 be extended to be as large as necessary (up to system
4022 limitations).
4024 We require that av->top always exists (i.e., has size >=
4025 MINSIZE) after initialization, so if it would otherwise be
4026 exhausted by current request, it is replenished. (The main
4027 reason for ensuring it exists is that we may need MINSIZE space
4028 to put in fenceposts in sysmalloc.)
4031 victim = av->top;
4032 size = chunksize (victim);
4034 if ((unsigned long) (size) >= (unsigned long) (nb + MINSIZE))
4036 remainder_size = size - nb;
4037 remainder = chunk_at_offset (victim, nb);
4038 av->top = remainder;
4039 set_head (victim, nb | PREV_INUSE |
4040 (av != &main_arena ? NON_MAIN_ARENA : 0));
4041 set_head (remainder, remainder_size | PREV_INUSE);
4043 check_malloced_chunk (av, victim, nb);
4044 void *p = chunk2mem (victim);
4045 alloc_perturb (p, bytes);
4046 return p;
4049 /* When we are using atomic ops to free fast chunks we can get
4050 here for all block sizes. */
4051 else if (atomic_load_relaxed (&av->have_fastchunks))
4053 malloc_consolidate (av);
4054 /* restore original bin index */
4055 if (in_smallbin_range (nb))
4056 idx = smallbin_index (nb);
4057 else
4058 idx = largebin_index (nb);
4062 Otherwise, relay to handle system-dependent cases
4064 else
4066 void *p = sysmalloc (nb, av);
4067 if (p != NULL)
4068 alloc_perturb (p, bytes);
4069 return p;
4075 ------------------------------ free ------------------------------
4078 static void
4079 _int_free (mstate av, mchunkptr p, int have_lock)
4081 INTERNAL_SIZE_T size; /* its size */
4082 mfastbinptr *fb; /* associated fastbin */
4083 mchunkptr nextchunk; /* next contiguous chunk */
4084 INTERNAL_SIZE_T nextsize; /* its size */
4085 int nextinuse; /* true if nextchunk is used */
4086 INTERNAL_SIZE_T prevsize; /* size of previous contiguous chunk */
4087 mchunkptr bck; /* misc temp for linking */
4088 mchunkptr fwd; /* misc temp for linking */
4090 size = chunksize (p);
4092 /* Little security check which won't hurt performance: the
4093 allocator never wrapps around at the end of the address space.
4094 Therefore we can exclude some size values which might appear
4095 here by accident or by "design" from some intruder. */
4096 if (__builtin_expect ((uintptr_t) p > (uintptr_t) -size, 0)
4097 || __builtin_expect (misaligned_chunk (p), 0))
4098 malloc_printerr ("free(): invalid pointer");
4099 /* We know that each chunk is at least MINSIZE bytes in size or a
4100 multiple of MALLOC_ALIGNMENT. */
4101 if (__glibc_unlikely (size < MINSIZE || !aligned_OK (size)))
4102 malloc_printerr ("free(): invalid size");
4104 check_inuse_chunk(av, p);
4106 #if USE_TCACHE
4108 size_t tc_idx = csize2tidx (size);
4110 if (tcache
4111 && tc_idx < mp_.tcache_bins
4112 && tcache->counts[tc_idx] < mp_.tcache_count)
4114 tcache_put (p, tc_idx);
4115 return;
4118 #endif
4121 If eligible, place chunk on a fastbin so it can be found
4122 and used quickly in malloc.
4125 if ((unsigned long)(size) <= (unsigned long)(get_max_fast ())
4127 #if TRIM_FASTBINS
4129 If TRIM_FASTBINS set, don't place chunks
4130 bordering top into fastbins
4132 && (chunk_at_offset(p, size) != av->top)
4133 #endif
4136 if (__builtin_expect (chunksize_nomask (chunk_at_offset (p, size))
4137 <= 2 * SIZE_SZ, 0)
4138 || __builtin_expect (chunksize (chunk_at_offset (p, size))
4139 >= av->system_mem, 0))
4141 /* We might not have a lock at this point and concurrent modifications
4142 of system_mem might have let to a false positive. Redo the test
4143 after getting the lock. */
4144 if (!have_lock
4145 || ({ __libc_lock_lock (av->mutex);
4146 chunksize_nomask (chunk_at_offset (p, size)) <= 2 * SIZE_SZ
4147 || chunksize (chunk_at_offset (p, size)) >= av->system_mem;
4149 malloc_printerr ("free(): invalid next size (fast)");
4150 if (! have_lock)
4151 __libc_lock_unlock (av->mutex);
4154 free_perturb (chunk2mem(p), size - 2 * SIZE_SZ);
4156 atomic_store_relaxed (&av->have_fastchunks, true);
4157 unsigned int idx = fastbin_index(size);
4158 fb = &fastbin (av, idx);
4160 /* Atomically link P to its fastbin: P->FD = *FB; *FB = P; */
4161 mchunkptr old = *fb, old2;
4162 unsigned int old_idx = ~0u;
4165 /* Check that the top of the bin is not the record we are going to add
4166 (i.e., double free). */
4167 if (__builtin_expect (old == p, 0))
4168 malloc_printerr ("double free or corruption (fasttop)");
4169 /* Check that size of fastbin chunk at the top is the same as
4170 size of the chunk that we are adding. We can dereference OLD
4171 only if we have the lock, otherwise it might have already been
4172 deallocated. See use of OLD_IDX below for the actual check. */
4173 if (have_lock && old != NULL)
4174 old_idx = fastbin_index(chunksize(old));
4175 p->fd = old2 = old;
4177 while ((old = catomic_compare_and_exchange_val_rel (fb, p, old2)) != old2);
4179 if (have_lock && old != NULL && __builtin_expect (old_idx != idx, 0))
4180 malloc_printerr ("invalid fastbin entry (free)");
4184 Consolidate other non-mmapped chunks as they arrive.
4187 else if (!chunk_is_mmapped(p)) {
4188 if (!have_lock)
4189 __libc_lock_lock (av->mutex);
4191 nextchunk = chunk_at_offset(p, size);
4193 /* Lightweight tests: check whether the block is already the
4194 top block. */
4195 if (__glibc_unlikely (p == av->top))
4196 malloc_printerr ("double free or corruption (top)");
4197 /* Or whether the next chunk is beyond the boundaries of the arena. */
4198 if (__builtin_expect (contiguous (av)
4199 && (char *) nextchunk
4200 >= ((char *) av->top + chunksize(av->top)), 0))
4201 malloc_printerr ("double free or corruption (out)");
4202 /* Or whether the block is actually not marked used. */
4203 if (__glibc_unlikely (!prev_inuse(nextchunk)))
4204 malloc_printerr ("double free or corruption (!prev)");
4206 nextsize = chunksize(nextchunk);
4207 if (__builtin_expect (chunksize_nomask (nextchunk) <= 2 * SIZE_SZ, 0)
4208 || __builtin_expect (nextsize >= av->system_mem, 0))
4209 malloc_printerr ("free(): invalid next size (normal)");
4211 free_perturb (chunk2mem(p), size - 2 * SIZE_SZ);
4213 /* consolidate backward */
4214 if (!prev_inuse(p)) {
4215 prevsize = prev_size (p);
4216 size += prevsize;
4217 p = chunk_at_offset(p, -((long) prevsize));
4218 unlink(av, p, bck, fwd);
4221 if (nextchunk != av->top) {
4222 /* get and clear inuse bit */
4223 nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
4225 /* consolidate forward */
4226 if (!nextinuse) {
4227 unlink(av, nextchunk, bck, fwd);
4228 size += nextsize;
4229 } else
4230 clear_inuse_bit_at_offset(nextchunk, 0);
4233 Place the chunk in unsorted chunk list. Chunks are
4234 not placed into regular bins until after they have
4235 been given one chance to be used in malloc.
4238 bck = unsorted_chunks(av);
4239 fwd = bck->fd;
4240 if (__glibc_unlikely (fwd->bk != bck))
4241 malloc_printerr ("free(): corrupted unsorted chunks");
4242 p->fd = fwd;
4243 p->bk = bck;
4244 if (!in_smallbin_range(size))
4246 p->fd_nextsize = NULL;
4247 p->bk_nextsize = NULL;
4249 bck->fd = p;
4250 fwd->bk = p;
4252 set_head(p, size | PREV_INUSE);
4253 set_foot(p, size);
4255 check_free_chunk(av, p);
4259 If the chunk borders the current high end of memory,
4260 consolidate into top
4263 else {
4264 size += nextsize;
4265 set_head(p, size | PREV_INUSE);
4266 av->top = p;
4267 check_chunk(av, p);
4271 If freeing a large space, consolidate possibly-surrounding
4272 chunks. Then, if the total unused topmost memory exceeds trim
4273 threshold, ask malloc_trim to reduce top.
4275 Unless max_fast is 0, we don't know if there are fastbins
4276 bordering top, so we cannot tell for sure whether threshold
4277 has been reached unless fastbins are consolidated. But we
4278 don't want to consolidate on each free. As a compromise,
4279 consolidation is performed if FASTBIN_CONSOLIDATION_THRESHOLD
4280 is reached.
4283 if ((unsigned long)(size) >= FASTBIN_CONSOLIDATION_THRESHOLD) {
4284 if (atomic_load_relaxed (&av->have_fastchunks))
4285 malloc_consolidate(av);
4287 if (av == &main_arena) {
4288 #ifndef MORECORE_CANNOT_TRIM
4289 if ((unsigned long)(chunksize(av->top)) >=
4290 (unsigned long)(mp_.trim_threshold))
4291 systrim(mp_.top_pad, av);
4292 #endif
4293 } else {
4294 /* Always try heap_trim(), even if the top chunk is not
4295 large, because the corresponding heap might go away. */
4296 heap_info *heap = heap_for_ptr(top(av));
4298 assert(heap->ar_ptr == av);
4299 heap_trim(heap, mp_.top_pad);
4303 if (!have_lock)
4304 __libc_lock_unlock (av->mutex);
4307 If the chunk was allocated via mmap, release via munmap().
4310 else {
4311 munmap_chunk (p);
4316 ------------------------- malloc_consolidate -------------------------
4318 malloc_consolidate is a specialized version of free() that tears
4319 down chunks held in fastbins. Free itself cannot be used for this
4320 purpose since, among other things, it might place chunks back onto
4321 fastbins. So, instead, we need to use a minor variant of the same
4322 code.
4324 Also, because this routine needs to be called the first time through
4325 malloc anyway, it turns out to be the perfect place to trigger
4326 initialization code.
4329 static void malloc_consolidate(mstate av)
4331 mfastbinptr* fb; /* current fastbin being consolidated */
4332 mfastbinptr* maxfb; /* last fastbin (for loop control) */
4333 mchunkptr p; /* current chunk being consolidated */
4334 mchunkptr nextp; /* next chunk to consolidate */
4335 mchunkptr unsorted_bin; /* bin header */
4336 mchunkptr first_unsorted; /* chunk to link to */
4338 /* These have same use as in free() */
4339 mchunkptr nextchunk;
4340 INTERNAL_SIZE_T size;
4341 INTERNAL_SIZE_T nextsize;
4342 INTERNAL_SIZE_T prevsize;
4343 int nextinuse;
4344 mchunkptr bck;
4345 mchunkptr fwd;
4348 If max_fast is 0, we know that av hasn't
4349 yet been initialized, in which case do so below
4352 if (get_max_fast () != 0) {
4353 atomic_store_relaxed (&av->have_fastchunks, false);
4355 unsorted_bin = unsorted_chunks(av);
4358 Remove each chunk from fast bin and consolidate it, placing it
4359 then in unsorted bin. Among other reasons for doing this,
4360 placing in unsorted bin avoids needing to calculate actual bins
4361 until malloc is sure that chunks aren't immediately going to be
4362 reused anyway.
4365 maxfb = &fastbin (av, NFASTBINS - 1);
4366 fb = &fastbin (av, 0);
4367 do {
4368 p = atomic_exchange_acq (fb, NULL);
4369 if (p != 0) {
4370 do {
4371 check_inuse_chunk(av, p);
4372 nextp = p->fd;
4374 /* Slightly streamlined version of consolidation code in free() */
4375 size = chunksize (p);
4376 nextchunk = chunk_at_offset(p, size);
4377 nextsize = chunksize(nextchunk);
4379 if (!prev_inuse(p)) {
4380 prevsize = prev_size (p);
4381 size += prevsize;
4382 p = chunk_at_offset(p, -((long) prevsize));
4383 unlink(av, p, bck, fwd);
4386 if (nextchunk != av->top) {
4387 nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
4389 if (!nextinuse) {
4390 size += nextsize;
4391 unlink(av, nextchunk, bck, fwd);
4392 } else
4393 clear_inuse_bit_at_offset(nextchunk, 0);
4395 first_unsorted = unsorted_bin->fd;
4396 unsorted_bin->fd = p;
4397 first_unsorted->bk = p;
4399 if (!in_smallbin_range (size)) {
4400 p->fd_nextsize = NULL;
4401 p->bk_nextsize = NULL;
4404 set_head(p, size | PREV_INUSE);
4405 p->bk = unsorted_bin;
4406 p->fd = first_unsorted;
4407 set_foot(p, size);
4410 else {
4411 size += nextsize;
4412 set_head(p, size | PREV_INUSE);
4413 av->top = p;
4416 } while ( (p = nextp) != 0);
4419 } while (fb++ != maxfb);
4421 else {
4422 malloc_init_state(av);
4423 check_malloc_state(av);
4428 ------------------------------ realloc ------------------------------
4431 void*
4432 _int_realloc(mstate av, mchunkptr oldp, INTERNAL_SIZE_T oldsize,
4433 INTERNAL_SIZE_T nb)
4435 mchunkptr newp; /* chunk to return */
4436 INTERNAL_SIZE_T newsize; /* its size */
4437 void* newmem; /* corresponding user mem */
4439 mchunkptr next; /* next contiguous chunk after oldp */
4441 mchunkptr remainder; /* extra space at end of newp */
4442 unsigned long remainder_size; /* its size */
4444 mchunkptr bck; /* misc temp for linking */
4445 mchunkptr fwd; /* misc temp for linking */
4447 unsigned long copysize; /* bytes to copy */
4448 unsigned int ncopies; /* INTERNAL_SIZE_T words to copy */
4449 INTERNAL_SIZE_T* s; /* copy source */
4450 INTERNAL_SIZE_T* d; /* copy destination */
4452 /* oldmem size */
4453 if (__builtin_expect (chunksize_nomask (oldp) <= 2 * SIZE_SZ, 0)
4454 || __builtin_expect (oldsize >= av->system_mem, 0))
4455 malloc_printerr ("realloc(): invalid old size");
4457 check_inuse_chunk (av, oldp);
4459 /* All callers already filter out mmap'ed chunks. */
4460 assert (!chunk_is_mmapped (oldp));
4462 next = chunk_at_offset (oldp, oldsize);
4463 INTERNAL_SIZE_T nextsize = chunksize (next);
4464 if (__builtin_expect (chunksize_nomask (next) <= 2 * SIZE_SZ, 0)
4465 || __builtin_expect (nextsize >= av->system_mem, 0))
4466 malloc_printerr ("realloc(): invalid next size");
4468 if ((unsigned long) (oldsize) >= (unsigned long) (nb))
4470 /* already big enough; split below */
4471 newp = oldp;
4472 newsize = oldsize;
4475 else
4477 /* Try to expand forward into top */
4478 if (next == av->top &&
4479 (unsigned long) (newsize = oldsize + nextsize) >=
4480 (unsigned long) (nb + MINSIZE))
4482 set_head_size (oldp, nb | (av != &main_arena ? NON_MAIN_ARENA : 0));
4483 av->top = chunk_at_offset (oldp, nb);
4484 set_head (av->top, (newsize - nb) | PREV_INUSE);
4485 check_inuse_chunk (av, oldp);
4486 return chunk2mem (oldp);
4489 /* Try to expand forward into next chunk; split off remainder below */
4490 else if (next != av->top &&
4491 !inuse (next) &&
4492 (unsigned long) (newsize = oldsize + nextsize) >=
4493 (unsigned long) (nb))
4495 newp = oldp;
4496 unlink (av, next, bck, fwd);
4499 /* allocate, copy, free */
4500 else
4502 newmem = _int_malloc (av, nb - MALLOC_ALIGN_MASK);
4503 if (newmem == 0)
4504 return 0; /* propagate failure */
4506 newp = mem2chunk (newmem);
4507 newsize = chunksize (newp);
4510 Avoid copy if newp is next chunk after oldp.
4512 if (newp == next)
4514 newsize += oldsize;
4515 newp = oldp;
4517 else
4520 Unroll copy of <= 36 bytes (72 if 8byte sizes)
4521 We know that contents have an odd number of
4522 INTERNAL_SIZE_T-sized words; minimally 3.
4525 copysize = oldsize - SIZE_SZ;
4526 s = (INTERNAL_SIZE_T *) (chunk2mem (oldp));
4527 d = (INTERNAL_SIZE_T *) (newmem);
4528 ncopies = copysize / sizeof (INTERNAL_SIZE_T);
4529 assert (ncopies >= 3);
4531 if (ncopies > 9)
4532 memcpy (d, s, copysize);
4534 else
4536 *(d + 0) = *(s + 0);
4537 *(d + 1) = *(s + 1);
4538 *(d + 2) = *(s + 2);
4539 if (ncopies > 4)
4541 *(d + 3) = *(s + 3);
4542 *(d + 4) = *(s + 4);
4543 if (ncopies > 6)
4545 *(d + 5) = *(s + 5);
4546 *(d + 6) = *(s + 6);
4547 if (ncopies > 8)
4549 *(d + 7) = *(s + 7);
4550 *(d + 8) = *(s + 8);
4556 _int_free (av, oldp, 1);
4557 check_inuse_chunk (av, newp);
4558 return chunk2mem (newp);
4563 /* If possible, free extra space in old or extended chunk */
4565 assert ((unsigned long) (newsize) >= (unsigned long) (nb));
4567 remainder_size = newsize - nb;
4569 if (remainder_size < MINSIZE) /* not enough extra to split off */
4571 set_head_size (newp, newsize | (av != &main_arena ? NON_MAIN_ARENA : 0));
4572 set_inuse_bit_at_offset (newp, newsize);
4574 else /* split remainder */
4576 remainder = chunk_at_offset (newp, nb);
4577 set_head_size (newp, nb | (av != &main_arena ? NON_MAIN_ARENA : 0));
4578 set_head (remainder, remainder_size | PREV_INUSE |
4579 (av != &main_arena ? NON_MAIN_ARENA : 0));
4580 /* Mark remainder as inuse so free() won't complain */
4581 set_inuse_bit_at_offset (remainder, remainder_size);
4582 _int_free (av, remainder, 1);
4585 check_inuse_chunk (av, newp);
4586 return chunk2mem (newp);
4590 ------------------------------ memalign ------------------------------
4593 static void *
4594 _int_memalign (mstate av, size_t alignment, size_t bytes)
4596 INTERNAL_SIZE_T nb; /* padded request size */
4597 char *m; /* memory returned by malloc call */
4598 mchunkptr p; /* corresponding chunk */
4599 char *brk; /* alignment point within p */
4600 mchunkptr newp; /* chunk to return */
4601 INTERNAL_SIZE_T newsize; /* its size */
4602 INTERNAL_SIZE_T leadsize; /* leading space before alignment point */
4603 mchunkptr remainder; /* spare room at end to split off */
4604 unsigned long remainder_size; /* its size */
4605 INTERNAL_SIZE_T size;
4609 checked_request2size (bytes, nb);
4612 Strategy: find a spot within that chunk that meets the alignment
4613 request, and then possibly free the leading and trailing space.
4617 /* Call malloc with worst case padding to hit alignment. */
4619 m = (char *) (_int_malloc (av, nb + alignment + MINSIZE));
4621 if (m == 0)
4622 return 0; /* propagate failure */
4624 p = mem2chunk (m);
4626 if ((((unsigned long) (m)) % alignment) != 0) /* misaligned */
4628 { /*
4629 Find an aligned spot inside chunk. Since we need to give back
4630 leading space in a chunk of at least MINSIZE, if the first
4631 calculation places us at a spot with less than MINSIZE leader,
4632 we can move to the next aligned spot -- we've allocated enough
4633 total room so that this is always possible.
4635 brk = (char *) mem2chunk (((unsigned long) (m + alignment - 1)) &
4636 - ((signed long) alignment));
4637 if ((unsigned long) (brk - (char *) (p)) < MINSIZE)
4638 brk += alignment;
4640 newp = (mchunkptr) brk;
4641 leadsize = brk - (char *) (p);
4642 newsize = chunksize (p) - leadsize;
4644 /* For mmapped chunks, just adjust offset */
4645 if (chunk_is_mmapped (p))
4647 set_prev_size (newp, prev_size (p) + leadsize);
4648 set_head (newp, newsize | IS_MMAPPED);
4649 return chunk2mem (newp);
4652 /* Otherwise, give back leader, use the rest */
4653 set_head (newp, newsize | PREV_INUSE |
4654 (av != &main_arena ? NON_MAIN_ARENA : 0));
4655 set_inuse_bit_at_offset (newp, newsize);
4656 set_head_size (p, leadsize | (av != &main_arena ? NON_MAIN_ARENA : 0));
4657 _int_free (av, p, 1);
4658 p = newp;
4660 assert (newsize >= nb &&
4661 (((unsigned long) (chunk2mem (p))) % alignment) == 0);
4664 /* Also give back spare room at the end */
4665 if (!chunk_is_mmapped (p))
4667 size = chunksize (p);
4668 if ((unsigned long) (size) > (unsigned long) (nb + MINSIZE))
4670 remainder_size = size - nb;
4671 remainder = chunk_at_offset (p, nb);
4672 set_head (remainder, remainder_size | PREV_INUSE |
4673 (av != &main_arena ? NON_MAIN_ARENA : 0));
4674 set_head_size (p, nb);
4675 _int_free (av, remainder, 1);
4679 check_inuse_chunk (av, p);
4680 return chunk2mem (p);
4685 ------------------------------ malloc_trim ------------------------------
4688 static int
4689 mtrim (mstate av, size_t pad)
4691 /* Ensure initialization/consolidation */
4692 malloc_consolidate (av);
4694 const size_t ps = GLRO (dl_pagesize);
4695 int psindex = bin_index (ps);
4696 const size_t psm1 = ps - 1;
4698 int result = 0;
4699 for (int i = 1; i < NBINS; ++i)
4700 if (i == 1 || i >= psindex)
4702 mbinptr bin = bin_at (av, i);
4704 for (mchunkptr p = last (bin); p != bin; p = p->bk)
4706 INTERNAL_SIZE_T size = chunksize (p);
4708 if (size > psm1 + sizeof (struct malloc_chunk))
4710 /* See whether the chunk contains at least one unused page. */
4711 char *paligned_mem = (char *) (((uintptr_t) p
4712 + sizeof (struct malloc_chunk)
4713 + psm1) & ~psm1);
4715 assert ((char *) chunk2mem (p) + 4 * SIZE_SZ <= paligned_mem);
4716 assert ((char *) p + size > paligned_mem);
4718 /* This is the size we could potentially free. */
4719 size -= paligned_mem - (char *) p;
4721 if (size > psm1)
4723 #if MALLOC_DEBUG
4724 /* When debugging we simulate destroying the memory
4725 content. */
4726 memset (paligned_mem, 0x89, size & ~psm1);
4727 #endif
4728 __madvise (paligned_mem, size & ~psm1, MADV_DONTNEED);
4730 result = 1;
4736 #ifndef MORECORE_CANNOT_TRIM
4737 return result | (av == &main_arena ? systrim (pad, av) : 0);
4739 #else
4740 return result;
4741 #endif
4746 __malloc_trim (size_t s)
4748 int result = 0;
4750 if (__malloc_initialized < 0)
4751 ptmalloc_init ();
4753 mstate ar_ptr = &main_arena;
4756 __libc_lock_lock (ar_ptr->mutex);
4757 result |= mtrim (ar_ptr, s);
4758 __libc_lock_unlock (ar_ptr->mutex);
4760 ar_ptr = ar_ptr->next;
4762 while (ar_ptr != &main_arena);
4764 return result;
4769 ------------------------- malloc_usable_size -------------------------
4772 static size_t
4773 musable (void *mem)
4775 mchunkptr p;
4776 if (mem != 0)
4778 p = mem2chunk (mem);
4780 if (__builtin_expect (using_malloc_checking == 1, 0))
4781 return malloc_check_get_size (p);
4783 if (chunk_is_mmapped (p))
4785 if (DUMPED_MAIN_ARENA_CHUNK (p))
4786 return chunksize (p) - SIZE_SZ;
4787 else
4788 return chunksize (p) - 2 * SIZE_SZ;
4790 else if (inuse (p))
4791 return chunksize (p) - SIZE_SZ;
4793 return 0;
4797 size_t
4798 __malloc_usable_size (void *m)
4800 size_t result;
4802 result = musable (m);
4803 return result;
4807 ------------------------------ mallinfo ------------------------------
4808 Accumulate malloc statistics for arena AV into M.
4811 static void
4812 int_mallinfo (mstate av, struct mallinfo *m)
4814 size_t i;
4815 mbinptr b;
4816 mchunkptr p;
4817 INTERNAL_SIZE_T avail;
4818 INTERNAL_SIZE_T fastavail;
4819 int nblocks;
4820 int nfastblocks;
4822 /* Ensure initialization */
4823 if (av->top == 0)
4824 malloc_consolidate (av);
4826 check_malloc_state (av);
4828 /* Account for top */
4829 avail = chunksize (av->top);
4830 nblocks = 1; /* top always exists */
4832 /* traverse fastbins */
4833 nfastblocks = 0;
4834 fastavail = 0;
4836 for (i = 0; i < NFASTBINS; ++i)
4838 for (p = fastbin (av, i); p != 0; p = p->fd)
4840 ++nfastblocks;
4841 fastavail += chunksize (p);
4845 avail += fastavail;
4847 /* traverse regular bins */
4848 for (i = 1; i < NBINS; ++i)
4850 b = bin_at (av, i);
4851 for (p = last (b); p != b; p = p->bk)
4853 ++nblocks;
4854 avail += chunksize (p);
4858 m->smblks += nfastblocks;
4859 m->ordblks += nblocks;
4860 m->fordblks += avail;
4861 m->uordblks += av->system_mem - avail;
4862 m->arena += av->system_mem;
4863 m->fsmblks += fastavail;
4864 if (av == &main_arena)
4866 m->hblks = mp_.n_mmaps;
4867 m->hblkhd = mp_.mmapped_mem;
4868 m->usmblks = 0;
4869 m->keepcost = chunksize (av->top);
4874 struct mallinfo
4875 __libc_mallinfo (void)
4877 struct mallinfo m;
4878 mstate ar_ptr;
4880 if (__malloc_initialized < 0)
4881 ptmalloc_init ();
4883 memset (&m, 0, sizeof (m));
4884 ar_ptr = &main_arena;
4887 __libc_lock_lock (ar_ptr->mutex);
4888 int_mallinfo (ar_ptr, &m);
4889 __libc_lock_unlock (ar_ptr->mutex);
4891 ar_ptr = ar_ptr->next;
4893 while (ar_ptr != &main_arena);
4895 return m;
4899 ------------------------------ malloc_stats ------------------------------
4902 void
4903 __malloc_stats (void)
4905 int i;
4906 mstate ar_ptr;
4907 unsigned int in_use_b = mp_.mmapped_mem, system_b = in_use_b;
4909 if (__malloc_initialized < 0)
4910 ptmalloc_init ();
4911 _IO_flockfile (stderr);
4912 int old_flags2 = ((_IO_FILE *) stderr)->_flags2;
4913 ((_IO_FILE *) stderr)->_flags2 |= _IO_FLAGS2_NOTCANCEL;
4914 for (i = 0, ar_ptr = &main_arena;; i++)
4916 struct mallinfo mi;
4918 memset (&mi, 0, sizeof (mi));
4919 __libc_lock_lock (ar_ptr->mutex);
4920 int_mallinfo (ar_ptr, &mi);
4921 fprintf (stderr, "Arena %d:\n", i);
4922 fprintf (stderr, "system bytes = %10u\n", (unsigned int) mi.arena);
4923 fprintf (stderr, "in use bytes = %10u\n", (unsigned int) mi.uordblks);
4924 #if MALLOC_DEBUG > 1
4925 if (i > 0)
4926 dump_heap (heap_for_ptr (top (ar_ptr)));
4927 #endif
4928 system_b += mi.arena;
4929 in_use_b += mi.uordblks;
4930 __libc_lock_unlock (ar_ptr->mutex);
4931 ar_ptr = ar_ptr->next;
4932 if (ar_ptr == &main_arena)
4933 break;
4935 fprintf (stderr, "Total (incl. mmap):\n");
4936 fprintf (stderr, "system bytes = %10u\n", system_b);
4937 fprintf (stderr, "in use bytes = %10u\n", in_use_b);
4938 fprintf (stderr, "max mmap regions = %10u\n", (unsigned int) mp_.max_n_mmaps);
4939 fprintf (stderr, "max mmap bytes = %10lu\n",
4940 (unsigned long) mp_.max_mmapped_mem);
4941 ((_IO_FILE *) stderr)->_flags2 |= old_flags2;
4942 _IO_funlockfile (stderr);
4947 ------------------------------ mallopt ------------------------------
4949 static inline int
4950 __always_inline
4951 do_set_trim_threshold (size_t value)
4953 LIBC_PROBE (memory_mallopt_trim_threshold, 3, value, mp_.trim_threshold,
4954 mp_.no_dyn_threshold);
4955 mp_.trim_threshold = value;
4956 mp_.no_dyn_threshold = 1;
4957 return 1;
4960 static inline int
4961 __always_inline
4962 do_set_top_pad (size_t value)
4964 LIBC_PROBE (memory_mallopt_top_pad, 3, value, mp_.top_pad,
4965 mp_.no_dyn_threshold);
4966 mp_.top_pad = value;
4967 mp_.no_dyn_threshold = 1;
4968 return 1;
4971 static inline int
4972 __always_inline
4973 do_set_mmap_threshold (size_t value)
4975 /* Forbid setting the threshold too high. */
4976 if (value <= HEAP_MAX_SIZE / 2)
4978 LIBC_PROBE (memory_mallopt_mmap_threshold, 3, value, mp_.mmap_threshold,
4979 mp_.no_dyn_threshold);
4980 mp_.mmap_threshold = value;
4981 mp_.no_dyn_threshold = 1;
4982 return 1;
4984 return 0;
4987 static inline int
4988 __always_inline
4989 do_set_mmaps_max (int32_t value)
4991 LIBC_PROBE (memory_mallopt_mmap_max, 3, value, mp_.n_mmaps_max,
4992 mp_.no_dyn_threshold);
4993 mp_.n_mmaps_max = value;
4994 mp_.no_dyn_threshold = 1;
4995 return 1;
4998 static inline int
4999 __always_inline
5000 do_set_mallopt_check (int32_t value)
5002 return 1;
5005 static inline int
5006 __always_inline
5007 do_set_perturb_byte (int32_t value)
5009 LIBC_PROBE (memory_mallopt_perturb, 2, value, perturb_byte);
5010 perturb_byte = value;
5011 return 1;
5014 static inline int
5015 __always_inline
5016 do_set_arena_test (size_t value)
5018 LIBC_PROBE (memory_mallopt_arena_test, 2, value, mp_.arena_test);
5019 mp_.arena_test = value;
5020 return 1;
5023 static inline int
5024 __always_inline
5025 do_set_arena_max (size_t value)
5027 LIBC_PROBE (memory_mallopt_arena_max, 2, value, mp_.arena_max);
5028 mp_.arena_max = value;
5029 return 1;
5032 #if USE_TCACHE
5033 static inline int
5034 __always_inline
5035 do_set_tcache_max (size_t value)
5037 if (value >= 0 && value <= MAX_TCACHE_SIZE)
5039 LIBC_PROBE (memory_tunable_tcache_max_bytes, 2, value, mp_.tcache_max_bytes);
5040 mp_.tcache_max_bytes = value;
5041 mp_.tcache_bins = csize2tidx (request2size(value)) + 1;
5043 return 1;
5046 static inline int
5047 __always_inline
5048 do_set_tcache_count (size_t value)
5050 LIBC_PROBE (memory_tunable_tcache_count, 2, value, mp_.tcache_count);
5051 mp_.tcache_count = value;
5052 return 1;
5055 static inline int
5056 __always_inline
5057 do_set_tcache_unsorted_limit (size_t value)
5059 LIBC_PROBE (memory_tunable_tcache_unsorted_limit, 2, value, mp_.tcache_unsorted_limit);
5060 mp_.tcache_unsorted_limit = value;
5061 return 1;
5063 #endif
5066 __libc_mallopt (int param_number, int value)
5068 mstate av = &main_arena;
5069 int res = 1;
5071 if (__malloc_initialized < 0)
5072 ptmalloc_init ();
5073 __libc_lock_lock (av->mutex);
5074 /* Ensure initialization/consolidation */
5075 malloc_consolidate (av);
5077 LIBC_PROBE (memory_mallopt, 2, param_number, value);
5079 switch (param_number)
5081 case M_MXFAST:
5082 if (value >= 0 && value <= MAX_FAST_SIZE)
5084 LIBC_PROBE (memory_mallopt_mxfast, 2, value, get_max_fast ());
5085 set_max_fast (value);
5087 else
5088 res = 0;
5089 break;
5091 case M_TRIM_THRESHOLD:
5092 do_set_trim_threshold (value);
5093 break;
5095 case M_TOP_PAD:
5096 do_set_top_pad (value);
5097 break;
5099 case M_MMAP_THRESHOLD:
5100 res = do_set_mmap_threshold (value);
5101 break;
5103 case M_MMAP_MAX:
5104 do_set_mmaps_max (value);
5105 break;
5107 case M_CHECK_ACTION:
5108 do_set_mallopt_check (value);
5109 break;
5111 case M_PERTURB:
5112 do_set_perturb_byte (value);
5113 break;
5115 case M_ARENA_TEST:
5116 if (value > 0)
5117 do_set_arena_test (value);
5118 break;
5120 case M_ARENA_MAX:
5121 if (value > 0)
5122 do_set_arena_max (value);
5123 break;
5125 __libc_lock_unlock (av->mutex);
5126 return res;
5128 libc_hidden_def (__libc_mallopt)
5132 -------------------- Alternative MORECORE functions --------------------
5137 General Requirements for MORECORE.
5139 The MORECORE function must have the following properties:
5141 If MORECORE_CONTIGUOUS is false:
5143 * MORECORE must allocate in multiples of pagesize. It will
5144 only be called with arguments that are multiples of pagesize.
5146 * MORECORE(0) must return an address that is at least
5147 MALLOC_ALIGNMENT aligned. (Page-aligning always suffices.)
5149 else (i.e. If MORECORE_CONTIGUOUS is true):
5151 * Consecutive calls to MORECORE with positive arguments
5152 return increasing addresses, indicating that space has been
5153 contiguously extended.
5155 * MORECORE need not allocate in multiples of pagesize.
5156 Calls to MORECORE need not have args of multiples of pagesize.
5158 * MORECORE need not page-align.
5160 In either case:
5162 * MORECORE may allocate more memory than requested. (Or even less,
5163 but this will generally result in a malloc failure.)
5165 * MORECORE must not allocate memory when given argument zero, but
5166 instead return one past the end address of memory from previous
5167 nonzero call. This malloc does NOT call MORECORE(0)
5168 until at least one call with positive arguments is made, so
5169 the initial value returned is not important.
5171 * Even though consecutive calls to MORECORE need not return contiguous
5172 addresses, it must be OK for malloc'ed chunks to span multiple
5173 regions in those cases where they do happen to be contiguous.
5175 * MORECORE need not handle negative arguments -- it may instead
5176 just return MORECORE_FAILURE when given negative arguments.
5177 Negative arguments are always multiples of pagesize. MORECORE
5178 must not misinterpret negative args as large positive unsigned
5179 args. You can suppress all such calls from even occurring by defining
5180 MORECORE_CANNOT_TRIM,
5182 There is some variation across systems about the type of the
5183 argument to sbrk/MORECORE. If size_t is unsigned, then it cannot
5184 actually be size_t, because sbrk supports negative args, so it is
5185 normally the signed type of the same width as size_t (sometimes
5186 declared as "intptr_t", and sometimes "ptrdiff_t"). It doesn't much
5187 matter though. Internally, we use "long" as arguments, which should
5188 work across all reasonable possibilities.
5190 Additionally, if MORECORE ever returns failure for a positive
5191 request, then mmap is used as a noncontiguous system allocator. This
5192 is a useful backup strategy for systems with holes in address spaces
5193 -- in this case sbrk cannot contiguously expand the heap, but mmap
5194 may be able to map noncontiguous space.
5196 If you'd like mmap to ALWAYS be used, you can define MORECORE to be
5197 a function that always returns MORECORE_FAILURE.
5199 If you are using this malloc with something other than sbrk (or its
5200 emulation) to supply memory regions, you probably want to set
5201 MORECORE_CONTIGUOUS as false. As an example, here is a custom
5202 allocator kindly contributed for pre-OSX macOS. It uses virtually
5203 but not necessarily physically contiguous non-paged memory (locked
5204 in, present and won't get swapped out). You can use it by
5205 uncommenting this section, adding some #includes, and setting up the
5206 appropriate defines above:
5208 *#define MORECORE osMoreCore
5209 *#define MORECORE_CONTIGUOUS 0
5211 There is also a shutdown routine that should somehow be called for
5212 cleanup upon program exit.
5214 *#define MAX_POOL_ENTRIES 100
5215 *#define MINIMUM_MORECORE_SIZE (64 * 1024)
5216 static int next_os_pool;
5217 void *our_os_pools[MAX_POOL_ENTRIES];
5219 void *osMoreCore(int size)
5221 void *ptr = 0;
5222 static void *sbrk_top = 0;
5224 if (size > 0)
5226 if (size < MINIMUM_MORECORE_SIZE)
5227 size = MINIMUM_MORECORE_SIZE;
5228 if (CurrentExecutionLevel() == kTaskLevel)
5229 ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
5230 if (ptr == 0)
5232 return (void *) MORECORE_FAILURE;
5234 // save ptrs so they can be freed during cleanup
5235 our_os_pools[next_os_pool] = ptr;
5236 next_os_pool++;
5237 ptr = (void *) ((((unsigned long) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
5238 sbrk_top = (char *) ptr + size;
5239 return ptr;
5241 else if (size < 0)
5243 // we don't currently support shrink behavior
5244 return (void *) MORECORE_FAILURE;
5246 else
5248 return sbrk_top;
5252 // cleanup any allocated memory pools
5253 // called as last thing before shutting down driver
5255 void osCleanupMem(void)
5257 void **ptr;
5259 for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
5260 if (*ptr)
5262 PoolDeallocate(*ptr);
5263 * ptr = 0;
5270 /* Helper code. */
5272 extern char **__libc_argv attribute_hidden;
5274 static void
5275 malloc_printerr (const char *str)
5277 __libc_message (do_abort, "%s\n", str);
5278 __builtin_unreachable ();
5281 /* We need a wrapper function for one of the additions of POSIX. */
5283 __posix_memalign (void **memptr, size_t alignment, size_t size)
5285 void *mem;
5287 /* Test whether the SIZE argument is valid. It must be a power of
5288 two multiple of sizeof (void *). */
5289 if (alignment % sizeof (void *) != 0
5290 || !powerof2 (alignment / sizeof (void *))
5291 || alignment == 0)
5292 return EINVAL;
5295 void *address = RETURN_ADDRESS (0);
5296 mem = _mid_memalign (alignment, size, address);
5298 if (mem != NULL)
5300 *memptr = mem;
5301 return 0;
5304 return ENOMEM;
5306 weak_alias (__posix_memalign, posix_memalign)
5310 __malloc_info (int options, FILE *fp)
5312 /* For now, at least. */
5313 if (options != 0)
5314 return EINVAL;
5316 int n = 0;
5317 size_t total_nblocks = 0;
5318 size_t total_nfastblocks = 0;
5319 size_t total_avail = 0;
5320 size_t total_fastavail = 0;
5321 size_t total_system = 0;
5322 size_t total_max_system = 0;
5323 size_t total_aspace = 0;
5324 size_t total_aspace_mprotect = 0;
5328 if (__malloc_initialized < 0)
5329 ptmalloc_init ();
5331 fputs ("<malloc version=\"1\">\n", fp);
5333 /* Iterate over all arenas currently in use. */
5334 mstate ar_ptr = &main_arena;
5337 fprintf (fp, "<heap nr=\"%d\">\n<sizes>\n", n++);
5339 size_t nblocks = 0;
5340 size_t nfastblocks = 0;
5341 size_t avail = 0;
5342 size_t fastavail = 0;
5343 struct
5345 size_t from;
5346 size_t to;
5347 size_t total;
5348 size_t count;
5349 } sizes[NFASTBINS + NBINS - 1];
5350 #define nsizes (sizeof (sizes) / sizeof (sizes[0]))
5352 __libc_lock_lock (ar_ptr->mutex);
5354 for (size_t i = 0; i < NFASTBINS; ++i)
5356 mchunkptr p = fastbin (ar_ptr, i);
5357 if (p != NULL)
5359 size_t nthissize = 0;
5360 size_t thissize = chunksize (p);
5362 while (p != NULL)
5364 ++nthissize;
5365 p = p->fd;
5368 fastavail += nthissize * thissize;
5369 nfastblocks += nthissize;
5370 sizes[i].from = thissize - (MALLOC_ALIGNMENT - 1);
5371 sizes[i].to = thissize;
5372 sizes[i].count = nthissize;
5374 else
5375 sizes[i].from = sizes[i].to = sizes[i].count = 0;
5377 sizes[i].total = sizes[i].count * sizes[i].to;
5381 mbinptr bin;
5382 struct malloc_chunk *r;
5384 for (size_t i = 1; i < NBINS; ++i)
5386 bin = bin_at (ar_ptr, i);
5387 r = bin->fd;
5388 sizes[NFASTBINS - 1 + i].from = ~((size_t) 0);
5389 sizes[NFASTBINS - 1 + i].to = sizes[NFASTBINS - 1 + i].total
5390 = sizes[NFASTBINS - 1 + i].count = 0;
5392 if (r != NULL)
5393 while (r != bin)
5395 size_t r_size = chunksize_nomask (r);
5396 ++sizes[NFASTBINS - 1 + i].count;
5397 sizes[NFASTBINS - 1 + i].total += r_size;
5398 sizes[NFASTBINS - 1 + i].from
5399 = MIN (sizes[NFASTBINS - 1 + i].from, r_size);
5400 sizes[NFASTBINS - 1 + i].to = MAX (sizes[NFASTBINS - 1 + i].to,
5401 r_size);
5403 r = r->fd;
5406 if (sizes[NFASTBINS - 1 + i].count == 0)
5407 sizes[NFASTBINS - 1 + i].from = 0;
5408 nblocks += sizes[NFASTBINS - 1 + i].count;
5409 avail += sizes[NFASTBINS - 1 + i].total;
5412 __libc_lock_unlock (ar_ptr->mutex);
5414 total_nfastblocks += nfastblocks;
5415 total_fastavail += fastavail;
5417 total_nblocks += nblocks;
5418 total_avail += avail;
5420 for (size_t i = 0; i < nsizes; ++i)
5421 if (sizes[i].count != 0 && i != NFASTBINS)
5422 fprintf (fp, " \
5423 <size from=\"%zu\" to=\"%zu\" total=\"%zu\" count=\"%zu\"/>\n",
5424 sizes[i].from, sizes[i].to, sizes[i].total, sizes[i].count);
5426 if (sizes[NFASTBINS].count != 0)
5427 fprintf (fp, "\
5428 <unsorted from=\"%zu\" to=\"%zu\" total=\"%zu\" count=\"%zu\"/>\n",
5429 sizes[NFASTBINS].from, sizes[NFASTBINS].to,
5430 sizes[NFASTBINS].total, sizes[NFASTBINS].count);
5432 total_system += ar_ptr->system_mem;
5433 total_max_system += ar_ptr->max_system_mem;
5435 fprintf (fp,
5436 "</sizes>\n<total type=\"fast\" count=\"%zu\" size=\"%zu\"/>\n"
5437 "<total type=\"rest\" count=\"%zu\" size=\"%zu\"/>\n"
5438 "<system type=\"current\" size=\"%zu\"/>\n"
5439 "<system type=\"max\" size=\"%zu\"/>\n",
5440 nfastblocks, fastavail, nblocks, avail,
5441 ar_ptr->system_mem, ar_ptr->max_system_mem);
5443 if (ar_ptr != &main_arena)
5445 heap_info *heap = heap_for_ptr (top (ar_ptr));
5446 fprintf (fp,
5447 "<aspace type=\"total\" size=\"%zu\"/>\n"
5448 "<aspace type=\"mprotect\" size=\"%zu\"/>\n",
5449 heap->size, heap->mprotect_size);
5450 total_aspace += heap->size;
5451 total_aspace_mprotect += heap->mprotect_size;
5453 else
5455 fprintf (fp,
5456 "<aspace type=\"total\" size=\"%zu\"/>\n"
5457 "<aspace type=\"mprotect\" size=\"%zu\"/>\n",
5458 ar_ptr->system_mem, ar_ptr->system_mem);
5459 total_aspace += ar_ptr->system_mem;
5460 total_aspace_mprotect += ar_ptr->system_mem;
5463 fputs ("</heap>\n", fp);
5464 ar_ptr = ar_ptr->next;
5466 while (ar_ptr != &main_arena);
5468 fprintf (fp,
5469 "<total type=\"fast\" count=\"%zu\" size=\"%zu\"/>\n"
5470 "<total type=\"rest\" count=\"%zu\" size=\"%zu\"/>\n"
5471 "<total type=\"mmap\" count=\"%d\" size=\"%zu\"/>\n"
5472 "<system type=\"current\" size=\"%zu\"/>\n"
5473 "<system type=\"max\" size=\"%zu\"/>\n"
5474 "<aspace type=\"total\" size=\"%zu\"/>\n"
5475 "<aspace type=\"mprotect\" size=\"%zu\"/>\n"
5476 "</malloc>\n",
5477 total_nfastblocks, total_fastavail, total_nblocks, total_avail,
5478 mp_.n_mmaps, mp_.mmapped_mem,
5479 total_system, total_max_system,
5480 total_aspace, total_aspace_mprotect);
5482 return 0;
5484 weak_alias (__malloc_info, malloc_info)
5487 strong_alias (__libc_calloc, __calloc) weak_alias (__libc_calloc, calloc)
5488 strong_alias (__libc_free, __free) strong_alias (__libc_free, free)
5489 strong_alias (__libc_malloc, __malloc) strong_alias (__libc_malloc, malloc)
5490 strong_alias (__libc_memalign, __memalign)
5491 weak_alias (__libc_memalign, memalign)
5492 strong_alias (__libc_realloc, __realloc) strong_alias (__libc_realloc, realloc)
5493 strong_alias (__libc_valloc, __valloc) weak_alias (__libc_valloc, valloc)
5494 strong_alias (__libc_pvalloc, __pvalloc) weak_alias (__libc_pvalloc, pvalloc)
5495 strong_alias (__libc_mallinfo, __mallinfo)
5496 weak_alias (__libc_mallinfo, mallinfo)
5497 strong_alias (__libc_mallopt, __mallopt) weak_alias (__libc_mallopt, mallopt)
5499 weak_alias (__malloc_stats, malloc_stats)
5500 weak_alias (__malloc_usable_size, malloc_usable_size)
5501 weak_alias (__malloc_trim, malloc_trim)
5503 #if SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_26)
5504 compat_symbol (libc, __libc_free, cfree, GLIBC_2_0);
5505 #endif
5507 /* ------------------------------------------------------------
5508 History:
5510 [see ftp://g.oswego.edu/pub/misc/malloc.c for the history of dlmalloc]
5514 * Local variables:
5515 * c-basic-offset: 2
5516 * End: