1 /* Prototype declarations for math functions; helper file for <math.h>.
2 Copyright (C) 1996-2002, 2003, 2006 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
15 You should have received a copy of the GNU Lesser General Public
16 License along with the GNU C Library; if not, write to the Free
17 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
20 /* NOTE: Because of the special way this file is used by <math.h>, this
21 file must NOT be protected from multiple inclusion as header files
24 This file provides prototype declarations for the math functions.
25 Most functions are declared using the macro:
27 __MATHCALL (NAME,[_r], (ARGS...));
29 This means there is a function `NAME' returning `double' and a function
30 `NAMEf' returning `float'. Each place `_Mdouble_' appears in the
31 prototype, that is actually `double' in the prototype for `NAME' and
32 `float' in the prototype for `NAMEf'. Reentrant variant functions are
33 called `NAME_r' and `NAMEf_r'.
35 Functions returning other types like `int' are declared using the macro:
37 __MATHDECL (TYPE, NAME,[_r], (ARGS...));
39 This is just like __MATHCALL but for a function returning `TYPE'
40 instead of `_Mdouble_'. In all of these cases, there is still
41 both a `NAME' and a `NAMEf' that takes `float' arguments.
43 Note that there must be no whitespace before the argument passed for
44 NAME, to make token pasting work with -traditional. */
47 # error "Never include <bits/mathcalls.h> directly; include <math.h> instead."
51 /* Trigonometric functions. */
53 _Mdouble_BEGIN_NAMESPACE
54 /* Arc cosine of X. */
55 __MATHCALL (acos
,, (_Mdouble_ __x
));
57 __MATHCALL (asin
,, (_Mdouble_ __x
));
58 /* Arc tangent of X. */
59 __MATHCALL (atan
,, (_Mdouble_ __x
));
60 /* Arc tangent of Y/X. */
61 __MATHCALL (atan2
,, (_Mdouble_ __y
, _Mdouble_ __x
));
64 __MATHCALL (cos
,, (_Mdouble_ __x
));
66 __MATHCALL (sin
,, (_Mdouble_ __x
));
68 __MATHCALL (tan
,, (_Mdouble_ __x
));
70 /* Hyperbolic functions. */
72 /* Hyperbolic cosine of X. */
73 __MATHCALL (cosh
,, (_Mdouble_ __x
));
74 /* Hyperbolic sine of X. */
75 __MATHCALL (sinh
,, (_Mdouble_ __x
));
76 /* Hyperbolic tangent of X. */
77 __MATHCALL (tanh
,, (_Mdouble_ __x
));
78 _Mdouble_END_NAMESPACE
81 /* Cosine and sine of X. */
82 __MATHDECL (void,sincos
,,
83 (_Mdouble_ __x
, _Mdouble_
*__sinx
, _Mdouble_
*__cosx
));
86 #if defined __USE_MISC || defined __USE_XOPEN_EXTENDED || defined __USE_ISOC99
88 /* Hyperbolic arc cosine of X. */
89 __MATHCALL (acosh
,, (_Mdouble_ __x
));
90 /* Hyperbolic arc sine of X. */
91 __MATHCALL (asinh
,, (_Mdouble_ __x
));
92 /* Hyperbolic arc tangent of X. */
93 __MATHCALL (atanh
,, (_Mdouble_ __x
));
97 /* Exponential and logarithmic functions. */
99 _Mdouble_BEGIN_NAMESPACE
100 /* Exponential function of X. */
101 __MATHCALL (exp
,, (_Mdouble_ __x
));
103 /* Break VALUE into a normalized fraction and an integral power of 2. */
104 __MATHCALL (frexp
,, (_Mdouble_ __x
, int *__exponent
));
106 /* X times (two to the EXP power). */
107 __MATHCALL (ldexp
,, (_Mdouble_ __x
, int __exponent
));
109 /* Natural logarithm of X. */
110 __MATHCALL (log
,, (_Mdouble_ __x
));
112 /* Base-ten logarithm of X. */
113 __MATHCALL (log10
,, (_Mdouble_ __x
));
115 /* Break VALUE into integral and fractional parts. */
116 __MATHCALL (modf
,, (_Mdouble_ __x
, _Mdouble_
*__iptr
));
117 _Mdouble_END_NAMESPACE
120 /* A function missing in all standards: compute exponent to base ten. */
121 __MATHCALL (exp10
,, (_Mdouble_ __x
));
122 /* Another name occasionally used. */
123 __MATHCALL (pow10
,, (_Mdouble_ __x
));
126 #if defined __USE_MISC || defined __USE_XOPEN_EXTENDED || defined __USE_ISOC99
127 __BEGIN_NAMESPACE_C99
128 /* Return exp(X) - 1. */
129 __MATHCALL (expm1
,, (_Mdouble_ __x
));
131 /* Return log(1 + X). */
132 __MATHCALL (log1p
,, (_Mdouble_ __x
));
134 /* Return the base 2 signed integral exponent of X. */
135 __MATHCALL (logb
,, (_Mdouble_ __x
));
140 __BEGIN_NAMESPACE_C99
141 /* Compute base-2 exponential of X. */
142 __MATHCALL (exp2
,, (_Mdouble_ __x
));
144 /* Compute base-2 logarithm of X. */
145 __MATHCALL (log2
,, (_Mdouble_ __x
));
150 /* Power functions. */
152 _Mdouble_BEGIN_NAMESPACE
153 /* Return X to the Y power. */
154 __MATHCALL (pow
,, (_Mdouble_ __x
, _Mdouble_ __y
));
156 /* Return the square root of X. */
157 __MATHCALL (sqrt
,, (_Mdouble_ __x
));
158 _Mdouble_END_NAMESPACE
160 #if defined __USE_MISC || defined __USE_XOPEN || defined __USE_ISOC99
161 __BEGIN_NAMESPACE_C99
162 /* Return `sqrt(X*X + Y*Y)'. */
163 __MATHCALL (hypot
,, (_Mdouble_ __x
, _Mdouble_ __y
));
167 #if defined __USE_MISC || defined __USE_XOPEN_EXTENDED || defined __USE_ISOC99
168 __BEGIN_NAMESPACE_C99
169 /* Return the cube root of X. */
170 __MATHCALL (cbrt
,, (_Mdouble_ __x
));
175 /* Nearest integer, absolute value, and remainder functions. */
177 _Mdouble_BEGIN_NAMESPACE
178 /* Smallest integral value not less than X. */
179 __MATHCALLX (ceil
,, (_Mdouble_ __x
), (__const__
));
181 /* Absolute value of X. */
182 __MATHCALLX (fabs
,, (_Mdouble_ __x
), (__const__
));
184 /* Largest integer not greater than X. */
185 __MATHCALLX (floor
,, (_Mdouble_ __x
), (__const__
));
187 /* Floating-point modulo remainder of X/Y. */
188 __MATHCALL (fmod
,, (_Mdouble_ __x
, _Mdouble_ __y
));
191 /* Return 0 if VALUE is finite or NaN, +1 if it
192 is +Infinity, -1 if it is -Infinity. */
193 __MATHDECL_1 (int,__isinf
,, (_Mdouble_ __value
)) __attribute__ ((__const__
));
195 /* Return nonzero if VALUE is finite and not NaN. */
196 __MATHDECL_1 (int,__finite
,, (_Mdouble_ __value
)) __attribute__ ((__const__
));
197 _Mdouble_END_NAMESPACE
200 /* Return 0 if VALUE is finite or NaN, +1 if it
201 is +Infinity, -1 if it is -Infinity. */
202 __MATHDECL_1 (int,isinf
,, (_Mdouble_ __value
)) __attribute__ ((__const__
));
204 /* Return nonzero if VALUE is finite and not NaN. */
205 __MATHDECL_1 (int,finite
,, (_Mdouble_ __value
)) __attribute__ ((__const__
));
207 /* Return the remainder of X/Y. */
208 __MATHCALL (drem
,, (_Mdouble_ __x
, _Mdouble_ __y
));
211 /* Return the fractional part of X after dividing out `ilogb (X)'. */
212 __MATHCALL (significand
,, (_Mdouble_ __x
));
213 #endif /* Use misc. */
215 #if defined __USE_MISC || defined __USE_ISOC99
216 __BEGIN_NAMESPACE_C99
217 /* Return X with its signed changed to Y's. */
218 __MATHCALLX (copysign
,, (_Mdouble_ __x
, _Mdouble_ __y
), (__const__
));
223 __BEGIN_NAMESPACE_C99
224 /* Return representation of NaN for double type. */
225 __MATHCALLX (nan
,, (__const
char *__tagb
), (__const__
));
230 /* Return nonzero if VALUE is not a number. */
231 __MATHDECL_1 (int,__isnan
,, (_Mdouble_ __value
)) __attribute__ ((__const__
));
233 #if defined __USE_MISC || defined __USE_XOPEN
234 /* Return nonzero if VALUE is not a number. */
235 __MATHDECL_1 (int,isnan
,, (_Mdouble_ __value
)) __attribute__ ((__const__
));
237 /* Bessel functions. */
238 __MATHCALL (j0
,, (_Mdouble_
));
239 __MATHCALL (j1
,, (_Mdouble_
));
240 __MATHCALL (jn
,, (int, _Mdouble_
));
241 __MATHCALL (y0
,, (_Mdouble_
));
242 __MATHCALL (y1
,, (_Mdouble_
));
243 __MATHCALL (yn
,, (int, _Mdouble_
));
247 #if defined __USE_MISC || defined __USE_XOPEN || defined __USE_ISOC99
248 __BEGIN_NAMESPACE_C99
249 /* Error and gamma functions. */
250 __MATHCALL (erf
,, (_Mdouble_
));
251 __MATHCALL (erfc
,, (_Mdouble_
));
252 __MATHCALL (lgamma
,, (_Mdouble_
));
257 __BEGIN_NAMESPACE_C99
258 /* True gamma function. */
259 __MATHCALL (tgamma
,, (_Mdouble_
));
263 #if defined __USE_MISC || defined __USE_XOPEN
264 /* Obsolete alias for `lgamma'. */
265 __MATHCALL (gamma
,, (_Mdouble_
));
269 /* Reentrant version of lgamma. This function uses the global variable
270 `signgam'. The reentrant version instead takes a pointer and stores
271 the value through it. */
272 __MATHCALL (lgamma
,_r
, (_Mdouble_
, int *__signgamp
));
276 #if defined __USE_MISC || defined __USE_XOPEN_EXTENDED || defined __USE_ISOC99
277 __BEGIN_NAMESPACE_C99
278 /* Return the integer nearest X in the direction of the
279 prevailing rounding mode. */
280 __MATHCALL (rint
,, (_Mdouble_ __x
));
282 /* Return X + epsilon if X < Y, X - epsilon if X > Y. */
283 __MATHCALLX (nextafter
,, (_Mdouble_ __x
, _Mdouble_ __y
), (__const__
));
284 # if defined __USE_ISOC99 && !defined __LDBL_COMPAT
285 __MATHCALLX (nexttoward
,, (_Mdouble_ __x
, long double __y
), (__const__
));
288 /* Return the remainder of integer divison X / Y with infinite precision. */
289 __MATHCALL (remainder
,, (_Mdouble_ __x
, _Mdouble_ __y
));
291 # if defined __USE_MISC || defined __USE_ISOC99
292 /* Return X times (2 to the Nth power). */
293 __MATHCALL (scalbn
,, (_Mdouble_ __x
, int __n
));
296 /* Return the binary exponent of X, which must be nonzero. */
297 __MATHDECL (int,ilogb
,, (_Mdouble_ __x
));
301 /* Return X times (2 to the Nth power). */
302 __MATHCALL (scalbln
,, (_Mdouble_ __x
, long int __n
));
304 /* Round X to integral value in floating-point format using current
305 rounding direction, but do not raise inexact exception. */
306 __MATHCALL (nearbyint
,, (_Mdouble_ __x
));
308 /* Round X to nearest integral value, rounding halfway cases away from
310 __MATHCALLX (round
,, (_Mdouble_ __x
), (__const__
));
312 /* Round X to the integral value in floating-point format nearest but
313 not larger in magnitude. */
314 __MATHCALLX (trunc
,, (_Mdouble_ __x
), (__const__
));
316 /* Compute remainder of X and Y and put in *QUO a value with sign of x/y
317 and magnitude congruent `mod 2^n' to the magnitude of the integral
318 quotient x/y, with n >= 3. */
319 __MATHCALL (remquo
,, (_Mdouble_ __x
, _Mdouble_ __y
, int *__quo
));
322 /* Conversion functions. */
324 /* Round X to nearest integral value according to current rounding
326 __MATHDECL (long int,lrint
,, (_Mdouble_ __x
));
327 __MATHDECL (long long int,llrint
,, (_Mdouble_ __x
));
329 /* Round X to nearest integral value, rounding halfway cases away from
331 __MATHDECL (long int,lround
,, (_Mdouble_ __x
));
332 __MATHDECL (long long int,llround
,, (_Mdouble_ __x
));
335 /* Return positive difference between X and Y. */
336 __MATHCALL (fdim
,, (_Mdouble_ __x
, _Mdouble_ __y
));
338 /* Return maximum numeric value from X and Y. */
339 __MATHCALL (fmax
,, (_Mdouble_ __x
, _Mdouble_ __y
));
341 /* Return minimum numeric value from X and Y. */
342 __MATHCALL (fmin
,, (_Mdouble_ __x
, _Mdouble_ __y
));
345 /* Classify given number. */
346 __MATHDECL_1 (int, __fpclassify
,, (_Mdouble_ __value
))
347 __attribute__ ((__const__
));
349 /* Test for negative number. */
350 __MATHDECL_1 (int, __signbit
,, (_Mdouble_ __value
))
351 __attribute__ ((__const__
));
354 /* Multiply-add function computed as a ternary operation. */
355 __MATHCALL (fma
,, (_Mdouble_ __x
, _Mdouble_ __y
, _Mdouble_ __z
));
356 #endif /* Use ISO C99. */
358 #if defined __USE_MISC || defined __USE_XOPEN_EXTENDED || defined __USE_ISOC99
362 #if defined __USE_MISC || defined __USE_XOPEN_EXTENDED
363 /* Return X times (2 to the Nth power). */
364 __MATHCALL (scalb
,, (_Mdouble_ __x
, _Mdouble_ __n
));