Update x86_64 ULps for AMD K10
[glibc.git] / manual / arith.texi
blob9cd61272d3666dd47839e282a8eb7c8fd12411ae
1 @node Arithmetic, Date and Time, Mathematics, Top
2 @c %MENU% Low level arithmetic functions
3 @chapter Arithmetic Functions
5 This chapter contains information about functions for doing basic
6 arithmetic operations, such as splitting a float into its integer and
7 fractional parts or retrieving the imaginary part of a complex value.
8 These functions are declared in the header files @file{math.h} and
9 @file{complex.h}.
11 @menu
12 * Integers::                    Basic integer types and concepts
13 * Integer Division::            Integer division with guaranteed rounding.
14 * Floating Point Numbers::      Basic concepts.  IEEE 754.
15 * Floating Point Classes::      The five kinds of floating-point number.
16 * Floating Point Errors::       When something goes wrong in a calculation.
17 * Rounding::                    Controlling how results are rounded.
18 * Control Functions::           Saving and restoring the FPU's state.
19 * Arithmetic Functions::        Fundamental operations provided by the library.
20 * Complex Numbers::             The types.  Writing complex constants.
21 * Operations on Complex::       Projection, conjugation, decomposition.
22 * Parsing of Numbers::          Converting strings to numbers.
23 * System V Number Conversion::  An archaic way to convert numbers to strings.
24 @end menu
26 @node Integers
27 @section Integers
28 @cindex integer
30 The C language defines several integer data types: integer, short integer,
31 long integer, and character, all in both signed and unsigned varieties.
32 The GNU C compiler extends the language to contain long long integers
33 as well.
34 @cindex signedness
36 The C integer types were intended to allow code to be portable among
37 machines with different inherent data sizes (word sizes), so each type
38 may have different ranges on different machines.  The problem with
39 this is that a program often needs to be written for a particular range
40 of integers, and sometimes must be written for a particular size of
41 storage, regardless of what machine the program runs on.
43 To address this problem, @theglibc{} contains C type definitions
44 you can use to declare integers that meet your exact needs.  Because the
45 @glibcadj{} header files are customized to a specific machine, your
46 program source code doesn't have to be.
48 These @code{typedef}s are in @file{stdint.h}.
49 @pindex stdint.h
51 If you require that an integer be represented in exactly N bits, use one
52 of the following types, with the obvious mapping to bit size and signedness:
54 @itemize @bullet
55 @item int8_t
56 @item int16_t
57 @item int32_t
58 @item int64_t
59 @item uint8_t
60 @item uint16_t
61 @item uint32_t
62 @item uint64_t
63 @end itemize
65 If your C compiler and target machine do not allow integers of a certain
66 size, the corresponding above type does not exist.
68 If you don't need a specific storage size, but want the smallest data
69 structure with @emph{at least} N bits, use one of these:
71 @itemize @bullet
72 @item int_least8_t
73 @item int_least16_t
74 @item int_least32_t
75 @item int_least64_t
76 @item uint_least8_t
77 @item uint_least16_t
78 @item uint_least32_t
79 @item uint_least64_t
80 @end itemize
82 If you don't need a specific storage size, but want the data structure
83 that allows the fastest access while having at least N bits (and
84 among data structures with the same access speed, the smallest one), use
85 one of these:
87 @itemize @bullet
88 @item int_fast8_t
89 @item int_fast16_t
90 @item int_fast32_t
91 @item int_fast64_t
92 @item uint_fast8_t
93 @item uint_fast16_t
94 @item uint_fast32_t
95 @item uint_fast64_t
96 @end itemize
98 If you want an integer with the widest range possible on the platform on
99 which it is being used, use one of the following.  If you use these,
100 you should write code that takes into account the variable size and range
101 of the integer.
103 @itemize @bullet
104 @item intmax_t
105 @item uintmax_t
106 @end itemize
108 @Theglibc{} also provides macros that tell you the maximum and
109 minimum possible values for each integer data type.  The macro names
110 follow these examples: @code{INT32_MAX}, @code{UINT8_MAX},
111 @code{INT_FAST32_MIN}, @code{INT_LEAST64_MIN}, @code{UINTMAX_MAX},
112 @code{INTMAX_MAX}, @code{INTMAX_MIN}.  Note that there are no macros for
113 unsigned integer minima.  These are always zero.
114 @cindex maximum possible integer
115 @cindex minimum possible integer
117 There are similar macros for use with C's built in integer types which
118 should come with your C compiler.  These are described in @ref{Data Type
119 Measurements}.
121 Don't forget you can use the C @code{sizeof} function with any of these
122 data types to get the number of bytes of storage each uses.
125 @node Integer Division
126 @section Integer Division
127 @cindex integer division functions
129 This section describes functions for performing integer division.  These
130 functions are redundant when GNU CC is used, because in GNU C the
131 @samp{/} operator always rounds towards zero.  But in other C
132 implementations, @samp{/} may round differently with negative arguments.
133 @code{div} and @code{ldiv} are useful because they specify how to round
134 the quotient: towards zero.  The remainder has the same sign as the
135 numerator.
137 These functions are specified to return a result @var{r} such that the value
138 @code{@var{r}.quot*@var{denominator} + @var{r}.rem} equals
139 @var{numerator}.
141 @pindex stdlib.h
142 To use these facilities, you should include the header file
143 @file{stdlib.h} in your program.
145 @comment stdlib.h
146 @comment ISO
147 @deftp {Data Type} div_t
148 This is a structure type used to hold the result returned by the @code{div}
149 function.  It has the following members:
151 @table @code
152 @item int quot
153 The quotient from the division.
155 @item int rem
156 The remainder from the division.
157 @end table
158 @end deftp
160 @comment stdlib.h
161 @comment ISO
162 @deftypefun div_t div (int @var{numerator}, int @var{denominator})
163 This function @code{div} computes the quotient and remainder from
164 the division of @var{numerator} by @var{denominator}, returning the
165 result in a structure of type @code{div_t}.
167 If the result cannot be represented (as in a division by zero), the
168 behavior is undefined.
170 Here is an example, albeit not a very useful one.
172 @smallexample
173 div_t result;
174 result = div (20, -6);
175 @end smallexample
177 @noindent
178 Now @code{result.quot} is @code{-3} and @code{result.rem} is @code{2}.
179 @end deftypefun
181 @comment stdlib.h
182 @comment ISO
183 @deftp {Data Type} ldiv_t
184 This is a structure type used to hold the result returned by the @code{ldiv}
185 function.  It has the following members:
187 @table @code
188 @item long int quot
189 The quotient from the division.
191 @item long int rem
192 The remainder from the division.
193 @end table
195 (This is identical to @code{div_t} except that the components are of
196 type @code{long int} rather than @code{int}.)
197 @end deftp
199 @comment stdlib.h
200 @comment ISO
201 @deftypefun ldiv_t ldiv (long int @var{numerator}, long int @var{denominator})
202 The @code{ldiv} function is similar to @code{div}, except that the
203 arguments are of type @code{long int} and the result is returned as a
204 structure of type @code{ldiv_t}.
205 @end deftypefun
207 @comment stdlib.h
208 @comment ISO
209 @deftp {Data Type} lldiv_t
210 This is a structure type used to hold the result returned by the @code{lldiv}
211 function.  It has the following members:
213 @table @code
214 @item long long int quot
215 The quotient from the division.
217 @item long long int rem
218 The remainder from the division.
219 @end table
221 (This is identical to @code{div_t} except that the components are of
222 type @code{long long int} rather than @code{int}.)
223 @end deftp
225 @comment stdlib.h
226 @comment ISO
227 @deftypefun lldiv_t lldiv (long long int @var{numerator}, long long int @var{denominator})
228 The @code{lldiv} function is like the @code{div} function, but the
229 arguments are of type @code{long long int} and the result is returned as
230 a structure of type @code{lldiv_t}.
232 The @code{lldiv} function was added in @w{ISO C99}.
233 @end deftypefun
235 @comment inttypes.h
236 @comment ISO
237 @deftp {Data Type} imaxdiv_t
238 This is a structure type used to hold the result returned by the @code{imaxdiv}
239 function.  It has the following members:
241 @table @code
242 @item intmax_t quot
243 The quotient from the division.
245 @item intmax_t rem
246 The remainder from the division.
247 @end table
249 (This is identical to @code{div_t} except that the components are of
250 type @code{intmax_t} rather than @code{int}.)
252 See @ref{Integers} for a description of the @code{intmax_t} type.
254 @end deftp
256 @comment inttypes.h
257 @comment ISO
258 @deftypefun imaxdiv_t imaxdiv (intmax_t @var{numerator}, intmax_t @var{denominator})
259 The @code{imaxdiv} function is like the @code{div} function, but the
260 arguments are of type @code{intmax_t} and the result is returned as
261 a structure of type @code{imaxdiv_t}.
263 See @ref{Integers} for a description of the @code{intmax_t} type.
265 The @code{imaxdiv} function was added in @w{ISO C99}.
266 @end deftypefun
269 @node Floating Point Numbers
270 @section Floating Point Numbers
271 @cindex floating point
272 @cindex IEEE 754
273 @cindex IEEE floating point
275 Most computer hardware has support for two different kinds of numbers:
276 integers (@math{@dots{}-3, -2, -1, 0, 1, 2, 3@dots{}}) and
277 floating-point numbers.  Floating-point numbers have three parts: the
278 @dfn{mantissa}, the @dfn{exponent}, and the @dfn{sign bit}.  The real
279 number represented by a floating-point value is given by
280 @tex
281 $(s \mathrel? -1 \mathrel: 1) \cdot 2^e \cdot M$
282 @end tex
283 @ifnottex
284 @math{(s ? -1 : 1) @mul{} 2^e @mul{} M}
285 @end ifnottex
286 where @math{s} is the sign bit, @math{e} the exponent, and @math{M}
287 the mantissa.  @xref{Floating Point Concepts}, for details.  (It is
288 possible to have a different @dfn{base} for the exponent, but all modern
289 hardware uses @math{2}.)
291 Floating-point numbers can represent a finite subset of the real
292 numbers.  While this subset is large enough for most purposes, it is
293 important to remember that the only reals that can be represented
294 exactly are rational numbers that have a terminating binary expansion
295 shorter than the width of the mantissa.  Even simple fractions such as
296 @math{1/5} can only be approximated by floating point.
298 Mathematical operations and functions frequently need to produce values
299 that are not representable.  Often these values can be approximated
300 closely enough for practical purposes, but sometimes they can't.
301 Historically there was no way to tell when the results of a calculation
302 were inaccurate.  Modern computers implement the @w{IEEE 754} standard
303 for numerical computations, which defines a framework for indicating to
304 the program when the results of calculation are not trustworthy.  This
305 framework consists of a set of @dfn{exceptions} that indicate why a
306 result could not be represented, and the special values @dfn{infinity}
307 and @dfn{not a number} (NaN).
309 @node Floating Point Classes
310 @section Floating-Point Number Classification Functions
311 @cindex floating-point classes
312 @cindex classes, floating-point
313 @pindex math.h
315 @w{ISO C99} defines macros that let you determine what sort of
316 floating-point number a variable holds.
318 @comment math.h
319 @comment ISO
320 @deftypefn {Macro} int fpclassify (@emph{float-type} @var{x})
321 This is a generic macro which works on all floating-point types and
322 which returns a value of type @code{int}.  The possible values are:
324 @vtable @code
325 @item FP_NAN
326 The floating-point number @var{x} is ``Not a Number'' (@pxref{Infinity
327 and NaN})
328 @item FP_INFINITE
329 The value of @var{x} is either plus or minus infinity (@pxref{Infinity
330 and NaN})
331 @item FP_ZERO
332 The value of @var{x} is zero.  In floating-point formats like @w{IEEE
333 754}, where zero can be signed, this value is also returned if
334 @var{x} is negative zero.
335 @item FP_SUBNORMAL
336 Numbers whose absolute value is too small to be represented in the
337 normal format are represented in an alternate, @dfn{denormalized} format
338 (@pxref{Floating Point Concepts}).  This format is less precise but can
339 represent values closer to zero.  @code{fpclassify} returns this value
340 for values of @var{x} in this alternate format.
341 @item FP_NORMAL
342 This value is returned for all other values of @var{x}.  It indicates
343 that there is nothing special about the number.
344 @end vtable
346 @end deftypefn
348 @code{fpclassify} is most useful if more than one property of a number
349 must be tested.  There are more specific macros which only test one
350 property at a time.  Generally these macros execute faster than
351 @code{fpclassify}, since there is special hardware support for them.
352 You should therefore use the specific macros whenever possible.
354 @comment math.h
355 @comment ISO
356 @deftypefn {Macro} int isfinite (@emph{float-type} @var{x})
357 This macro returns a nonzero value if @var{x} is finite: not plus or
358 minus infinity, and not NaN.  It is equivalent to
360 @smallexample
361 (fpclassify (x) != FP_NAN && fpclassify (x) != FP_INFINITE)
362 @end smallexample
364 @code{isfinite} is implemented as a macro which accepts any
365 floating-point type.
366 @end deftypefn
368 @comment math.h
369 @comment ISO
370 @deftypefn {Macro} int isnormal (@emph{float-type} @var{x})
371 This macro returns a nonzero value if @var{x} is finite and normalized.
372 It is equivalent to
374 @smallexample
375 (fpclassify (x) == FP_NORMAL)
376 @end smallexample
377 @end deftypefn
379 @comment math.h
380 @comment ISO
381 @deftypefn {Macro} int isnan (@emph{float-type} @var{x})
382 This macro returns a nonzero value if @var{x} is NaN.  It is equivalent
385 @smallexample
386 (fpclassify (x) == FP_NAN)
387 @end smallexample
388 @end deftypefn
390 @comment math.h
391 @comment GNU
392 @deftypefn {Macro} int issignaling (@emph{float-type} @var{x})
393 This macro returns a nonzero value if @var{x} is a signaling NaN
394 (sNaN).  It is based on draft TS 18661 and currently enabled as a GNU
395 extension.
396 @end deftypefn
398 Another set of floating-point classification functions was provided by
399 BSD.  @Theglibc{} also supports these functions; however, we
400 recommend that you use the ISO C99 macros in new code.  Those are standard
401 and will be available more widely.  Also, since they are macros, you do
402 not have to worry about the type of their argument.
404 @comment math.h
405 @comment BSD
406 @deftypefun int isinf (double @var{x})
407 @comment math.h
408 @comment BSD
409 @deftypefunx int isinff (float @var{x})
410 @comment math.h
411 @comment BSD
412 @deftypefunx int isinfl (long double @var{x})
413 This function returns @code{-1} if @var{x} represents negative infinity,
414 @code{1} if @var{x} represents positive infinity, and @code{0} otherwise.
415 @end deftypefun
417 @comment math.h
418 @comment BSD
419 @deftypefun int isnan (double @var{x})
420 @comment math.h
421 @comment BSD
422 @deftypefunx int isnanf (float @var{x})
423 @comment math.h
424 @comment BSD
425 @deftypefunx int isnanl (long double @var{x})
426 This function returns a nonzero value if @var{x} is a ``not a number''
427 value, and zero otherwise.
429 @strong{NB:} The @code{isnan} macro defined by @w{ISO C99} overrides
430 the BSD function.  This is normally not a problem, because the two
431 routines behave identically.  However, if you really need to get the BSD
432 function for some reason, you can write
434 @smallexample
435 (isnan) (x)
436 @end smallexample
437 @end deftypefun
439 @comment math.h
440 @comment BSD
441 @deftypefun int finite (double @var{x})
442 @comment math.h
443 @comment BSD
444 @deftypefunx int finitef (float @var{x})
445 @comment math.h
446 @comment BSD
447 @deftypefunx int finitel (long double @var{x})
448 This function returns a nonzero value if @var{x} is finite or a ``not a
449 number'' value, and zero otherwise.
450 @end deftypefun
452 @strong{Portability Note:} The functions listed in this section are BSD
453 extensions.
456 @node Floating Point Errors
457 @section Errors in Floating-Point Calculations
459 @menu
460 * FP Exceptions::               IEEE 754 math exceptions and how to detect them.
461 * Infinity and NaN::            Special values returned by calculations.
462 * Status bit operations::       Checking for exceptions after the fact.
463 * Math Error Reporting::        How the math functions report errors.
464 @end menu
466 @node FP Exceptions
467 @subsection FP Exceptions
468 @cindex exception
469 @cindex signal
470 @cindex zero divide
471 @cindex division by zero
472 @cindex inexact exception
473 @cindex invalid exception
474 @cindex overflow exception
475 @cindex underflow exception
477 The @w{IEEE 754} standard defines five @dfn{exceptions} that can occur
478 during a calculation.  Each corresponds to a particular sort of error,
479 such as overflow.
481 When exceptions occur (when exceptions are @dfn{raised}, in the language
482 of the standard), one of two things can happen.  By default the
483 exception is simply noted in the floating-point @dfn{status word}, and
484 the program continues as if nothing had happened.  The operation
485 produces a default value, which depends on the exception (see the table
486 below).  Your program can check the status word to find out which
487 exceptions happened.
489 Alternatively, you can enable @dfn{traps} for exceptions.  In that case,
490 when an exception is raised, your program will receive the @code{SIGFPE}
491 signal.  The default action for this signal is to terminate the
492 program.  @xref{Signal Handling}, for how you can change the effect of
493 the signal.
495 @findex matherr
496 In the System V math library, the user-defined function @code{matherr}
497 is called when certain exceptions occur inside math library functions.
498 However, the Unix98 standard deprecates this interface.  We support it
499 for historical compatibility, but recommend that you do not use it in
500 new programs.  When this interface is used, exceptions may not be
501 raised.
503 @noindent
504 The exceptions defined in @w{IEEE 754} are:
506 @table @samp
507 @item Invalid Operation
508 This exception is raised if the given operands are invalid for the
509 operation to be performed.  Examples are
510 (see @w{IEEE 754}, @w{section 7}):
511 @enumerate
512 @item
513 Addition or subtraction: @math{@infinity{} - @infinity{}}.  (But
514 @math{@infinity{} + @infinity{} = @infinity{}}).
515 @item
516 Multiplication: @math{0 @mul{} @infinity{}}.
517 @item
518 Division: @math{0/0} or @math{@infinity{}/@infinity{}}.
519 @item
520 Remainder: @math{x} REM @math{y}, where @math{y} is zero or @math{x} is
521 infinite.
522 @item
523 Square root if the operand is less then zero.  More generally, any
524 mathematical function evaluated outside its domain produces this
525 exception.
526 @item
527 Conversion of a floating-point number to an integer or decimal
528 string, when the number cannot be represented in the target format (due
529 to overflow, infinity, or NaN).
530 @item
531 Conversion of an unrecognizable input string.
532 @item
533 Comparison via predicates involving @math{<} or @math{>}, when one or
534 other of the operands is NaN.  You can prevent this exception by using
535 the unordered comparison functions instead; see @ref{FP Comparison Functions}.
536 @end enumerate
538 If the exception does not trap, the result of the operation is NaN.
540 @item Division by Zero
541 This exception is raised when a finite nonzero number is divided
542 by zero.  If no trap occurs the result is either @math{+@infinity{}} or
543 @math{-@infinity{}}, depending on the signs of the operands.
545 @item Overflow
546 This exception is raised whenever the result cannot be represented
547 as a finite value in the precision format of the destination.  If no trap
548 occurs the result depends on the sign of the intermediate result and the
549 current rounding mode (@w{IEEE 754}, @w{section 7.3}):
550 @enumerate
551 @item
552 Round to nearest carries all overflows to @math{@infinity{}}
553 with the sign of the intermediate result.
554 @item
555 Round toward @math{0} carries all overflows to the largest representable
556 finite number with the sign of the intermediate result.
557 @item
558 Round toward @math{-@infinity{}} carries positive overflows to the
559 largest representable finite number and negative overflows to
560 @math{-@infinity{}}.
562 @item
563 Round toward @math{@infinity{}} carries negative overflows to the
564 most negative representable finite number and positive overflows
565 to @math{@infinity{}}.
566 @end enumerate
568 Whenever the overflow exception is raised, the inexact exception is also
569 raised.
571 @item Underflow
572 The underflow exception is raised when an intermediate result is too
573 small to be calculated accurately, or if the operation's result rounded
574 to the destination precision is too small to be normalized.
576 When no trap is installed for the underflow exception, underflow is
577 signaled (via the underflow flag) only when both tininess and loss of
578 accuracy have been detected.  If no trap handler is installed the
579 operation continues with an imprecise small value, or zero if the
580 destination precision cannot hold the small exact result.
582 @item Inexact
583 This exception is signalled if a rounded result is not exact (such as
584 when calculating the square root of two) or a result overflows without
585 an overflow trap.
586 @end table
588 @node Infinity and NaN
589 @subsection Infinity and NaN
590 @cindex infinity
591 @cindex not a number
592 @cindex NaN
594 @w{IEEE 754} floating point numbers can represent positive or negative
595 infinity, and @dfn{NaN} (not a number).  These three values arise from
596 calculations whose result is undefined or cannot be represented
597 accurately.  You can also deliberately set a floating-point variable to
598 any of them, which is sometimes useful.  Some examples of calculations
599 that produce infinity or NaN:
601 @ifnottex
602 @smallexample
603 @math{1/0 = @infinity{}}
604 @math{log (0) = -@infinity{}}
605 @math{sqrt (-1) = NaN}
606 @end smallexample
607 @end ifnottex
608 @tex
609 $${1\over0} = \infty$$
610 $$\log 0 = -\infty$$
611 $$\sqrt{-1} = \hbox{NaN}$$
612 @end tex
614 When a calculation produces any of these values, an exception also
615 occurs; see @ref{FP Exceptions}.
617 The basic operations and math functions all accept infinity and NaN and
618 produce sensible output.  Infinities propagate through calculations as
619 one would expect: for example, @math{2 + @infinity{} = @infinity{}},
620 @math{4/@infinity{} = 0}, atan @math{(@infinity{}) = @pi{}/2}.  NaN, on
621 the other hand, infects any calculation that involves it.  Unless the
622 calculation would produce the same result no matter what real value
623 replaced NaN, the result is NaN.
625 In comparison operations, positive infinity is larger than all values
626 except itself and NaN, and negative infinity is smaller than all values
627 except itself and NaN.  NaN is @dfn{unordered}: it is not equal to,
628 greater than, or less than anything, @emph{including itself}. @code{x ==
629 x} is false if the value of @code{x} is NaN.  You can use this to test
630 whether a value is NaN or not, but the recommended way to test for NaN
631 is with the @code{isnan} function (@pxref{Floating Point Classes}).  In
632 addition, @code{<}, @code{>}, @code{<=}, and @code{>=} will raise an
633 exception when applied to NaNs.
635 @file{math.h} defines macros that allow you to explicitly set a variable
636 to infinity or NaN.
638 @comment math.h
639 @comment ISO
640 @deftypevr Macro float INFINITY
641 An expression representing positive infinity.  It is equal to the value
642 produced  by mathematical operations like @code{1.0 / 0.0}.
643 @code{-INFINITY} represents negative infinity.
645 You can test whether a floating-point value is infinite by comparing it
646 to this macro.  However, this is not recommended; you should use the
647 @code{isfinite} macro instead.  @xref{Floating Point Classes}.
649 This macro was introduced in the @w{ISO C99} standard.
650 @end deftypevr
652 @comment math.h
653 @comment GNU
654 @deftypevr Macro float NAN
655 An expression representing a value which is ``not a number''.  This
656 macro is a GNU extension, available only on machines that support the
657 ``not a number'' value---that is to say, on all machines that support
658 IEEE floating point.
660 You can use @samp{#ifdef NAN} to test whether the machine supports
661 NaN.  (Of course, you must arrange for GNU extensions to be visible,
662 such as by defining @code{_GNU_SOURCE}, and then you must include
663 @file{math.h}.)
664 @end deftypevr
666 @w{IEEE 754} also allows for another unusual value: negative zero.  This
667 value is produced when you divide a positive number by negative
668 infinity, or when a negative result is smaller than the limits of
669 representation.
671 @node Status bit operations
672 @subsection Examining the FPU status word
674 @w{ISO C99} defines functions to query and manipulate the
675 floating-point status word.  You can use these functions to check for
676 untrapped exceptions when it's convenient, rather than worrying about
677 them in the middle of a calculation.
679 These constants represent the various @w{IEEE 754} exceptions.  Not all
680 FPUs report all the different exceptions.  Each constant is defined if
681 and only if the FPU you are compiling for supports that exception, so
682 you can test for FPU support with @samp{#ifdef}.  They are defined in
683 @file{fenv.h}.
685 @vtable @code
686 @comment fenv.h
687 @comment ISO
688 @item FE_INEXACT
689  The inexact exception.
690 @comment fenv.h
691 @comment ISO
692 @item FE_DIVBYZERO
693  The divide by zero exception.
694 @comment fenv.h
695 @comment ISO
696 @item FE_UNDERFLOW
697  The underflow exception.
698 @comment fenv.h
699 @comment ISO
700 @item FE_OVERFLOW
701  The overflow exception.
702 @comment fenv.h
703 @comment ISO
704 @item FE_INVALID
705  The invalid exception.
706 @end vtable
708 The macro @code{FE_ALL_EXCEPT} is the bitwise OR of all exception macros
709 which are supported by the FP implementation.
711 These functions allow you to clear exception flags, test for exceptions,
712 and save and restore the set of exceptions flagged.
714 @comment fenv.h
715 @comment ISO
716 @deftypefun int feclearexcept (int @var{excepts})
717 This function clears all of the supported exception flags indicated by
718 @var{excepts}.
720 The function returns zero in case the operation was successful, a
721 non-zero value otherwise.
722 @end deftypefun
724 @comment fenv.h
725 @comment ISO
726 @deftypefun int feraiseexcept (int @var{excepts})
727 This function raises the supported exceptions indicated by
728 @var{excepts}.  If more than one exception bit in @var{excepts} is set
729 the order in which the exceptions are raised is undefined except that
730 overflow (@code{FE_OVERFLOW}) or underflow (@code{FE_UNDERFLOW}) are
731 raised before inexact (@code{FE_INEXACT}).  Whether for overflow or
732 underflow the inexact exception is also raised is also implementation
733 dependent.
735 The function returns zero in case the operation was successful, a
736 non-zero value otherwise.
737 @end deftypefun
739 @comment fenv.h
740 @comment ISO
741 @deftypefun int fetestexcept (int @var{excepts})
742 Test whether the exception flags indicated by the parameter @var{except}
743 are currently set.  If any of them are, a nonzero value is returned
744 which specifies which exceptions are set.  Otherwise the result is zero.
745 @end deftypefun
747 To understand these functions, imagine that the status word is an
748 integer variable named @var{status}.  @code{feclearexcept} is then
749 equivalent to @samp{status &= ~excepts} and @code{fetestexcept} is
750 equivalent to @samp{(status & excepts)}.  The actual implementation may
751 be very different, of course.
753 Exception flags are only cleared when the program explicitly requests it,
754 by calling @code{feclearexcept}.  If you want to check for exceptions
755 from a set of calculations, you should clear all the flags first.  Here
756 is a simple example of the way to use @code{fetestexcept}:
758 @smallexample
760   double f;
761   int raised;
762   feclearexcept (FE_ALL_EXCEPT);
763   f = compute ();
764   raised = fetestexcept (FE_OVERFLOW | FE_INVALID);
765   if (raised & FE_OVERFLOW) @{ /* @dots{} */ @}
766   if (raised & FE_INVALID) @{ /* @dots{} */ @}
767   /* @dots{} */
769 @end smallexample
771 You cannot explicitly set bits in the status word.  You can, however,
772 save the entire status word and restore it later.  This is done with the
773 following functions:
775 @comment fenv.h
776 @comment ISO
777 @deftypefun int fegetexceptflag (fexcept_t *@var{flagp}, int @var{excepts})
778 This function stores in the variable pointed to by @var{flagp} an
779 implementation-defined value representing the current setting of the
780 exception flags indicated by @var{excepts}.
782 The function returns zero in case the operation was successful, a
783 non-zero value otherwise.
784 @end deftypefun
786 @comment fenv.h
787 @comment ISO
788 @deftypefun int fesetexceptflag (const fexcept_t *@var{flagp}, int @var{excepts})
789 This function restores the flags for the exceptions indicated by
790 @var{excepts} to the values stored in the variable pointed to by
791 @var{flagp}.
793 The function returns zero in case the operation was successful, a
794 non-zero value otherwise.
795 @end deftypefun
797 Note that the value stored in @code{fexcept_t} bears no resemblance to
798 the bit mask returned by @code{fetestexcept}.  The type may not even be
799 an integer.  Do not attempt to modify an @code{fexcept_t} variable.
801 @node Math Error Reporting
802 @subsection Error Reporting by Mathematical Functions
803 @cindex errors, mathematical
804 @cindex domain error
805 @cindex range error
807 Many of the math functions are defined only over a subset of the real or
808 complex numbers.  Even if they are mathematically defined, their result
809 may be larger or smaller than the range representable by their return
810 type without loss of accuracy.  These are known as @dfn{domain errors},
811 @dfn{overflows}, and
812 @dfn{underflows}, respectively.  Math functions do several things when
813 one of these errors occurs.  In this manual we will refer to the
814 complete response as @dfn{signalling} a domain error, overflow, or
815 underflow.
817 When a math function suffers a domain error, it raises the invalid
818 exception and returns NaN.  It also sets @var{errno} to @code{EDOM};
819 this is for compatibility with old systems that do not support @w{IEEE
820 754} exception handling.  Likewise, when overflow occurs, math
821 functions raise the overflow exception and, in the default rounding
822 mode, return @math{@infinity{}} or @math{-@infinity{}} as appropriate
823 (in other rounding modes, the largest finite value of the appropriate
824 sign is returned when appropriate for that rounding mode).  They also
825 set @var{errno} to @code{ERANGE} if returning @math{@infinity{}} or
826 @math{-@infinity{}}; @var{errno} may or may not be set to
827 @code{ERANGE} when a finite value is returned on overflow.  When
828 underflow occurs, the underflow exception is raised, and zero
829 (appropriately signed) or a subnormal value, as appropriate for the
830 mathematical result of the function and the rounding mode, is
831 returned.  @var{errno} may be set to @code{ERANGE}, but this is not
832 guaranteed; it is intended that @theglibc{} should set it when the
833 underflow is to an appropriately signed zero, but not necessarily for
834 other underflows.
836 Some of the math functions are defined mathematically to result in a
837 complex value over parts of their domains.  The most familiar example of
838 this is taking the square root of a negative number.  The complex math
839 functions, such as @code{csqrt}, will return the appropriate complex value
840 in this case.  The real-valued functions, such as @code{sqrt}, will
841 signal a domain error.
843 Some older hardware does not support infinities.  On that hardware,
844 overflows instead return a particular very large number (usually the
845 largest representable number).  @file{math.h} defines macros you can use
846 to test for overflow on both old and new hardware.
848 @comment math.h
849 @comment ISO
850 @deftypevr Macro double HUGE_VAL
851 @comment math.h
852 @comment ISO
853 @deftypevrx Macro float HUGE_VALF
854 @comment math.h
855 @comment ISO
856 @deftypevrx Macro {long double} HUGE_VALL
857 An expression representing a particular very large number.  On machines
858 that use @w{IEEE 754} floating point format, @code{HUGE_VAL} is infinity.
859 On other machines, it's typically the largest positive number that can
860 be represented.
862 Mathematical functions return the appropriately typed version of
863 @code{HUGE_VAL} or @code{@minus{}HUGE_VAL} when the result is too large
864 to be represented.
865 @end deftypevr
867 @node Rounding
868 @section Rounding Modes
870 Floating-point calculations are carried out internally with extra
871 precision, and then rounded to fit into the destination type.  This
872 ensures that results are as precise as the input data.  @w{IEEE 754}
873 defines four possible rounding modes:
875 @table @asis
876 @item Round to nearest.
877 This is the default mode.  It should be used unless there is a specific
878 need for one of the others.  In this mode results are rounded to the
879 nearest representable value.  If the result is midway between two
880 representable values, the even representable is chosen. @dfn{Even} here
881 means the lowest-order bit is zero.  This rounding mode prevents
882 statistical bias and guarantees numeric stability: round-off errors in a
883 lengthy calculation will remain smaller than half of @code{FLT_EPSILON}.
885 @c @item Round toward @math{+@infinity{}}
886 @item Round toward plus Infinity.
887 All results are rounded to the smallest representable value
888 which is greater than the result.
890 @c @item Round toward @math{-@infinity{}}
891 @item Round toward minus Infinity.
892 All results are rounded to the largest representable value which is less
893 than the result.
895 @item Round toward zero.
896 All results are rounded to the largest representable value whose
897 magnitude is less than that of the result.  In other words, if the
898 result is negative it is rounded up; if it is positive, it is rounded
899 down.
900 @end table
902 @noindent
903 @file{fenv.h} defines constants which you can use to refer to the
904 various rounding modes.  Each one will be defined if and only if the FPU
905 supports the corresponding rounding mode.
907 @table @code
908 @comment fenv.h
909 @comment ISO
910 @vindex FE_TONEAREST
911 @item FE_TONEAREST
912 Round to nearest.
914 @comment fenv.h
915 @comment ISO
916 @vindex FE_UPWARD
917 @item FE_UPWARD
918 Round toward @math{+@infinity{}}.
920 @comment fenv.h
921 @comment ISO
922 @vindex FE_DOWNWARD
923 @item FE_DOWNWARD
924 Round toward @math{-@infinity{}}.
926 @comment fenv.h
927 @comment ISO
928 @vindex FE_TOWARDZERO
929 @item FE_TOWARDZERO
930 Round toward zero.
931 @end table
933 Underflow is an unusual case.  Normally, @w{IEEE 754} floating point
934 numbers are always normalized (@pxref{Floating Point Concepts}).
935 Numbers smaller than @math{2^r} (where @math{r} is the minimum exponent,
936 @code{FLT_MIN_RADIX-1} for @var{float}) cannot be represented as
937 normalized numbers.  Rounding all such numbers to zero or @math{2^r}
938 would cause some algorithms to fail at 0.  Therefore, they are left in
939 denormalized form.  That produces loss of precision, since some bits of
940 the mantissa are stolen to indicate the decimal point.
942 If a result is too small to be represented as a denormalized number, it
943 is rounded to zero.  However, the sign of the result is preserved; if
944 the calculation was negative, the result is @dfn{negative zero}.
945 Negative zero can also result from some operations on infinity, such as
946 @math{4/-@infinity{}}.
948 At any time one of the above four rounding modes is selected.  You can
949 find out which one with this function:
951 @comment fenv.h
952 @comment ISO
953 @deftypefun int fegetround (void)
954 Returns the currently selected rounding mode, represented by one of the
955 values of the defined rounding mode macros.
956 @end deftypefun
958 @noindent
959 To change the rounding mode, use this function:
961 @comment fenv.h
962 @comment ISO
963 @deftypefun int fesetround (int @var{round})
964 Changes the currently selected rounding mode to @var{round}.  If
965 @var{round} does not correspond to one of the supported rounding modes
966 nothing is changed.  @code{fesetround} returns zero if it changed the
967 rounding mode, a nonzero value if the mode is not supported.
968 @end deftypefun
970 You should avoid changing the rounding mode if possible.  It can be an
971 expensive operation; also, some hardware requires you to compile your
972 program differently for it to work.  The resulting code may run slower.
973 See your compiler documentation for details.
974 @c This section used to claim that functions existed to round one number
975 @c in a specific fashion.  I can't find any functions in the library
976 @c that do that. -zw
978 @node Control Functions
979 @section Floating-Point Control Functions
981 @w{IEEE 754} floating-point implementations allow the programmer to
982 decide whether traps will occur for each of the exceptions, by setting
983 bits in the @dfn{control word}.  In C, traps result in the program
984 receiving the @code{SIGFPE} signal; see @ref{Signal Handling}.
986 @strong{NB:} @w{IEEE 754} says that trap handlers are given details of
987 the exceptional situation, and can set the result value.  C signals do
988 not provide any mechanism to pass this information back and forth.
989 Trapping exceptions in C is therefore not very useful.
991 It is sometimes necessary to save the state of the floating-point unit
992 while you perform some calculation.  The library provides functions
993 which save and restore the exception flags, the set of exceptions that
994 generate traps, and the rounding mode.  This information is known as the
995 @dfn{floating-point environment}.
997 The functions to save and restore the floating-point environment all use
998 a variable of type @code{fenv_t} to store information.  This type is
999 defined in @file{fenv.h}.  Its size and contents are
1000 implementation-defined.  You should not attempt to manipulate a variable
1001 of this type directly.
1003 To save the state of the FPU, use one of these functions:
1005 @comment fenv.h
1006 @comment ISO
1007 @deftypefun int fegetenv (fenv_t *@var{envp})
1008 Store the floating-point environment in the variable pointed to by
1009 @var{envp}.
1011 The function returns zero in case the operation was successful, a
1012 non-zero value otherwise.
1013 @end deftypefun
1015 @comment fenv.h
1016 @comment ISO
1017 @deftypefun int feholdexcept (fenv_t *@var{envp})
1018 Store the current floating-point environment in the object pointed to by
1019 @var{envp}.  Then clear all exception flags, and set the FPU to trap no
1020 exceptions.  Not all FPUs support trapping no exceptions; if
1021 @code{feholdexcept} cannot set this mode, it returns nonzero value.  If it
1022 succeeds, it returns zero.
1023 @end deftypefun
1025 The functions which restore the floating-point environment can take these
1026 kinds of arguments:
1028 @itemize @bullet
1029 @item
1030 Pointers to @code{fenv_t} objects, which were initialized previously by a
1031 call to @code{fegetenv} or @code{feholdexcept}.
1032 @item
1033 @vindex FE_DFL_ENV
1034 The special macro @code{FE_DFL_ENV} which represents the floating-point
1035 environment as it was available at program start.
1036 @item
1037 Implementation defined macros with names starting with @code{FE_} and
1038 having type @code{fenv_t *}.
1040 @vindex FE_NOMASK_ENV
1041 If possible, @theglibc{} defines a macro @code{FE_NOMASK_ENV}
1042 which represents an environment where every exception raised causes a
1043 trap to occur.  You can test for this macro using @code{#ifdef}.  It is
1044 only defined if @code{_GNU_SOURCE} is defined.
1046 Some platforms might define other predefined environments.
1047 @end itemize
1049 @noindent
1050 To set the floating-point environment, you can use either of these
1051 functions:
1053 @comment fenv.h
1054 @comment ISO
1055 @deftypefun int fesetenv (const fenv_t *@var{envp})
1056 Set the floating-point environment to that described by @var{envp}.
1058 The function returns zero in case the operation was successful, a
1059 non-zero value otherwise.
1060 @end deftypefun
1062 @comment fenv.h
1063 @comment ISO
1064 @deftypefun int feupdateenv (const fenv_t *@var{envp})
1065 Like @code{fesetenv}, this function sets the floating-point environment
1066 to that described by @var{envp}.  However, if any exceptions were
1067 flagged in the status word before @code{feupdateenv} was called, they
1068 remain flagged after the call.  In other words, after @code{feupdateenv}
1069 is called, the status word is the bitwise OR of the previous status word
1070 and the one saved in @var{envp}.
1072 The function returns zero in case the operation was successful, a
1073 non-zero value otherwise.
1074 @end deftypefun
1076 @noindent
1077 To control for individual exceptions if raising them causes a trap to
1078 occur, you can use the following two functions.
1080 @strong{Portability Note:} These functions are all GNU extensions.
1082 @comment fenv.h
1083 @comment GNU
1084 @deftypefun int feenableexcept (int @var{excepts})
1085 This functions enables traps for each of the exceptions as indicated by
1086 the parameter @var{except}.  The individual exceptions are described in
1087 @ref{Status bit operations}.  Only the specified exceptions are
1088 enabled, the status of the other exceptions is not changed.
1090 The function returns the previous enabled exceptions in case the
1091 operation was successful, @code{-1} otherwise.
1092 @end deftypefun
1094 @comment fenv.h
1095 @comment GNU
1096 @deftypefun int fedisableexcept (int @var{excepts})
1097 This functions disables traps for each of the exceptions as indicated by
1098 the parameter @var{except}.  The individual exceptions are described in
1099 @ref{Status bit operations}.  Only the specified exceptions are
1100 disabled, the status of the other exceptions is not changed.
1102 The function returns the previous enabled exceptions in case the
1103 operation was successful, @code{-1} otherwise.
1104 @end deftypefun
1106 @comment fenv.h
1107 @comment GNU
1108 @deftypefun int fegetexcept (void)
1109 The function returns a bitmask of all currently enabled exceptions.  It
1110 returns @code{-1} in case of failure.
1111 @end deftypefun
1113 @node Arithmetic Functions
1114 @section Arithmetic Functions
1116 The C library provides functions to do basic operations on
1117 floating-point numbers.  These include absolute value, maximum and minimum,
1118 normalization, bit twiddling, rounding, and a few others.
1120 @menu
1121 * Absolute Value::              Absolute values of integers and floats.
1122 * Normalization Functions::     Extracting exponents and putting them back.
1123 * Rounding Functions::          Rounding floats to integers.
1124 * Remainder Functions::         Remainders on division, precisely defined.
1125 * FP Bit Twiddling::            Sign bit adjustment.  Adding epsilon.
1126 * FP Comparison Functions::     Comparisons without risk of exceptions.
1127 * Misc FP Arithmetic::          Max, min, positive difference, multiply-add.
1128 @end menu
1130 @node Absolute Value
1131 @subsection Absolute Value
1132 @cindex absolute value functions
1134 These functions are provided for obtaining the @dfn{absolute value} (or
1135 @dfn{magnitude}) of a number.  The absolute value of a real number
1136 @var{x} is @var{x} if @var{x} is positive, @minus{}@var{x} if @var{x} is
1137 negative.  For a complex number @var{z}, whose real part is @var{x} and
1138 whose imaginary part is @var{y}, the absolute value is @w{@code{sqrt
1139 (@var{x}*@var{x} + @var{y}*@var{y})}}.
1141 @pindex math.h
1142 @pindex stdlib.h
1143 Prototypes for @code{abs}, @code{labs} and @code{llabs} are in @file{stdlib.h};
1144 @code{imaxabs} is declared in @file{inttypes.h};
1145 @code{fabs}, @code{fabsf} and @code{fabsl} are declared in @file{math.h}.
1146 @code{cabs}, @code{cabsf} and @code{cabsl} are declared in @file{complex.h}.
1148 @comment stdlib.h
1149 @comment ISO
1150 @deftypefun int abs (int @var{number})
1151 @comment stdlib.h
1152 @comment ISO
1153 @deftypefunx {long int} labs (long int @var{number})
1154 @comment stdlib.h
1155 @comment ISO
1156 @deftypefunx {long long int} llabs (long long int @var{number})
1157 @comment inttypes.h
1158 @comment ISO
1159 @deftypefunx intmax_t imaxabs (intmax_t @var{number})
1160 These functions return the absolute value of @var{number}.
1162 Most computers use a two's complement integer representation, in which
1163 the absolute value of @code{INT_MIN} (the smallest possible @code{int})
1164 cannot be represented; thus, @w{@code{abs (INT_MIN)}} is not defined.
1166 @code{llabs} and @code{imaxdiv} are new to @w{ISO C99}.
1168 See @ref{Integers} for a description of the @code{intmax_t} type.
1170 @end deftypefun
1172 @comment math.h
1173 @comment ISO
1174 @deftypefun double fabs (double @var{number})
1175 @comment math.h
1176 @comment ISO
1177 @deftypefunx float fabsf (float @var{number})
1178 @comment math.h
1179 @comment ISO
1180 @deftypefunx {long double} fabsl (long double @var{number})
1181 This function returns the absolute value of the floating-point number
1182 @var{number}.
1183 @end deftypefun
1185 @comment complex.h
1186 @comment ISO
1187 @deftypefun double cabs (complex double @var{z})
1188 @comment complex.h
1189 @comment ISO
1190 @deftypefunx float cabsf (complex float @var{z})
1191 @comment complex.h
1192 @comment ISO
1193 @deftypefunx {long double} cabsl (complex long double @var{z})
1194 These functions return the absolute  value of the complex number @var{z}
1195 (@pxref{Complex Numbers}).  The absolute value of a complex number is:
1197 @smallexample
1198 sqrt (creal (@var{z}) * creal (@var{z}) + cimag (@var{z}) * cimag (@var{z}))
1199 @end smallexample
1201 This function should always be used instead of the direct formula
1202 because it takes special care to avoid losing precision.  It may also
1203 take advantage of hardware support for this operation. See @code{hypot}
1204 in @ref{Exponents and Logarithms}.
1205 @end deftypefun
1207 @node Normalization Functions
1208 @subsection Normalization Functions
1209 @cindex normalization functions (floating-point)
1211 The functions described in this section are primarily provided as a way
1212 to efficiently perform certain low-level manipulations on floating point
1213 numbers that are represented internally using a binary radix;
1214 see @ref{Floating Point Concepts}.  These functions are required to
1215 have equivalent behavior even if the representation does not use a radix
1216 of 2, but of course they are unlikely to be particularly efficient in
1217 those cases.
1219 @pindex math.h
1220 All these functions are declared in @file{math.h}.
1222 @comment math.h
1223 @comment ISO
1224 @deftypefun double frexp (double @var{value}, int *@var{exponent})
1225 @comment math.h
1226 @comment ISO
1227 @deftypefunx float frexpf (float @var{value}, int *@var{exponent})
1228 @comment math.h
1229 @comment ISO
1230 @deftypefunx {long double} frexpl (long double @var{value}, int *@var{exponent})
1231 These functions are used to split the number @var{value}
1232 into a normalized fraction and an exponent.
1234 If the argument @var{value} is not zero, the return value is @var{value}
1235 times a power of two, and its magnitude is always in the range 1/2
1236 (inclusive) to 1 (exclusive).  The corresponding exponent is stored in
1237 @code{*@var{exponent}}; the return value multiplied by 2 raised to this
1238 exponent equals the original number @var{value}.
1240 For example, @code{frexp (12.8, &exponent)} returns @code{0.8} and
1241 stores @code{4} in @code{exponent}.
1243 If @var{value} is zero, then the return value is zero and
1244 zero is stored in @code{*@var{exponent}}.
1245 @end deftypefun
1247 @comment math.h
1248 @comment ISO
1249 @deftypefun double ldexp (double @var{value}, int @var{exponent})
1250 @comment math.h
1251 @comment ISO
1252 @deftypefunx float ldexpf (float @var{value}, int @var{exponent})
1253 @comment math.h
1254 @comment ISO
1255 @deftypefunx {long double} ldexpl (long double @var{value}, int @var{exponent})
1256 These functions return the result of multiplying the floating-point
1257 number @var{value} by 2 raised to the power @var{exponent}.  (It can
1258 be used to reassemble floating-point numbers that were taken apart
1259 by @code{frexp}.)
1261 For example, @code{ldexp (0.8, 4)} returns @code{12.8}.
1262 @end deftypefun
1264 The following functions, which come from BSD, provide facilities
1265 equivalent to those of @code{ldexp} and @code{frexp}.  See also the
1266 @w{ISO C} function @code{logb} which originally also appeared in BSD.
1268 @comment math.h
1269 @comment BSD
1270 @deftypefun double scalb (double @var{value}, double @var{exponent})
1271 @comment math.h
1272 @comment BSD
1273 @deftypefunx float scalbf (float @var{value}, float @var{exponent})
1274 @comment math.h
1275 @comment BSD
1276 @deftypefunx {long double} scalbl (long double @var{value}, long double @var{exponent})
1277 The @code{scalb} function is the BSD name for @code{ldexp}.
1278 @end deftypefun
1280 @comment math.h
1281 @comment BSD
1282 @deftypefun double scalbn (double @var{x}, int @var{n})
1283 @comment math.h
1284 @comment BSD
1285 @deftypefunx float scalbnf (float @var{x}, int @var{n})
1286 @comment math.h
1287 @comment BSD
1288 @deftypefunx {long double} scalbnl (long double @var{x}, int @var{n})
1289 @code{scalbn} is identical to @code{scalb}, except that the exponent
1290 @var{n} is an @code{int} instead of a floating-point number.
1291 @end deftypefun
1293 @comment math.h
1294 @comment BSD
1295 @deftypefun double scalbln (double @var{x}, long int @var{n})
1296 @comment math.h
1297 @comment BSD
1298 @deftypefunx float scalblnf (float @var{x}, long int @var{n})
1299 @comment math.h
1300 @comment BSD
1301 @deftypefunx {long double} scalblnl (long double @var{x}, long int @var{n})
1302 @code{scalbln} is identical to @code{scalb}, except that the exponent
1303 @var{n} is a @code{long int} instead of a floating-point number.
1304 @end deftypefun
1306 @comment math.h
1307 @comment BSD
1308 @deftypefun double significand (double @var{x})
1309 @comment math.h
1310 @comment BSD
1311 @deftypefunx float significandf (float @var{x})
1312 @comment math.h
1313 @comment BSD
1314 @deftypefunx {long double} significandl (long double @var{x})
1315 @code{significand} returns the mantissa of @var{x} scaled to the range
1316 @math{[1, 2)}.
1317 It is equivalent to @w{@code{scalb (@var{x}, (double) -ilogb (@var{x}))}}.
1319 This function exists mainly for use in certain standardized tests
1320 of @w{IEEE 754} conformance.
1321 @end deftypefun
1323 @node Rounding Functions
1324 @subsection Rounding Functions
1325 @cindex converting floats to integers
1327 @pindex math.h
1328 The functions listed here perform operations such as rounding and
1329 truncation of floating-point values. Some of these functions convert
1330 floating point numbers to integer values.  They are all declared in
1331 @file{math.h}.
1333 You can also convert floating-point numbers to integers simply by
1334 casting them to @code{int}.  This discards the fractional part,
1335 effectively rounding towards zero.  However, this only works if the
1336 result can actually be represented as an @code{int}---for very large
1337 numbers, this is impossible.  The functions listed here return the
1338 result as a @code{double} instead to get around this problem.
1340 @comment math.h
1341 @comment ISO
1342 @deftypefun double ceil (double @var{x})
1343 @comment math.h
1344 @comment ISO
1345 @deftypefunx float ceilf (float @var{x})
1346 @comment math.h
1347 @comment ISO
1348 @deftypefunx {long double} ceill (long double @var{x})
1349 These functions round @var{x} upwards to the nearest integer,
1350 returning that value as a @code{double}.  Thus, @code{ceil (1.5)}
1351 is @code{2.0}.
1352 @end deftypefun
1354 @comment math.h
1355 @comment ISO
1356 @deftypefun double floor (double @var{x})
1357 @comment math.h
1358 @comment ISO
1359 @deftypefunx float floorf (float @var{x})
1360 @comment math.h
1361 @comment ISO
1362 @deftypefunx {long double} floorl (long double @var{x})
1363 These functions round @var{x} downwards to the nearest
1364 integer, returning that value as a @code{double}.  Thus, @code{floor
1365 (1.5)} is @code{1.0} and @code{floor (-1.5)} is @code{-2.0}.
1366 @end deftypefun
1368 @comment math.h
1369 @comment ISO
1370 @deftypefun double trunc (double @var{x})
1371 @comment math.h
1372 @comment ISO
1373 @deftypefunx float truncf (float @var{x})
1374 @comment math.h
1375 @comment ISO
1376 @deftypefunx {long double} truncl (long double @var{x})
1377 The @code{trunc} functions round @var{x} towards zero to the nearest
1378 integer (returned in floating-point format).  Thus, @code{trunc (1.5)}
1379 is @code{1.0} and @code{trunc (-1.5)} is @code{-1.0}.
1380 @end deftypefun
1382 @comment math.h
1383 @comment ISO
1384 @deftypefun double rint (double @var{x})
1385 @comment math.h
1386 @comment ISO
1387 @deftypefunx float rintf (float @var{x})
1388 @comment math.h
1389 @comment ISO
1390 @deftypefunx {long double} rintl (long double @var{x})
1391 These functions round @var{x} to an integer value according to the
1392 current rounding mode.  @xref{Floating Point Parameters}, for
1393 information about the various rounding modes.  The default
1394 rounding mode is to round to the nearest integer; some machines
1395 support other modes, but round-to-nearest is always used unless
1396 you explicitly select another.
1398 If @var{x} was not initially an integer, these functions raise the
1399 inexact exception.
1400 @end deftypefun
1402 @comment math.h
1403 @comment ISO
1404 @deftypefun double nearbyint (double @var{x})
1405 @comment math.h
1406 @comment ISO
1407 @deftypefunx float nearbyintf (float @var{x})
1408 @comment math.h
1409 @comment ISO
1410 @deftypefunx {long double} nearbyintl (long double @var{x})
1411 These functions return the same value as the @code{rint} functions, but
1412 do not raise the inexact exception if @var{x} is not an integer.
1413 @end deftypefun
1415 @comment math.h
1416 @comment ISO
1417 @deftypefun double round (double @var{x})
1418 @comment math.h
1419 @comment ISO
1420 @deftypefunx float roundf (float @var{x})
1421 @comment math.h
1422 @comment ISO
1423 @deftypefunx {long double} roundl (long double @var{x})
1424 These functions are similar to @code{rint}, but they round halfway
1425 cases away from zero instead of to the nearest integer (or other
1426 current rounding mode).
1427 @end deftypefun
1429 @comment math.h
1430 @comment ISO
1431 @deftypefun {long int} lrint (double @var{x})
1432 @comment math.h
1433 @comment ISO
1434 @deftypefunx {long int} lrintf (float @var{x})
1435 @comment math.h
1436 @comment ISO
1437 @deftypefunx {long int} lrintl (long double @var{x})
1438 These functions are just like @code{rint}, but they return a
1439 @code{long int} instead of a floating-point number.
1440 @end deftypefun
1442 @comment math.h
1443 @comment ISO
1444 @deftypefun {long long int} llrint (double @var{x})
1445 @comment math.h
1446 @comment ISO
1447 @deftypefunx {long long int} llrintf (float @var{x})
1448 @comment math.h
1449 @comment ISO
1450 @deftypefunx {long long int} llrintl (long double @var{x})
1451 These functions are just like @code{rint}, but they return a
1452 @code{long long int} instead of a floating-point number.
1453 @end deftypefun
1455 @comment math.h
1456 @comment ISO
1457 @deftypefun {long int} lround (double @var{x})
1458 @comment math.h
1459 @comment ISO
1460 @deftypefunx {long int} lroundf (float @var{x})
1461 @comment math.h
1462 @comment ISO
1463 @deftypefunx {long int} lroundl (long double @var{x})
1464 These functions are just like @code{round}, but they return a
1465 @code{long int} instead of a floating-point number.
1466 @end deftypefun
1468 @comment math.h
1469 @comment ISO
1470 @deftypefun {long long int} llround (double @var{x})
1471 @comment math.h
1472 @comment ISO
1473 @deftypefunx {long long int} llroundf (float @var{x})
1474 @comment math.h
1475 @comment ISO
1476 @deftypefunx {long long int} llroundl (long double @var{x})
1477 These functions are just like @code{round}, but they return a
1478 @code{long long int} instead of a floating-point number.
1479 @end deftypefun
1482 @comment math.h
1483 @comment ISO
1484 @deftypefun double modf (double @var{value}, double *@var{integer-part})
1485 @comment math.h
1486 @comment ISO
1487 @deftypefunx float modff (float @var{value}, float *@var{integer-part})
1488 @comment math.h
1489 @comment ISO
1490 @deftypefunx {long double} modfl (long double @var{value}, long double *@var{integer-part})
1491 These functions break the argument @var{value} into an integer part and a
1492 fractional part (between @code{-1} and @code{1}, exclusive).  Their sum
1493 equals @var{value}.  Each of the parts has the same sign as @var{value},
1494 and the integer part is always rounded toward zero.
1496 @code{modf} stores the integer part in @code{*@var{integer-part}}, and
1497 returns the fractional part.  For example, @code{modf (2.5, &intpart)}
1498 returns @code{0.5} and stores @code{2.0} into @code{intpart}.
1499 @end deftypefun
1501 @node Remainder Functions
1502 @subsection Remainder Functions
1504 The functions in this section compute the remainder on division of two
1505 floating-point numbers.  Each is a little different; pick the one that
1506 suits your problem.
1508 @comment math.h
1509 @comment ISO
1510 @deftypefun double fmod (double @var{numerator}, double @var{denominator})
1511 @comment math.h
1512 @comment ISO
1513 @deftypefunx float fmodf (float @var{numerator}, float @var{denominator})
1514 @comment math.h
1515 @comment ISO
1516 @deftypefunx {long double} fmodl (long double @var{numerator}, long double @var{denominator})
1517 These functions compute the remainder from the division of
1518 @var{numerator} by @var{denominator}.  Specifically, the return value is
1519 @code{@var{numerator} - @w{@var{n} * @var{denominator}}}, where @var{n}
1520 is the quotient of @var{numerator} divided by @var{denominator}, rounded
1521 towards zero to an integer.  Thus, @w{@code{fmod (6.5, 2.3)}} returns
1522 @code{1.9}, which is @code{6.5} minus @code{4.6}.
1524 The result has the same sign as the @var{numerator} and has magnitude
1525 less than the magnitude of the @var{denominator}.
1527 If @var{denominator} is zero, @code{fmod} signals a domain error.
1528 @end deftypefun
1530 @comment math.h
1531 @comment BSD
1532 @deftypefun double drem (double @var{numerator}, double @var{denominator})
1533 @comment math.h
1534 @comment BSD
1535 @deftypefunx float dremf (float @var{numerator}, float @var{denominator})
1536 @comment math.h
1537 @comment BSD
1538 @deftypefunx {long double} dreml (long double @var{numerator}, long double @var{denominator})
1539 These functions are like @code{fmod} except that they round the
1540 internal quotient @var{n} to the nearest integer instead of towards zero
1541 to an integer.  For example, @code{drem (6.5, 2.3)} returns @code{-0.4},
1542 which is @code{6.5} minus @code{6.9}.
1544 The absolute value of the result is less than or equal to half the
1545 absolute value of the @var{denominator}.  The difference between
1546 @code{fmod (@var{numerator}, @var{denominator})} and @code{drem
1547 (@var{numerator}, @var{denominator})} is always either
1548 @var{denominator}, minus @var{denominator}, or zero.
1550 If @var{denominator} is zero, @code{drem} signals a domain error.
1551 @end deftypefun
1553 @comment math.h
1554 @comment BSD
1555 @deftypefun double remainder (double @var{numerator}, double @var{denominator})
1556 @comment math.h
1557 @comment BSD
1558 @deftypefunx float remainderf (float @var{numerator}, float @var{denominator})
1559 @comment math.h
1560 @comment BSD
1561 @deftypefunx {long double} remainderl (long double @var{numerator}, long double @var{denominator})
1562 This function is another name for @code{drem}.
1563 @end deftypefun
1565 @node FP Bit Twiddling
1566 @subsection Setting and modifying single bits of FP values
1567 @cindex FP arithmetic
1569 There are some operations that are too complicated or expensive to
1570 perform by hand on floating-point numbers.  @w{ISO C99} defines
1571 functions to do these operations, which mostly involve changing single
1572 bits.
1574 @comment math.h
1575 @comment ISO
1576 @deftypefun double copysign (double @var{x}, double @var{y})
1577 @comment math.h
1578 @comment ISO
1579 @deftypefunx float copysignf (float @var{x}, float @var{y})
1580 @comment math.h
1581 @comment ISO
1582 @deftypefunx {long double} copysignl (long double @var{x}, long double @var{y})
1583 These functions return @var{x} but with the sign of @var{y}.  They work
1584 even if @var{x} or @var{y} are NaN or zero.  Both of these can carry a
1585 sign (although not all implementations support it) and this is one of
1586 the few operations that can tell the difference.
1588 @code{copysign} never raises an exception.
1589 @c except signalling NaNs
1591 This function is defined in @w{IEC 559} (and the appendix with
1592 recommended functions in @w{IEEE 754}/@w{IEEE 854}).
1593 @end deftypefun
1595 @comment math.h
1596 @comment ISO
1597 @deftypefun int signbit (@emph{float-type} @var{x})
1598 @code{signbit} is a generic macro which can work on all floating-point
1599 types.  It returns a nonzero value if the value of @var{x} has its sign
1600 bit set.
1602 This is not the same as @code{x < 0.0}, because @w{IEEE 754} floating
1603 point allows zero to be signed.  The comparison @code{-0.0 < 0.0} is
1604 false, but @code{signbit (-0.0)} will return a nonzero value.
1605 @end deftypefun
1607 @comment math.h
1608 @comment ISO
1609 @deftypefun double nextafter (double @var{x}, double @var{y})
1610 @comment math.h
1611 @comment ISO
1612 @deftypefunx float nextafterf (float @var{x}, float @var{y})
1613 @comment math.h
1614 @comment ISO
1615 @deftypefunx {long double} nextafterl (long double @var{x}, long double @var{y})
1616 The @code{nextafter} function returns the next representable neighbor of
1617 @var{x} in the direction towards @var{y}.  The size of the step between
1618 @var{x} and the result depends on the type of the result.  If
1619 @math{@var{x} = @var{y}} the function simply returns @var{y}.  If either
1620 value is @code{NaN}, @code{NaN} is returned.  Otherwise
1621 a value corresponding to the value of the least significant bit in the
1622 mantissa is added or subtracted, depending on the direction.
1623 @code{nextafter} will signal overflow or underflow if the result goes
1624 outside of the range of normalized numbers.
1626 This function is defined in @w{IEC 559} (and the appendix with
1627 recommended functions in @w{IEEE 754}/@w{IEEE 854}).
1628 @end deftypefun
1630 @comment math.h
1631 @comment ISO
1632 @deftypefun double nexttoward (double @var{x}, long double @var{y})
1633 @comment math.h
1634 @comment ISO
1635 @deftypefunx float nexttowardf (float @var{x}, long double @var{y})
1636 @comment math.h
1637 @comment ISO
1638 @deftypefunx {long double} nexttowardl (long double @var{x}, long double @var{y})
1639 These functions are identical to the corresponding versions of
1640 @code{nextafter} except that their second argument is a @code{long
1641 double}.
1642 @end deftypefun
1644 @cindex NaN
1645 @comment math.h
1646 @comment ISO
1647 @deftypefun double nan (const char *@var{tagp})
1648 @comment math.h
1649 @comment ISO
1650 @deftypefunx float nanf (const char *@var{tagp})
1651 @comment math.h
1652 @comment ISO
1653 @deftypefunx {long double} nanl (const char *@var{tagp})
1654 The @code{nan} function returns a representation of NaN, provided that
1655 NaN is supported by the target platform.
1656 @code{nan ("@var{n-char-sequence}")} is equivalent to
1657 @code{strtod ("NAN(@var{n-char-sequence})")}.
1659 The argument @var{tagp} is used in an unspecified manner.  On @w{IEEE
1660 754} systems, there are many representations of NaN, and @var{tagp}
1661 selects one.  On other systems it may do nothing.
1662 @end deftypefun
1664 @node FP Comparison Functions
1665 @subsection Floating-Point Comparison Functions
1666 @cindex unordered comparison
1668 The standard C comparison operators provoke exceptions when one or other
1669 of the operands is NaN.  For example,
1671 @smallexample
1672 int v = a < 1.0;
1673 @end smallexample
1675 @noindent
1676 will raise an exception if @var{a} is NaN.  (This does @emph{not}
1677 happen with @code{==} and @code{!=}; those merely return false and true,
1678 respectively, when NaN is examined.)  Frequently this exception is
1679 undesirable.  @w{ISO C99} therefore defines comparison functions that
1680 do not raise exceptions when NaN is examined.  All of the functions are
1681 implemented as macros which allow their arguments to be of any
1682 floating-point type.  The macros are guaranteed to evaluate their
1683 arguments only once.
1685 @comment math.h
1686 @comment ISO
1687 @deftypefn Macro int isgreater (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1688 This macro determines whether the argument @var{x} is greater than
1689 @var{y}.  It is equivalent to @code{(@var{x}) > (@var{y})}, but no
1690 exception is raised if @var{x} or @var{y} are NaN.
1691 @end deftypefn
1693 @comment math.h
1694 @comment ISO
1695 @deftypefn Macro int isgreaterequal (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1696 This macro determines whether the argument @var{x} is greater than or
1697 equal to @var{y}.  It is equivalent to @code{(@var{x}) >= (@var{y})}, but no
1698 exception is raised if @var{x} or @var{y} are NaN.
1699 @end deftypefn
1701 @comment math.h
1702 @comment ISO
1703 @deftypefn Macro int isless (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1704 This macro determines whether the argument @var{x} is less than @var{y}.
1705 It is equivalent to @code{(@var{x}) < (@var{y})}, but no exception is
1706 raised if @var{x} or @var{y} are NaN.
1707 @end deftypefn
1709 @comment math.h
1710 @comment ISO
1711 @deftypefn Macro int islessequal (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1712 This macro determines whether the argument @var{x} is less than or equal
1713 to @var{y}.  It is equivalent to @code{(@var{x}) <= (@var{y})}, but no
1714 exception is raised if @var{x} or @var{y} are NaN.
1715 @end deftypefn
1717 @comment math.h
1718 @comment ISO
1719 @deftypefn Macro int islessgreater (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1720 This macro determines whether the argument @var{x} is less or greater
1721 than @var{y}.  It is equivalent to @code{(@var{x}) < (@var{y}) ||
1722 (@var{x}) > (@var{y})} (although it only evaluates @var{x} and @var{y}
1723 once), but no exception is raised if @var{x} or @var{y} are NaN.
1725 This macro is not equivalent to @code{@var{x} != @var{y}}, because that
1726 expression is true if @var{x} or @var{y} are NaN.
1727 @end deftypefn
1729 @comment math.h
1730 @comment ISO
1731 @deftypefn Macro int isunordered (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1732 This macro determines whether its arguments are unordered.  In other
1733 words, it is true if @var{x} or @var{y} are NaN, and false otherwise.
1734 @end deftypefn
1736 Not all machines provide hardware support for these operations.  On
1737 machines that don't, the macros can be very slow.  Therefore, you should
1738 not use these functions when NaN is not a concern.
1740 @strong{NB:} There are no macros @code{isequal} or @code{isunequal}.
1741 They are unnecessary, because the @code{==} and @code{!=} operators do
1742 @emph{not} throw an exception if one or both of the operands are NaN.
1744 @node Misc FP Arithmetic
1745 @subsection Miscellaneous FP arithmetic functions
1746 @cindex minimum
1747 @cindex maximum
1748 @cindex positive difference
1749 @cindex multiply-add
1751 The functions in this section perform miscellaneous but common
1752 operations that are awkward to express with C operators.  On some
1753 processors these functions can use special machine instructions to
1754 perform these operations faster than the equivalent C code.
1756 @comment math.h
1757 @comment ISO
1758 @deftypefun double fmin (double @var{x}, double @var{y})
1759 @comment math.h
1760 @comment ISO
1761 @deftypefunx float fminf (float @var{x}, float @var{y})
1762 @comment math.h
1763 @comment ISO
1764 @deftypefunx {long double} fminl (long double @var{x}, long double @var{y})
1765 The @code{fmin} function returns the lesser of the two values @var{x}
1766 and @var{y}.  It is similar to the expression
1767 @smallexample
1768 ((x) < (y) ? (x) : (y))
1769 @end smallexample
1770 except that @var{x} and @var{y} are only evaluated once.
1772 If an argument is NaN, the other argument is returned.  If both arguments
1773 are NaN, NaN is returned.
1774 @end deftypefun
1776 @comment math.h
1777 @comment ISO
1778 @deftypefun double fmax (double @var{x}, double @var{y})
1779 @comment math.h
1780 @comment ISO
1781 @deftypefunx float fmaxf (float @var{x}, float @var{y})
1782 @comment math.h
1783 @comment ISO
1784 @deftypefunx {long double} fmaxl (long double @var{x}, long double @var{y})
1785 The @code{fmax} function returns the greater of the two values @var{x}
1786 and @var{y}.
1788 If an argument is NaN, the other argument is returned.  If both arguments
1789 are NaN, NaN is returned.
1790 @end deftypefun
1792 @comment math.h
1793 @comment ISO
1794 @deftypefun double fdim (double @var{x}, double @var{y})
1795 @comment math.h
1796 @comment ISO
1797 @deftypefunx float fdimf (float @var{x}, float @var{y})
1798 @comment math.h
1799 @comment ISO
1800 @deftypefunx {long double} fdiml (long double @var{x}, long double @var{y})
1801 The @code{fdim} function returns the positive difference between
1802 @var{x} and @var{y}.  The positive difference is @math{@var{x} -
1803 @var{y}} if @var{x} is greater than @var{y}, and @math{0} otherwise.
1805 If @var{x}, @var{y}, or both are NaN, NaN is returned.
1806 @end deftypefun
1808 @comment math.h
1809 @comment ISO
1810 @deftypefun double fma (double @var{x}, double @var{y}, double @var{z})
1811 @comment math.h
1812 @comment ISO
1813 @deftypefunx float fmaf (float @var{x}, float @var{y}, float @var{z})
1814 @comment math.h
1815 @comment ISO
1816 @deftypefunx {long double} fmal (long double @var{x}, long double @var{y}, long double @var{z})
1817 @cindex butterfly
1818 The @code{fma} function performs floating-point multiply-add.  This is
1819 the operation @math{(@var{x} @mul{} @var{y}) + @var{z}}, but the
1820 intermediate result is not rounded to the destination type.  This can
1821 sometimes improve the precision of a calculation.
1823 This function was introduced because some processors have a special
1824 instruction to perform multiply-add.  The C compiler cannot use it
1825 directly, because the expression @samp{x*y + z} is defined to round the
1826 intermediate result.  @code{fma} lets you choose when you want to round
1827 only once.
1829 @vindex FP_FAST_FMA
1830 On processors which do not implement multiply-add in hardware,
1831 @code{fma} can be very slow since it must avoid intermediate rounding.
1832 @file{math.h} defines the symbols @code{FP_FAST_FMA},
1833 @code{FP_FAST_FMAF}, and @code{FP_FAST_FMAL} when the corresponding
1834 version of @code{fma} is no slower than the expression @samp{x*y + z}.
1835 In @theglibc{}, this always means the operation is implemented in
1836 hardware.
1837 @end deftypefun
1839 @node Complex Numbers
1840 @section Complex Numbers
1841 @pindex complex.h
1842 @cindex complex numbers
1844 @w{ISO C99} introduces support for complex numbers in C.  This is done
1845 with a new type qualifier, @code{complex}.  It is a keyword if and only
1846 if @file{complex.h} has been included.  There are three complex types,
1847 corresponding to the three real types:  @code{float complex},
1848 @code{double complex}, and @code{long double complex}.
1850 To construct complex numbers you need a way to indicate the imaginary
1851 part of a number.  There is no standard notation for an imaginary
1852 floating point constant.  Instead, @file{complex.h} defines two macros
1853 that can be used to create complex numbers.
1855 @deftypevr Macro {const float complex} _Complex_I
1856 This macro is a representation of the complex number ``@math{0+1i}''.
1857 Multiplying a real floating-point value by @code{_Complex_I} gives a
1858 complex number whose value is purely imaginary.  You can use this to
1859 construct complex constants:
1861 @smallexample
1862 @math{3.0 + 4.0i} = @code{3.0 + 4.0 * _Complex_I}
1863 @end smallexample
1865 Note that @code{_Complex_I * _Complex_I} has the value @code{-1}, but
1866 the type of that value is @code{complex}.
1867 @end deftypevr
1869 @c Put this back in when gcc supports _Imaginary_I.  It's too confusing.
1870 @ignore
1871 @noindent
1872 Without an optimizing compiler this is more expensive than the use of
1873 @code{_Imaginary_I} but with is better than nothing.  You can avoid all
1874 the hassles if you use the @code{I} macro below if the name is not
1875 problem.
1877 @deftypevr Macro {const float imaginary} _Imaginary_I
1878 This macro is a representation of the value ``@math{1i}''.  I.e., it is
1879 the value for which
1881 @smallexample
1882 _Imaginary_I * _Imaginary_I = -1
1883 @end smallexample
1885 @noindent
1886 The result is not of type @code{float imaginary} but instead @code{float}.
1887 One can use it to easily construct complex number like in
1889 @smallexample
1890 3.0 - _Imaginary_I * 4.0
1891 @end smallexample
1893 @noindent
1894 which results in the complex number with a real part of 3.0 and a
1895 imaginary part -4.0.
1896 @end deftypevr
1897 @end ignore
1899 @noindent
1900 @code{_Complex_I} is a bit of a mouthful.  @file{complex.h} also defines
1901 a shorter name for the same constant.
1903 @deftypevr Macro {const float complex} I
1904 This macro has exactly the same value as @code{_Complex_I}.  Most of the
1905 time it is preferable.  However, it causes problems if you want to use
1906 the identifier @code{I} for something else.  You can safely write
1908 @smallexample
1909 #include <complex.h>
1910 #undef I
1911 @end smallexample
1913 @noindent
1914 if you need @code{I} for your own purposes.  (In that case we recommend
1915 you also define some other short name for @code{_Complex_I}, such as
1916 @code{J}.)
1918 @ignore
1919 If the implementation does not support the @code{imaginary} types
1920 @code{I} is defined as @code{_Complex_I} which is the second best
1921 solution.  It still can be used in the same way but requires a most
1922 clever compiler to get the same results.
1923 @end ignore
1924 @end deftypevr
1926 @node Operations on Complex
1927 @section Projections, Conjugates, and Decomposing of Complex Numbers
1928 @cindex project complex numbers
1929 @cindex conjugate complex numbers
1930 @cindex decompose complex numbers
1931 @pindex complex.h
1933 @w{ISO C99} also defines functions that perform basic operations on
1934 complex numbers, such as decomposition and conjugation.  The prototypes
1935 for all these functions are in @file{complex.h}.  All functions are
1936 available in three variants, one for each of the three complex types.
1938 @comment complex.h
1939 @comment ISO
1940 @deftypefun double creal (complex double @var{z})
1941 @comment complex.h
1942 @comment ISO
1943 @deftypefunx float crealf (complex float @var{z})
1944 @comment complex.h
1945 @comment ISO
1946 @deftypefunx {long double} creall (complex long double @var{z})
1947 These functions return the real part of the complex number @var{z}.
1948 @end deftypefun
1950 @comment complex.h
1951 @comment ISO
1952 @deftypefun double cimag (complex double @var{z})
1953 @comment complex.h
1954 @comment ISO
1955 @deftypefunx float cimagf (complex float @var{z})
1956 @comment complex.h
1957 @comment ISO
1958 @deftypefunx {long double} cimagl (complex long double @var{z})
1959 These functions return the imaginary part of the complex number @var{z}.
1960 @end deftypefun
1962 @comment complex.h
1963 @comment ISO
1964 @deftypefun {complex double} conj (complex double @var{z})
1965 @comment complex.h
1966 @comment ISO
1967 @deftypefunx {complex float} conjf (complex float @var{z})
1968 @comment complex.h
1969 @comment ISO
1970 @deftypefunx {complex long double} conjl (complex long double @var{z})
1971 These functions return the conjugate value of the complex number
1972 @var{z}.  The conjugate of a complex number has the same real part and a
1973 negated imaginary part.  In other words, @samp{conj(a + bi) = a + -bi}.
1974 @end deftypefun
1976 @comment complex.h
1977 @comment ISO
1978 @deftypefun double carg (complex double @var{z})
1979 @comment complex.h
1980 @comment ISO
1981 @deftypefunx float cargf (complex float @var{z})
1982 @comment complex.h
1983 @comment ISO
1984 @deftypefunx {long double} cargl (complex long double @var{z})
1985 These functions return the argument of the complex number @var{z}.
1986 The argument of a complex number is the angle in the complex plane
1987 between the positive real axis and a line passing through zero and the
1988 number.  This angle is measured in the usual fashion and ranges from
1989 @math{-@pi{}} to @math{@pi{}}.
1991 @code{carg} has a branch cut along the negative real axis.
1992 @end deftypefun
1994 @comment complex.h
1995 @comment ISO
1996 @deftypefun {complex double} cproj (complex double @var{z})
1997 @comment complex.h
1998 @comment ISO
1999 @deftypefunx {complex float} cprojf (complex float @var{z})
2000 @comment complex.h
2001 @comment ISO
2002 @deftypefunx {complex long double} cprojl (complex long double @var{z})
2003 These functions return the projection of the complex value @var{z} onto
2004 the Riemann sphere.  Values with a infinite imaginary part are projected
2005 to positive infinity on the real axis, even if the real part is NaN.  If
2006 the real part is infinite, the result is equivalent to
2008 @smallexample
2009 INFINITY + I * copysign (0.0, cimag (z))
2010 @end smallexample
2011 @end deftypefun
2013 @node Parsing of Numbers
2014 @section Parsing of Numbers
2015 @cindex parsing numbers (in formatted input)
2016 @cindex converting strings to numbers
2017 @cindex number syntax, parsing
2018 @cindex syntax, for reading numbers
2020 This section describes functions for ``reading'' integer and
2021 floating-point numbers from a string.  It may be more convenient in some
2022 cases to use @code{sscanf} or one of the related functions; see
2023 @ref{Formatted Input}.  But often you can make a program more robust by
2024 finding the tokens in the string by hand, then converting the numbers
2025 one by one.
2027 @menu
2028 * Parsing of Integers::         Functions for conversion of integer values.
2029 * Parsing of Floats::           Functions for conversion of floating-point
2030                                  values.
2031 @end menu
2033 @node Parsing of Integers
2034 @subsection Parsing of Integers
2036 @pindex stdlib.h
2037 @pindex wchar.h
2038 The @samp{str} functions are declared in @file{stdlib.h} and those
2039 beginning with @samp{wcs} are declared in @file{wchar.h}.  One might
2040 wonder about the use of @code{restrict} in the prototypes of the
2041 functions in this section.  It is seemingly useless but the @w{ISO C}
2042 standard uses it (for the functions defined there) so we have to do it
2043 as well.
2045 @comment stdlib.h
2046 @comment ISO
2047 @deftypefun {long int} strtol (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2048 The @code{strtol} (``string-to-long'') function converts the initial
2049 part of @var{string} to a signed integer, which is returned as a value
2050 of type @code{long int}.
2052 This function attempts to decompose @var{string} as follows:
2054 @itemize @bullet
2055 @item
2056 A (possibly empty) sequence of whitespace characters.  Which characters
2057 are whitespace is determined by the @code{isspace} function
2058 (@pxref{Classification of Characters}).  These are discarded.
2060 @item
2061 An optional plus or minus sign (@samp{+} or @samp{-}).
2063 @item
2064 A nonempty sequence of digits in the radix specified by @var{base}.
2066 If @var{base} is zero, decimal radix is assumed unless the series of
2067 digits begins with @samp{0} (specifying octal radix), or @samp{0x} or
2068 @samp{0X} (specifying hexadecimal radix); in other words, the same
2069 syntax used for integer constants in C.
2071 Otherwise @var{base} must have a value between @code{2} and @code{36}.
2072 If @var{base} is @code{16}, the digits may optionally be preceded by
2073 @samp{0x} or @samp{0X}.  If base has no legal value the value returned
2074 is @code{0l} and the global variable @code{errno} is set to @code{EINVAL}.
2076 @item
2077 Any remaining characters in the string.  If @var{tailptr} is not a null
2078 pointer, @code{strtol} stores a pointer to this tail in
2079 @code{*@var{tailptr}}.
2080 @end itemize
2082 If the string is empty, contains only whitespace, or does not contain an
2083 initial substring that has the expected syntax for an integer in the
2084 specified @var{base}, no conversion is performed.  In this case,
2085 @code{strtol} returns a value of zero and the value stored in
2086 @code{*@var{tailptr}} is the value of @var{string}.
2088 In a locale other than the standard @code{"C"} locale, this function
2089 may recognize additional implementation-dependent syntax.
2091 If the string has valid syntax for an integer but the value is not
2092 representable because of overflow, @code{strtol} returns either
2093 @code{LONG_MAX} or @code{LONG_MIN} (@pxref{Range of Type}), as
2094 appropriate for the sign of the value.  It also sets @code{errno}
2095 to @code{ERANGE} to indicate there was overflow.
2097 You should not check for errors by examining the return value of
2098 @code{strtol}, because the string might be a valid representation of
2099 @code{0l}, @code{LONG_MAX}, or @code{LONG_MIN}.  Instead, check whether
2100 @var{tailptr} points to what you expect after the number
2101 (e.g. @code{'\0'} if the string should end after the number).  You also
2102 need to clear @var{errno} before the call and check it afterward, in
2103 case there was overflow.
2105 There is an example at the end of this section.
2106 @end deftypefun
2108 @comment wchar.h
2109 @comment ISO
2110 @deftypefun {long int} wcstol (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2111 The @code{wcstol} function is equivalent to the @code{strtol} function
2112 in nearly all aspects but handles wide character strings.
2114 The @code{wcstol} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2115 @end deftypefun
2117 @comment stdlib.h
2118 @comment ISO
2119 @deftypefun {unsigned long int} strtoul (const char *retrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2120 The @code{strtoul} (``string-to-unsigned-long'') function is like
2121 @code{strtol} except it converts to an @code{unsigned long int} value.
2122 The syntax is the same as described above for @code{strtol}.  The value
2123 returned on overflow is @code{ULONG_MAX} (@pxref{Range of Type}).
2125 If @var{string} depicts a negative number, @code{strtoul} acts the same
2126 as @var{strtol} but casts the result to an unsigned integer.  That means
2127 for example that @code{strtoul} on @code{"-1"} returns @code{ULONG_MAX}
2128 and an input more negative than @code{LONG_MIN} returns
2129 (@code{ULONG_MAX} + 1) / 2.
2131 @code{strtoul} sets @var{errno} to @code{EINVAL} if @var{base} is out of
2132 range, or @code{ERANGE} on overflow.
2133 @end deftypefun
2135 @comment wchar.h
2136 @comment ISO
2137 @deftypefun {unsigned long int} wcstoul (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2138 The @code{wcstoul} function is equivalent to the @code{strtoul} function
2139 in nearly all aspects but handles wide character strings.
2141 The @code{wcstoul} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2142 @end deftypefun
2144 @comment stdlib.h
2145 @comment ISO
2146 @deftypefun {long long int} strtoll (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2147 The @code{strtoll} function is like @code{strtol} except that it returns
2148 a @code{long long int} value, and accepts numbers with a correspondingly
2149 larger range.
2151 If the string has valid syntax for an integer but the value is not
2152 representable because of overflow, @code{strtoll} returns either
2153 @code{LLONG_MAX} or @code{LLONG_MIN} (@pxref{Range of Type}), as
2154 appropriate for the sign of the value.  It also sets @code{errno} to
2155 @code{ERANGE} to indicate there was overflow.
2157 The @code{strtoll} function was introduced in @w{ISO C99}.
2158 @end deftypefun
2160 @comment wchar.h
2161 @comment ISO
2162 @deftypefun {long long int} wcstoll (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2163 The @code{wcstoll} function is equivalent to the @code{strtoll} function
2164 in nearly all aspects but handles wide character strings.
2166 The @code{wcstoll} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2167 @end deftypefun
2169 @comment stdlib.h
2170 @comment BSD
2171 @deftypefun {long long int} strtoq (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2172 @code{strtoq} (``string-to-quad-word'') is the BSD name for @code{strtoll}.
2173 @end deftypefun
2175 @comment wchar.h
2176 @comment GNU
2177 @deftypefun {long long int} wcstoq (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2178 The @code{wcstoq} function is equivalent to the @code{strtoq} function
2179 in nearly all aspects but handles wide character strings.
2181 The @code{wcstoq} function is a GNU extension.
2182 @end deftypefun
2184 @comment stdlib.h
2185 @comment ISO
2186 @deftypefun {unsigned long long int} strtoull (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2187 The @code{strtoull} function is related to @code{strtoll} the same way
2188 @code{strtoul} is related to @code{strtol}.
2190 The @code{strtoull} function was introduced in @w{ISO C99}.
2191 @end deftypefun
2193 @comment wchar.h
2194 @comment ISO
2195 @deftypefun {unsigned long long int} wcstoull (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2196 The @code{wcstoull} function is equivalent to the @code{strtoull} function
2197 in nearly all aspects but handles wide character strings.
2199 The @code{wcstoull} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2200 @end deftypefun
2202 @comment stdlib.h
2203 @comment BSD
2204 @deftypefun {unsigned long long int} strtouq (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2205 @code{strtouq} is the BSD name for @code{strtoull}.
2206 @end deftypefun
2208 @comment wchar.h
2209 @comment GNU
2210 @deftypefun {unsigned long long int} wcstouq (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2211 The @code{wcstouq} function is equivalent to the @code{strtouq} function
2212 in nearly all aspects but handles wide character strings.
2214 The @code{wcstouq} function is a GNU extension.
2215 @end deftypefun
2217 @comment inttypes.h
2218 @comment ISO
2219 @deftypefun intmax_t strtoimax (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2220 The @code{strtoimax} function is like @code{strtol} except that it returns
2221 a @code{intmax_t} value, and accepts numbers of a corresponding range.
2223 If the string has valid syntax for an integer but the value is not
2224 representable because of overflow, @code{strtoimax} returns either
2225 @code{INTMAX_MAX} or @code{INTMAX_MIN} (@pxref{Integers}), as
2226 appropriate for the sign of the value.  It also sets @code{errno} to
2227 @code{ERANGE} to indicate there was overflow.
2229 See @ref{Integers} for a description of the @code{intmax_t} type.  The
2230 @code{strtoimax} function was introduced in @w{ISO C99}.
2231 @end deftypefun
2233 @comment wchar.h
2234 @comment ISO
2235 @deftypefun intmax_t wcstoimax (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2236 The @code{wcstoimax} function is equivalent to the @code{strtoimax} function
2237 in nearly all aspects but handles wide character strings.
2239 The @code{wcstoimax} function was introduced in @w{ISO C99}.
2240 @end deftypefun
2242 @comment inttypes.h
2243 @comment ISO
2244 @deftypefun uintmax_t strtoumax (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2245 The @code{strtoumax} function is related to @code{strtoimax}
2246 the same way that @code{strtoul} is related to @code{strtol}.
2248 See @ref{Integers} for a description of the @code{intmax_t} type.  The
2249 @code{strtoumax} function was introduced in @w{ISO C99}.
2250 @end deftypefun
2252 @comment wchar.h
2253 @comment ISO
2254 @deftypefun uintmax_t wcstoumax (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2255 The @code{wcstoumax} function is equivalent to the @code{strtoumax} function
2256 in nearly all aspects but handles wide character strings.
2258 The @code{wcstoumax} function was introduced in @w{ISO C99}.
2259 @end deftypefun
2261 @comment stdlib.h
2262 @comment ISO
2263 @deftypefun {long int} atol (const char *@var{string})
2264 This function is similar to the @code{strtol} function with a @var{base}
2265 argument of @code{10}, except that it need not detect overflow errors.
2266 The @code{atol} function is provided mostly for compatibility with
2267 existing code; using @code{strtol} is more robust.
2268 @end deftypefun
2270 @comment stdlib.h
2271 @comment ISO
2272 @deftypefun int atoi (const char *@var{string})
2273 This function is like @code{atol}, except that it returns an @code{int}.
2274 The @code{atoi} function is also considered obsolete; use @code{strtol}
2275 instead.
2276 @end deftypefun
2278 @comment stdlib.h
2279 @comment ISO
2280 @deftypefun {long long int} atoll (const char *@var{string})
2281 This function is similar to @code{atol}, except it returns a @code{long
2282 long int}.
2284 The @code{atoll} function was introduced in @w{ISO C99}.  It too is
2285 obsolete (despite having just been added); use @code{strtoll} instead.
2286 @end deftypefun
2288 All the functions mentioned in this section so far do not handle
2289 alternative representations of characters as described in the locale
2290 data.  Some locales specify thousands separator and the way they have to
2291 be used which can help to make large numbers more readable.  To read
2292 such numbers one has to use the @code{scanf} functions with the @samp{'}
2293 flag.
2295 Here is a function which parses a string as a sequence of integers and
2296 returns the sum of them:
2298 @smallexample
2300 sum_ints_from_string (char *string)
2302   int sum = 0;
2304   while (1) @{
2305     char *tail;
2306     int next;
2308     /* @r{Skip whitespace by hand, to detect the end.}  */
2309     while (isspace (*string)) string++;
2310     if (*string == 0)
2311       break;
2313     /* @r{There is more nonwhitespace,}  */
2314     /* @r{so it ought to be another number.}  */
2315     errno = 0;
2316     /* @r{Parse it.}  */
2317     next = strtol (string, &tail, 0);
2318     /* @r{Add it in, if not overflow.}  */
2319     if (errno)
2320       printf ("Overflow\n");
2321     else
2322       sum += next;
2323     /* @r{Advance past it.}  */
2324     string = tail;
2325   @}
2327   return sum;
2329 @end smallexample
2331 @node Parsing of Floats
2332 @subsection Parsing of Floats
2334 @pindex stdlib.h
2335 The @samp{str} functions are declared in @file{stdlib.h} and those
2336 beginning with @samp{wcs} are declared in @file{wchar.h}.  One might
2337 wonder about the use of @code{restrict} in the prototypes of the
2338 functions in this section.  It is seemingly useless but the @w{ISO C}
2339 standard uses it (for the functions defined there) so we have to do it
2340 as well.
2342 @comment stdlib.h
2343 @comment ISO
2344 @deftypefun double strtod (const char *restrict @var{string}, char **restrict @var{tailptr})
2345 The @code{strtod} (``string-to-double'') function converts the initial
2346 part of @var{string} to a floating-point number, which is returned as a
2347 value of type @code{double}.
2349 This function attempts to decompose @var{string} as follows:
2351 @itemize @bullet
2352 @item
2353 A (possibly empty) sequence of whitespace characters.  Which characters
2354 are whitespace is determined by the @code{isspace} function
2355 (@pxref{Classification of Characters}).  These are discarded.
2357 @item
2358 An optional plus or minus sign (@samp{+} or @samp{-}).
2360 @item A floating point number in decimal or hexadecimal format.  The
2361 decimal format is:
2362 @itemize @minus
2364 @item
2365 A nonempty sequence of digits optionally containing a decimal-point
2366 character---normally @samp{.}, but it depends on the locale
2367 (@pxref{General Numeric}).
2369 @item
2370 An optional exponent part, consisting of a character @samp{e} or
2371 @samp{E}, an optional sign, and a sequence of digits.
2373 @end itemize
2375 The hexadecimal format is as follows:
2376 @itemize @minus
2378 @item
2379 A 0x or 0X followed by a nonempty sequence of hexadecimal digits
2380 optionally containing a decimal-point character---normally @samp{.}, but
2381 it depends on the locale (@pxref{General Numeric}).
2383 @item
2384 An optional binary-exponent part, consisting of a character @samp{p} or
2385 @samp{P}, an optional sign, and a sequence of digits.
2387 @end itemize
2389 @item
2390 Any remaining characters in the string.  If @var{tailptr} is not a null
2391 pointer, a pointer to this tail of the string is stored in
2392 @code{*@var{tailptr}}.
2393 @end itemize
2395 If the string is empty, contains only whitespace, or does not contain an
2396 initial substring that has the expected syntax for a floating-point
2397 number, no conversion is performed.  In this case, @code{strtod} returns
2398 a value of zero and the value returned in @code{*@var{tailptr}} is the
2399 value of @var{string}.
2401 In a locale other than the standard @code{"C"} or @code{"POSIX"} locales,
2402 this function may recognize additional locale-dependent syntax.
2404 If the string has valid syntax for a floating-point number but the value
2405 is outside the range of a @code{double}, @code{strtod} will signal
2406 overflow or underflow as described in @ref{Math Error Reporting}.
2408 @code{strtod} recognizes four special input strings.  The strings
2409 @code{"inf"} and @code{"infinity"} are converted to @math{@infinity{}},
2410 or to the largest representable value if the floating-point format
2411 doesn't support infinities.  You can prepend a @code{"+"} or @code{"-"}
2412 to specify the sign.  Case is ignored when scanning these strings.
2414 The strings @code{"nan"} and @code{"nan(@var{chars@dots{}})"} are converted
2415 to NaN.  Again, case is ignored.  If @var{chars@dots{}} are provided, they
2416 are used in some unspecified fashion to select a particular
2417 representation of NaN (there can be several).
2419 Since zero is a valid result as well as the value returned on error, you
2420 should check for errors in the same way as for @code{strtol}, by
2421 examining @var{errno} and @var{tailptr}.
2422 @end deftypefun
2424 @comment stdlib.h
2425 @comment ISO
2426 @deftypefun float strtof (const char *@var{string}, char **@var{tailptr})
2427 @comment stdlib.h
2428 @comment ISO
2429 @deftypefunx {long double} strtold (const char *@var{string}, char **@var{tailptr})
2430 These functions are analogous to @code{strtod}, but return @code{float}
2431 and @code{long double} values respectively.  They report errors in the
2432 same way as @code{strtod}.  @code{strtof} can be substantially faster
2433 than @code{strtod}, but has less precision; conversely, @code{strtold}
2434 can be much slower but has more precision (on systems where @code{long
2435 double} is a separate type).
2437 These functions have been GNU extensions and are new to @w{ISO C99}.
2438 @end deftypefun
2440 @comment wchar.h
2441 @comment ISO
2442 @deftypefun double wcstod (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr})
2443 @comment stdlib.h
2444 @comment ISO
2445 @deftypefunx float wcstof (const wchar_t *@var{string}, wchar_t **@var{tailptr})
2446 @comment stdlib.h
2447 @comment ISO
2448 @deftypefunx {long double} wcstold (const wchar_t *@var{string}, wchar_t **@var{tailptr})
2449 The @code{wcstod}, @code{wcstof}, and @code{wcstol} functions are
2450 equivalent in nearly all aspect to the @code{strtod}, @code{strtof}, and
2451 @code{strtold} functions but it handles wide character string.
2453 The @code{wcstod} function was introduced in @w{Amendment 1} of @w{ISO
2454 C90}.  The @code{wcstof} and @code{wcstold} functions were introduced in
2455 @w{ISO C99}.
2456 @end deftypefun
2458 @comment stdlib.h
2459 @comment ISO
2460 @deftypefun double atof (const char *@var{string})
2461 This function is similar to the @code{strtod} function, except that it
2462 need not detect overflow and underflow errors.  The @code{atof} function
2463 is provided mostly for compatibility with existing code; using
2464 @code{strtod} is more robust.
2465 @end deftypefun
2467 @Theglibc{} also provides @samp{_l} versions of these functions,
2468 which take an additional argument, the locale to use in conversion.
2470 See also @ref{Parsing of Integers}.
2472 @node System V Number Conversion
2473 @section Old-fashioned System V number-to-string functions
2475 The old @w{System V} C library provided three functions to convert
2476 numbers to strings, with unusual and hard-to-use semantics.  @Theglibc{}
2477 also provides these functions and some natural extensions.
2479 These functions are only available in @theglibc{} and on systems descended
2480 from AT&T Unix.  Therefore, unless these functions do precisely what you
2481 need, it is better to use @code{sprintf}, which is standard.
2483 All these functions are defined in @file{stdlib.h}.
2485 @comment stdlib.h
2486 @comment SVID, Unix98
2487 @deftypefun {char *} ecvt (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
2488 The function @code{ecvt} converts the floating-point number @var{value}
2489 to a string with at most @var{ndigit} decimal digits.  The
2490 returned string contains no decimal point or sign. The first digit of
2491 the string is non-zero (unless @var{value} is actually zero) and the
2492 last digit is rounded to nearest.  @code{*@var{decpt}} is set to the
2493 index in the string of the first digit after the decimal point.
2494 @code{*@var{neg}} is set to a nonzero value if @var{value} is negative,
2495 zero otherwise.
2497 If @var{ndigit} decimal digits would exceed the precision of a
2498 @code{double} it is reduced to a system-specific value.
2500 The returned string is statically allocated and overwritten by each call
2501 to @code{ecvt}.
2503 If @var{value} is zero, it is implementation defined whether
2504 @code{*@var{decpt}} is @code{0} or @code{1}.
2506 For example: @code{ecvt (12.3, 5, &d, &n)} returns @code{"12300"}
2507 and sets @var{d} to @code{2} and @var{n} to @code{0}.
2508 @end deftypefun
2510 @comment stdlib.h
2511 @comment SVID, Unix98
2512 @deftypefun {char *} fcvt (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
2513 The function @code{fcvt} is like @code{ecvt}, but @var{ndigit} specifies
2514 the number of digits after the decimal point.  If @var{ndigit} is less
2515 than zero, @var{value} is rounded to the @math{@var{ndigit}+1}'th place to the
2516 left of the decimal point.  For example, if @var{ndigit} is @code{-1},
2517 @var{value} will be rounded to the nearest 10.  If @var{ndigit} is
2518 negative and larger than the number of digits to the left of the decimal
2519 point in @var{value}, @var{value} will be rounded to one significant digit.
2521 If @var{ndigit} decimal digits would exceed the precision of a
2522 @code{double} it is reduced to a system-specific value.
2524 The returned string is statically allocated and overwritten by each call
2525 to @code{fcvt}.
2526 @end deftypefun
2528 @comment stdlib.h
2529 @comment SVID, Unix98
2530 @deftypefun {char *} gcvt (double @var{value}, int @var{ndigit}, char *@var{buf})
2531 @code{gcvt} is functionally equivalent to @samp{sprintf(buf, "%*g",
2532 ndigit, value}.  It is provided only for compatibility's sake.  It
2533 returns @var{buf}.
2535 If @var{ndigit} decimal digits would exceed the precision of a
2536 @code{double} it is reduced to a system-specific value.
2537 @end deftypefun
2539 As extensions, @theglibc{} provides versions of these three
2540 functions that take @code{long double} arguments.
2542 @comment stdlib.h
2543 @comment GNU
2544 @deftypefun {char *} qecvt (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
2545 This function is equivalent to @code{ecvt} except that it takes a
2546 @code{long double} for the first parameter and that @var{ndigit} is
2547 restricted by the precision of a @code{long double}.
2548 @end deftypefun
2550 @comment stdlib.h
2551 @comment GNU
2552 @deftypefun {char *} qfcvt (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
2553 This function is equivalent to @code{fcvt} except that it
2554 takes a @code{long double} for the first parameter and that @var{ndigit} is
2555 restricted by the precision of a @code{long double}.
2556 @end deftypefun
2558 @comment stdlib.h
2559 @comment GNU
2560 @deftypefun {char *} qgcvt (long double @var{value}, int @var{ndigit}, char *@var{buf})
2561 This function is equivalent to @code{gcvt} except that it takes a
2562 @code{long double} for the first parameter and that @var{ndigit} is
2563 restricted by the precision of a @code{long double}.
2564 @end deftypefun
2567 @cindex gcvt_r
2568 The @code{ecvt} and @code{fcvt} functions, and their @code{long double}
2569 equivalents, all return a string located in a static buffer which is
2570 overwritten by the next call to the function.  @Theglibc{}
2571 provides another set of extended functions which write the converted
2572 string into a user-supplied buffer.  These have the conventional
2573 @code{_r} suffix.
2575 @code{gcvt_r} is not necessary, because @code{gcvt} already uses a
2576 user-supplied buffer.
2578 @comment stdlib.h
2579 @comment GNU
2580 @deftypefun int ecvt_r (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
2581 The @code{ecvt_r} function is the same as @code{ecvt}, except
2582 that it places its result into the user-specified buffer pointed to by
2583 @var{buf}, with length @var{len}.  The return value is @code{-1} in
2584 case of an error and zero otherwise.
2586 This function is a GNU extension.
2587 @end deftypefun
2589 @comment stdlib.h
2590 @comment SVID, Unix98
2591 @deftypefun int fcvt_r (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
2592 The @code{fcvt_r} function is the same as @code{fcvt}, except that it
2593 places its result into the user-specified buffer pointed to by
2594 @var{buf}, with length @var{len}.  The return value is @code{-1} in
2595 case of an error and zero otherwise.
2597 This function is a GNU extension.
2598 @end deftypefun
2600 @comment stdlib.h
2601 @comment GNU
2602 @deftypefun int qecvt_r (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
2603 The @code{qecvt_r} function is the same as @code{qecvt}, except
2604 that it places its result into the user-specified buffer pointed to by
2605 @var{buf}, with length @var{len}.  The return value is @code{-1} in
2606 case of an error and zero otherwise.
2608 This function is a GNU extension.
2609 @end deftypefun
2611 @comment stdlib.h
2612 @comment GNU
2613 @deftypefun int qfcvt_r (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
2614 The @code{qfcvt_r} function is the same as @code{qfcvt}, except
2615 that it places its result into the user-specified buffer pointed to by
2616 @var{buf}, with length @var{len}.  The return value is @code{-1} in
2617 case of an error and zero otherwise.
2619 This function is a GNU extension.
2620 @end deftypefun