1 /* Extended regular expression matching and search library,
3 (Implements POSIX draft P1003.2/D11.2, except for some of the
4 internationalization features.)
5 Copyright (C) 1993, 94, 95, 96, 97, 98 Free Software Foundation, Inc.
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Library General Public License as
9 published by the Free Software Foundation; either version 2 of the
10 License, or (at your option) any later version.
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Library General Public License for more details.
17 You should have received a copy of the GNU Library General Public
18 License along with the GNU C Library; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* AIX requires this to be the first thing in the file. */
23 #if defined _AIX && !defined REGEX_MALLOC
35 # if defined __GNUC__ || (defined __STDC__ && __STDC__)
36 # define PARAMS(args) args
38 # define PARAMS(args) ()
40 #endif /* Not PARAMS. */
42 #if defined STDC_HEADERS && !defined emacs
45 /* We need this for `regex.h', and perhaps for the Emacs include files. */
46 # include <sys/types.h>
49 /* For platform which support the ISO C amendement 1 functionality we
50 support user defined character classes. */
51 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
52 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
58 /* We have to keep the namespace clean. */
59 # define regfree(preg) __regfree (preg)
60 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
61 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
62 # define regerror(errcode, preg, errbuf, errbuf_size) \
63 __regerror(errcode, preg, errbuf, errbuf_size)
64 # define re_set_registers(bu, re, nu, st, en) \
65 __re_set_registers (bu, re, nu, st, en)
66 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
67 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
68 # define re_match(bufp, string, size, pos, regs) \
69 __re_match (bufp, string, size, pos, regs)
70 # define re_search(bufp, string, size, startpos, range, regs) \
71 __re_search (bufp, string, size, startpos, range, regs)
72 # define re_compile_pattern(pattern, length, bufp) \
73 __re_compile_pattern (pattern, length, bufp)
74 # define re_set_syntax(syntax) __re_set_syntax (syntax)
75 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
76 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
77 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
82 /* This is for other GNU distributions with internationalized messages. */
83 #if HAVE_LIBINTL_H || defined _LIBC
86 # define gettext(msgid) (msgid)
90 /* This define is so xgettext can find the internationalizable
92 # define gettext_noop(String) String
95 /* The `emacs' switch turns on certain matching commands
96 that make sense only in Emacs. */
103 #else /* not emacs */
105 /* If we are not linking with Emacs proper,
106 we can't use the relocating allocator
107 even if config.h says that we can. */
110 # if defined STDC_HEADERS || defined _LIBC
117 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
118 If nothing else has been done, use the method below. */
119 # ifdef INHIBIT_STRING_HEADER
120 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
121 # if !defined bzero && !defined bcopy
122 # undef INHIBIT_STRING_HEADER
127 /* This is the normal way of making sure we have a bcopy and a bzero.
128 This is used in most programs--a few other programs avoid this
129 by defining INHIBIT_STRING_HEADER. */
130 # ifndef INHIBIT_STRING_HEADER
131 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
135 # define bzero(s, n) (memset (s, '\0', n), (s))
137 # define bzero(s, n) __bzero (s, n)
141 # include <strings.h>
143 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
146 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
151 /* Define the syntax stuff for \<, \>, etc. */
153 /* This must be nonzero for the wordchar and notwordchar pattern
154 commands in re_match_2. */
159 # ifdef SWITCH_ENUM_BUG
160 # define SWITCH_ENUM_CAST(x) ((int)(x))
162 # define SWITCH_ENUM_CAST(x) (x)
165 /* How many characters in the character set. */
166 # define CHAR_SET_SIZE 256
170 extern char *re_syntax_table
;
172 # else /* not SYNTAX_TABLE */
174 static char re_syntax_table
[CHAR_SET_SIZE
];
185 bzero (re_syntax_table
, sizeof re_syntax_table
);
187 for (c
= 'a'; c
<= 'z'; c
++)
188 re_syntax_table
[c
] = Sword
;
190 for (c
= 'A'; c
<= 'Z'; c
++)
191 re_syntax_table
[c
] = Sword
;
193 for (c
= '0'; c
<= '9'; c
++)
194 re_syntax_table
[c
] = Sword
;
196 re_syntax_table
['_'] = Sword
;
201 # endif /* not SYNTAX_TABLE */
203 # define SYNTAX(c) re_syntax_table[c]
205 #endif /* not emacs */
207 /* Get the interface, including the syntax bits. */
210 /* isalpha etc. are used for the character classes. */
213 /* Jim Meyering writes:
215 "... Some ctype macros are valid only for character codes that
216 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
217 using /bin/cc or gcc but without giving an ansi option). So, all
218 ctype uses should be through macros like ISPRINT... If
219 STDC_HEADERS is defined, then autoconf has verified that the ctype
220 macros don't need to be guarded with references to isascii. ...
221 Defining isascii to 1 should let any compiler worth its salt
222 eliminate the && through constant folding."
223 Solaris defines some of these symbols so we must undefine them first. */
226 #if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
227 # define ISASCII(c) 1
229 # define ISASCII(c) isascii(c)
233 # define ISBLANK(c) (ISASCII (c) && isblank (c))
235 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
238 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
240 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
244 #define ISPRINT(c) (ISASCII (c) && isprint (c))
245 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
246 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
247 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
248 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
249 #define ISLOWER(c) (ISASCII (c) && islower (c))
250 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
251 #define ISSPACE(c) (ISASCII (c) && isspace (c))
252 #define ISUPPER(c) (ISASCII (c) && isupper (c))
253 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
256 # define NULL (void *)0
259 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
260 since ours (we hope) works properly with all combinations of
261 machines, compilers, `char' and `unsigned char' argument types.
262 (Per Bothner suggested the basic approach.) */
263 #undef SIGN_EXTEND_CHAR
265 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
266 #else /* not __STDC__ */
267 /* As in Harbison and Steele. */
268 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
271 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
272 use `alloca' instead of `malloc'. This is because using malloc in
273 re_search* or re_match* could cause memory leaks when C-g is used in
274 Emacs; also, malloc is slower and causes storage fragmentation. On
275 the other hand, malloc is more portable, and easier to debug.
277 Because we sometimes use alloca, some routines have to be macros,
278 not functions -- `alloca'-allocated space disappears at the end of the
279 function it is called in. */
283 # define REGEX_ALLOCATE malloc
284 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
285 # define REGEX_FREE free
287 #else /* not REGEX_MALLOC */
289 /* Emacs already defines alloca, sometimes. */
292 /* Make alloca work the best possible way. */
294 # define alloca __builtin_alloca
295 # else /* not __GNUC__ */
298 # endif /* HAVE_ALLOCA_H */
299 # endif /* not __GNUC__ */
301 # endif /* not alloca */
303 # define REGEX_ALLOCATE alloca
305 /* Assumes a `char *destination' variable. */
306 # define REGEX_REALLOCATE(source, osize, nsize) \
307 (destination = (char *) alloca (nsize), \
308 memcpy (destination, source, osize))
310 /* No need to do anything to free, after alloca. */
311 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
313 #endif /* not REGEX_MALLOC */
315 /* Define how to allocate the failure stack. */
317 #if defined REL_ALLOC && defined REGEX_MALLOC
319 # define REGEX_ALLOCATE_STACK(size) \
320 r_alloc (&failure_stack_ptr, (size))
321 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
322 r_re_alloc (&failure_stack_ptr, (nsize))
323 # define REGEX_FREE_STACK(ptr) \
324 r_alloc_free (&failure_stack_ptr)
326 #else /* not using relocating allocator */
330 # define REGEX_ALLOCATE_STACK malloc
331 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
332 # define REGEX_FREE_STACK free
334 # else /* not REGEX_MALLOC */
336 # define REGEX_ALLOCATE_STACK alloca
338 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
339 REGEX_REALLOCATE (source, osize, nsize)
340 /* No need to explicitly free anything. */
341 # define REGEX_FREE_STACK(arg)
343 # endif /* not REGEX_MALLOC */
344 #endif /* not using relocating allocator */
347 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
348 `string1' or just past its end. This works if PTR is NULL, which is
350 #define FIRST_STRING_P(ptr) \
351 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
353 /* (Re)Allocate N items of type T using malloc, or fail. */
354 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
355 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
356 #define RETALLOC_IF(addr, n, t) \
357 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
358 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
360 #define BYTEWIDTH 8 /* In bits. */
362 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
366 #define MAX(a, b) ((a) > (b) ? (a) : (b))
367 #define MIN(a, b) ((a) < (b) ? (a) : (b))
369 typedef char boolean
;
373 static int re_match_2_internal
PARAMS ((struct re_pattern_buffer
*bufp
,
374 const char *string1
, int size1
,
375 const char *string2
, int size2
,
377 struct re_registers
*regs
,
380 /* These are the command codes that appear in compiled regular
381 expressions. Some opcodes are followed by argument bytes. A
382 command code can specify any interpretation whatsoever for its
383 arguments. Zero bytes may appear in the compiled regular expression. */
389 /* Succeed right away--no more backtracking. */
392 /* Followed by one byte giving n, then by n literal bytes. */
395 /* Matches any (more or less) character. */
398 /* Matches any one char belonging to specified set. First
399 following byte is number of bitmap bytes. Then come bytes
400 for a bitmap saying which chars are in. Bits in each byte
401 are ordered low-bit-first. A character is in the set if its
402 bit is 1. A character too large to have a bit in the map is
403 automatically not in the set. */
406 /* Same parameters as charset, but match any character that is
407 not one of those specified. */
410 /* Start remembering the text that is matched, for storing in a
411 register. Followed by one byte with the register number, in
412 the range 0 to one less than the pattern buffer's re_nsub
413 field. Then followed by one byte with the number of groups
414 inner to this one. (This last has to be part of the
415 start_memory only because we need it in the on_failure_jump
419 /* Stop remembering the text that is matched and store it in a
420 memory register. Followed by one byte with the register
421 number, in the range 0 to one less than `re_nsub' in the
422 pattern buffer, and one byte with the number of inner groups,
423 just like `start_memory'. (We need the number of inner
424 groups here because we don't have any easy way of finding the
425 corresponding start_memory when we're at a stop_memory.) */
428 /* Match a duplicate of something remembered. Followed by one
429 byte containing the register number. */
432 /* Fail unless at beginning of line. */
435 /* Fail unless at end of line. */
438 /* Succeeds if at beginning of buffer (if emacs) or at beginning
439 of string to be matched (if not). */
442 /* Analogously, for end of buffer/string. */
445 /* Followed by two byte relative address to which to jump. */
448 /* Same as jump, but marks the end of an alternative. */
451 /* Followed by two-byte relative address of place to resume at
452 in case of failure. */
455 /* Like on_failure_jump, but pushes a placeholder instead of the
456 current string position when executed. */
457 on_failure_keep_string_jump
,
459 /* Throw away latest failure point and then jump to following
460 two-byte relative address. */
463 /* Change to pop_failure_jump if know won't have to backtrack to
464 match; otherwise change to jump. This is used to jump
465 back to the beginning of a repeat. If what follows this jump
466 clearly won't match what the repeat does, such that we can be
467 sure that there is no use backtracking out of repetitions
468 already matched, then we change it to a pop_failure_jump.
469 Followed by two-byte address. */
472 /* Jump to following two-byte address, and push a dummy failure
473 point. This failure point will be thrown away if an attempt
474 is made to use it for a failure. A `+' construct makes this
475 before the first repeat. Also used as an intermediary kind
476 of jump when compiling an alternative. */
479 /* Push a dummy failure point and continue. Used at the end of
483 /* Followed by two-byte relative address and two-byte number n.
484 After matching N times, jump to the address upon failure. */
487 /* Followed by two-byte relative address, and two-byte number n.
488 Jump to the address N times, then fail. */
491 /* Set the following two-byte relative address to the
492 subsequent two-byte number. The address *includes* the two
496 wordchar
, /* Matches any word-constituent character. */
497 notwordchar
, /* Matches any char that is not a word-constituent. */
499 wordbeg
, /* Succeeds if at word beginning. */
500 wordend
, /* Succeeds if at word end. */
502 wordbound
, /* Succeeds if at a word boundary. */
503 notwordbound
/* Succeeds if not at a word boundary. */
506 ,before_dot
, /* Succeeds if before point. */
507 at_dot
, /* Succeeds if at point. */
508 after_dot
, /* Succeeds if after point. */
510 /* Matches any character whose syntax is specified. Followed by
511 a byte which contains a syntax code, e.g., Sword. */
514 /* Matches any character whose syntax is not that specified. */
519 /* Common operations on the compiled pattern. */
521 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
523 #define STORE_NUMBER(destination, number) \
525 (destination)[0] = (number) & 0377; \
526 (destination)[1] = (number) >> 8; \
529 /* Same as STORE_NUMBER, except increment DESTINATION to
530 the byte after where the number is stored. Therefore, DESTINATION
531 must be an lvalue. */
533 #define STORE_NUMBER_AND_INCR(destination, number) \
535 STORE_NUMBER (destination, number); \
536 (destination) += 2; \
539 /* Put into DESTINATION a number stored in two contiguous bytes starting
542 #define EXTRACT_NUMBER(destination, source) \
544 (destination) = *(source) & 0377; \
545 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
549 static void extract_number
_RE_ARGS ((int *dest
, unsigned char *source
));
551 extract_number (dest
, source
)
553 unsigned char *source
;
555 int temp
= SIGN_EXTEND_CHAR (*(source
+ 1));
556 *dest
= *source
& 0377;
560 # ifndef EXTRACT_MACROS /* To debug the macros. */
561 # undef EXTRACT_NUMBER
562 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
563 # endif /* not EXTRACT_MACROS */
567 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
568 SOURCE must be an lvalue. */
570 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
572 EXTRACT_NUMBER (destination, source); \
577 static void extract_number_and_incr
_RE_ARGS ((int *destination
,
578 unsigned char **source
));
580 extract_number_and_incr (destination
, source
)
582 unsigned char **source
;
584 extract_number (destination
, *source
);
588 # ifndef EXTRACT_MACROS
589 # undef EXTRACT_NUMBER_AND_INCR
590 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
591 extract_number_and_incr (&dest, &src)
592 # endif /* not EXTRACT_MACROS */
596 /* If DEBUG is defined, Regex prints many voluminous messages about what
597 it is doing (if the variable `debug' is nonzero). If linked with the
598 main program in `iregex.c', you can enter patterns and strings
599 interactively. And if linked with the main program in `main.c' and
600 the other test files, you can run the already-written tests. */
604 /* We use standard I/O for debugging. */
607 /* It is useful to test things that ``must'' be true when debugging. */
610 static int debug
= 0;
612 # define DEBUG_STATEMENT(e) e
613 # define DEBUG_PRINT1(x) if (debug) printf (x)
614 # define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
615 # define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
616 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
617 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
618 if (debug) print_partial_compiled_pattern (s, e)
619 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
620 if (debug) print_double_string (w, s1, sz1, s2, sz2)
623 /* Print the fastmap in human-readable form. */
626 print_fastmap (fastmap
)
629 unsigned was_a_range
= 0;
632 while (i
< (1 << BYTEWIDTH
))
638 while (i
< (1 << BYTEWIDTH
) && fastmap
[i
])
654 /* Print a compiled pattern string in human-readable form, starting at
655 the START pointer into it and ending just before the pointer END. */
658 print_partial_compiled_pattern (start
, end
)
659 unsigned char *start
;
664 unsigned char *p
= start
;
665 unsigned char *pend
= end
;
673 /* Loop over pattern commands. */
676 printf ("%d:\t", p
- start
);
678 switch ((re_opcode_t
) *p
++)
686 printf ("/exactn/%d", mcnt
);
697 printf ("/start_memory/%d/%d", mcnt
, *p
++);
702 printf ("/stop_memory/%d/%d", mcnt
, *p
++);
706 printf ("/duplicate/%d", *p
++);
716 register int c
, last
= -100;
717 register int in_range
= 0;
719 printf ("/charset [%s",
720 (re_opcode_t
) *(p
- 1) == charset_not
? "^" : "");
722 assert (p
+ *p
< pend
);
724 for (c
= 0; c
< 256; c
++)
726 && (p
[1 + (c
/8)] & (1 << (c
% 8))))
728 /* Are we starting a range? */
729 if (last
+ 1 == c
&& ! in_range
)
734 /* Have we broken a range? */
735 else if (last
+ 1 != c
&& in_range
)
764 case on_failure_jump
:
765 extract_number_and_incr (&mcnt
, &p
);
766 printf ("/on_failure_jump to %d", p
+ mcnt
- start
);
769 case on_failure_keep_string_jump
:
770 extract_number_and_incr (&mcnt
, &p
);
771 printf ("/on_failure_keep_string_jump to %d", p
+ mcnt
- start
);
774 case dummy_failure_jump
:
775 extract_number_and_incr (&mcnt
, &p
);
776 printf ("/dummy_failure_jump to %d", p
+ mcnt
- start
);
779 case push_dummy_failure
:
780 printf ("/push_dummy_failure");
784 extract_number_and_incr (&mcnt
, &p
);
785 printf ("/maybe_pop_jump to %d", p
+ mcnt
- start
);
788 case pop_failure_jump
:
789 extract_number_and_incr (&mcnt
, &p
);
790 printf ("/pop_failure_jump to %d", p
+ mcnt
- start
);
794 extract_number_and_incr (&mcnt
, &p
);
795 printf ("/jump_past_alt to %d", p
+ mcnt
- start
);
799 extract_number_and_incr (&mcnt
, &p
);
800 printf ("/jump to %d", p
+ mcnt
- start
);
804 extract_number_and_incr (&mcnt
, &p
);
806 extract_number_and_incr (&mcnt2
, &p
);
807 printf ("/succeed_n to %d, %d times", p1
- start
, mcnt2
);
811 extract_number_and_incr (&mcnt
, &p
);
813 extract_number_and_incr (&mcnt2
, &p
);
814 printf ("/jump_n to %d, %d times", p1
- start
, mcnt2
);
818 extract_number_and_incr (&mcnt
, &p
);
820 extract_number_and_incr (&mcnt2
, &p
);
821 printf ("/set_number_at location %d to %d", p1
- start
, mcnt2
);
825 printf ("/wordbound");
829 printf ("/notwordbound");
841 printf ("/before_dot");
849 printf ("/after_dot");
853 printf ("/syntaxspec");
855 printf ("/%d", mcnt
);
859 printf ("/notsyntaxspec");
861 printf ("/%d", mcnt
);
866 printf ("/wordchar");
870 printf ("/notwordchar");
882 printf ("?%d", *(p
-1));
888 printf ("%d:\tend of pattern.\n", p
- start
);
893 print_compiled_pattern (bufp
)
894 struct re_pattern_buffer
*bufp
;
896 unsigned char *buffer
= bufp
->buffer
;
898 print_partial_compiled_pattern (buffer
, buffer
+ bufp
->used
);
899 printf ("%ld bytes used/%ld bytes allocated.\n",
900 bufp
->used
, bufp
->allocated
);
902 if (bufp
->fastmap_accurate
&& bufp
->fastmap
)
904 printf ("fastmap: ");
905 print_fastmap (bufp
->fastmap
);
908 printf ("re_nsub: %d\t", bufp
->re_nsub
);
909 printf ("regs_alloc: %d\t", bufp
->regs_allocated
);
910 printf ("can_be_null: %d\t", bufp
->can_be_null
);
911 printf ("newline_anchor: %d\n", bufp
->newline_anchor
);
912 printf ("no_sub: %d\t", bufp
->no_sub
);
913 printf ("not_bol: %d\t", bufp
->not_bol
);
914 printf ("not_eol: %d\t", bufp
->not_eol
);
915 printf ("syntax: %lx\n", bufp
->syntax
);
916 /* Perhaps we should print the translate table? */
921 print_double_string (where
, string1
, size1
, string2
, size2
)
934 if (FIRST_STRING_P (where
))
936 for (this_char
= where
- string1
; this_char
< size1
; this_char
++)
937 putchar (string1
[this_char
]);
942 for (this_char
= where
- string2
; this_char
< size2
; this_char
++)
943 putchar (string2
[this_char
]);
954 #else /* not DEBUG */
959 # define DEBUG_STATEMENT(e)
960 # define DEBUG_PRINT1(x)
961 # define DEBUG_PRINT2(x1, x2)
962 # define DEBUG_PRINT3(x1, x2, x3)
963 # define DEBUG_PRINT4(x1, x2, x3, x4)
964 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
965 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
967 #endif /* not DEBUG */
969 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
970 also be assigned to arbitrarily: each pattern buffer stores its own
971 syntax, so it can be changed between regex compilations. */
972 /* This has no initializer because initialized variables in Emacs
973 become read-only after dumping. */
974 reg_syntax_t re_syntax_options
;
977 /* Specify the precise syntax of regexps for compilation. This provides
978 for compatibility for various utilities which historically have
979 different, incompatible syntaxes.
981 The argument SYNTAX is a bit mask comprised of the various bits
982 defined in regex.h. We return the old syntax. */
985 re_set_syntax (syntax
)
988 reg_syntax_t ret
= re_syntax_options
;
990 re_syntax_options
= syntax
;
992 if (syntax
& RE_DEBUG
)
994 else if (debug
) /* was on but now is not */
1000 weak_alias (__re_set_syntax
, re_set_syntax
)
1003 /* This table gives an error message for each of the error codes listed
1004 in regex.h. Obviously the order here has to be same as there.
1005 POSIX doesn't require that we do anything for REG_NOERROR,
1006 but why not be nice? */
1008 static const char *re_error_msgid
[] =
1010 gettext_noop ("Success"), /* REG_NOERROR */
1011 gettext_noop ("No match"), /* REG_NOMATCH */
1012 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1013 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1014 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1015 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1016 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1017 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1018 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1019 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1020 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1021 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1022 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1023 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1024 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1025 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1026 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1029 /* Avoiding alloca during matching, to placate r_alloc. */
1031 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1032 searching and matching functions should not call alloca. On some
1033 systems, alloca is implemented in terms of malloc, and if we're
1034 using the relocating allocator routines, then malloc could cause a
1035 relocation, which might (if the strings being searched are in the
1036 ralloc heap) shift the data out from underneath the regexp
1039 Here's another reason to avoid allocation: Emacs
1040 processes input from X in a signal handler; processing X input may
1041 call malloc; if input arrives while a matching routine is calling
1042 malloc, then we're scrod. But Emacs can't just block input while
1043 calling matching routines; then we don't notice interrupts when
1044 they come in. So, Emacs blocks input around all regexp calls
1045 except the matching calls, which it leaves unprotected, in the
1046 faith that they will not malloc. */
1048 /* Normally, this is fine. */
1049 #define MATCH_MAY_ALLOCATE
1051 /* When using GNU C, we are not REALLY using the C alloca, no matter
1052 what config.h may say. So don't take precautions for it. */
1057 /* The match routines may not allocate if (1) they would do it with malloc
1058 and (2) it's not safe for them to use malloc.
1059 Note that if REL_ALLOC is defined, matching would not use malloc for the
1060 failure stack, but we would still use it for the register vectors;
1061 so REL_ALLOC should not affect this. */
1062 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1063 # undef MATCH_MAY_ALLOCATE
1067 /* Failure stack declarations and macros; both re_compile_fastmap and
1068 re_match_2 use a failure stack. These have to be macros because of
1069 REGEX_ALLOCATE_STACK. */
1072 /* Number of failure points for which to initially allocate space
1073 when matching. If this number is exceeded, we allocate more
1074 space, so it is not a hard limit. */
1075 #ifndef INIT_FAILURE_ALLOC
1076 # define INIT_FAILURE_ALLOC 5
1079 /* Roughly the maximum number of failure points on the stack. Would be
1080 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1081 This is a variable only so users of regex can assign to it; we never
1082 change it ourselves. */
1086 # if defined MATCH_MAY_ALLOCATE
1087 /* 4400 was enough to cause a crash on Alpha OSF/1,
1088 whose default stack limit is 2mb. */
1089 long int re_max_failures
= 4000;
1091 long int re_max_failures
= 2000;
1094 union fail_stack_elt
1096 unsigned char *pointer
;
1100 typedef union fail_stack_elt fail_stack_elt_t
;
1104 fail_stack_elt_t
*stack
;
1105 unsigned long int size
;
1106 unsigned long int avail
; /* Offset of next open position. */
1109 #else /* not INT_IS_16BIT */
1111 # if defined MATCH_MAY_ALLOCATE
1112 /* 4400 was enough to cause a crash on Alpha OSF/1,
1113 whose default stack limit is 2mb. */
1114 int re_max_failures
= 20000;
1116 int re_max_failures
= 2000;
1119 union fail_stack_elt
1121 unsigned char *pointer
;
1125 typedef union fail_stack_elt fail_stack_elt_t
;
1129 fail_stack_elt_t
*stack
;
1131 unsigned avail
; /* Offset of next open position. */
1134 #endif /* INT_IS_16BIT */
1136 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1137 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1138 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1141 /* Define macros to initialize and free the failure stack.
1142 Do `return -2' if the alloc fails. */
1144 #ifdef MATCH_MAY_ALLOCATE
1145 # define INIT_FAIL_STACK() \
1147 fail_stack.stack = (fail_stack_elt_t *) \
1148 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1150 if (fail_stack.stack == NULL) \
1153 fail_stack.size = INIT_FAILURE_ALLOC; \
1154 fail_stack.avail = 0; \
1157 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1159 # define INIT_FAIL_STACK() \
1161 fail_stack.avail = 0; \
1164 # define RESET_FAIL_STACK()
1168 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1170 Return 1 if succeeds, and 0 if either ran out of memory
1171 allocating space for it or it was already too large.
1173 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1175 #define DOUBLE_FAIL_STACK(fail_stack) \
1176 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1178 : ((fail_stack).stack = (fail_stack_elt_t *) \
1179 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1180 (fail_stack).size * sizeof (fail_stack_elt_t), \
1181 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
1183 (fail_stack).stack == NULL \
1185 : ((fail_stack).size <<= 1, \
1189 /* Push pointer POINTER on FAIL_STACK.
1190 Return 1 if was able to do so and 0 if ran out of memory allocating
1192 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1193 ((FAIL_STACK_FULL () \
1194 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1196 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1199 /* Push a pointer value onto the failure stack.
1200 Assumes the variable `fail_stack'. Probably should only
1201 be called from within `PUSH_FAILURE_POINT'. */
1202 #define PUSH_FAILURE_POINTER(item) \
1203 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1205 /* This pushes an integer-valued item onto the failure stack.
1206 Assumes the variable `fail_stack'. Probably should only
1207 be called from within `PUSH_FAILURE_POINT'. */
1208 #define PUSH_FAILURE_INT(item) \
1209 fail_stack.stack[fail_stack.avail++].integer = (item)
1211 /* Push a fail_stack_elt_t value onto the failure stack.
1212 Assumes the variable `fail_stack'. Probably should only
1213 be called from within `PUSH_FAILURE_POINT'. */
1214 #define PUSH_FAILURE_ELT(item) \
1215 fail_stack.stack[fail_stack.avail++] = (item)
1217 /* These three POP... operations complement the three PUSH... operations.
1218 All assume that `fail_stack' is nonempty. */
1219 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1220 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1221 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1223 /* Used to omit pushing failure point id's when we're not debugging. */
1225 # define DEBUG_PUSH PUSH_FAILURE_INT
1226 # define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1228 # define DEBUG_PUSH(item)
1229 # define DEBUG_POP(item_addr)
1233 /* Push the information about the state we will need
1234 if we ever fail back to it.
1236 Requires variables fail_stack, regstart, regend, reg_info, and
1237 num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination'
1240 Does `return FAILURE_CODE' if runs out of memory. */
1242 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1244 char *destination; \
1245 /* Must be int, so when we don't save any registers, the arithmetic \
1246 of 0 + -1 isn't done as unsigned. */ \
1247 /* Can't be int, since there is not a shred of a guarantee that int \
1248 is wide enough to hold a value of something to which pointer can \
1250 active_reg_t this_reg; \
1252 DEBUG_STATEMENT (failure_id++); \
1253 DEBUG_STATEMENT (nfailure_points_pushed++); \
1254 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1255 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1256 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1258 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1259 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1261 /* Ensure we have enough space allocated for what we will push. */ \
1262 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1264 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1265 return failure_code; \
1267 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1268 (fail_stack).size); \
1269 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1272 /* Push the info, starting with the registers. */ \
1273 DEBUG_PRINT1 ("\n"); \
1276 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1279 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1280 DEBUG_STATEMENT (num_regs_pushed++); \
1282 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1283 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1285 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1286 PUSH_FAILURE_POINTER (regend[this_reg]); \
1288 DEBUG_PRINT2 (" info: %p\n ", \
1289 reg_info[this_reg].word.pointer); \
1290 DEBUG_PRINT2 (" match_null=%d", \
1291 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1292 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1293 DEBUG_PRINT2 (" matched_something=%d", \
1294 MATCHED_SOMETHING (reg_info[this_reg])); \
1295 DEBUG_PRINT2 (" ever_matched=%d", \
1296 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1297 DEBUG_PRINT1 ("\n"); \
1298 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1301 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1302 PUSH_FAILURE_INT (lowest_active_reg); \
1304 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1305 PUSH_FAILURE_INT (highest_active_reg); \
1307 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1308 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1309 PUSH_FAILURE_POINTER (pattern_place); \
1311 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1312 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1314 DEBUG_PRINT1 ("'\n"); \
1315 PUSH_FAILURE_POINTER (string_place); \
1317 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1318 DEBUG_PUSH (failure_id); \
1321 /* This is the number of items that are pushed and popped on the stack
1322 for each register. */
1323 #define NUM_REG_ITEMS 3
1325 /* Individual items aside from the registers. */
1327 # define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1329 # define NUM_NONREG_ITEMS 4
1332 /* We push at most this many items on the stack. */
1333 /* We used to use (num_regs - 1), which is the number of registers
1334 this regexp will save; but that was changed to 5
1335 to avoid stack overflow for a regexp with lots of parens. */
1336 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1338 /* We actually push this many items. */
1339 #define NUM_FAILURE_ITEMS \
1341 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1345 /* How many items can still be added to the stack without overflowing it. */
1346 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1349 /* Pops what PUSH_FAIL_STACK pushes.
1351 We restore into the parameters, all of which should be lvalues:
1352 STR -- the saved data position.
1353 PAT -- the saved pattern position.
1354 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1355 REGSTART, REGEND -- arrays of string positions.
1356 REG_INFO -- array of information about each subexpression.
1358 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1359 `pend', `string1', `size1', `string2', and `size2'. */
1361 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1363 DEBUG_STATEMENT (unsigned failure_id;) \
1364 active_reg_t this_reg; \
1365 const unsigned char *string_temp; \
1367 assert (!FAIL_STACK_EMPTY ()); \
1369 /* Remove failure points and point to how many regs pushed. */ \
1370 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1371 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1372 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1374 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1376 DEBUG_POP (&failure_id); \
1377 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1379 /* If the saved string location is NULL, it came from an \
1380 on_failure_keep_string_jump opcode, and we want to throw away the \
1381 saved NULL, thus retaining our current position in the string. */ \
1382 string_temp = POP_FAILURE_POINTER (); \
1383 if (string_temp != NULL) \
1384 str = (const char *) string_temp; \
1386 DEBUG_PRINT2 (" Popping string %p: `", str); \
1387 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1388 DEBUG_PRINT1 ("'\n"); \
1390 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1391 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1392 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1394 /* Restore register info. */ \
1395 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1396 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1398 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1399 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1402 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1404 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1406 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1407 DEBUG_PRINT2 (" info: %p\n", \
1408 reg_info[this_reg].word.pointer); \
1410 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1411 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1413 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1414 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1418 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1420 reg_info[this_reg].word.integer = 0; \
1421 regend[this_reg] = 0; \
1422 regstart[this_reg] = 0; \
1424 highest_active_reg = high_reg; \
1427 set_regs_matched_done = 0; \
1428 DEBUG_STATEMENT (nfailure_points_popped++); \
1429 } /* POP_FAILURE_POINT */
1433 /* Structure for per-register (a.k.a. per-group) information.
1434 Other register information, such as the
1435 starting and ending positions (which are addresses), and the list of
1436 inner groups (which is a bits list) are maintained in separate
1439 We are making a (strictly speaking) nonportable assumption here: that
1440 the compiler will pack our bit fields into something that fits into
1441 the type of `word', i.e., is something that fits into one item on the
1445 /* Declarations and macros for re_match_2. */
1449 fail_stack_elt_t word
;
1452 /* This field is one if this group can match the empty string,
1453 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1454 #define MATCH_NULL_UNSET_VALUE 3
1455 unsigned match_null_string_p
: 2;
1456 unsigned is_active
: 1;
1457 unsigned matched_something
: 1;
1458 unsigned ever_matched_something
: 1;
1460 } register_info_type
;
1462 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1463 #define IS_ACTIVE(R) ((R).bits.is_active)
1464 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1465 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1468 /* Call this when have matched a real character; it sets `matched' flags
1469 for the subexpressions which we are currently inside. Also records
1470 that those subexprs have matched. */
1471 #define SET_REGS_MATCHED() \
1474 if (!set_regs_matched_done) \
1477 set_regs_matched_done = 1; \
1478 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1480 MATCHED_SOMETHING (reg_info[r]) \
1481 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1488 /* Registers are set to a sentinel when they haven't yet matched. */
1489 static char reg_unset_dummy
;
1490 #define REG_UNSET_VALUE (®_unset_dummy)
1491 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1493 /* Subroutine declarations and macros for regex_compile. */
1495 static reg_errcode_t regex_compile
_RE_ARGS ((const char *pattern
, size_t size
,
1496 reg_syntax_t syntax
,
1497 struct re_pattern_buffer
*bufp
));
1498 static void store_op1
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
, int arg
));
1499 static void store_op2
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1500 int arg1
, int arg2
));
1501 static void insert_op1
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1502 int arg
, unsigned char *end
));
1503 static void insert_op2
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1504 int arg1
, int arg2
, unsigned char *end
));
1505 static boolean at_begline_loc_p
_RE_ARGS ((const char *pattern
, const char *p
,
1506 reg_syntax_t syntax
));
1507 static boolean at_endline_loc_p
_RE_ARGS ((const char *p
, const char *pend
,
1508 reg_syntax_t syntax
));
1509 static reg_errcode_t compile_range
_RE_ARGS ((const char **p_ptr
,
1512 reg_syntax_t syntax
,
1515 /* Fetch the next character in the uncompiled pattern---translating it
1516 if necessary. Also cast from a signed character in the constant
1517 string passed to us by the user to an unsigned char that we can use
1518 as an array index (in, e.g., `translate'). */
1520 # define PATFETCH(c) \
1521 do {if (p == pend) return REG_EEND; \
1522 c = (unsigned char) *p++; \
1523 if (translate) c = (unsigned char) translate[c]; \
1527 /* Fetch the next character in the uncompiled pattern, with no
1529 #define PATFETCH_RAW(c) \
1530 do {if (p == pend) return REG_EEND; \
1531 c = (unsigned char) *p++; \
1534 /* Go backwards one character in the pattern. */
1535 #define PATUNFETCH p--
1538 /* If `translate' is non-null, return translate[D], else just D. We
1539 cast the subscript to translate because some data is declared as
1540 `char *', to avoid warnings when a string constant is passed. But
1541 when we use a character as a subscript we must make it unsigned. */
1543 # define TRANSLATE(d) \
1544 (translate ? (char) translate[(unsigned char) (d)] : (d))
1548 /* Macros for outputting the compiled pattern into `buffer'. */
1550 /* If the buffer isn't allocated when it comes in, use this. */
1551 #define INIT_BUF_SIZE 32
1553 /* Make sure we have at least N more bytes of space in buffer. */
1554 #define GET_BUFFER_SPACE(n) \
1555 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
1558 /* Make sure we have one more byte of buffer space and then add C to it. */
1559 #define BUF_PUSH(c) \
1561 GET_BUFFER_SPACE (1); \
1562 *b++ = (unsigned char) (c); \
1566 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1567 #define BUF_PUSH_2(c1, c2) \
1569 GET_BUFFER_SPACE (2); \
1570 *b++ = (unsigned char) (c1); \
1571 *b++ = (unsigned char) (c2); \
1575 /* As with BUF_PUSH_2, except for three bytes. */
1576 #define BUF_PUSH_3(c1, c2, c3) \
1578 GET_BUFFER_SPACE (3); \
1579 *b++ = (unsigned char) (c1); \
1580 *b++ = (unsigned char) (c2); \
1581 *b++ = (unsigned char) (c3); \
1585 /* Store a jump with opcode OP at LOC to location TO. We store a
1586 relative address offset by the three bytes the jump itself occupies. */
1587 #define STORE_JUMP(op, loc, to) \
1588 store_op1 (op, loc, (int) ((to) - (loc) - 3))
1590 /* Likewise, for a two-argument jump. */
1591 #define STORE_JUMP2(op, loc, to, arg) \
1592 store_op2 (op, loc, (int) ((to) - (loc) - 3), arg)
1594 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1595 #define INSERT_JUMP(op, loc, to) \
1596 insert_op1 (op, loc, (int) ((to) - (loc) - 3), b)
1598 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1599 #define INSERT_JUMP2(op, loc, to, arg) \
1600 insert_op2 (op, loc, (int) ((to) - (loc) - 3), arg, b)
1603 /* This is not an arbitrary limit: the arguments which represent offsets
1604 into the pattern are two bytes long. So if 2^16 bytes turns out to
1605 be too small, many things would have to change. */
1606 /* Any other compiler which, like MSC, has allocation limit below 2^16
1607 bytes will have to use approach similar to what was done below for
1608 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1609 reallocating to 0 bytes. Such thing is not going to work too well.
1610 You have been warned!! */
1611 #if defined _MSC_VER && !defined WIN32
1612 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
1613 The REALLOC define eliminates a flurry of conversion warnings,
1614 but is not required. */
1615 # define MAX_BUF_SIZE 65500L
1616 # define REALLOC(p,s) realloc ((p), (size_t) (s))
1618 # define MAX_BUF_SIZE (1L << 16)
1619 # define REALLOC(p,s) realloc ((p), (s))
1622 /* Extend the buffer by twice its current size via realloc and
1623 reset the pointers that pointed into the old block to point to the
1624 correct places in the new one. If extending the buffer results in it
1625 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1626 #define EXTEND_BUFFER() \
1628 unsigned char *old_buffer = bufp->buffer; \
1629 if (bufp->allocated == MAX_BUF_SIZE) \
1631 bufp->allocated <<= 1; \
1632 if (bufp->allocated > MAX_BUF_SIZE) \
1633 bufp->allocated = MAX_BUF_SIZE; \
1634 bufp->buffer = (unsigned char *) REALLOC (bufp->buffer, bufp->allocated);\
1635 if (bufp->buffer == NULL) \
1636 return REG_ESPACE; \
1637 /* If the buffer moved, move all the pointers into it. */ \
1638 if (old_buffer != bufp->buffer) \
1640 b = (b - old_buffer) + bufp->buffer; \
1641 begalt = (begalt - old_buffer) + bufp->buffer; \
1642 if (fixup_alt_jump) \
1643 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1645 laststart = (laststart - old_buffer) + bufp->buffer; \
1646 if (pending_exact) \
1647 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1652 /* Since we have one byte reserved for the register number argument to
1653 {start,stop}_memory, the maximum number of groups we can report
1654 things about is what fits in that byte. */
1655 #define MAX_REGNUM 255
1657 /* But patterns can have more than `MAX_REGNUM' registers. We just
1658 ignore the excess. */
1659 typedef unsigned regnum_t
;
1662 /* Macros for the compile stack. */
1664 /* Since offsets can go either forwards or backwards, this type needs to
1665 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1666 /* int may be not enough when sizeof(int) == 2. */
1667 typedef long pattern_offset_t
;
1671 pattern_offset_t begalt_offset
;
1672 pattern_offset_t fixup_alt_jump
;
1673 pattern_offset_t inner_group_offset
;
1674 pattern_offset_t laststart_offset
;
1676 } compile_stack_elt_t
;
1681 compile_stack_elt_t
*stack
;
1683 unsigned avail
; /* Offset of next open position. */
1684 } compile_stack_type
;
1687 #define INIT_COMPILE_STACK_SIZE 32
1689 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1690 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1692 /* The next available element. */
1693 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1696 /* Set the bit for character C in a list. */
1697 #define SET_LIST_BIT(c) \
1698 (b[((unsigned char) (c)) / BYTEWIDTH] \
1699 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1702 /* Get the next unsigned number in the uncompiled pattern. */
1703 #define GET_UNSIGNED_NUMBER(num) \
1707 while (ISDIGIT (c)) \
1711 num = num * 10 + c - '0'; \
1719 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
1720 /* The GNU C library provides support for user-defined character classes
1721 and the functions from ISO C amendement 1. */
1722 # ifdef CHARCLASS_NAME_MAX
1723 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1725 /* This shouldn't happen but some implementation might still have this
1726 problem. Use a reasonable default value. */
1727 # define CHAR_CLASS_MAX_LENGTH 256
1731 # define IS_CHAR_CLASS(string) __wctype (string)
1733 # define IS_CHAR_CLASS(string) wctype (string)
1736 # define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1738 # define IS_CHAR_CLASS(string) \
1739 (STREQ (string, "alpha") || STREQ (string, "upper") \
1740 || STREQ (string, "lower") || STREQ (string, "digit") \
1741 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1742 || STREQ (string, "space") || STREQ (string, "print") \
1743 || STREQ (string, "punct") || STREQ (string, "graph") \
1744 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1747 #ifndef MATCH_MAY_ALLOCATE
1749 /* If we cannot allocate large objects within re_match_2_internal,
1750 we make the fail stack and register vectors global.
1751 The fail stack, we grow to the maximum size when a regexp
1753 The register vectors, we adjust in size each time we
1754 compile a regexp, according to the number of registers it needs. */
1756 static fail_stack_type fail_stack
;
1758 /* Size with which the following vectors are currently allocated.
1759 That is so we can make them bigger as needed,
1760 but never make them smaller. */
1761 static int regs_allocated_size
;
1763 static const char ** regstart
, ** regend
;
1764 static const char ** old_regstart
, ** old_regend
;
1765 static const char **best_regstart
, **best_regend
;
1766 static register_info_type
*reg_info
;
1767 static const char **reg_dummy
;
1768 static register_info_type
*reg_info_dummy
;
1770 /* Make the register vectors big enough for NUM_REGS registers,
1771 but don't make them smaller. */
1774 regex_grow_registers (num_regs
)
1777 if (num_regs
> regs_allocated_size
)
1779 RETALLOC_IF (regstart
, num_regs
, const char *);
1780 RETALLOC_IF (regend
, num_regs
, const char *);
1781 RETALLOC_IF (old_regstart
, num_regs
, const char *);
1782 RETALLOC_IF (old_regend
, num_regs
, const char *);
1783 RETALLOC_IF (best_regstart
, num_regs
, const char *);
1784 RETALLOC_IF (best_regend
, num_regs
, const char *);
1785 RETALLOC_IF (reg_info
, num_regs
, register_info_type
);
1786 RETALLOC_IF (reg_dummy
, num_regs
, const char *);
1787 RETALLOC_IF (reg_info_dummy
, num_regs
, register_info_type
);
1789 regs_allocated_size
= num_regs
;
1793 #endif /* not MATCH_MAY_ALLOCATE */
1795 static boolean group_in_compile_stack
_RE_ARGS ((compile_stack_type
1799 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1800 Returns one of error codes defined in `regex.h', or zero for success.
1802 Assumes the `allocated' (and perhaps `buffer') and `translate'
1803 fields are set in BUFP on entry.
1805 If it succeeds, results are put in BUFP (if it returns an error, the
1806 contents of BUFP are undefined):
1807 `buffer' is the compiled pattern;
1808 `syntax' is set to SYNTAX;
1809 `used' is set to the length of the compiled pattern;
1810 `fastmap_accurate' is zero;
1811 `re_nsub' is the number of subexpressions in PATTERN;
1812 `not_bol' and `not_eol' are zero;
1814 The `fastmap' and `newline_anchor' fields are neither
1815 examined nor set. */
1817 /* Return, freeing storage we allocated. */
1818 #define FREE_STACK_RETURN(value) \
1819 return (free (compile_stack.stack), value)
1821 static reg_errcode_t
1822 regex_compile (pattern
, size
, syntax
, bufp
)
1823 const char *pattern
;
1825 reg_syntax_t syntax
;
1826 struct re_pattern_buffer
*bufp
;
1828 /* We fetch characters from PATTERN here. Even though PATTERN is
1829 `char *' (i.e., signed), we declare these variables as unsigned, so
1830 they can be reliably used as array indices. */
1831 register unsigned char c
, c1
;
1833 /* A random temporary spot in PATTERN. */
1836 /* Points to the end of the buffer, where we should append. */
1837 register unsigned char *b
;
1839 /* Keeps track of unclosed groups. */
1840 compile_stack_type compile_stack
;
1842 /* Points to the current (ending) position in the pattern. */
1843 const char *p
= pattern
;
1844 const char *pend
= pattern
+ size
;
1846 /* How to translate the characters in the pattern. */
1847 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
1849 /* Address of the count-byte of the most recently inserted `exactn'
1850 command. This makes it possible to tell if a new exact-match
1851 character can be added to that command or if the character requires
1852 a new `exactn' command. */
1853 unsigned char *pending_exact
= 0;
1855 /* Address of start of the most recently finished expression.
1856 This tells, e.g., postfix * where to find the start of its
1857 operand. Reset at the beginning of groups and alternatives. */
1858 unsigned char *laststart
= 0;
1860 /* Address of beginning of regexp, or inside of last group. */
1861 unsigned char *begalt
;
1863 /* Place in the uncompiled pattern (i.e., the {) to
1864 which to go back if the interval is invalid. */
1865 const char *beg_interval
;
1867 /* Address of the place where a forward jump should go to the end of
1868 the containing expression. Each alternative of an `or' -- except the
1869 last -- ends with a forward jump of this sort. */
1870 unsigned char *fixup_alt_jump
= 0;
1872 /* Counts open-groups as they are encountered. Remembered for the
1873 matching close-group on the compile stack, so the same register
1874 number is put in the stop_memory as the start_memory. */
1875 regnum_t regnum
= 0;
1878 DEBUG_PRINT1 ("\nCompiling pattern: ");
1881 unsigned debug_count
;
1883 for (debug_count
= 0; debug_count
< size
; debug_count
++)
1884 putchar (pattern
[debug_count
]);
1889 /* Initialize the compile stack. */
1890 compile_stack
.stack
= TALLOC (INIT_COMPILE_STACK_SIZE
, compile_stack_elt_t
);
1891 if (compile_stack
.stack
== NULL
)
1894 compile_stack
.size
= INIT_COMPILE_STACK_SIZE
;
1895 compile_stack
.avail
= 0;
1897 /* Initialize the pattern buffer. */
1898 bufp
->syntax
= syntax
;
1899 bufp
->fastmap_accurate
= 0;
1900 bufp
->not_bol
= bufp
->not_eol
= 0;
1902 /* Set `used' to zero, so that if we return an error, the pattern
1903 printer (for debugging) will think there's no pattern. We reset it
1907 /* Always count groups, whether or not bufp->no_sub is set. */
1910 #if !defined emacs && !defined SYNTAX_TABLE
1911 /* Initialize the syntax table. */
1912 init_syntax_once ();
1915 if (bufp
->allocated
== 0)
1918 { /* If zero allocated, but buffer is non-null, try to realloc
1919 enough space. This loses if buffer's address is bogus, but
1920 that is the user's responsibility. */
1921 RETALLOC (bufp
->buffer
, INIT_BUF_SIZE
, unsigned char);
1924 { /* Caller did not allocate a buffer. Do it for them. */
1925 bufp
->buffer
= TALLOC (INIT_BUF_SIZE
, unsigned char);
1927 if (!bufp
->buffer
) FREE_STACK_RETURN (REG_ESPACE
);
1929 bufp
->allocated
= INIT_BUF_SIZE
;
1932 begalt
= b
= bufp
->buffer
;
1934 /* Loop through the uncompiled pattern until we're at the end. */
1943 if ( /* If at start of pattern, it's an operator. */
1945 /* If context independent, it's an operator. */
1946 || syntax
& RE_CONTEXT_INDEP_ANCHORS
1947 /* Otherwise, depends on what's come before. */
1948 || at_begline_loc_p (pattern
, p
, syntax
))
1958 if ( /* If at end of pattern, it's an operator. */
1960 /* If context independent, it's an operator. */
1961 || syntax
& RE_CONTEXT_INDEP_ANCHORS
1962 /* Otherwise, depends on what's next. */
1963 || at_endline_loc_p (p
, pend
, syntax
))
1973 if ((syntax
& RE_BK_PLUS_QM
)
1974 || (syntax
& RE_LIMITED_OPS
))
1978 /* If there is no previous pattern... */
1981 if (syntax
& RE_CONTEXT_INVALID_OPS
)
1982 FREE_STACK_RETURN (REG_BADRPT
);
1983 else if (!(syntax
& RE_CONTEXT_INDEP_OPS
))
1988 /* Are we optimizing this jump? */
1989 boolean keep_string_p
= false;
1991 /* 1 means zero (many) matches is allowed. */
1992 char zero_times_ok
= 0, many_times_ok
= 0;
1994 /* If there is a sequence of repetition chars, collapse it
1995 down to just one (the right one). We can't combine
1996 interval operators with these because of, e.g., `a{2}*',
1997 which should only match an even number of `a's. */
2001 zero_times_ok
|= c
!= '+';
2002 many_times_ok
|= c
!= '?';
2010 || (!(syntax
& RE_BK_PLUS_QM
) && (c
== '+' || c
== '?')))
2013 else if (syntax
& RE_BK_PLUS_QM
&& c
== '\\')
2015 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2018 if (!(c1
== '+' || c1
== '?'))
2033 /* If we get here, we found another repeat character. */
2036 /* Star, etc. applied to an empty pattern is equivalent
2037 to an empty pattern. */
2041 /* Now we know whether or not zero matches is allowed
2042 and also whether or not two or more matches is allowed. */
2044 { /* More than one repetition is allowed, so put in at the
2045 end a backward relative jump from `b' to before the next
2046 jump we're going to put in below (which jumps from
2047 laststart to after this jump).
2049 But if we are at the `*' in the exact sequence `.*\n',
2050 insert an unconditional jump backwards to the .,
2051 instead of the beginning of the loop. This way we only
2052 push a failure point once, instead of every time
2053 through the loop. */
2054 assert (p
- 1 > pattern
);
2056 /* Allocate the space for the jump. */
2057 GET_BUFFER_SPACE (3);
2059 /* We know we are not at the first character of the pattern,
2060 because laststart was nonzero. And we've already
2061 incremented `p', by the way, to be the character after
2062 the `*'. Do we have to do something analogous here
2063 for null bytes, because of RE_DOT_NOT_NULL? */
2064 if (TRANSLATE (*(p
- 2)) == TRANSLATE ('.')
2066 && p
< pend
&& TRANSLATE (*p
) == TRANSLATE ('\n')
2067 && !(syntax
& RE_DOT_NEWLINE
))
2068 { /* We have .*\n. */
2069 STORE_JUMP (jump
, b
, laststart
);
2070 keep_string_p
= true;
2073 /* Anything else. */
2074 STORE_JUMP (maybe_pop_jump
, b
, laststart
- 3);
2076 /* We've added more stuff to the buffer. */
2080 /* On failure, jump from laststart to b + 3, which will be the
2081 end of the buffer after this jump is inserted. */
2082 GET_BUFFER_SPACE (3);
2083 INSERT_JUMP (keep_string_p
? on_failure_keep_string_jump
2091 /* At least one repetition is required, so insert a
2092 `dummy_failure_jump' before the initial
2093 `on_failure_jump' instruction of the loop. This
2094 effects a skip over that instruction the first time
2095 we hit that loop. */
2096 GET_BUFFER_SPACE (3);
2097 INSERT_JUMP (dummy_failure_jump
, laststart
, laststart
+ 6);
2112 boolean had_char_class
= false;
2114 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2116 /* Ensure that we have enough space to push a charset: the
2117 opcode, the length count, and the bitset; 34 bytes in all. */
2118 GET_BUFFER_SPACE (34);
2122 /* We test `*p == '^' twice, instead of using an if
2123 statement, so we only need one BUF_PUSH. */
2124 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
2128 /* Remember the first position in the bracket expression. */
2131 /* Push the number of bytes in the bitmap. */
2132 BUF_PUSH ((1 << BYTEWIDTH
) / BYTEWIDTH
);
2134 /* Clear the whole map. */
2135 bzero (b
, (1 << BYTEWIDTH
) / BYTEWIDTH
);
2137 /* charset_not matches newline according to a syntax bit. */
2138 if ((re_opcode_t
) b
[-2] == charset_not
2139 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
2140 SET_LIST_BIT ('\n');
2142 /* Read in characters and ranges, setting map bits. */
2145 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2149 /* \ might escape characters inside [...] and [^...]. */
2150 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
2152 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2159 /* Could be the end of the bracket expression. If it's
2160 not (i.e., when the bracket expression is `[]' so
2161 far), the ']' character bit gets set way below. */
2162 if (c
== ']' && p
!= p1
+ 1)
2165 /* Look ahead to see if it's a range when the last thing
2166 was a character class. */
2167 if (had_char_class
&& c
== '-' && *p
!= ']')
2168 FREE_STACK_RETURN (REG_ERANGE
);
2170 /* Look ahead to see if it's a range when the last thing
2171 was a character: if this is a hyphen not at the
2172 beginning or the end of a list, then it's the range
2175 && !(p
- 2 >= pattern
&& p
[-2] == '[')
2176 && !(p
- 3 >= pattern
&& p
[-3] == '[' && p
[-2] == '^')
2180 = compile_range (&p
, pend
, translate
, syntax
, b
);
2181 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
2184 else if (p
[0] == '-' && p
[1] != ']')
2185 { /* This handles ranges made up of characters only. */
2188 /* Move past the `-'. */
2191 ret
= compile_range (&p
, pend
, translate
, syntax
, b
);
2192 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
2195 /* See if we're at the beginning of a possible character
2198 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
2199 { /* Leave room for the null. */
2200 char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
2205 /* If pattern is `[[:'. */
2206 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2211 if ((c
== ':' && *p
== ']') || p
== pend
2212 || c1
== CHAR_CLASS_MAX_LENGTH
)
2218 /* If isn't a word bracketed by `[:' and `:]':
2219 undo the ending character, the letters, and leave
2220 the leading `:' and `[' (but set bits for them). */
2221 if (c
== ':' && *p
== ']')
2223 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
2224 boolean is_lower
= STREQ (str
, "lower");
2225 boolean is_upper
= STREQ (str
, "upper");
2229 wt
= IS_CHAR_CLASS (str
);
2231 FREE_STACK_RETURN (REG_ECTYPE
);
2233 /* Throw away the ] at the end of the character
2237 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2239 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ++ch
)
2242 if (__iswctype (__btowc (ch
), wt
))
2245 if (iswctype (btowc (ch
), wt
))
2249 if (translate
&& (is_upper
|| is_lower
)
2250 && (ISUPPER (ch
) || ISLOWER (ch
)))
2254 had_char_class
= true;
2257 boolean is_alnum
= STREQ (str
, "alnum");
2258 boolean is_alpha
= STREQ (str
, "alpha");
2259 boolean is_blank
= STREQ (str
, "blank");
2260 boolean is_cntrl
= STREQ (str
, "cntrl");
2261 boolean is_digit
= STREQ (str
, "digit");
2262 boolean is_graph
= STREQ (str
, "graph");
2263 boolean is_lower
= STREQ (str
, "lower");
2264 boolean is_print
= STREQ (str
, "print");
2265 boolean is_punct
= STREQ (str
, "punct");
2266 boolean is_space
= STREQ (str
, "space");
2267 boolean is_upper
= STREQ (str
, "upper");
2268 boolean is_xdigit
= STREQ (str
, "xdigit");
2270 if (!IS_CHAR_CLASS (str
))
2271 FREE_STACK_RETURN (REG_ECTYPE
);
2273 /* Throw away the ] at the end of the character
2277 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2279 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ch
++)
2281 /* This was split into 3 if's to
2282 avoid an arbitrary limit in some compiler. */
2283 if ( (is_alnum
&& ISALNUM (ch
))
2284 || (is_alpha
&& ISALPHA (ch
))
2285 || (is_blank
&& ISBLANK (ch
))
2286 || (is_cntrl
&& ISCNTRL (ch
)))
2288 if ( (is_digit
&& ISDIGIT (ch
))
2289 || (is_graph
&& ISGRAPH (ch
))
2290 || (is_lower
&& ISLOWER (ch
))
2291 || (is_print
&& ISPRINT (ch
)))
2293 if ( (is_punct
&& ISPUNCT (ch
))
2294 || (is_space
&& ISSPACE (ch
))
2295 || (is_upper
&& ISUPPER (ch
))
2296 || (is_xdigit
&& ISXDIGIT (ch
)))
2298 if ( translate
&& (is_upper
|| is_lower
)
2299 && (ISUPPER (ch
) || ISLOWER (ch
)))
2302 had_char_class
= true;
2303 #endif /* libc || wctype.h */
2312 had_char_class
= false;
2317 had_char_class
= false;
2322 /* Discard any (non)matching list bytes that are all 0 at the
2323 end of the map. Decrease the map-length byte too. */
2324 while ((int) b
[-1] > 0 && b
[b
[-1] - 1] == 0)
2332 if (syntax
& RE_NO_BK_PARENS
)
2339 if (syntax
& RE_NO_BK_PARENS
)
2346 if (syntax
& RE_NEWLINE_ALT
)
2353 if (syntax
& RE_NO_BK_VBAR
)
2360 if (syntax
& RE_INTERVALS
&& syntax
& RE_NO_BK_BRACES
)
2361 goto handle_interval
;
2367 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2369 /* Do not translate the character after the \, so that we can
2370 distinguish, e.g., \B from \b, even if we normally would
2371 translate, e.g., B to b. */
2377 if (syntax
& RE_NO_BK_PARENS
)
2378 goto normal_backslash
;
2384 if (COMPILE_STACK_FULL
)
2386 RETALLOC (compile_stack
.stack
, compile_stack
.size
<< 1,
2387 compile_stack_elt_t
);
2388 if (compile_stack
.stack
== NULL
) return REG_ESPACE
;
2390 compile_stack
.size
<<= 1;
2393 /* These are the values to restore when we hit end of this
2394 group. They are all relative offsets, so that if the
2395 whole pattern moves because of realloc, they will still
2397 COMPILE_STACK_TOP
.begalt_offset
= begalt
- bufp
->buffer
;
2398 COMPILE_STACK_TOP
.fixup_alt_jump
2399 = fixup_alt_jump
? fixup_alt_jump
- bufp
->buffer
+ 1 : 0;
2400 COMPILE_STACK_TOP
.laststart_offset
= b
- bufp
->buffer
;
2401 COMPILE_STACK_TOP
.regnum
= regnum
;
2403 /* We will eventually replace the 0 with the number of
2404 groups inner to this one. But do not push a
2405 start_memory for groups beyond the last one we can
2406 represent in the compiled pattern. */
2407 if (regnum
<= MAX_REGNUM
)
2409 COMPILE_STACK_TOP
.inner_group_offset
= b
- bufp
->buffer
+ 2;
2410 BUF_PUSH_3 (start_memory
, regnum
, 0);
2413 compile_stack
.avail
++;
2418 /* If we've reached MAX_REGNUM groups, then this open
2419 won't actually generate any code, so we'll have to
2420 clear pending_exact explicitly. */
2426 if (syntax
& RE_NO_BK_PARENS
) goto normal_backslash
;
2428 if (COMPILE_STACK_EMPTY
)
2430 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
2431 goto normal_backslash
;
2433 FREE_STACK_RETURN (REG_ERPAREN
);
2438 { /* Push a dummy failure point at the end of the
2439 alternative for a possible future
2440 `pop_failure_jump' to pop. See comments at
2441 `push_dummy_failure' in `re_match_2'. */
2442 BUF_PUSH (push_dummy_failure
);
2444 /* We allocated space for this jump when we assigned
2445 to `fixup_alt_jump', in the `handle_alt' case below. */
2446 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
- 1);
2449 /* See similar code for backslashed left paren above. */
2450 if (COMPILE_STACK_EMPTY
)
2452 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
2455 FREE_STACK_RETURN (REG_ERPAREN
);
2458 /* Since we just checked for an empty stack above, this
2459 ``can't happen''. */
2460 assert (compile_stack
.avail
!= 0);
2462 /* We don't just want to restore into `regnum', because
2463 later groups should continue to be numbered higher,
2464 as in `(ab)c(de)' -- the second group is #2. */
2465 regnum_t this_group_regnum
;
2467 compile_stack
.avail
--;
2468 begalt
= bufp
->buffer
+ COMPILE_STACK_TOP
.begalt_offset
;
2470 = COMPILE_STACK_TOP
.fixup_alt_jump
2471 ? bufp
->buffer
+ COMPILE_STACK_TOP
.fixup_alt_jump
- 1
2473 laststart
= bufp
->buffer
+ COMPILE_STACK_TOP
.laststart_offset
;
2474 this_group_regnum
= COMPILE_STACK_TOP
.regnum
;
2475 /* If we've reached MAX_REGNUM groups, then this open
2476 won't actually generate any code, so we'll have to
2477 clear pending_exact explicitly. */
2480 /* We're at the end of the group, so now we know how many
2481 groups were inside this one. */
2482 if (this_group_regnum
<= MAX_REGNUM
)
2484 unsigned char *inner_group_loc
2485 = bufp
->buffer
+ COMPILE_STACK_TOP
.inner_group_offset
;
2487 *inner_group_loc
= regnum
- this_group_regnum
;
2488 BUF_PUSH_3 (stop_memory
, this_group_regnum
,
2489 regnum
- this_group_regnum
);
2495 case '|': /* `\|'. */
2496 if (syntax
& RE_LIMITED_OPS
|| syntax
& RE_NO_BK_VBAR
)
2497 goto normal_backslash
;
2499 if (syntax
& RE_LIMITED_OPS
)
2502 /* Insert before the previous alternative a jump which
2503 jumps to this alternative if the former fails. */
2504 GET_BUFFER_SPACE (3);
2505 INSERT_JUMP (on_failure_jump
, begalt
, b
+ 6);
2509 /* The alternative before this one has a jump after it
2510 which gets executed if it gets matched. Adjust that
2511 jump so it will jump to this alternative's analogous
2512 jump (put in below, which in turn will jump to the next
2513 (if any) alternative's such jump, etc.). The last such
2514 jump jumps to the correct final destination. A picture:
2520 If we are at `b', then fixup_alt_jump right now points to a
2521 three-byte space after `a'. We'll put in the jump, set
2522 fixup_alt_jump to right after `b', and leave behind three
2523 bytes which we'll fill in when we get to after `c'. */
2526 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
2528 /* Mark and leave space for a jump after this alternative,
2529 to be filled in later either by next alternative or
2530 when know we're at the end of a series of alternatives. */
2532 GET_BUFFER_SPACE (3);
2541 /* If \{ is a literal. */
2542 if (!(syntax
& RE_INTERVALS
)
2543 /* If we're at `\{' and it's not the open-interval
2545 || ((syntax
& RE_INTERVALS
) && (syntax
& RE_NO_BK_BRACES
))
2546 || (p
- 2 == pattern
&& p
== pend
))
2547 goto normal_backslash
;
2551 /* If got here, then the syntax allows intervals. */
2553 /* At least (most) this many matches must be made. */
2554 int lower_bound
= -1, upper_bound
= -1;
2556 beg_interval
= p
- 1;
2560 if (syntax
& RE_NO_BK_BRACES
)
2561 goto unfetch_interval
;
2563 FREE_STACK_RETURN (REG_EBRACE
);
2566 GET_UNSIGNED_NUMBER (lower_bound
);
2570 GET_UNSIGNED_NUMBER (upper_bound
);
2571 if (upper_bound
< 0) upper_bound
= RE_DUP_MAX
;
2574 /* Interval such as `{1}' => match exactly once. */
2575 upper_bound
= lower_bound
;
2577 if (lower_bound
< 0 || upper_bound
> RE_DUP_MAX
2578 || lower_bound
> upper_bound
)
2580 if (syntax
& RE_NO_BK_BRACES
)
2581 goto unfetch_interval
;
2583 FREE_STACK_RETURN (REG_BADBR
);
2586 if (!(syntax
& RE_NO_BK_BRACES
))
2588 if (c
!= '\\') FREE_STACK_RETURN (REG_EBRACE
);
2595 if (syntax
& RE_NO_BK_BRACES
)
2596 goto unfetch_interval
;
2598 FREE_STACK_RETURN (REG_BADBR
);
2601 /* We just parsed a valid interval. */
2603 /* If it's invalid to have no preceding re. */
2606 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2607 FREE_STACK_RETURN (REG_BADRPT
);
2608 else if (syntax
& RE_CONTEXT_INDEP_OPS
)
2611 goto unfetch_interval
;
2614 /* If the upper bound is zero, don't want to succeed at
2615 all; jump from `laststart' to `b + 3', which will be
2616 the end of the buffer after we insert the jump. */
2617 if (upper_bound
== 0)
2619 GET_BUFFER_SPACE (3);
2620 INSERT_JUMP (jump
, laststart
, b
+ 3);
2624 /* Otherwise, we have a nontrivial interval. When
2625 we're all done, the pattern will look like:
2626 set_number_at <jump count> <upper bound>
2627 set_number_at <succeed_n count> <lower bound>
2628 succeed_n <after jump addr> <succeed_n count>
2630 jump_n <succeed_n addr> <jump count>
2631 (The upper bound and `jump_n' are omitted if
2632 `upper_bound' is 1, though.) */
2634 { /* If the upper bound is > 1, we need to insert
2635 more at the end of the loop. */
2636 unsigned nbytes
= 10 + (upper_bound
> 1) * 10;
2638 GET_BUFFER_SPACE (nbytes
);
2640 /* Initialize lower bound of the `succeed_n', even
2641 though it will be set during matching by its
2642 attendant `set_number_at' (inserted next),
2643 because `re_compile_fastmap' needs to know.
2644 Jump to the `jump_n' we might insert below. */
2645 INSERT_JUMP2 (succeed_n
, laststart
,
2646 b
+ 5 + (upper_bound
> 1) * 5,
2650 /* Code to initialize the lower bound. Insert
2651 before the `succeed_n'. The `5' is the last two
2652 bytes of this `set_number_at', plus 3 bytes of
2653 the following `succeed_n'. */
2654 insert_op2 (set_number_at
, laststart
, 5, lower_bound
, b
);
2657 if (upper_bound
> 1)
2658 { /* More than one repetition is allowed, so
2659 append a backward jump to the `succeed_n'
2660 that starts this interval.
2662 When we've reached this during matching,
2663 we'll have matched the interval once, so
2664 jump back only `upper_bound - 1' times. */
2665 STORE_JUMP2 (jump_n
, b
, laststart
+ 5,
2669 /* The location we want to set is the second
2670 parameter of the `jump_n'; that is `b-2' as
2671 an absolute address. `laststart' will be
2672 the `set_number_at' we're about to insert;
2673 `laststart+3' the number to set, the source
2674 for the relative address. But we are
2675 inserting into the middle of the pattern --
2676 so everything is getting moved up by 5.
2677 Conclusion: (b - 2) - (laststart + 3) + 5,
2678 i.e., b - laststart.
2680 We insert this at the beginning of the loop
2681 so that if we fail during matching, we'll
2682 reinitialize the bounds. */
2683 insert_op2 (set_number_at
, laststart
, b
- laststart
,
2684 upper_bound
- 1, b
);
2689 beg_interval
= NULL
;
2694 /* If an invalid interval, match the characters as literals. */
2695 assert (beg_interval
);
2697 beg_interval
= NULL
;
2699 /* normal_char and normal_backslash need `c'. */
2702 if (!(syntax
& RE_NO_BK_BRACES
))
2704 if (p
> pattern
&& p
[-1] == '\\')
2705 goto normal_backslash
;
2710 /* There is no way to specify the before_dot and after_dot
2711 operators. rms says this is ok. --karl */
2719 BUF_PUSH_2 (syntaxspec
, syntax_spec_code
[c
]);
2725 BUF_PUSH_2 (notsyntaxspec
, syntax_spec_code
[c
]);
2731 if (syntax
& RE_NO_GNU_OPS
)
2734 BUF_PUSH (wordchar
);
2739 if (syntax
& RE_NO_GNU_OPS
)
2742 BUF_PUSH (notwordchar
);
2747 if (syntax
& RE_NO_GNU_OPS
)
2753 if (syntax
& RE_NO_GNU_OPS
)
2759 if (syntax
& RE_NO_GNU_OPS
)
2761 BUF_PUSH (wordbound
);
2765 if (syntax
& RE_NO_GNU_OPS
)
2767 BUF_PUSH (notwordbound
);
2771 if (syntax
& RE_NO_GNU_OPS
)
2777 if (syntax
& RE_NO_GNU_OPS
)
2782 case '1': case '2': case '3': case '4': case '5':
2783 case '6': case '7': case '8': case '9':
2784 if (syntax
& RE_NO_BK_REFS
)
2790 FREE_STACK_RETURN (REG_ESUBREG
);
2792 /* Can't back reference to a subexpression if inside of it. */
2793 if (group_in_compile_stack (compile_stack
, (regnum_t
) c1
))
2797 BUF_PUSH_2 (duplicate
, c1
);
2803 if (syntax
& RE_BK_PLUS_QM
)
2806 goto normal_backslash
;
2810 /* You might think it would be useful for \ to mean
2811 not to translate; but if we don't translate it
2812 it will never match anything. */
2820 /* Expects the character in `c'. */
2822 /* If no exactn currently being built. */
2825 /* If last exactn not at current position. */
2826 || pending_exact
+ *pending_exact
+ 1 != b
2828 /* We have only one byte following the exactn for the count. */
2829 || *pending_exact
== (1 << BYTEWIDTH
) - 1
2831 /* If followed by a repetition operator. */
2832 || *p
== '*' || *p
== '^'
2833 || ((syntax
& RE_BK_PLUS_QM
)
2834 ? *p
== '\\' && (p
[1] == '+' || p
[1] == '?')
2835 : (*p
== '+' || *p
== '?'))
2836 || ((syntax
& RE_INTERVALS
)
2837 && ((syntax
& RE_NO_BK_BRACES
)
2839 : (p
[0] == '\\' && p
[1] == '{'))))
2841 /* Start building a new exactn. */
2845 BUF_PUSH_2 (exactn
, 0);
2846 pending_exact
= b
- 1;
2853 } /* while p != pend */
2856 /* Through the pattern now. */
2859 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
2861 if (!COMPILE_STACK_EMPTY
)
2862 FREE_STACK_RETURN (REG_EPAREN
);
2864 /* If we don't want backtracking, force success
2865 the first time we reach the end of the compiled pattern. */
2866 if (syntax
& RE_NO_POSIX_BACKTRACKING
)
2869 free (compile_stack
.stack
);
2871 /* We have succeeded; set the length of the buffer. */
2872 bufp
->used
= b
- bufp
->buffer
;
2877 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2878 print_compiled_pattern (bufp
);
2882 #ifndef MATCH_MAY_ALLOCATE
2883 /* Initialize the failure stack to the largest possible stack. This
2884 isn't necessary unless we're trying to avoid calling alloca in
2885 the search and match routines. */
2887 int num_regs
= bufp
->re_nsub
+ 1;
2889 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2890 is strictly greater than re_max_failures, the largest possible stack
2891 is 2 * re_max_failures failure points. */
2892 if (fail_stack
.size
< (2 * re_max_failures
* MAX_FAILURE_ITEMS
))
2894 fail_stack
.size
= (2 * re_max_failures
* MAX_FAILURE_ITEMS
);
2897 if (! fail_stack
.stack
)
2899 = (fail_stack_elt_t
*) xmalloc (fail_stack
.size
2900 * sizeof (fail_stack_elt_t
));
2903 = (fail_stack_elt_t
*) xrealloc (fail_stack
.stack
,
2905 * sizeof (fail_stack_elt_t
)));
2906 # else /* not emacs */
2907 if (! fail_stack
.stack
)
2909 = (fail_stack_elt_t
*) malloc (fail_stack
.size
2910 * sizeof (fail_stack_elt_t
));
2913 = (fail_stack_elt_t
*) realloc (fail_stack
.stack
,
2915 * sizeof (fail_stack_elt_t
)));
2916 # endif /* not emacs */
2919 regex_grow_registers (num_regs
);
2921 #endif /* not MATCH_MAY_ALLOCATE */
2924 } /* regex_compile */
2926 /* Subroutines for `regex_compile'. */
2928 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2931 store_op1 (op
, loc
, arg
)
2936 *loc
= (unsigned char) op
;
2937 STORE_NUMBER (loc
+ 1, arg
);
2941 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2944 store_op2 (op
, loc
, arg1
, arg2
)
2949 *loc
= (unsigned char) op
;
2950 STORE_NUMBER (loc
+ 1, arg1
);
2951 STORE_NUMBER (loc
+ 3, arg2
);
2955 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2956 for OP followed by two-byte integer parameter ARG. */
2959 insert_op1 (op
, loc
, arg
, end
)
2965 register unsigned char *pfrom
= end
;
2966 register unsigned char *pto
= end
+ 3;
2968 while (pfrom
!= loc
)
2971 store_op1 (op
, loc
, arg
);
2975 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2978 insert_op2 (op
, loc
, arg1
, arg2
, end
)
2984 register unsigned char *pfrom
= end
;
2985 register unsigned char *pto
= end
+ 5;
2987 while (pfrom
!= loc
)
2990 store_op2 (op
, loc
, arg1
, arg2
);
2994 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
2995 after an alternative or a begin-subexpression. We assume there is at
2996 least one character before the ^. */
2999 at_begline_loc_p (pattern
, p
, syntax
)
3000 const char *pattern
, *p
;
3001 reg_syntax_t syntax
;
3003 const char *prev
= p
- 2;
3004 boolean prev_prev_backslash
= prev
> pattern
&& prev
[-1] == '\\';
3007 /* After a subexpression? */
3008 (*prev
== '(' && (syntax
& RE_NO_BK_PARENS
|| prev_prev_backslash
))
3009 /* After an alternative? */
3010 || (*prev
== '|' && (syntax
& RE_NO_BK_VBAR
|| prev_prev_backslash
));
3014 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3015 at least one character after the $, i.e., `P < PEND'. */
3018 at_endline_loc_p (p
, pend
, syntax
)
3019 const char *p
, *pend
;
3020 reg_syntax_t syntax
;
3022 const char *next
= p
;
3023 boolean next_backslash
= *next
== '\\';
3024 const char *next_next
= p
+ 1 < pend
? p
+ 1 : 0;
3027 /* Before a subexpression? */
3028 (syntax
& RE_NO_BK_PARENS
? *next
== ')'
3029 : next_backslash
&& next_next
&& *next_next
== ')')
3030 /* Before an alternative? */
3031 || (syntax
& RE_NO_BK_VBAR
? *next
== '|'
3032 : next_backslash
&& next_next
&& *next_next
== '|');
3036 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3037 false if it's not. */
3040 group_in_compile_stack (compile_stack
, regnum
)
3041 compile_stack_type compile_stack
;
3046 for (this_element
= compile_stack
.avail
- 1;
3049 if (compile_stack
.stack
[this_element
].regnum
== regnum
)
3056 /* Read the ending character of a range (in a bracket expression) from the
3057 uncompiled pattern *P_PTR (which ends at PEND). We assume the
3058 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
3059 Then we set the translation of all bits between the starting and
3060 ending characters (inclusive) in the compiled pattern B.
3062 Return an error code.
3064 We use these short variable names so we can use the same macros as
3065 `regex_compile' itself. */
3067 static reg_errcode_t
3068 compile_range (p_ptr
, pend
, translate
, syntax
, b
)
3069 const char **p_ptr
, *pend
;
3070 RE_TRANSLATE_TYPE translate
;
3071 reg_syntax_t syntax
;
3076 const char *p
= *p_ptr
;
3077 unsigned int range_start
, range_end
;
3082 /* Even though the pattern is a signed `char *', we need to fetch
3083 with unsigned char *'s; if the high bit of the pattern character
3084 is set, the range endpoints will be negative if we fetch using a
3087 We also want to fetch the endpoints without translating them; the
3088 appropriate translation is done in the bit-setting loop below. */
3089 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
3090 range_start
= ((const unsigned char *) p
)[-2];
3091 range_end
= ((const unsigned char *) p
)[0];
3093 /* Have to increment the pointer into the pattern string, so the
3094 caller isn't still at the ending character. */
3097 /* If the start is after the end, the range is empty. */
3098 if (range_start
> range_end
)
3099 return syntax
& RE_NO_EMPTY_RANGES
? REG_ERANGE
: REG_NOERROR
;
3101 /* Here we see why `this_char' has to be larger than an `unsigned
3102 char' -- the range is inclusive, so if `range_end' == 0xff
3103 (assuming 8-bit characters), we would otherwise go into an infinite
3104 loop, since all characters <= 0xff. */
3105 for (this_char
= range_start
; this_char
<= range_end
; this_char
++)
3107 SET_LIST_BIT (TRANSLATE (this_char
));
3113 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3114 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3115 characters can start a string that matches the pattern. This fastmap
3116 is used by re_search to skip quickly over impossible starting points.
3118 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3119 area as BUFP->fastmap.
3121 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3124 Returns 0 if we succeed, -2 if an internal error. */
3127 re_compile_fastmap (bufp
)
3128 struct re_pattern_buffer
*bufp
;
3131 #ifdef MATCH_MAY_ALLOCATE
3132 fail_stack_type fail_stack
;
3134 #ifndef REGEX_MALLOC
3138 register char *fastmap
= bufp
->fastmap
;
3139 unsigned char *pattern
= bufp
->buffer
;
3140 unsigned char *p
= pattern
;
3141 register unsigned char *pend
= pattern
+ bufp
->used
;
3144 /* This holds the pointer to the failure stack, when
3145 it is allocated relocatably. */
3146 fail_stack_elt_t
*failure_stack_ptr
;
3149 /* Assume that each path through the pattern can be null until
3150 proven otherwise. We set this false at the bottom of switch
3151 statement, to which we get only if a particular path doesn't
3152 match the empty string. */
3153 boolean path_can_be_null
= true;
3155 /* We aren't doing a `succeed_n' to begin with. */
3156 boolean succeed_n_p
= false;
3158 assert (fastmap
!= NULL
&& p
!= NULL
);
3161 bzero (fastmap
, 1 << BYTEWIDTH
); /* Assume nothing's valid. */
3162 bufp
->fastmap_accurate
= 1; /* It will be when we're done. */
3163 bufp
->can_be_null
= 0;
3167 if (p
== pend
|| *p
== succeed
)
3169 /* We have reached the (effective) end of pattern. */
3170 if (!FAIL_STACK_EMPTY ())
3172 bufp
->can_be_null
|= path_can_be_null
;
3174 /* Reset for next path. */
3175 path_can_be_null
= true;
3177 p
= fail_stack
.stack
[--fail_stack
.avail
].pointer
;
3185 /* We should never be about to go beyond the end of the pattern. */
3188 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
3191 /* I guess the idea here is to simply not bother with a fastmap
3192 if a backreference is used, since it's too hard to figure out
3193 the fastmap for the corresponding group. Setting
3194 `can_be_null' stops `re_search_2' from using the fastmap, so
3195 that is all we do. */
3197 bufp
->can_be_null
= 1;
3201 /* Following are the cases which match a character. These end
3210 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
3211 if (p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
)))
3217 /* Chars beyond end of map must be allowed. */
3218 for (j
= *p
* BYTEWIDTH
; j
< (1 << BYTEWIDTH
); j
++)
3221 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
3222 if (!(p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
))))
3228 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3229 if (SYNTAX (j
) == Sword
)
3235 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3236 if (SYNTAX (j
) != Sword
)
3243 int fastmap_newline
= fastmap
['\n'];
3245 /* `.' matches anything ... */
3246 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3249 /* ... except perhaps newline. */
3250 if (!(bufp
->syntax
& RE_DOT_NEWLINE
))
3251 fastmap
['\n'] = fastmap_newline
;
3253 /* Return if we have already set `can_be_null'; if we have,
3254 then the fastmap is irrelevant. Something's wrong here. */
3255 else if (bufp
->can_be_null
)
3258 /* Otherwise, have to check alternative paths. */
3265 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3266 if (SYNTAX (j
) == (enum syntaxcode
) k
)
3273 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3274 if (SYNTAX (j
) != (enum syntaxcode
) k
)
3279 /* All cases after this match the empty string. These end with
3299 case push_dummy_failure
:
3304 case pop_failure_jump
:
3305 case maybe_pop_jump
:
3308 case dummy_failure_jump
:
3309 EXTRACT_NUMBER_AND_INCR (j
, p
);
3314 /* Jump backward implies we just went through the body of a
3315 loop and matched nothing. Opcode jumped to should be
3316 `on_failure_jump' or `succeed_n'. Just treat it like an
3317 ordinary jump. For a * loop, it has pushed its failure
3318 point already; if so, discard that as redundant. */
3319 if ((re_opcode_t
) *p
!= on_failure_jump
3320 && (re_opcode_t
) *p
!= succeed_n
)
3324 EXTRACT_NUMBER_AND_INCR (j
, p
);
3327 /* If what's on the stack is where we are now, pop it. */
3328 if (!FAIL_STACK_EMPTY ()
3329 && fail_stack
.stack
[fail_stack
.avail
- 1].pointer
== p
)
3335 case on_failure_jump
:
3336 case on_failure_keep_string_jump
:
3337 handle_on_failure_jump
:
3338 EXTRACT_NUMBER_AND_INCR (j
, p
);
3340 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3341 end of the pattern. We don't want to push such a point,
3342 since when we restore it above, entering the switch will
3343 increment `p' past the end of the pattern. We don't need
3344 to push such a point since we obviously won't find any more
3345 fastmap entries beyond `pend'. Such a pattern can match
3346 the null string, though. */
3349 if (!PUSH_PATTERN_OP (p
+ j
, fail_stack
))
3351 RESET_FAIL_STACK ();
3356 bufp
->can_be_null
= 1;
3360 EXTRACT_NUMBER_AND_INCR (k
, p
); /* Skip the n. */
3361 succeed_n_p
= false;
3368 /* Get to the number of times to succeed. */
3371 /* Increment p past the n for when k != 0. */
3372 EXTRACT_NUMBER_AND_INCR (k
, p
);
3376 succeed_n_p
= true; /* Spaghetti code alert. */
3377 goto handle_on_failure_jump
;
3394 abort (); /* We have listed all the cases. */
3397 /* Getting here means we have found the possible starting
3398 characters for one path of the pattern -- and that the empty
3399 string does not match. We need not follow this path further.
3400 Instead, look at the next alternative (remembered on the
3401 stack), or quit if no more. The test at the top of the loop
3402 does these things. */
3403 path_can_be_null
= false;
3407 /* Set `can_be_null' for the last path (also the first path, if the
3408 pattern is empty). */
3409 bufp
->can_be_null
|= path_can_be_null
;
3412 RESET_FAIL_STACK ();
3414 } /* re_compile_fastmap */
3416 weak_alias (__re_compile_fastmap
, re_compile_fastmap
)
3419 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3420 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3421 this memory for recording register information. STARTS and ENDS
3422 must be allocated using the malloc library routine, and must each
3423 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3425 If NUM_REGS == 0, then subsequent matches should allocate their own
3428 Unless this function is called, the first search or match using
3429 PATTERN_BUFFER will allocate its own register data, without
3430 freeing the old data. */
3433 re_set_registers (bufp
, regs
, num_regs
, starts
, ends
)
3434 struct re_pattern_buffer
*bufp
;
3435 struct re_registers
*regs
;
3437 regoff_t
*starts
, *ends
;
3441 bufp
->regs_allocated
= REGS_REALLOCATE
;
3442 regs
->num_regs
= num_regs
;
3443 regs
->start
= starts
;
3448 bufp
->regs_allocated
= REGS_UNALLOCATED
;
3450 regs
->start
= regs
->end
= (regoff_t
*) 0;
3454 weak_alias (__re_set_registers
, re_set_registers
)
3457 /* Searching routines. */
3459 /* Like re_search_2, below, but only one string is specified, and
3460 doesn't let you say where to stop matching. */
3463 re_search (bufp
, string
, size
, startpos
, range
, regs
)
3464 struct re_pattern_buffer
*bufp
;
3466 int size
, startpos
, range
;
3467 struct re_registers
*regs
;
3469 return re_search_2 (bufp
, NULL
, 0, string
, size
, startpos
, range
,
3473 weak_alias (__re_search
, re_search
)
3477 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3478 virtual concatenation of STRING1 and STRING2, starting first at index
3479 STARTPOS, then at STARTPOS + 1, and so on.
3481 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3483 RANGE is how far to scan while trying to match. RANGE = 0 means try
3484 only at STARTPOS; in general, the last start tried is STARTPOS +
3487 In REGS, return the indices of the virtual concatenation of STRING1
3488 and STRING2 that matched the entire BUFP->buffer and its contained
3491 Do not consider matching one past the index STOP in the virtual
3492 concatenation of STRING1 and STRING2.
3494 We return either the position in the strings at which the match was
3495 found, -1 if no match, or -2 if error (such as failure
3499 re_search_2 (bufp
, string1
, size1
, string2
, size2
, startpos
, range
, regs
, stop
)
3500 struct re_pattern_buffer
*bufp
;
3501 const char *string1
, *string2
;
3505 struct re_registers
*regs
;
3509 register char *fastmap
= bufp
->fastmap
;
3510 register RE_TRANSLATE_TYPE translate
= bufp
->translate
;
3511 int total_size
= size1
+ size2
;
3512 int endpos
= startpos
+ range
;
3514 /* Check for out-of-range STARTPOS. */
3515 if (startpos
< 0 || startpos
> total_size
)
3518 /* Fix up RANGE if it might eventually take us outside
3519 the virtual concatenation of STRING1 and STRING2.
3520 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3522 range
= 0 - startpos
;
3523 else if (endpos
> total_size
)
3524 range
= total_size
- startpos
;
3526 /* If the search isn't to be a backwards one, don't waste time in a
3527 search for a pattern that must be anchored. */
3528 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == begbuf
&& range
> 0)
3537 /* In a forward search for something that starts with \=.
3538 don't keep searching past point. */
3539 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == at_dot
&& range
> 0)
3541 range
= PT
- startpos
;
3547 /* Update the fastmap now if not correct already. */
3548 if (fastmap
&& !bufp
->fastmap_accurate
)
3549 if (re_compile_fastmap (bufp
) == -2)
3552 /* Loop through the string, looking for a place to start matching. */
3555 /* If a fastmap is supplied, skip quickly over characters that
3556 cannot be the start of a match. If the pattern can match the
3557 null string, however, we don't need to skip characters; we want
3558 the first null string. */
3559 if (fastmap
&& startpos
< total_size
&& !bufp
->can_be_null
)
3561 if (range
> 0) /* Searching forwards. */
3563 register const char *d
;
3564 register int lim
= 0;
3567 if (startpos
< size1
&& startpos
+ range
>= size1
)
3568 lim
= range
- (size1
- startpos
);
3570 d
= (startpos
>= size1
? string2
- size1
: string1
) + startpos
;
3572 /* Written out as an if-else to avoid testing `translate'
3576 && !fastmap
[(unsigned char)
3577 translate
[(unsigned char) *d
++]])
3580 while (range
> lim
&& !fastmap
[(unsigned char) *d
++])
3583 startpos
+= irange
- range
;
3585 else /* Searching backwards. */
3587 register char c
= (size1
== 0 || startpos
>= size1
3588 ? string2
[startpos
- size1
]
3589 : string1
[startpos
]);
3591 if (!fastmap
[(unsigned char) TRANSLATE (c
)])
3596 /* If can't match the null string, and that's all we have left, fail. */
3597 if (range
>= 0 && startpos
== total_size
&& fastmap
3598 && !bufp
->can_be_null
)
3601 val
= re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
3602 startpos
, regs
, stop
);
3603 #ifndef REGEX_MALLOC
3632 weak_alias (__re_search_2
, re_search_2
)
3635 /* This converts PTR, a pointer into one of the search strings `string1'
3636 and `string2' into an offset from the beginning of that string. */
3637 #define POINTER_TO_OFFSET(ptr) \
3638 (FIRST_STRING_P (ptr) \
3639 ? ((regoff_t) ((ptr) - string1)) \
3640 : ((regoff_t) ((ptr) - string2 + size1)))
3642 /* Macros for dealing with the split strings in re_match_2. */
3644 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3646 /* Call before fetching a character with *d. This switches over to
3647 string2 if necessary. */
3648 #define PREFETCH() \
3651 /* End of string2 => fail. */ \
3652 if (dend == end_match_2) \
3654 /* End of string1 => advance to string2. */ \
3656 dend = end_match_2; \
3660 /* Test if at very beginning or at very end of the virtual concatenation
3661 of `string1' and `string2'. If only one string, it's `string2'. */
3662 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3663 #define AT_STRINGS_END(d) ((d) == end2)
3666 /* Test if D points to a character which is word-constituent. We have
3667 two special cases to check for: if past the end of string1, look at
3668 the first character in string2; and if before the beginning of
3669 string2, look at the last character in string1. */
3670 #define WORDCHAR_P(d) \
3671 (SYNTAX ((d) == end1 ? *string2 \
3672 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3675 /* Disabled due to a compiler bug -- see comment at case wordbound */
3677 /* Test if the character before D and the one at D differ with respect
3678 to being word-constituent. */
3679 #define AT_WORD_BOUNDARY(d) \
3680 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3681 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3684 /* Free everything we malloc. */
3685 #ifdef MATCH_MAY_ALLOCATE
3686 # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
3687 # define FREE_VARIABLES() \
3689 REGEX_FREE_STACK (fail_stack.stack); \
3690 FREE_VAR (regstart); \
3691 FREE_VAR (regend); \
3692 FREE_VAR (old_regstart); \
3693 FREE_VAR (old_regend); \
3694 FREE_VAR (best_regstart); \
3695 FREE_VAR (best_regend); \
3696 FREE_VAR (reg_info); \
3697 FREE_VAR (reg_dummy); \
3698 FREE_VAR (reg_info_dummy); \
3701 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3702 #endif /* not MATCH_MAY_ALLOCATE */
3704 /* These values must meet several constraints. They must not be valid
3705 register values; since we have a limit of 255 registers (because
3706 we use only one byte in the pattern for the register number), we can
3707 use numbers larger than 255. They must differ by 1, because of
3708 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3709 be larger than the value for the highest register, so we do not try
3710 to actually save any registers when none are active. */
3711 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3712 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3714 /* Matching routines. */
3716 #ifndef emacs /* Emacs never uses this. */
3717 /* re_match is like re_match_2 except it takes only a single string. */
3720 re_match (bufp
, string
, size
, pos
, regs
)
3721 struct re_pattern_buffer
*bufp
;
3724 struct re_registers
*regs
;
3726 int result
= re_match_2_internal (bufp
, NULL
, 0, string
, size
,
3728 # ifndef REGEX_MALLOC
3736 weak_alias (__re_match
, re_match
)
3738 #endif /* not emacs */
3740 static boolean group_match_null_string_p
_RE_ARGS ((unsigned char **p
,
3742 register_info_type
*reg_info
));
3743 static boolean alt_match_null_string_p
_RE_ARGS ((unsigned char *p
,
3745 register_info_type
*reg_info
));
3746 static boolean common_op_match_null_string_p
_RE_ARGS ((unsigned char **p
,
3748 register_info_type
*reg_info
));
3749 static int bcmp_translate
_RE_ARGS ((const char *s1
, const char *s2
,
3750 int len
, char *translate
));
3752 /* re_match_2 matches the compiled pattern in BUFP against the
3753 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3754 and SIZE2, respectively). We start matching at POS, and stop
3757 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3758 store offsets for the substring each group matched in REGS. See the
3759 documentation for exactly how many groups we fill.
3761 We return -1 if no match, -2 if an internal error (such as the
3762 failure stack overflowing). Otherwise, we return the length of the
3763 matched substring. */
3766 re_match_2 (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
3767 struct re_pattern_buffer
*bufp
;
3768 const char *string1
, *string2
;
3771 struct re_registers
*regs
;
3774 int result
= re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
3776 #ifndef REGEX_MALLOC
3784 weak_alias (__re_match_2
, re_match_2
)
3787 /* This is a separate function so that we can force an alloca cleanup
3790 re_match_2_internal (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
3791 struct re_pattern_buffer
*bufp
;
3792 const char *string1
, *string2
;
3795 struct re_registers
*regs
;
3798 /* General temporaries. */
3802 /* Just past the end of the corresponding string. */
3803 const char *end1
, *end2
;
3805 /* Pointers into string1 and string2, just past the last characters in
3806 each to consider matching. */
3807 const char *end_match_1
, *end_match_2
;
3809 /* Where we are in the data, and the end of the current string. */
3810 const char *d
, *dend
;
3812 /* Where we are in the pattern, and the end of the pattern. */
3813 unsigned char *p
= bufp
->buffer
;
3814 register unsigned char *pend
= p
+ bufp
->used
;
3816 /* Mark the opcode just after a start_memory, so we can test for an
3817 empty subpattern when we get to the stop_memory. */
3818 unsigned char *just_past_start_mem
= 0;
3820 /* We use this to map every character in the string. */
3821 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
3823 /* Failure point stack. Each place that can handle a failure further
3824 down the line pushes a failure point on this stack. It consists of
3825 restart, regend, and reg_info for all registers corresponding to
3826 the subexpressions we're currently inside, plus the number of such
3827 registers, and, finally, two char *'s. The first char * is where
3828 to resume scanning the pattern; the second one is where to resume
3829 scanning the strings. If the latter is zero, the failure point is
3830 a ``dummy''; if a failure happens and the failure point is a dummy,
3831 it gets discarded and the next next one is tried. */
3832 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3833 fail_stack_type fail_stack
;
3836 static unsigned failure_id
= 0;
3837 unsigned nfailure_points_pushed
= 0, nfailure_points_popped
= 0;
3841 /* This holds the pointer to the failure stack, when
3842 it is allocated relocatably. */
3843 fail_stack_elt_t
*failure_stack_ptr
;
3846 /* We fill all the registers internally, independent of what we
3847 return, for use in backreferences. The number here includes
3848 an element for register zero. */
3849 size_t num_regs
= bufp
->re_nsub
+ 1;
3851 /* The currently active registers. */
3852 active_reg_t lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
3853 active_reg_t highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
3855 /* Information on the contents of registers. These are pointers into
3856 the input strings; they record just what was matched (on this
3857 attempt) by a subexpression part of the pattern, that is, the
3858 regnum-th regstart pointer points to where in the pattern we began
3859 matching and the regnum-th regend points to right after where we
3860 stopped matching the regnum-th subexpression. (The zeroth register
3861 keeps track of what the whole pattern matches.) */
3862 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3863 const char **regstart
, **regend
;
3866 /* If a group that's operated upon by a repetition operator fails to
3867 match anything, then the register for its start will need to be
3868 restored because it will have been set to wherever in the string we
3869 are when we last see its open-group operator. Similarly for a
3871 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3872 const char **old_regstart
, **old_regend
;
3875 /* The is_active field of reg_info helps us keep track of which (possibly
3876 nested) subexpressions we are currently in. The matched_something
3877 field of reg_info[reg_num] helps us tell whether or not we have
3878 matched any of the pattern so far this time through the reg_num-th
3879 subexpression. These two fields get reset each time through any
3880 loop their register is in. */
3881 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3882 register_info_type
*reg_info
;
3885 /* The following record the register info as found in the above
3886 variables when we find a match better than any we've seen before.
3887 This happens as we backtrack through the failure points, which in
3888 turn happens only if we have not yet matched the entire string. */
3889 unsigned best_regs_set
= false;
3890 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3891 const char **best_regstart
, **best_regend
;
3894 /* Logically, this is `best_regend[0]'. But we don't want to have to
3895 allocate space for that if we're not allocating space for anything
3896 else (see below). Also, we never need info about register 0 for
3897 any of the other register vectors, and it seems rather a kludge to
3898 treat `best_regend' differently than the rest. So we keep track of
3899 the end of the best match so far in a separate variable. We
3900 initialize this to NULL so that when we backtrack the first time
3901 and need to test it, it's not garbage. */
3902 const char *match_end
= NULL
;
3904 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
3905 int set_regs_matched_done
= 0;
3907 /* Used when we pop values we don't care about. */
3908 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3909 const char **reg_dummy
;
3910 register_info_type
*reg_info_dummy
;
3914 /* Counts the total number of registers pushed. */
3915 unsigned num_regs_pushed
= 0;
3918 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3922 #ifdef MATCH_MAY_ALLOCATE
3923 /* Do not bother to initialize all the register variables if there are
3924 no groups in the pattern, as it takes a fair amount of time. If
3925 there are groups, we include space for register 0 (the whole
3926 pattern), even though we never use it, since it simplifies the
3927 array indexing. We should fix this. */
3930 regstart
= REGEX_TALLOC (num_regs
, const char *);
3931 regend
= REGEX_TALLOC (num_regs
, const char *);
3932 old_regstart
= REGEX_TALLOC (num_regs
, const char *);
3933 old_regend
= REGEX_TALLOC (num_regs
, const char *);
3934 best_regstart
= REGEX_TALLOC (num_regs
, const char *);
3935 best_regend
= REGEX_TALLOC (num_regs
, const char *);
3936 reg_info
= REGEX_TALLOC (num_regs
, register_info_type
);
3937 reg_dummy
= REGEX_TALLOC (num_regs
, const char *);
3938 reg_info_dummy
= REGEX_TALLOC (num_regs
, register_info_type
);
3940 if (!(regstart
&& regend
&& old_regstart
&& old_regend
&& reg_info
3941 && best_regstart
&& best_regend
&& reg_dummy
&& reg_info_dummy
))
3949 /* We must initialize all our variables to NULL, so that
3950 `FREE_VARIABLES' doesn't try to free them. */
3951 regstart
= regend
= old_regstart
= old_regend
= best_regstart
3952 = best_regend
= reg_dummy
= NULL
;
3953 reg_info
= reg_info_dummy
= (register_info_type
*) NULL
;
3955 #endif /* MATCH_MAY_ALLOCATE */
3957 /* The starting position is bogus. */
3958 if (pos
< 0 || pos
> size1
+ size2
)
3964 /* Initialize subexpression text positions to -1 to mark ones that no
3965 start_memory/stop_memory has been seen for. Also initialize the
3966 register information struct. */
3967 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
3969 regstart
[mcnt
] = regend
[mcnt
]
3970 = old_regstart
[mcnt
] = old_regend
[mcnt
] = REG_UNSET_VALUE
;
3972 REG_MATCH_NULL_STRING_P (reg_info
[mcnt
]) = MATCH_NULL_UNSET_VALUE
;
3973 IS_ACTIVE (reg_info
[mcnt
]) = 0;
3974 MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
3975 EVER_MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
3978 /* We move `string1' into `string2' if the latter's empty -- but not if
3979 `string1' is null. */
3980 if (size2
== 0 && string1
!= NULL
)
3987 end1
= string1
+ size1
;
3988 end2
= string2
+ size2
;
3990 /* Compute where to stop matching, within the two strings. */
3993 end_match_1
= string1
+ stop
;
3994 end_match_2
= string2
;
3999 end_match_2
= string2
+ stop
- size1
;
4002 /* `p' scans through the pattern as `d' scans through the data.
4003 `dend' is the end of the input string that `d' points within. `d'
4004 is advanced into the following input string whenever necessary, but
4005 this happens before fetching; therefore, at the beginning of the
4006 loop, `d' can be pointing at the end of a string, but it cannot
4008 if (size1
> 0 && pos
<= size1
)
4015 d
= string2
+ pos
- size1
;
4019 DEBUG_PRINT1 ("The compiled pattern is:\n");
4020 DEBUG_PRINT_COMPILED_PATTERN (bufp
, p
, pend
);
4021 DEBUG_PRINT1 ("The string to match is: `");
4022 DEBUG_PRINT_DOUBLE_STRING (d
, string1
, size1
, string2
, size2
);
4023 DEBUG_PRINT1 ("'\n");
4025 /* This loops over pattern commands. It exits by returning from the
4026 function if the match is complete, or it drops through if the match
4027 fails at this starting point in the input data. */
4031 DEBUG_PRINT2 ("\n%p: ", p
);
4033 DEBUG_PRINT2 ("\n0x%x: ", p
);
4037 { /* End of pattern means we might have succeeded. */
4038 DEBUG_PRINT1 ("end of pattern ... ");
4040 /* If we haven't matched the entire string, and we want the
4041 longest match, try backtracking. */
4042 if (d
!= end_match_2
)
4044 /* 1 if this match ends in the same string (string1 or string2)
4045 as the best previous match. */
4046 boolean same_str_p
= (FIRST_STRING_P (match_end
)
4047 == MATCHING_IN_FIRST_STRING
);
4048 /* 1 if this match is the best seen so far. */
4049 boolean best_match_p
;
4051 /* AIX compiler got confused when this was combined
4052 with the previous declaration. */
4054 best_match_p
= d
> match_end
;
4056 best_match_p
= !MATCHING_IN_FIRST_STRING
;
4058 DEBUG_PRINT1 ("backtracking.\n");
4060 if (!FAIL_STACK_EMPTY ())
4061 { /* More failure points to try. */
4063 /* If exceeds best match so far, save it. */
4064 if (!best_regs_set
|| best_match_p
)
4066 best_regs_set
= true;
4069 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4071 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
4073 best_regstart
[mcnt
] = regstart
[mcnt
];
4074 best_regend
[mcnt
] = regend
[mcnt
];
4080 /* If no failure points, don't restore garbage. And if
4081 last match is real best match, don't restore second
4083 else if (best_regs_set
&& !best_match_p
)
4086 /* Restore best match. It may happen that `dend ==
4087 end_match_1' while the restored d is in string2.
4088 For example, the pattern `x.*y.*z' against the
4089 strings `x-' and `y-z-', if the two strings are
4090 not consecutive in memory. */
4091 DEBUG_PRINT1 ("Restoring best registers.\n");
4094 dend
= ((d
>= string1
&& d
<= end1
)
4095 ? end_match_1
: end_match_2
);
4097 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
4099 regstart
[mcnt
] = best_regstart
[mcnt
];
4100 regend
[mcnt
] = best_regend
[mcnt
];
4103 } /* d != end_match_2 */
4106 DEBUG_PRINT1 ("Accepting match.\n");
4108 /* If caller wants register contents data back, do it. */
4109 if (regs
&& !bufp
->no_sub
)
4111 /* Have the register data arrays been allocated? */
4112 if (bufp
->regs_allocated
== REGS_UNALLOCATED
)
4113 { /* No. So allocate them with malloc. We need one
4114 extra element beyond `num_regs' for the `-1' marker
4116 regs
->num_regs
= MAX (RE_NREGS
, num_regs
+ 1);
4117 regs
->start
= TALLOC (regs
->num_regs
, regoff_t
);
4118 regs
->end
= TALLOC (regs
->num_regs
, regoff_t
);
4119 if (regs
->start
== NULL
|| regs
->end
== NULL
)
4124 bufp
->regs_allocated
= REGS_REALLOCATE
;
4126 else if (bufp
->regs_allocated
== REGS_REALLOCATE
)
4127 { /* Yes. If we need more elements than were already
4128 allocated, reallocate them. If we need fewer, just
4130 if (regs
->num_regs
< num_regs
+ 1)
4132 regs
->num_regs
= num_regs
+ 1;
4133 RETALLOC (regs
->start
, regs
->num_regs
, regoff_t
);
4134 RETALLOC (regs
->end
, regs
->num_regs
, regoff_t
);
4135 if (regs
->start
== NULL
|| regs
->end
== NULL
)
4144 /* These braces fend off a "empty body in an else-statement"
4145 warning under GCC when assert expands to nothing. */
4146 assert (bufp
->regs_allocated
== REGS_FIXED
);
4149 /* Convert the pointer data in `regstart' and `regend' to
4150 indices. Register zero has to be set differently,
4151 since we haven't kept track of any info for it. */
4152 if (regs
->num_regs
> 0)
4154 regs
->start
[0] = pos
;
4155 regs
->end
[0] = (MATCHING_IN_FIRST_STRING
4156 ? ((regoff_t
) (d
- string1
))
4157 : ((regoff_t
) (d
- string2
+ size1
)));
4160 /* Go through the first `min (num_regs, regs->num_regs)'
4161 registers, since that is all we initialized. */
4162 for (mcnt
= 1; (unsigned) mcnt
< MIN (num_regs
, regs
->num_regs
);
4165 if (REG_UNSET (regstart
[mcnt
]) || REG_UNSET (regend
[mcnt
]))
4166 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
4170 = (regoff_t
) POINTER_TO_OFFSET (regstart
[mcnt
]);
4172 = (regoff_t
) POINTER_TO_OFFSET (regend
[mcnt
]);
4176 /* If the regs structure we return has more elements than
4177 were in the pattern, set the extra elements to -1. If
4178 we (re)allocated the registers, this is the case,
4179 because we always allocate enough to have at least one
4181 for (mcnt
= num_regs
; (unsigned) mcnt
< regs
->num_regs
; mcnt
++)
4182 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
4183 } /* regs && !bufp->no_sub */
4185 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4186 nfailure_points_pushed
, nfailure_points_popped
,
4187 nfailure_points_pushed
- nfailure_points_popped
);
4188 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed
);
4190 mcnt
= d
- pos
- (MATCHING_IN_FIRST_STRING
4194 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt
);
4200 /* Otherwise match next pattern command. */
4201 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
4203 /* Ignore these. Used to ignore the n of succeed_n's which
4204 currently have n == 0. */
4206 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4210 DEBUG_PRINT1 ("EXECUTING succeed.\n");
4213 /* Match the next n pattern characters exactly. The following
4214 byte in the pattern defines n, and the n bytes after that
4215 are the characters to match. */
4218 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt
);
4220 /* This is written out as an if-else so we don't waste time
4221 testing `translate' inside the loop. */
4227 if ((unsigned char) translate
[(unsigned char) *d
++]
4228 != (unsigned char) *p
++)
4238 if (*d
++ != (char) *p
++) goto fail
;
4242 SET_REGS_MATCHED ();
4246 /* Match any character except possibly a newline or a null. */
4248 DEBUG_PRINT1 ("EXECUTING anychar.\n");
4252 if ((!(bufp
->syntax
& RE_DOT_NEWLINE
) && TRANSLATE (*d
) == '\n')
4253 || (bufp
->syntax
& RE_DOT_NOT_NULL
&& TRANSLATE (*d
) == '\000'))
4256 SET_REGS_MATCHED ();
4257 DEBUG_PRINT2 (" Matched `%d'.\n", *d
);
4265 register unsigned char c
;
4266 boolean
not = (re_opcode_t
) *(p
- 1) == charset_not
;
4268 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4271 c
= TRANSLATE (*d
); /* The character to match. */
4273 /* Cast to `unsigned' instead of `unsigned char' in case the
4274 bit list is a full 32 bytes long. */
4275 if (c
< (unsigned) (*p
* BYTEWIDTH
)
4276 && p
[1 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4281 if (!not) goto fail
;
4283 SET_REGS_MATCHED ();
4289 /* The beginning of a group is represented by start_memory.
4290 The arguments are the register number in the next byte, and the
4291 number of groups inner to this one in the next. The text
4292 matched within the group is recorded (in the internal
4293 registers data structure) under the register number. */
4295 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p
, p
[1]);
4297 /* Find out if this group can match the empty string. */
4298 p1
= p
; /* To send to group_match_null_string_p. */
4300 if (REG_MATCH_NULL_STRING_P (reg_info
[*p
]) == MATCH_NULL_UNSET_VALUE
)
4301 REG_MATCH_NULL_STRING_P (reg_info
[*p
])
4302 = group_match_null_string_p (&p1
, pend
, reg_info
);
4304 /* Save the position in the string where we were the last time
4305 we were at this open-group operator in case the group is
4306 operated upon by a repetition operator, e.g., with `(a*)*b'
4307 against `ab'; then we want to ignore where we are now in
4308 the string in case this attempt to match fails. */
4309 old_regstart
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
4310 ? REG_UNSET (regstart
[*p
]) ? d
: regstart
[*p
]
4312 DEBUG_PRINT2 (" old_regstart: %d\n",
4313 POINTER_TO_OFFSET (old_regstart
[*p
]));
4316 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart
[*p
]));
4318 IS_ACTIVE (reg_info
[*p
]) = 1;
4319 MATCHED_SOMETHING (reg_info
[*p
]) = 0;
4321 /* Clear this whenever we change the register activity status. */
4322 set_regs_matched_done
= 0;
4324 /* This is the new highest active register. */
4325 highest_active_reg
= *p
;
4327 /* If nothing was active before, this is the new lowest active
4329 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
4330 lowest_active_reg
= *p
;
4332 /* Move past the register number and inner group count. */
4334 just_past_start_mem
= p
;
4339 /* The stop_memory opcode represents the end of a group. Its
4340 arguments are the same as start_memory's: the register
4341 number, and the number of inner groups. */
4343 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p
, p
[1]);
4345 /* We need to save the string position the last time we were at
4346 this close-group operator in case the group is operated
4347 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4348 against `aba'; then we want to ignore where we are now in
4349 the string in case this attempt to match fails. */
4350 old_regend
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
4351 ? REG_UNSET (regend
[*p
]) ? d
: regend
[*p
]
4353 DEBUG_PRINT2 (" old_regend: %d\n",
4354 POINTER_TO_OFFSET (old_regend
[*p
]));
4357 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend
[*p
]));
4359 /* This register isn't active anymore. */
4360 IS_ACTIVE (reg_info
[*p
]) = 0;
4362 /* Clear this whenever we change the register activity status. */
4363 set_regs_matched_done
= 0;
4365 /* If this was the only register active, nothing is active
4367 if (lowest_active_reg
== highest_active_reg
)
4369 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
4370 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
4373 { /* We must scan for the new highest active register, since
4374 it isn't necessarily one less than now: consider
4375 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4376 new highest active register is 1. */
4377 unsigned char r
= *p
- 1;
4378 while (r
> 0 && !IS_ACTIVE (reg_info
[r
]))
4381 /* If we end up at register zero, that means that we saved
4382 the registers as the result of an `on_failure_jump', not
4383 a `start_memory', and we jumped to past the innermost
4384 `stop_memory'. For example, in ((.)*) we save
4385 registers 1 and 2 as a result of the *, but when we pop
4386 back to the second ), we are at the stop_memory 1.
4387 Thus, nothing is active. */
4390 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
4391 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
4394 highest_active_reg
= r
;
4397 /* If just failed to match something this time around with a
4398 group that's operated on by a repetition operator, try to
4399 force exit from the ``loop'', and restore the register
4400 information for this group that we had before trying this
4402 if ((!MATCHED_SOMETHING (reg_info
[*p
])
4403 || just_past_start_mem
== p
- 1)
4406 boolean is_a_jump_n
= false;
4410 switch ((re_opcode_t
) *p1
++)
4414 case pop_failure_jump
:
4415 case maybe_pop_jump
:
4417 case dummy_failure_jump
:
4418 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4428 /* If the next operation is a jump backwards in the pattern
4429 to an on_failure_jump right before the start_memory
4430 corresponding to this stop_memory, exit from the loop
4431 by forcing a failure after pushing on the stack the
4432 on_failure_jump's jump in the pattern, and d. */
4433 if (mcnt
< 0 && (re_opcode_t
) *p1
== on_failure_jump
4434 && (re_opcode_t
) p1
[3] == start_memory
&& p1
[4] == *p
)
4436 /* If this group ever matched anything, then restore
4437 what its registers were before trying this last
4438 failed match, e.g., with `(a*)*b' against `ab' for
4439 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4440 against `aba' for regend[3].
4442 Also restore the registers for inner groups for,
4443 e.g., `((a*)(b*))*' against `aba' (register 3 would
4444 otherwise get trashed). */
4446 if (EVER_MATCHED_SOMETHING (reg_info
[*p
]))
4450 EVER_MATCHED_SOMETHING (reg_info
[*p
]) = 0;
4452 /* Restore this and inner groups' (if any) registers. */
4453 for (r
= *p
; r
< (unsigned) *p
+ (unsigned) *(p
+ 1);
4456 regstart
[r
] = old_regstart
[r
];
4458 /* xx why this test? */
4459 if (old_regend
[r
] >= regstart
[r
])
4460 regend
[r
] = old_regend
[r
];
4464 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4465 PUSH_FAILURE_POINT (p1
+ mcnt
, d
, -2);
4471 /* Move past the register number and the inner group count. */
4476 /* \<digit> has been turned into a `duplicate' command which is
4477 followed by the numeric value of <digit> as the register number. */
4480 register const char *d2
, *dend2
;
4481 int regno
= *p
++; /* Get which register to match against. */
4482 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno
);
4484 /* Can't back reference a group which we've never matched. */
4485 if (REG_UNSET (regstart
[regno
]) || REG_UNSET (regend
[regno
]))
4488 /* Where in input to try to start matching. */
4489 d2
= regstart
[regno
];
4491 /* Where to stop matching; if both the place to start and
4492 the place to stop matching are in the same string, then
4493 set to the place to stop, otherwise, for now have to use
4494 the end of the first string. */
4496 dend2
= ((FIRST_STRING_P (regstart
[regno
])
4497 == FIRST_STRING_P (regend
[regno
]))
4498 ? regend
[regno
] : end_match_1
);
4501 /* If necessary, advance to next segment in register
4505 if (dend2
== end_match_2
) break;
4506 if (dend2
== regend
[regno
]) break;
4508 /* End of string1 => advance to string2. */
4510 dend2
= regend
[regno
];
4512 /* At end of register contents => success */
4513 if (d2
== dend2
) break;
4515 /* If necessary, advance to next segment in data. */
4518 /* How many characters left in this segment to match. */
4521 /* Want how many consecutive characters we can match in
4522 one shot, so, if necessary, adjust the count. */
4523 if (mcnt
> dend2
- d2
)
4526 /* Compare that many; failure if mismatch, else move
4529 ? bcmp_translate (d
, d2
, mcnt
, translate
)
4530 : memcmp (d
, d2
, mcnt
))
4532 d
+= mcnt
, d2
+= mcnt
;
4534 /* Do this because we've match some characters. */
4535 SET_REGS_MATCHED ();
4541 /* begline matches the empty string at the beginning of the string
4542 (unless `not_bol' is set in `bufp'), and, if
4543 `newline_anchor' is set, after newlines. */
4545 DEBUG_PRINT1 ("EXECUTING begline.\n");
4547 if (AT_STRINGS_BEG (d
))
4549 if (!bufp
->not_bol
) break;
4551 else if (d
[-1] == '\n' && bufp
->newline_anchor
)
4555 /* In all other cases, we fail. */
4559 /* endline is the dual of begline. */
4561 DEBUG_PRINT1 ("EXECUTING endline.\n");
4563 if (AT_STRINGS_END (d
))
4565 if (!bufp
->not_eol
) break;
4568 /* We have to ``prefetch'' the next character. */
4569 else if ((d
== end1
? *string2
: *d
) == '\n'
4570 && bufp
->newline_anchor
)
4577 /* Match at the very beginning of the data. */
4579 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4580 if (AT_STRINGS_BEG (d
))
4585 /* Match at the very end of the data. */
4587 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4588 if (AT_STRINGS_END (d
))
4593 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4594 pushes NULL as the value for the string on the stack. Then
4595 `pop_failure_point' will keep the current value for the
4596 string, instead of restoring it. To see why, consider
4597 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4598 then the . fails against the \n. But the next thing we want
4599 to do is match the \n against the \n; if we restored the
4600 string value, we would be back at the foo.
4602 Because this is used only in specific cases, we don't need to
4603 check all the things that `on_failure_jump' does, to make
4604 sure the right things get saved on the stack. Hence we don't
4605 share its code. The only reason to push anything on the
4606 stack at all is that otherwise we would have to change
4607 `anychar's code to do something besides goto fail in this
4608 case; that seems worse than this. */
4609 case on_failure_keep_string_jump
:
4610 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4612 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4614 DEBUG_PRINT3 (" %d (to %p):\n", mcnt
, p
+ mcnt
);
4616 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt
, p
+ mcnt
);
4619 PUSH_FAILURE_POINT (p
+ mcnt
, NULL
, -2);
4623 /* Uses of on_failure_jump:
4625 Each alternative starts with an on_failure_jump that points
4626 to the beginning of the next alternative. Each alternative
4627 except the last ends with a jump that in effect jumps past
4628 the rest of the alternatives. (They really jump to the
4629 ending jump of the following alternative, because tensioning
4630 these jumps is a hassle.)
4632 Repeats start with an on_failure_jump that points past both
4633 the repetition text and either the following jump or
4634 pop_failure_jump back to this on_failure_jump. */
4635 case on_failure_jump
:
4637 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4639 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4641 DEBUG_PRINT3 (" %d (to %p)", mcnt
, p
+ mcnt
);
4643 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt
, p
+ mcnt
);
4646 /* If this on_failure_jump comes right before a group (i.e.,
4647 the original * applied to a group), save the information
4648 for that group and all inner ones, so that if we fail back
4649 to this point, the group's information will be correct.
4650 For example, in \(a*\)*\1, we need the preceding group,
4651 and in \(zz\(a*\)b*\)\2, we need the inner group. */
4653 /* We can't use `p' to check ahead because we push
4654 a failure point to `p + mcnt' after we do this. */
4657 /* We need to skip no_op's before we look for the
4658 start_memory in case this on_failure_jump is happening as
4659 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4661 while (p1
< pend
&& (re_opcode_t
) *p1
== no_op
)
4664 if (p1
< pend
&& (re_opcode_t
) *p1
== start_memory
)
4666 /* We have a new highest active register now. This will
4667 get reset at the start_memory we are about to get to,
4668 but we will have saved all the registers relevant to
4669 this repetition op, as described above. */
4670 highest_active_reg
= *(p1
+ 1) + *(p1
+ 2);
4671 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
4672 lowest_active_reg
= *(p1
+ 1);
4675 DEBUG_PRINT1 (":\n");
4676 PUSH_FAILURE_POINT (p
+ mcnt
, d
, -2);
4680 /* A smart repeat ends with `maybe_pop_jump'.
4681 We change it to either `pop_failure_jump' or `jump'. */
4682 case maybe_pop_jump
:
4683 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4684 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt
);
4686 register unsigned char *p2
= p
;
4688 /* Compare the beginning of the repeat with what in the
4689 pattern follows its end. If we can establish that there
4690 is nothing that they would both match, i.e., that we
4691 would have to backtrack because of (as in, e.g., `a*a')
4692 then we can change to pop_failure_jump, because we'll
4693 never have to backtrack.
4695 This is not true in the case of alternatives: in
4696 `(a|ab)*' we do need to backtrack to the `ab' alternative
4697 (e.g., if the string was `ab'). But instead of trying to
4698 detect that here, the alternative has put on a dummy
4699 failure point which is what we will end up popping. */
4701 /* Skip over open/close-group commands.
4702 If what follows this loop is a ...+ construct,
4703 look at what begins its body, since we will have to
4704 match at least one of that. */
4708 && ((re_opcode_t
) *p2
== stop_memory
4709 || (re_opcode_t
) *p2
== start_memory
))
4711 else if (p2
+ 6 < pend
4712 && (re_opcode_t
) *p2
== dummy_failure_jump
)
4719 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4720 to the `maybe_finalize_jump' of this case. Examine what
4723 /* If we're at the end of the pattern, we can change. */
4726 /* Consider what happens when matching ":\(.*\)"
4727 against ":/". I don't really understand this code
4729 p
[-3] = (unsigned char) pop_failure_jump
;
4731 (" End of pattern: change to `pop_failure_jump'.\n");
4734 else if ((re_opcode_t
) *p2
== exactn
4735 || (bufp
->newline_anchor
&& (re_opcode_t
) *p2
== endline
))
4737 register unsigned char c
4738 = *p2
== (unsigned char) endline
? '\n' : p2
[2];
4740 if ((re_opcode_t
) p1
[3] == exactn
&& p1
[5] != c
)
4742 p
[-3] = (unsigned char) pop_failure_jump
;
4743 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4747 else if ((re_opcode_t
) p1
[3] == charset
4748 || (re_opcode_t
) p1
[3] == charset_not
)
4750 int not = (re_opcode_t
) p1
[3] == charset_not
;
4752 if (c
< (unsigned char) (p1
[4] * BYTEWIDTH
)
4753 && p1
[5 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4756 /* `not' is equal to 1 if c would match, which means
4757 that we can't change to pop_failure_jump. */
4760 p
[-3] = (unsigned char) pop_failure_jump
;
4761 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4765 else if ((re_opcode_t
) *p2
== charset
)
4768 register unsigned char c
4769 = *p2
== (unsigned char) endline
? '\n' : p2
[2];
4773 if ((re_opcode_t
) p1
[3] == exactn
4774 && ! ((int) p2
[1] * BYTEWIDTH
> (int) p1
[5]
4775 && (p2
[2 + p1
[5] / BYTEWIDTH
]
4776 & (1 << (p1
[5] % BYTEWIDTH
)))))
4778 if ((re_opcode_t
) p1
[3] == exactn
4779 && ! ((int) p2
[1] * BYTEWIDTH
> (int) p1
[4]
4780 && (p2
[2 + p1
[4] / BYTEWIDTH
]
4781 & (1 << (p1
[4] % BYTEWIDTH
)))))
4784 p
[-3] = (unsigned char) pop_failure_jump
;
4785 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4789 else if ((re_opcode_t
) p1
[3] == charset_not
)
4792 /* We win if the charset_not inside the loop
4793 lists every character listed in the charset after. */
4794 for (idx
= 0; idx
< (int) p2
[1]; idx
++)
4795 if (! (p2
[2 + idx
] == 0
4796 || (idx
< (int) p1
[4]
4797 && ((p2
[2 + idx
] & ~ p1
[5 + idx
]) == 0))))
4802 p
[-3] = (unsigned char) pop_failure_jump
;
4803 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4806 else if ((re_opcode_t
) p1
[3] == charset
)
4809 /* We win if the charset inside the loop
4810 has no overlap with the one after the loop. */
4812 idx
< (int) p2
[1] && idx
< (int) p1
[4];
4814 if ((p2
[2 + idx
] & p1
[5 + idx
]) != 0)
4817 if (idx
== p2
[1] || idx
== p1
[4])
4819 p
[-3] = (unsigned char) pop_failure_jump
;
4820 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4825 p
-= 2; /* Point at relative address again. */
4826 if ((re_opcode_t
) p
[-1] != pop_failure_jump
)
4828 p
[-1] = (unsigned char) jump
;
4829 DEBUG_PRINT1 (" Match => jump.\n");
4830 goto unconditional_jump
;
4832 /* Note fall through. */
4835 /* The end of a simple repeat has a pop_failure_jump back to
4836 its matching on_failure_jump, where the latter will push a
4837 failure point. The pop_failure_jump takes off failure
4838 points put on by this pop_failure_jump's matching
4839 on_failure_jump; we got through the pattern to here from the
4840 matching on_failure_jump, so didn't fail. */
4841 case pop_failure_jump
:
4843 /* We need to pass separate storage for the lowest and
4844 highest registers, even though we don't care about the
4845 actual values. Otherwise, we will restore only one
4846 register from the stack, since lowest will == highest in
4847 `pop_failure_point'. */
4848 active_reg_t dummy_low_reg
, dummy_high_reg
;
4849 unsigned char *pdummy
;
4852 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4853 POP_FAILURE_POINT (sdummy
, pdummy
,
4854 dummy_low_reg
, dummy_high_reg
,
4855 reg_dummy
, reg_dummy
, reg_info_dummy
);
4857 /* Note fall through. */
4861 DEBUG_PRINT2 ("\n%p: ", p
);
4863 DEBUG_PRINT2 ("\n0x%x: ", p
);
4865 /* Note fall through. */
4867 /* Unconditionally jump (without popping any failure points). */
4869 EXTRACT_NUMBER_AND_INCR (mcnt
, p
); /* Get the amount to jump. */
4870 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt
);
4871 p
+= mcnt
; /* Do the jump. */
4873 DEBUG_PRINT2 ("(to %p).\n", p
);
4875 DEBUG_PRINT2 ("(to 0x%x).\n", p
);
4880 /* We need this opcode so we can detect where alternatives end
4881 in `group_match_null_string_p' et al. */
4883 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4884 goto unconditional_jump
;
4887 /* Normally, the on_failure_jump pushes a failure point, which
4888 then gets popped at pop_failure_jump. We will end up at
4889 pop_failure_jump, also, and with a pattern of, say, `a+', we
4890 are skipping over the on_failure_jump, so we have to push
4891 something meaningless for pop_failure_jump to pop. */
4892 case dummy_failure_jump
:
4893 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4894 /* It doesn't matter what we push for the string here. What
4895 the code at `fail' tests is the value for the pattern. */
4896 PUSH_FAILURE_POINT (NULL
, NULL
, -2);
4897 goto unconditional_jump
;
4900 /* At the end of an alternative, we need to push a dummy failure
4901 point in case we are followed by a `pop_failure_jump', because
4902 we don't want the failure point for the alternative to be
4903 popped. For example, matching `(a|ab)*' against `aab'
4904 requires that we match the `ab' alternative. */
4905 case push_dummy_failure
:
4906 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4907 /* See comments just above at `dummy_failure_jump' about the
4909 PUSH_FAILURE_POINT (NULL
, NULL
, -2);
4912 /* Have to succeed matching what follows at least n times.
4913 After that, handle like `on_failure_jump'. */
4915 EXTRACT_NUMBER (mcnt
, p
+ 2);
4916 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt
);
4919 /* Originally, this is how many times we HAVE to succeed. */
4924 STORE_NUMBER_AND_INCR (p
, mcnt
);
4926 DEBUG_PRINT3 (" Setting %p to %d.\n", p
- 2, mcnt
);
4928 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p
- 2, mcnt
);
4934 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n", p
+2);
4936 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p
+2);
4938 p
[2] = (unsigned char) no_op
;
4939 p
[3] = (unsigned char) no_op
;
4945 EXTRACT_NUMBER (mcnt
, p
+ 2);
4946 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt
);
4948 /* Originally, this is how many times we CAN jump. */
4952 STORE_NUMBER (p
+ 2, mcnt
);
4954 DEBUG_PRINT3 (" Setting %p to %d.\n", p
+ 2, mcnt
);
4956 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p
+ 2, mcnt
);
4958 goto unconditional_jump
;
4960 /* If don't have to jump any more, skip over the rest of command. */
4967 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4969 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4971 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4973 DEBUG_PRINT3 (" Setting %p to %d.\n", p1
, mcnt
);
4975 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1
, mcnt
);
4977 STORE_NUMBER (p1
, mcnt
);
4982 /* The DEC Alpha C compiler 3.x generates incorrect code for the
4983 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4984 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4985 macro and introducing temporary variables works around the bug. */
4988 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4989 if (AT_WORD_BOUNDARY (d
))
4994 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4995 if (AT_WORD_BOUNDARY (d
))
5001 boolean prevchar
, thischar
;
5003 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
5004 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
5007 prevchar
= WORDCHAR_P (d
- 1);
5008 thischar
= WORDCHAR_P (d
);
5009 if (prevchar
!= thischar
)
5016 boolean prevchar
, thischar
;
5018 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
5019 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
5022 prevchar
= WORDCHAR_P (d
- 1);
5023 thischar
= WORDCHAR_P (d
);
5024 if (prevchar
!= thischar
)
5031 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5032 if (WORDCHAR_P (d
) && (AT_STRINGS_BEG (d
) || !WORDCHAR_P (d
- 1)))
5037 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5038 if (!AT_STRINGS_BEG (d
) && WORDCHAR_P (d
- 1)
5039 && (!WORDCHAR_P (d
) || AT_STRINGS_END (d
)))
5045 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5046 if (PTR_CHAR_POS ((unsigned char *) d
) >= point
)
5051 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5052 if (PTR_CHAR_POS ((unsigned char *) d
) != point
)
5057 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5058 if (PTR_CHAR_POS ((unsigned char *) d
) <= point
)
5063 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt
);
5068 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
5072 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5074 if (SYNTAX (d
[-1]) != (enum syntaxcode
) mcnt
)
5076 SET_REGS_MATCHED ();
5080 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt
);
5082 goto matchnotsyntax
;
5085 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
5089 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5091 if (SYNTAX (d
[-1]) == (enum syntaxcode
) mcnt
)
5093 SET_REGS_MATCHED ();
5096 #else /* not emacs */
5098 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
5100 if (!WORDCHAR_P (d
))
5102 SET_REGS_MATCHED ();
5107 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
5111 SET_REGS_MATCHED ();
5114 #endif /* not emacs */
5119 continue; /* Successfully executed one pattern command; keep going. */
5122 /* We goto here if a matching operation fails. */
5124 if (!FAIL_STACK_EMPTY ())
5125 { /* A restart point is known. Restore to that state. */
5126 DEBUG_PRINT1 ("\nFAIL:\n");
5127 POP_FAILURE_POINT (d
, p
,
5128 lowest_active_reg
, highest_active_reg
,
5129 regstart
, regend
, reg_info
);
5131 /* If this failure point is a dummy, try the next one. */
5135 /* If we failed to the end of the pattern, don't examine *p. */
5139 boolean is_a_jump_n
= false;
5141 /* If failed to a backwards jump that's part of a repetition
5142 loop, need to pop this failure point and use the next one. */
5143 switch ((re_opcode_t
) *p
)
5147 case maybe_pop_jump
:
5148 case pop_failure_jump
:
5151 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5154 if ((is_a_jump_n
&& (re_opcode_t
) *p1
== succeed_n
)
5156 && (re_opcode_t
) *p1
== on_failure_jump
))
5164 if (d
>= string1
&& d
<= end1
)
5168 break; /* Matching at this starting point really fails. */
5172 goto restore_best_regs
;
5176 return -1; /* Failure to match. */
5179 /* Subroutine definitions for re_match_2. */
5182 /* We are passed P pointing to a register number after a start_memory.
5184 Return true if the pattern up to the corresponding stop_memory can
5185 match the empty string, and false otherwise.
5187 If we find the matching stop_memory, sets P to point to one past its number.
5188 Otherwise, sets P to an undefined byte less than or equal to END.
5190 We don't handle duplicates properly (yet). */
5193 group_match_null_string_p (p
, end
, reg_info
)
5194 unsigned char **p
, *end
;
5195 register_info_type
*reg_info
;
5198 /* Point to after the args to the start_memory. */
5199 unsigned char *p1
= *p
+ 2;
5203 /* Skip over opcodes that can match nothing, and return true or
5204 false, as appropriate, when we get to one that can't, or to the
5205 matching stop_memory. */
5207 switch ((re_opcode_t
) *p1
)
5209 /* Could be either a loop or a series of alternatives. */
5210 case on_failure_jump
:
5212 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5214 /* If the next operation is not a jump backwards in the
5219 /* Go through the on_failure_jumps of the alternatives,
5220 seeing if any of the alternatives cannot match nothing.
5221 The last alternative starts with only a jump,
5222 whereas the rest start with on_failure_jump and end
5223 with a jump, e.g., here is the pattern for `a|b|c':
5225 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5226 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5229 So, we have to first go through the first (n-1)
5230 alternatives and then deal with the last one separately. */
5233 /* Deal with the first (n-1) alternatives, which start
5234 with an on_failure_jump (see above) that jumps to right
5235 past a jump_past_alt. */
5237 while ((re_opcode_t
) p1
[mcnt
-3] == jump_past_alt
)
5239 /* `mcnt' holds how many bytes long the alternative
5240 is, including the ending `jump_past_alt' and
5243 if (!alt_match_null_string_p (p1
, p1
+ mcnt
- 3,
5247 /* Move to right after this alternative, including the
5251 /* Break if it's the beginning of an n-th alternative
5252 that doesn't begin with an on_failure_jump. */
5253 if ((re_opcode_t
) *p1
!= on_failure_jump
)
5256 /* Still have to check that it's not an n-th
5257 alternative that starts with an on_failure_jump. */
5259 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5260 if ((re_opcode_t
) p1
[mcnt
-3] != jump_past_alt
)
5262 /* Get to the beginning of the n-th alternative. */
5268 /* Deal with the last alternative: go back and get number
5269 of the `jump_past_alt' just before it. `mcnt' contains
5270 the length of the alternative. */
5271 EXTRACT_NUMBER (mcnt
, p1
- 2);
5273 if (!alt_match_null_string_p (p1
, p1
+ mcnt
, reg_info
))
5276 p1
+= mcnt
; /* Get past the n-th alternative. */
5282 assert (p1
[1] == **p
);
5288 if (!common_op_match_null_string_p (&p1
, end
, reg_info
))
5291 } /* while p1 < end */
5294 } /* group_match_null_string_p */
5297 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5298 It expects P to be the first byte of a single alternative and END one
5299 byte past the last. The alternative can contain groups. */
5302 alt_match_null_string_p (p
, end
, reg_info
)
5303 unsigned char *p
, *end
;
5304 register_info_type
*reg_info
;
5307 unsigned char *p1
= p
;
5311 /* Skip over opcodes that can match nothing, and break when we get
5312 to one that can't. */
5314 switch ((re_opcode_t
) *p1
)
5317 case on_failure_jump
:
5319 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5324 if (!common_op_match_null_string_p (&p1
, end
, reg_info
))
5327 } /* while p1 < end */
5330 } /* alt_match_null_string_p */
5333 /* Deals with the ops common to group_match_null_string_p and
5334 alt_match_null_string_p.
5336 Sets P to one after the op and its arguments, if any. */
5339 common_op_match_null_string_p (p
, end
, reg_info
)
5340 unsigned char **p
, *end
;
5341 register_info_type
*reg_info
;
5346 unsigned char *p1
= *p
;
5348 switch ((re_opcode_t
) *p1
++)
5368 assert (reg_no
> 0 && reg_no
<= MAX_REGNUM
);
5369 ret
= group_match_null_string_p (&p1
, end
, reg_info
);
5371 /* Have to set this here in case we're checking a group which
5372 contains a group and a back reference to it. */
5374 if (REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) == MATCH_NULL_UNSET_VALUE
)
5375 REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) = ret
;
5381 /* If this is an optimized succeed_n for zero times, make the jump. */
5383 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5391 /* Get to the number of times to succeed. */
5393 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5398 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5406 if (!REG_MATCH_NULL_STRING_P (reg_info
[*p1
]))
5414 /* All other opcodes mean we cannot match the empty string. */
5420 } /* common_op_match_null_string_p */
5423 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5424 bytes; nonzero otherwise. */
5427 bcmp_translate (s1
, s2
, len
, translate
)
5428 const char *s1
, *s2
;
5430 RE_TRANSLATE_TYPE translate
;
5432 register const unsigned char *p1
= (const unsigned char *) s1
;
5433 register const unsigned char *p2
= (const unsigned char *) s2
;
5436 if (translate
[*p1
++] != translate
[*p2
++]) return 1;
5442 /* Entry points for GNU code. */
5444 /* re_compile_pattern is the GNU regular expression compiler: it
5445 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5446 Returns 0 if the pattern was valid, otherwise an error string.
5448 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5449 are set in BUFP on entry.
5451 We call regex_compile to do the actual compilation. */
5454 re_compile_pattern (pattern
, length
, bufp
)
5455 const char *pattern
;
5457 struct re_pattern_buffer
*bufp
;
5461 /* GNU code is written to assume at least RE_NREGS registers will be set
5462 (and at least one extra will be -1). */
5463 bufp
->regs_allocated
= REGS_UNALLOCATED
;
5465 /* And GNU code determines whether or not to get register information
5466 by passing null for the REGS argument to re_match, etc., not by
5470 /* Match anchors at newline. */
5471 bufp
->newline_anchor
= 1;
5473 ret
= regex_compile (pattern
, length
, re_syntax_options
, bufp
);
5477 return gettext (re_error_msgid
[(int) ret
]);
5480 weak_alias (__re_compile_pattern
, re_compile_pattern
)
5483 /* Entry points compatible with 4.2 BSD regex library. We don't define
5484 them unless specifically requested. */
5486 #if defined _REGEX_RE_COMP || defined _LIBC
5488 /* BSD has one and only one pattern buffer. */
5489 static struct re_pattern_buffer re_comp_buf
;
5493 /* Make these definitions weak in libc, so POSIX programs can redefine
5494 these names if they don't use our functions, and still use
5495 regcomp/regexec below without link errors. */
5505 if (!re_comp_buf
.buffer
)
5506 return gettext ("No previous regular expression");
5510 if (!re_comp_buf
.buffer
)
5512 re_comp_buf
.buffer
= (unsigned char *) malloc (200);
5513 if (re_comp_buf
.buffer
== NULL
)
5514 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
5515 re_comp_buf
.allocated
= 200;
5517 re_comp_buf
.fastmap
= (char *) malloc (1 << BYTEWIDTH
);
5518 if (re_comp_buf
.fastmap
== NULL
)
5519 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
5522 /* Since `re_exec' always passes NULL for the `regs' argument, we
5523 don't need to initialize the pattern buffer fields which affect it. */
5525 /* Match anchors at newlines. */
5526 re_comp_buf
.newline_anchor
= 1;
5528 ret
= regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
5533 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5534 return (char *) gettext (re_error_msgid
[(int) ret
]);
5545 const int len
= strlen (s
);
5547 0 <= re_search (&re_comp_buf
, s
, len
, 0, len
, (struct re_registers
*) 0);
5550 #endif /* _REGEX_RE_COMP */
5552 /* POSIX.2 functions. Don't define these for Emacs. */
5556 /* regcomp takes a regular expression as a string and compiles it.
5558 PREG is a regex_t *. We do not expect any fields to be initialized,
5559 since POSIX says we shouldn't. Thus, we set
5561 `buffer' to the compiled pattern;
5562 `used' to the length of the compiled pattern;
5563 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5564 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5565 RE_SYNTAX_POSIX_BASIC;
5566 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5567 `fastmap' and `fastmap_accurate' to zero;
5568 `re_nsub' to the number of subexpressions in PATTERN.
5570 PATTERN is the address of the pattern string.
5572 CFLAGS is a series of bits which affect compilation.
5574 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5575 use POSIX basic syntax.
5577 If REG_NEWLINE is set, then . and [^...] don't match newline.
5578 Also, regexec will try a match beginning after every newline.
5580 If REG_ICASE is set, then we considers upper- and lowercase
5581 versions of letters to be equivalent when matching.
5583 If REG_NOSUB is set, then when PREG is passed to regexec, that
5584 routine will report only success or failure, and nothing about the
5587 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
5588 the return codes and their meanings.) */
5591 regcomp (preg
, pattern
, cflags
)
5593 const char *pattern
;
5598 = (cflags
& REG_EXTENDED
) ?
5599 RE_SYNTAX_POSIX_EXTENDED
: RE_SYNTAX_POSIX_BASIC
;
5601 /* regex_compile will allocate the space for the compiled pattern. */
5603 preg
->allocated
= 0;
5606 /* Don't bother to use a fastmap when searching. This simplifies the
5607 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5608 characters after newlines into the fastmap. This way, we just try
5612 if (cflags
& REG_ICASE
)
5617 = (RE_TRANSLATE_TYPE
) malloc (CHAR_SET_SIZE
5618 * sizeof (*(RE_TRANSLATE_TYPE
)0));
5619 if (preg
->translate
== NULL
)
5620 return (int) REG_ESPACE
;
5622 /* Map uppercase characters to corresponding lowercase ones. */
5623 for (i
= 0; i
< CHAR_SET_SIZE
; i
++)
5624 preg
->translate
[i
] = ISUPPER (i
) ? tolower (i
) : i
;
5627 preg
->translate
= NULL
;
5629 /* If REG_NEWLINE is set, newlines are treated differently. */
5630 if (cflags
& REG_NEWLINE
)
5631 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5632 syntax
&= ~RE_DOT_NEWLINE
;
5633 syntax
|= RE_HAT_LISTS_NOT_NEWLINE
;
5634 /* It also changes the matching behavior. */
5635 preg
->newline_anchor
= 1;
5638 preg
->newline_anchor
= 0;
5640 preg
->no_sub
= !!(cflags
& REG_NOSUB
);
5642 /* POSIX says a null character in the pattern terminates it, so we
5643 can use strlen here in compiling the pattern. */
5644 ret
= regex_compile (pattern
, strlen (pattern
), syntax
, preg
);
5646 /* POSIX doesn't distinguish between an unmatched open-group and an
5647 unmatched close-group: both are REG_EPAREN. */
5648 if (ret
== REG_ERPAREN
) ret
= REG_EPAREN
;
5653 weak_alias (__regcomp
, regcomp
)
5657 /* regexec searches for a given pattern, specified by PREG, in the
5660 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5661 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5662 least NMATCH elements, and we set them to the offsets of the
5663 corresponding matched substrings.
5665 EFLAGS specifies `execution flags' which affect matching: if
5666 REG_NOTBOL is set, then ^ does not match at the beginning of the
5667 string; if REG_NOTEOL is set, then $ does not match at the end.
5669 We return 0 if we find a match and REG_NOMATCH if not. */
5672 regexec (preg
, string
, nmatch
, pmatch
, eflags
)
5673 const regex_t
*preg
;
5676 regmatch_t pmatch
[];
5680 struct re_registers regs
;
5681 regex_t private_preg
;
5682 int len
= strlen (string
);
5683 boolean want_reg_info
= !preg
->no_sub
&& nmatch
> 0;
5685 private_preg
= *preg
;
5687 private_preg
.not_bol
= !!(eflags
& REG_NOTBOL
);
5688 private_preg
.not_eol
= !!(eflags
& REG_NOTEOL
);
5690 /* The user has told us exactly how many registers to return
5691 information about, via `nmatch'. We have to pass that on to the
5692 matching routines. */
5693 private_preg
.regs_allocated
= REGS_FIXED
;
5697 regs
.num_regs
= nmatch
;
5698 regs
.start
= TALLOC (nmatch
, regoff_t
);
5699 regs
.end
= TALLOC (nmatch
, regoff_t
);
5700 if (regs
.start
== NULL
|| regs
.end
== NULL
)
5701 return (int) REG_NOMATCH
;
5704 /* Perform the searching operation. */
5705 ret
= re_search (&private_preg
, string
, len
,
5706 /* start: */ 0, /* range: */ len
,
5707 want_reg_info
? ®s
: (struct re_registers
*) 0);
5709 /* Copy the register information to the POSIX structure. */
5716 for (r
= 0; r
< nmatch
; r
++)
5718 pmatch
[r
].rm_so
= regs
.start
[r
];
5719 pmatch
[r
].rm_eo
= regs
.end
[r
];
5723 /* If we needed the temporary register info, free the space now. */
5728 /* We want zero return to mean success, unlike `re_search'. */
5729 return ret
>= 0 ? (int) REG_NOERROR
: (int) REG_NOMATCH
;
5732 weak_alias (__regexec
, regexec
)
5736 /* Returns a message corresponding to an error code, ERRCODE, returned
5737 from either regcomp or regexec. We don't use PREG here. */
5740 __regerror (errcode
, preg
, errbuf
, errbuf_size
)
5742 const regex_t
*preg
;
5750 || errcode
>= (int) (sizeof (re_error_msgid
)
5751 / sizeof (re_error_msgid
[0])))
5752 /* Only error codes returned by the rest of the code should be passed
5753 to this routine. If we are given anything else, or if other regex
5754 code generates an invalid error code, then the program has a bug.
5755 Dump core so we can fix it. */
5758 msg
= gettext (re_error_msgid
[errcode
]);
5760 msg_size
= strlen (msg
) + 1; /* Includes the null. */
5762 if (errbuf_size
!= 0)
5764 if (msg_size
> errbuf_size
)
5766 #if defined HAVE_MEMPCPY || defined _LIBC
5767 *((char *) __mempcpy (errbuf
, msg
, errbuf_size
- 1)) = '\0';
5769 memcpy (errbuf
, msg
, errbuf_size
- 1);
5770 errbuf
[errbuf_size
- 1] = 0;
5774 memcpy (errbuf
, msg
, msg_size
);
5780 weak_alias (__regerror
, regerror
)
5784 /* Free dynamically allocated space used by PREG. */
5790 if (preg
->buffer
!= NULL
)
5791 free (preg
->buffer
);
5792 preg
->buffer
= NULL
;
5794 preg
->allocated
= 0;
5797 if (preg
->fastmap
!= NULL
)
5798 free (preg
->fastmap
);
5799 preg
->fastmap
= NULL
;
5800 preg
->fastmap_accurate
= 0;
5802 if (preg
->translate
!= NULL
)
5803 free (preg
->translate
);
5804 preg
->translate
= NULL
;
5807 weak_alias (__regfree
, regfree
)
5810 #endif /* not emacs */