1 /* Software floating-point emulation.
2 Definitions for IEEE Extended Precision.
3 Copyright (C) 1999-2014 Free Software Foundation, Inc.
4 This file is part of the GNU C Library.
5 Contributed by Jakub Jelinek (jj@ultra.linux.cz).
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
12 In addition to the permissions in the GNU Lesser General Public
13 License, the Free Software Foundation gives you unlimited
14 permission to link the compiled version of this file into
15 combinations with other programs, and to distribute those
16 combinations without any restriction coming from the use of this
17 file. (The Lesser General Public License restrictions do apply in
18 other respects; for example, they cover modification of the file,
19 and distribution when not linked into a combine executable.)
21 The GNU C Library is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
24 Lesser General Public License for more details.
26 You should have received a copy of the GNU Lesser General Public
27 License along with the GNU C Library; if not, see
28 <http://www.gnu.org/licenses/>. */
30 #if _FP_W_TYPE_SIZE < 32
31 # error "Here's a nickel, kid. Go buy yourself a real computer."
34 #if _FP_W_TYPE_SIZE < 64
35 # define _FP_FRACTBITS_E (4*_FP_W_TYPE_SIZE)
36 # define _FP_FRACTBITS_DW_E (8*_FP_W_TYPE_SIZE)
38 # define _FP_FRACTBITS_E (2*_FP_W_TYPE_SIZE)
39 # define _FP_FRACTBITS_DW_E (4*_FP_W_TYPE_SIZE)
42 #define _FP_FRACBITS_E 64
43 #define _FP_FRACXBITS_E (_FP_FRACTBITS_E - _FP_FRACBITS_E)
44 #define _FP_WFRACBITS_E (_FP_WORKBITS + _FP_FRACBITS_E)
45 #define _FP_WFRACXBITS_E (_FP_FRACTBITS_E - _FP_WFRACBITS_E)
46 #define _FP_EXPBITS_E 15
47 #define _FP_EXPBIAS_E 16383
48 #define _FP_EXPMAX_E 32767
50 #define _FP_QNANBIT_E \
51 ((_FP_W_TYPE) 1 << (_FP_FRACBITS_E-2) % _FP_W_TYPE_SIZE)
52 #define _FP_QNANBIT_SH_E \
53 ((_FP_W_TYPE) 1 << (_FP_FRACBITS_E-2+_FP_WORKBITS) % _FP_W_TYPE_SIZE)
54 #define _FP_IMPLBIT_E \
55 ((_FP_W_TYPE) 1 << (_FP_FRACBITS_E-1) % _FP_W_TYPE_SIZE)
56 #define _FP_IMPLBIT_SH_E \
57 ((_FP_W_TYPE) 1 << (_FP_FRACBITS_E-1+_FP_WORKBITS) % _FP_W_TYPE_SIZE)
58 #define _FP_OVERFLOW_E \
59 ((_FP_W_TYPE) 1 << (_FP_WFRACBITS_E % _FP_W_TYPE_SIZE))
61 #define _FP_WFRACBITS_DW_E (2 * _FP_WFRACBITS_E)
62 #define _FP_WFRACXBITS_DW_E (_FP_FRACTBITS_DW_E - _FP_WFRACBITS_DW_E)
63 #define _FP_HIGHBIT_DW_E \
64 ((_FP_W_TYPE) 1 << (_FP_WFRACBITS_DW_E - 1) % _FP_W_TYPE_SIZE)
66 typedef float XFtype
__attribute__ ((mode (XF
)));
68 #if _FP_W_TYPE_SIZE < 64
73 struct _FP_STRUCT_LAYOUT
75 # if __BYTE_ORDER == __BIG_ENDIAN
76 unsigned long pad1
: _FP_W_TYPE_SIZE
;
77 unsigned long pad2
: (_FP_W_TYPE_SIZE
- 1 - _FP_EXPBITS_E
);
78 unsigned long sign
: 1;
79 unsigned long exp
: _FP_EXPBITS_E
;
80 unsigned long frac1
: _FP_W_TYPE_SIZE
;
81 unsigned long frac0
: _FP_W_TYPE_SIZE
;
83 unsigned long frac0
: _FP_W_TYPE_SIZE
;
84 unsigned long frac1
: _FP_W_TYPE_SIZE
;
85 unsigned exp
: _FP_EXPBITS_E
;
87 # endif /* not bigendian */
88 } bits
__attribute__ ((packed
));
92 # define FP_DECL_E(X) _FP_DECL (4, X)
94 # define FP_UNPACK_RAW_E(X, val) \
97 union _FP_UNION_E _flo; \
102 X##_f[0] = _flo.bits.frac0; \
103 X##_f[1] = _flo.bits.frac1; \
104 X##_e = _flo.bits.exp; \
105 X##_s = _flo.bits.sign; \
109 # define FP_UNPACK_RAW_EP(X, val) \
112 union _FP_UNION_E *_flo = (union _FP_UNION_E *) (val); \
116 X##_f[0] = _flo->bits.frac0; \
117 X##_f[1] = _flo->bits.frac1; \
118 X##_e = _flo->bits.exp; \
119 X##_s = _flo->bits.sign; \
123 # define FP_PACK_RAW_E(val, X) \
126 union _FP_UNION_E _flo; \
129 X##_f[1] |= _FP_IMPLBIT_E; \
131 X##_f[1] &= ~(_FP_IMPLBIT_E); \
132 _flo.bits.frac0 = X##_f[0]; \
133 _flo.bits.frac1 = X##_f[1]; \
134 _flo.bits.exp = X##_e; \
135 _flo.bits.sign = X##_s; \
141 # define FP_PACK_RAW_EP(val, X) \
144 if (!FP_INHIBIT_RESULTS) \
146 union _FP_UNION_E *_flo = (union _FP_UNION_E *) (val); \
149 X##_f[1] |= _FP_IMPLBIT_E; \
151 X##_f[1] &= ~(_FP_IMPLBIT_E); \
152 _flo->bits.frac0 = X##_f[0]; \
153 _flo->bits.frac1 = X##_f[1]; \
154 _flo->bits.exp = X##_e; \
155 _flo->bits.sign = X##_s; \
160 # define FP_UNPACK_E(X, val) \
163 FP_UNPACK_RAW_E (X, val); \
164 _FP_UNPACK_CANONICAL (E, 4, X); \
168 # define FP_UNPACK_EP(X, val) \
171 FP_UNPACK_RAW_EP (X, val); \
172 _FP_UNPACK_CANONICAL (E, 4, X); \
176 # define FP_UNPACK_SEMIRAW_E(X, val) \
179 FP_UNPACK_RAW_E (X, val); \
180 _FP_UNPACK_SEMIRAW (E, 4, X); \
184 # define FP_UNPACK_SEMIRAW_EP(X, val) \
187 FP_UNPACK_RAW_EP (X, val); \
188 _FP_UNPACK_SEMIRAW (E, 4, X); \
192 # define FP_PACK_E(val, X) \
195 _FP_PACK_CANONICAL (E, 4, X); \
196 FP_PACK_RAW_E (val, X); \
200 # define FP_PACK_EP(val, X) \
203 _FP_PACK_CANONICAL (E, 4, X); \
204 FP_PACK_RAW_EP (val, X); \
208 # define FP_PACK_SEMIRAW_E(val, X) \
211 _FP_PACK_SEMIRAW (E, 4, X); \
212 FP_PACK_RAW_E (val, X); \
216 # define FP_PACK_SEMIRAW_EP(val, X) \
219 _FP_PACK_SEMIRAW (E, 4, X); \
220 FP_PACK_RAW_EP (val, X); \
224 # define FP_ISSIGNAN_E(X) _FP_ISSIGNAN (E, 4, X)
225 # define FP_NEG_E(R, X) _FP_NEG (E, 4, R, X)
226 # define FP_ADD_E(R, X, Y) _FP_ADD (E, 4, R, X, Y)
227 # define FP_SUB_E(R, X, Y) _FP_SUB (E, 4, R, X, Y)
228 # define FP_MUL_E(R, X, Y) _FP_MUL (E, 4, R, X, Y)
229 # define FP_DIV_E(R, X, Y) _FP_DIV (E, 4, R, X, Y)
230 # define FP_SQRT_E(R, X) _FP_SQRT (E, 4, R, X)
231 # define FP_FMA_E(R, X, Y, Z) _FP_FMA (E, 4, 8, R, X, Y, Z)
234 * Square root algorithms:
235 * We have just one right now, maybe Newton approximation
236 * should be added for those machines where division is fast.
237 * This has special _E version because standard _4 square
238 * root would not work (it has to start normally with the
239 * second word and not the first), but as we have to do it
240 * anyway, we optimize it by doing most of the calculations
241 * in two UWtype registers instead of four.
244 # define _FP_SQRT_MEAT_E(R, S, T, X, q) \
247 q = (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE - 1); \
248 _FP_FRAC_SRL_4 (X, (_FP_WORKBITS)); \
251 T##_f[1] = S##_f[1] + q; \
252 if (T##_f[1] <= X##_f[1]) \
254 S##_f[1] = T##_f[1] + q; \
255 X##_f[1] -= T##_f[1]; \
258 _FP_FRAC_SLL_2 (X, 1); \
261 q = (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE - 1); \
264 T##_f[0] = S##_f[0] + q; \
265 T##_f[1] = S##_f[1]; \
266 if (T##_f[1] < X##_f[1] \
267 || (T##_f[1] == X##_f[1] \
268 && T##_f[0] <= X##_f[0])) \
270 S##_f[0] = T##_f[0] + q; \
271 S##_f[1] += (T##_f[0] > S##_f[0]); \
272 _FP_FRAC_DEC_2 (X, T); \
275 _FP_FRAC_SLL_2 (X, 1); \
278 _FP_FRAC_SLL_4 (R, (_FP_WORKBITS)); \
279 if (X##_f[0] | X##_f[1]) \
281 if (S##_f[1] < X##_f[1] \
282 || (S##_f[1] == X##_f[1] \
283 && S##_f[0] < X##_f[0])) \
284 R##_f[0] |= _FP_WORK_ROUND; \
285 R##_f[0] |= _FP_WORK_STICKY; \
290 # define FP_CMP_E(r, X, Y, un) _FP_CMP (E, 4, r, X, Y, un)
291 # define FP_CMP_EQ_E(r, X, Y) _FP_CMP_EQ (E, 4, r, X, Y)
292 # define FP_CMP_UNORD_E(r, X, Y) _FP_CMP_UNORD (E, 4, r, X, Y)
294 # define FP_TO_INT_E(r, X, rsz, rsg) _FP_TO_INT (E, 4, r, X, rsz, rsg)
295 # define FP_FROM_INT_E(X, r, rs, rt) _FP_FROM_INT (E, 4, X, r, rs, rt)
297 # define _FP_FRAC_HIGH_E(X) (X##_f[2])
298 # define _FP_FRAC_HIGH_RAW_E(X) (X##_f[1])
300 # define _FP_FRAC_HIGH_DW_E(X) (X##_f[4])
302 #else /* not _FP_W_TYPE_SIZE < 64 */
306 struct _FP_STRUCT_LAYOUT
308 # if __BYTE_ORDER == __BIG_ENDIAN
309 _FP_W_TYPE pad
: (_FP_W_TYPE_SIZE
- 1 - _FP_EXPBITS_E
);
311 unsigned exp
: _FP_EXPBITS_E
;
312 _FP_W_TYPE frac
: _FP_W_TYPE_SIZE
;
314 _FP_W_TYPE frac
: _FP_W_TYPE_SIZE
;
315 unsigned exp
: _FP_EXPBITS_E
;
321 # define FP_DECL_E(X) _FP_DECL (2, X)
323 # define FP_UNPACK_RAW_E(X, val) \
326 union _FP_UNION_E _flo; \
329 X##_f0 = _flo.bits.frac; \
331 X##_e = _flo.bits.exp; \
332 X##_s = _flo.bits.sign; \
336 # define FP_UNPACK_RAW_EP(X, val) \
339 union _FP_UNION_E *_flo = (union _FP_UNION_E *) (val); \
341 X##_f0 = _flo->bits.frac; \
343 X##_e = _flo->bits.exp; \
344 X##_s = _flo->bits.sign; \
348 # define FP_PACK_RAW_E(val, X) \
351 union _FP_UNION_E _flo; \
354 X##_f0 |= _FP_IMPLBIT_E; \
356 X##_f0 &= ~(_FP_IMPLBIT_E); \
357 _flo.bits.frac = X##_f0; \
358 _flo.bits.exp = X##_e; \
359 _flo.bits.sign = X##_s; \
365 # define FP_PACK_RAW_EP(fs, val, X) \
368 if (!FP_INHIBIT_RESULTS) \
370 union _FP_UNION_E *_flo = (union _FP_UNION_E *) (val); \
373 X##_f0 |= _FP_IMPLBIT_E; \
375 X##_f0 &= ~(_FP_IMPLBIT_E); \
376 _flo->bits.frac = X##_f0; \
377 _flo->bits.exp = X##_e; \
378 _flo->bits.sign = X##_s; \
384 # define FP_UNPACK_E(X, val) \
387 FP_UNPACK_RAW_E (X, val); \
388 _FP_UNPACK_CANONICAL (E, 2, X); \
392 # define FP_UNPACK_EP(X, val) \
395 FP_UNPACK_RAW_EP (X, val); \
396 _FP_UNPACK_CANONICAL (E, 2, X); \
400 # define FP_UNPACK_SEMIRAW_E(X, val) \
403 FP_UNPACK_RAW_E (X, val); \
404 _FP_UNPACK_SEMIRAW (E, 2, X); \
408 # define FP_UNPACK_SEMIRAW_EP(X, val) \
411 FP_UNPACK_RAW_EP (X, val); \
412 _FP_UNPACK_SEMIRAW (E, 2, X); \
416 # define FP_PACK_E(val, X) \
419 _FP_PACK_CANONICAL (E, 2, X); \
420 FP_PACK_RAW_E (val, X); \
424 # define FP_PACK_EP(val, X) \
427 _FP_PACK_CANONICAL (E, 2, X); \
428 FP_PACK_RAW_EP (val, X); \
432 # define FP_PACK_SEMIRAW_E(val, X) \
435 _FP_PACK_SEMIRAW (E, 2, X); \
436 FP_PACK_RAW_E (val, X); \
440 # define FP_PACK_SEMIRAW_EP(val, X) \
443 _FP_PACK_SEMIRAW (E, 2, X); \
444 FP_PACK_RAW_EP (val, X); \
448 # define FP_ISSIGNAN_E(X) _FP_ISSIGNAN (E, 2, X)
449 # define FP_NEG_E(R, X) _FP_NEG (E, 2, R, X)
450 # define FP_ADD_E(R, X, Y) _FP_ADD (E, 2, R, X, Y)
451 # define FP_SUB_E(R, X, Y) _FP_SUB (E, 2, R, X, Y)
452 # define FP_MUL_E(R, X, Y) _FP_MUL (E, 2, R, X, Y)
453 # define FP_DIV_E(R, X, Y) _FP_DIV (E, 2, R, X, Y)
454 # define FP_SQRT_E(R, X) _FP_SQRT (E, 2, R, X)
455 # define FP_FMA_E(R, X, Y, Z) _FP_FMA (E, 2, 4, R, X, Y, Z)
458 * Square root algorithms:
459 * We have just one right now, maybe Newton approximation
460 * should be added for those machines where division is fast.
461 * We optimize it by doing most of the calculations
462 * in one UWtype registers instead of two, although we don't
465 # define _FP_SQRT_MEAT_E(R, S, T, X, q) \
468 q = (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE - 1); \
469 _FP_FRAC_SRL_2 (X, (_FP_WORKBITS)); \
472 T##_f0 = S##_f0 + q; \
473 if (T##_f0 <= X##_f0) \
475 S##_f0 = T##_f0 + q; \
479 _FP_FRAC_SLL_1 (X, 1); \
482 _FP_FRAC_SLL_2 (R, (_FP_WORKBITS)); \
485 if (S##_f0 < X##_f0) \
486 R##_f0 |= _FP_WORK_ROUND; \
487 R##_f0 |= _FP_WORK_STICKY; \
492 # define FP_CMP_E(r, X, Y, un) _FP_CMP (E, 2, r, X, Y, un)
493 # define FP_CMP_EQ_E(r, X, Y) _FP_CMP_EQ (E, 2, r, X, Y)
494 # define FP_CMP_UNORD_E(r, X, Y) _FP_CMP_UNORD (E, 2, r, X, Y)
496 # define FP_TO_INT_E(r, X, rsz, rsg) _FP_TO_INT (E, 2, r, X, rsz, rsg)
497 # define FP_FROM_INT_E(X, r, rs, rt) _FP_FROM_INT (E, 2, X, r, rs, rt)
499 # define _FP_FRAC_HIGH_E(X) (X##_f1)
500 # define _FP_FRAC_HIGH_RAW_E(X) (X##_f0)
502 # define _FP_FRAC_HIGH_DW_E(X) (X##_f[2])
504 #endif /* not _FP_W_TYPE_SIZE < 64 */