Update <netpacket/packet.h> for Linux 4.3.
[glibc.git] / stdlib / strtod_l.c
blob89e03841ee035d893486158ec29343e037960599
1 /* Convert string representing a number to float value, using given locale.
2 Copyright (C) 1997-2015 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; if not, see
18 <http://www.gnu.org/licenses/>. */
20 #include <xlocale.h>
22 extern double ____strtod_l_internal (const char *, char **, int, __locale_t);
23 extern unsigned long long int ____strtoull_l_internal (const char *, char **,
24 int, int, __locale_t);
26 /* Configuration part. These macros are defined by `strtold.c',
27 `strtof.c', `wcstod.c', `wcstold.c', and `wcstof.c' to produce the
28 `long double' and `float' versions of the reader. */
29 #ifndef FLOAT
30 # include <math_ldbl_opt.h>
31 # define FLOAT double
32 # define FLT DBL
33 # ifdef USE_WIDE_CHAR
34 # define STRTOF wcstod_l
35 # define __STRTOF __wcstod_l
36 # else
37 # define STRTOF strtod_l
38 # define __STRTOF __strtod_l
39 # endif
40 # define MPN2FLOAT __mpn_construct_double
41 # define FLOAT_HUGE_VAL HUGE_VAL
42 # define SET_MANTISSA(flt, mant) \
43 do { union ieee754_double u; \
44 u.d = (flt); \
45 u.ieee_nan.mantissa0 = (mant) >> 32; \
46 u.ieee_nan.mantissa1 = (mant); \
47 if ((u.ieee.mantissa0 | u.ieee.mantissa1) != 0) \
48 (flt) = u.d; \
49 } while (0)
50 #endif
51 /* End of configuration part. */
53 #include <ctype.h>
54 #include <errno.h>
55 #include <float.h>
56 #include <ieee754.h>
57 #include "../locale/localeinfo.h"
58 #include <locale.h>
59 #include <math.h>
60 #include <math_private.h>
61 #include <stdlib.h>
62 #include <string.h>
63 #include <stdint.h>
64 #include <rounding-mode.h>
65 #include <tininess.h>
67 /* The gmp headers need some configuration frobs. */
68 #define HAVE_ALLOCA 1
70 /* Include gmp-mparam.h first, such that definitions of _SHORT_LIMB
71 and _LONG_LONG_LIMB in it can take effect into gmp.h. */
72 #include <gmp-mparam.h>
73 #include <gmp.h>
74 #include "gmp-impl.h"
75 #include "longlong.h"
76 #include "fpioconst.h"
78 #include <assert.h>
81 /* We use this code for the extended locale handling where the
82 function gets as an additional argument the locale which has to be
83 used. To access the values we have to redefine the _NL_CURRENT and
84 _NL_CURRENT_WORD macros. */
85 #undef _NL_CURRENT
86 #define _NL_CURRENT(category, item) \
87 (current->values[_NL_ITEM_INDEX (item)].string)
88 #undef _NL_CURRENT_WORD
89 #define _NL_CURRENT_WORD(category, item) \
90 ((uint32_t) current->values[_NL_ITEM_INDEX (item)].word)
92 #if defined _LIBC || defined HAVE_WCHAR_H
93 # include <wchar.h>
94 #endif
96 #ifdef USE_WIDE_CHAR
97 # include <wctype.h>
98 # define STRING_TYPE wchar_t
99 # define CHAR_TYPE wint_t
100 # define L_(Ch) L##Ch
101 # define ISSPACE(Ch) __iswspace_l ((Ch), loc)
102 # define ISDIGIT(Ch) __iswdigit_l ((Ch), loc)
103 # define ISXDIGIT(Ch) __iswxdigit_l ((Ch), loc)
104 # define TOLOWER(Ch) __towlower_l ((Ch), loc)
105 # define TOLOWER_C(Ch) __towlower_l ((Ch), _nl_C_locobj_ptr)
106 # define STRNCASECMP(S1, S2, N) \
107 __wcsncasecmp_l ((S1), (S2), (N), _nl_C_locobj_ptr)
108 # define STRTOULL(S, E, B) ____wcstoull_l_internal ((S), (E), (B), 0, loc)
109 #else
110 # define STRING_TYPE char
111 # define CHAR_TYPE char
112 # define L_(Ch) Ch
113 # define ISSPACE(Ch) __isspace_l ((Ch), loc)
114 # define ISDIGIT(Ch) __isdigit_l ((Ch), loc)
115 # define ISXDIGIT(Ch) __isxdigit_l ((Ch), loc)
116 # define TOLOWER(Ch) __tolower_l ((Ch), loc)
117 # define TOLOWER_C(Ch) __tolower_l ((Ch), _nl_C_locobj_ptr)
118 # define STRNCASECMP(S1, S2, N) \
119 __strncasecmp_l ((S1), (S2), (N), _nl_C_locobj_ptr)
120 # define STRTOULL(S, E, B) ____strtoull_l_internal ((S), (E), (B), 0, loc)
121 #endif
124 /* Constants we need from float.h; select the set for the FLOAT precision. */
125 #define MANT_DIG PASTE(FLT,_MANT_DIG)
126 #define DIG PASTE(FLT,_DIG)
127 #define MAX_EXP PASTE(FLT,_MAX_EXP)
128 #define MIN_EXP PASTE(FLT,_MIN_EXP)
129 #define MAX_10_EXP PASTE(FLT,_MAX_10_EXP)
130 #define MIN_10_EXP PASTE(FLT,_MIN_10_EXP)
131 #define MAX_VALUE PASTE(FLT,_MAX)
132 #define MIN_VALUE PASTE(FLT,_MIN)
134 /* Extra macros required to get FLT expanded before the pasting. */
135 #define PASTE(a,b) PASTE1(a,b)
136 #define PASTE1(a,b) a##b
138 /* Function to construct a floating point number from an MP integer
139 containing the fraction bits, a base 2 exponent, and a sign flag. */
140 extern FLOAT MPN2FLOAT (mp_srcptr mpn, int exponent, int negative);
142 /* Definitions according to limb size used. */
143 #if BITS_PER_MP_LIMB == 32
144 # define MAX_DIG_PER_LIMB 9
145 # define MAX_FAC_PER_LIMB 1000000000UL
146 #elif BITS_PER_MP_LIMB == 64
147 # define MAX_DIG_PER_LIMB 19
148 # define MAX_FAC_PER_LIMB 10000000000000000000ULL
149 #else
150 # error "mp_limb_t size " BITS_PER_MP_LIMB "not accounted for"
151 #endif
153 extern const mp_limb_t _tens_in_limb[MAX_DIG_PER_LIMB + 1];
155 #ifndef howmany
156 #define howmany(x,y) (((x)+((y)-1))/(y))
157 #endif
158 #define SWAP(x, y) ({ typeof(x) _tmp = x; x = y; y = _tmp; })
160 #define RETURN_LIMB_SIZE howmany (MANT_DIG, BITS_PER_MP_LIMB)
162 #define RETURN(val,end) \
163 do { if (endptr != NULL) *endptr = (STRING_TYPE *) (end); \
164 return val; } while (0)
166 /* Maximum size necessary for mpn integers to hold floating point
167 numbers. The largest number we need to hold is 10^n where 2^-n is
168 1/4 ulp of the smallest representable value (that is, n = MANT_DIG
169 - MIN_EXP + 2). Approximate using 10^3 < 2^10. */
170 #define MPNSIZE (howmany (1 + ((MANT_DIG - MIN_EXP + 2) * 10) / 3, \
171 BITS_PER_MP_LIMB) + 2)
172 /* Declare an mpn integer variable that big. */
173 #define MPN_VAR(name) mp_limb_t name[MPNSIZE]; mp_size_t name##size
174 /* Copy an mpn integer value. */
175 #define MPN_ASSIGN(dst, src) \
176 memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t))
179 /* Set errno and return an overflowing value with sign specified by
180 NEGATIVE. */
181 static FLOAT
182 overflow_value (int negative)
184 __set_errno (ERANGE);
185 FLOAT result = math_narrow_eval ((negative ? -MAX_VALUE : MAX_VALUE)
186 * MAX_VALUE);
187 return result;
191 /* Set errno and return an underflowing value with sign specified by
192 NEGATIVE. */
193 static FLOAT
194 underflow_value (int negative)
196 __set_errno (ERANGE);
197 FLOAT result = math_narrow_eval ((negative ? -MIN_VALUE : MIN_VALUE)
198 * MIN_VALUE);
199 return result;
203 /* Return a floating point number of the needed type according to the given
204 multi-precision number after possible rounding. */
205 static FLOAT
206 round_and_return (mp_limb_t *retval, intmax_t exponent, int negative,
207 mp_limb_t round_limb, mp_size_t round_bit, int more_bits)
209 int mode = get_rounding_mode ();
211 if (exponent < MIN_EXP - 1)
213 if (exponent < MIN_EXP - 1 - MANT_DIG)
214 return underflow_value (negative);
216 mp_size_t shift = MIN_EXP - 1 - exponent;
217 bool is_tiny = true;
219 more_bits |= (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0;
220 if (shift == MANT_DIG)
221 /* This is a special case to handle the very seldom case where
222 the mantissa will be empty after the shift. */
224 int i;
226 round_limb = retval[RETURN_LIMB_SIZE - 1];
227 round_bit = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
228 for (i = 0; i < RETURN_LIMB_SIZE - 1; ++i)
229 more_bits |= retval[i] != 0;
230 MPN_ZERO (retval, RETURN_LIMB_SIZE);
232 else if (shift >= BITS_PER_MP_LIMB)
234 int i;
236 round_limb = retval[(shift - 1) / BITS_PER_MP_LIMB];
237 round_bit = (shift - 1) % BITS_PER_MP_LIMB;
238 for (i = 0; i < (shift - 1) / BITS_PER_MP_LIMB; ++i)
239 more_bits |= retval[i] != 0;
240 more_bits |= ((round_limb & ((((mp_limb_t) 1) << round_bit) - 1))
241 != 0);
243 /* __mpn_rshift requires 0 < shift < BITS_PER_MP_LIMB. */
244 if ((shift % BITS_PER_MP_LIMB) != 0)
245 (void) __mpn_rshift (retval, &retval[shift / BITS_PER_MP_LIMB],
246 RETURN_LIMB_SIZE - (shift / BITS_PER_MP_LIMB),
247 shift % BITS_PER_MP_LIMB);
248 else
249 for (i = 0; i < RETURN_LIMB_SIZE - (shift / BITS_PER_MP_LIMB); i++)
250 retval[i] = retval[i + (shift / BITS_PER_MP_LIMB)];
251 MPN_ZERO (&retval[RETURN_LIMB_SIZE - (shift / BITS_PER_MP_LIMB)],
252 shift / BITS_PER_MP_LIMB);
254 else if (shift > 0)
256 if (TININESS_AFTER_ROUNDING && shift == 1)
258 /* Whether the result counts as tiny depends on whether,
259 after rounding to the normal precision, it still has
260 a subnormal exponent. */
261 mp_limb_t retval_normal[RETURN_LIMB_SIZE];
262 if (round_away (negative,
263 (retval[0] & 1) != 0,
264 (round_limb
265 & (((mp_limb_t) 1) << round_bit)) != 0,
266 (more_bits
267 || ((round_limb
268 & ((((mp_limb_t) 1) << round_bit) - 1))
269 != 0)),
270 mode))
272 mp_limb_t cy = __mpn_add_1 (retval_normal, retval,
273 RETURN_LIMB_SIZE, 1);
275 if (((MANT_DIG % BITS_PER_MP_LIMB) == 0 && cy) ||
276 ((MANT_DIG % BITS_PER_MP_LIMB) != 0 &&
277 ((retval_normal[RETURN_LIMB_SIZE - 1]
278 & (((mp_limb_t) 1) << (MANT_DIG % BITS_PER_MP_LIMB)))
279 != 0)))
280 is_tiny = false;
283 round_limb = retval[0];
284 round_bit = shift - 1;
285 (void) __mpn_rshift (retval, retval, RETURN_LIMB_SIZE, shift);
287 /* This is a hook for the m68k long double format, where the
288 exponent bias is the same for normalized and denormalized
289 numbers. */
290 #ifndef DENORM_EXP
291 # define DENORM_EXP (MIN_EXP - 2)
292 #endif
293 exponent = DENORM_EXP;
294 if (is_tiny
295 && ((round_limb & (((mp_limb_t) 1) << round_bit)) != 0
296 || more_bits
297 || (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0))
299 __set_errno (ERANGE);
300 FLOAT force_underflow = MIN_VALUE * MIN_VALUE;
301 math_force_eval (force_underflow);
305 if (exponent > MAX_EXP)
306 goto overflow;
308 if (round_away (negative,
309 (retval[0] & 1) != 0,
310 (round_limb & (((mp_limb_t) 1) << round_bit)) != 0,
311 (more_bits
312 || (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0),
313 mode))
315 mp_limb_t cy = __mpn_add_1 (retval, retval, RETURN_LIMB_SIZE, 1);
317 if (((MANT_DIG % BITS_PER_MP_LIMB) == 0 && cy) ||
318 ((MANT_DIG % BITS_PER_MP_LIMB) != 0 &&
319 (retval[RETURN_LIMB_SIZE - 1]
320 & (((mp_limb_t) 1) << (MANT_DIG % BITS_PER_MP_LIMB))) != 0))
322 ++exponent;
323 (void) __mpn_rshift (retval, retval, RETURN_LIMB_SIZE, 1);
324 retval[RETURN_LIMB_SIZE - 1]
325 |= ((mp_limb_t) 1) << ((MANT_DIG - 1) % BITS_PER_MP_LIMB);
327 else if (exponent == DENORM_EXP
328 && (retval[RETURN_LIMB_SIZE - 1]
329 & (((mp_limb_t) 1) << ((MANT_DIG - 1) % BITS_PER_MP_LIMB)))
330 != 0)
331 /* The number was denormalized but now normalized. */
332 exponent = MIN_EXP - 1;
335 if (exponent > MAX_EXP)
336 overflow:
337 return overflow_value (negative);
339 return MPN2FLOAT (retval, exponent, negative);
343 /* Read a multi-precision integer starting at STR with exactly DIGCNT digits
344 into N. Return the size of the number limbs in NSIZE at the first
345 character od the string that is not part of the integer as the function
346 value. If the EXPONENT is small enough to be taken as an additional
347 factor for the resulting number (see code) multiply by it. */
348 static const STRING_TYPE *
349 str_to_mpn (const STRING_TYPE *str, int digcnt, mp_limb_t *n, mp_size_t *nsize,
350 intmax_t *exponent
351 #ifndef USE_WIDE_CHAR
352 , const char *decimal, size_t decimal_len, const char *thousands
353 #endif
357 /* Number of digits for actual limb. */
358 int cnt = 0;
359 mp_limb_t low = 0;
360 mp_limb_t start;
362 *nsize = 0;
363 assert (digcnt > 0);
366 if (cnt == MAX_DIG_PER_LIMB)
368 if (*nsize == 0)
370 n[0] = low;
371 *nsize = 1;
373 else
375 mp_limb_t cy;
376 cy = __mpn_mul_1 (n, n, *nsize, MAX_FAC_PER_LIMB);
377 cy += __mpn_add_1 (n, n, *nsize, low);
378 if (cy != 0)
380 assert (*nsize < MPNSIZE);
381 n[*nsize] = cy;
382 ++(*nsize);
385 cnt = 0;
386 low = 0;
389 /* There might be thousands separators or radix characters in
390 the string. But these all can be ignored because we know the
391 format of the number is correct and we have an exact number
392 of characters to read. */
393 #ifdef USE_WIDE_CHAR
394 if (*str < L'0' || *str > L'9')
395 ++str;
396 #else
397 if (*str < '0' || *str > '9')
399 int inner = 0;
400 if (thousands != NULL && *str == *thousands
401 && ({ for (inner = 1; thousands[inner] != '\0'; ++inner)
402 if (thousands[inner] != str[inner])
403 break;
404 thousands[inner] == '\0'; }))
405 str += inner;
406 else
407 str += decimal_len;
409 #endif
410 low = low * 10 + *str++ - L_('0');
411 ++cnt;
413 while (--digcnt > 0);
415 if (*exponent > 0 && *exponent <= MAX_DIG_PER_LIMB - cnt)
417 low *= _tens_in_limb[*exponent];
418 start = _tens_in_limb[cnt + *exponent];
419 *exponent = 0;
421 else
422 start = _tens_in_limb[cnt];
424 if (*nsize == 0)
426 n[0] = low;
427 *nsize = 1;
429 else
431 mp_limb_t cy;
432 cy = __mpn_mul_1 (n, n, *nsize, start);
433 cy += __mpn_add_1 (n, n, *nsize, low);
434 if (cy != 0)
436 assert (*nsize < MPNSIZE);
437 n[(*nsize)++] = cy;
441 return str;
445 /* Shift {PTR, SIZE} COUNT bits to the left, and fill the vacated bits
446 with the COUNT most significant bits of LIMB.
448 Implemented as a macro, so that __builtin_constant_p works even at -O0.
450 Tege doesn't like this macro so I have to write it here myself. :)
451 --drepper */
452 #define __mpn_lshift_1(ptr, size, count, limb) \
453 do \
455 mp_limb_t *__ptr = (ptr); \
456 if (__builtin_constant_p (count) && count == BITS_PER_MP_LIMB) \
458 mp_size_t i; \
459 for (i = (size) - 1; i > 0; --i) \
460 __ptr[i] = __ptr[i - 1]; \
461 __ptr[0] = (limb); \
463 else \
465 /* We assume count > 0 && count < BITS_PER_MP_LIMB here. */ \
466 unsigned int __count = (count); \
467 (void) __mpn_lshift (__ptr, __ptr, size, __count); \
468 __ptr[0] |= (limb) >> (BITS_PER_MP_LIMB - __count); \
471 while (0)
474 #define INTERNAL(x) INTERNAL1(x)
475 #define INTERNAL1(x) __##x##_internal
476 #ifndef ____STRTOF_INTERNAL
477 # define ____STRTOF_INTERNAL INTERNAL (__STRTOF)
478 #endif
480 /* This file defines a function to check for correct grouping. */
481 #include "grouping.h"
484 /* Return a floating point number with the value of the given string NPTR.
485 Set *ENDPTR to the character after the last used one. If the number is
486 smaller than the smallest representable number, set `errno' to ERANGE and
487 return 0.0. If the number is too big to be represented, set `errno' to
488 ERANGE and return HUGE_VAL with the appropriate sign. */
489 FLOAT
490 ____STRTOF_INTERNAL (const STRING_TYPE *nptr, STRING_TYPE **endptr, int group,
491 __locale_t loc)
493 int negative; /* The sign of the number. */
494 MPN_VAR (num); /* MP representation of the number. */
495 intmax_t exponent; /* Exponent of the number. */
497 /* Numbers starting `0X' or `0x' have to be processed with base 16. */
498 int base = 10;
500 /* When we have to compute fractional digits we form a fraction with a
501 second multi-precision number (and we sometimes need a second for
502 temporary results). */
503 MPN_VAR (den);
505 /* Representation for the return value. */
506 mp_limb_t retval[RETURN_LIMB_SIZE];
507 /* Number of bits currently in result value. */
508 int bits;
510 /* Running pointer after the last character processed in the string. */
511 const STRING_TYPE *cp, *tp;
512 /* Start of significant part of the number. */
513 const STRING_TYPE *startp, *start_of_digits;
514 /* Points at the character following the integer and fractional digits. */
515 const STRING_TYPE *expp;
516 /* Total number of digit and number of digits in integer part. */
517 size_t dig_no, int_no, lead_zero;
518 /* Contains the last character read. */
519 CHAR_TYPE c;
521 /* We should get wint_t from <stddef.h>, but not all GCC versions define it
522 there. So define it ourselves if it remains undefined. */
523 #ifndef _WINT_T
524 typedef unsigned int wint_t;
525 #endif
526 /* The radix character of the current locale. */
527 #ifdef USE_WIDE_CHAR
528 wchar_t decimal;
529 #else
530 const char *decimal;
531 size_t decimal_len;
532 #endif
533 /* The thousands character of the current locale. */
534 #ifdef USE_WIDE_CHAR
535 wchar_t thousands = L'\0';
536 #else
537 const char *thousands = NULL;
538 #endif
539 /* The numeric grouping specification of the current locale,
540 in the format described in <locale.h>. */
541 const char *grouping;
542 /* Used in several places. */
543 int cnt;
545 struct __locale_data *current = loc->__locales[LC_NUMERIC];
547 if (__glibc_unlikely (group))
549 grouping = _NL_CURRENT (LC_NUMERIC, GROUPING);
550 if (*grouping <= 0 || *grouping == CHAR_MAX)
551 grouping = NULL;
552 else
554 /* Figure out the thousands separator character. */
555 #ifdef USE_WIDE_CHAR
556 thousands = _NL_CURRENT_WORD (LC_NUMERIC,
557 _NL_NUMERIC_THOUSANDS_SEP_WC);
558 if (thousands == L'\0')
559 grouping = NULL;
560 #else
561 thousands = _NL_CURRENT (LC_NUMERIC, THOUSANDS_SEP);
562 if (*thousands == '\0')
564 thousands = NULL;
565 grouping = NULL;
567 #endif
570 else
571 grouping = NULL;
573 /* Find the locale's decimal point character. */
574 #ifdef USE_WIDE_CHAR
575 decimal = _NL_CURRENT_WORD (LC_NUMERIC, _NL_NUMERIC_DECIMAL_POINT_WC);
576 assert (decimal != L'\0');
577 # define decimal_len 1
578 #else
579 decimal = _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT);
580 decimal_len = strlen (decimal);
581 assert (decimal_len > 0);
582 #endif
584 /* Prepare number representation. */
585 exponent = 0;
586 negative = 0;
587 bits = 0;
589 /* Parse string to get maximal legal prefix. We need the number of
590 characters of the integer part, the fractional part and the exponent. */
591 cp = nptr - 1;
592 /* Ignore leading white space. */
594 c = *++cp;
595 while (ISSPACE (c));
597 /* Get sign of the result. */
598 if (c == L_('-'))
600 negative = 1;
601 c = *++cp;
603 else if (c == L_('+'))
604 c = *++cp;
606 /* Return 0.0 if no legal string is found.
607 No character is used even if a sign was found. */
608 #ifdef USE_WIDE_CHAR
609 if (c == (wint_t) decimal
610 && (wint_t) cp[1] >= L'0' && (wint_t) cp[1] <= L'9')
612 /* We accept it. This funny construct is here only to indent
613 the code correctly. */
615 #else
616 for (cnt = 0; decimal[cnt] != '\0'; ++cnt)
617 if (cp[cnt] != decimal[cnt])
618 break;
619 if (decimal[cnt] == '\0' && cp[cnt] >= '0' && cp[cnt] <= '9')
621 /* We accept it. This funny construct is here only to indent
622 the code correctly. */
624 #endif
625 else if (c < L_('0') || c > L_('9'))
627 /* Check for `INF' or `INFINITY'. */
628 CHAR_TYPE lowc = TOLOWER_C (c);
630 if (lowc == L_('i') && STRNCASECMP (cp, L_("inf"), 3) == 0)
632 /* Return +/- infinity. */
633 if (endptr != NULL)
634 *endptr = (STRING_TYPE *)
635 (cp + (STRNCASECMP (cp + 3, L_("inity"), 5) == 0
636 ? 8 : 3));
638 return negative ? -FLOAT_HUGE_VAL : FLOAT_HUGE_VAL;
641 if (lowc == L_('n') && STRNCASECMP (cp, L_("nan"), 3) == 0)
643 /* Return NaN. */
644 FLOAT retval = NAN;
646 cp += 3;
648 /* Match `(n-char-sequence-digit)'. */
649 if (*cp == L_('('))
651 const STRING_TYPE *startp = cp;
653 ++cp;
654 while ((*cp >= L_('0') && *cp <= L_('9'))
655 || ({ CHAR_TYPE lo = TOLOWER (*cp);
656 lo >= L_('a') && lo <= L_('z'); })
657 || *cp == L_('_'));
659 if (*cp != L_(')'))
660 /* The closing brace is missing. Only match the NAN
661 part. */
662 cp = startp;
663 else
665 /* This is a system-dependent way to specify the
666 bitmask used for the NaN. We expect it to be
667 a number which is put in the mantissa of the
668 number. */
669 STRING_TYPE *endp;
670 unsigned long long int mant;
672 mant = STRTOULL (startp + 1, &endp, 0);
673 if (endp == cp)
674 SET_MANTISSA (retval, mant);
676 /* Consume the closing brace. */
677 ++cp;
681 if (endptr != NULL)
682 *endptr = (STRING_TYPE *) cp;
684 return retval;
687 /* It is really a text we do not recognize. */
688 RETURN (0.0, nptr);
691 /* First look whether we are faced with a hexadecimal number. */
692 if (c == L_('0') && TOLOWER (cp[1]) == L_('x'))
694 /* Okay, it is a hexa-decimal number. Remember this and skip
695 the characters. BTW: hexadecimal numbers must not be
696 grouped. */
697 base = 16;
698 cp += 2;
699 c = *cp;
700 grouping = NULL;
703 /* Record the start of the digits, in case we will check their grouping. */
704 start_of_digits = startp = cp;
706 /* Ignore leading zeroes. This helps us to avoid useless computations. */
707 #ifdef USE_WIDE_CHAR
708 while (c == L'0' || ((wint_t) thousands != L'\0' && c == (wint_t) thousands))
709 c = *++cp;
710 #else
711 if (__glibc_likely (thousands == NULL))
712 while (c == '0')
713 c = *++cp;
714 else
716 /* We also have the multibyte thousands string. */
717 while (1)
719 if (c != '0')
721 for (cnt = 0; thousands[cnt] != '\0'; ++cnt)
722 if (thousands[cnt] != cp[cnt])
723 break;
724 if (thousands[cnt] != '\0')
725 break;
726 cp += cnt - 1;
728 c = *++cp;
731 #endif
733 /* If no other digit but a '0' is found the result is 0.0.
734 Return current read pointer. */
735 CHAR_TYPE lowc = TOLOWER (c);
736 if (!((c >= L_('0') && c <= L_('9'))
737 || (base == 16 && lowc >= L_('a') && lowc <= L_('f'))
738 || (
739 #ifdef USE_WIDE_CHAR
740 c == (wint_t) decimal
741 #else
742 ({ for (cnt = 0; decimal[cnt] != '\0'; ++cnt)
743 if (decimal[cnt] != cp[cnt])
744 break;
745 decimal[cnt] == '\0'; })
746 #endif
747 /* '0x.' alone is not a valid hexadecimal number.
748 '.' alone is not valid either, but that has been checked
749 already earlier. */
750 && (base != 16
751 || cp != start_of_digits
752 || (cp[decimal_len] >= L_('0') && cp[decimal_len] <= L_('9'))
753 || ({ CHAR_TYPE lo = TOLOWER (cp[decimal_len]);
754 lo >= L_('a') && lo <= L_('f'); })))
755 || (base == 16 && (cp != start_of_digits
756 && lowc == L_('p')))
757 || (base != 16 && lowc == L_('e'))))
759 #ifdef USE_WIDE_CHAR
760 tp = __correctly_grouped_prefixwc (start_of_digits, cp, thousands,
761 grouping);
762 #else
763 tp = __correctly_grouped_prefixmb (start_of_digits, cp, thousands,
764 grouping);
765 #endif
766 /* If TP is at the start of the digits, there was no correctly
767 grouped prefix of the string; so no number found. */
768 RETURN (negative ? -0.0 : 0.0,
769 tp == start_of_digits ? (base == 16 ? cp - 1 : nptr) : tp);
772 /* Remember first significant digit and read following characters until the
773 decimal point, exponent character or any non-FP number character. */
774 startp = cp;
775 dig_no = 0;
776 while (1)
778 if ((c >= L_('0') && c <= L_('9'))
779 || (base == 16
780 && ({ CHAR_TYPE lo = TOLOWER (c);
781 lo >= L_('a') && lo <= L_('f'); })))
782 ++dig_no;
783 else
785 #ifdef USE_WIDE_CHAR
786 if (__builtin_expect ((wint_t) thousands == L'\0', 1)
787 || c != (wint_t) thousands)
788 /* Not a digit or separator: end of the integer part. */
789 break;
790 #else
791 if (__glibc_likely (thousands == NULL))
792 break;
793 else
795 for (cnt = 0; thousands[cnt] != '\0'; ++cnt)
796 if (thousands[cnt] != cp[cnt])
797 break;
798 if (thousands[cnt] != '\0')
799 break;
800 cp += cnt - 1;
802 #endif
804 c = *++cp;
807 if (__builtin_expect (grouping != NULL, 0) && cp > start_of_digits)
809 /* Check the grouping of the digits. */
810 #ifdef USE_WIDE_CHAR
811 tp = __correctly_grouped_prefixwc (start_of_digits, cp, thousands,
812 grouping);
813 #else
814 tp = __correctly_grouped_prefixmb (start_of_digits, cp, thousands,
815 grouping);
816 #endif
817 if (cp != tp)
819 /* Less than the entire string was correctly grouped. */
821 if (tp == start_of_digits)
822 /* No valid group of numbers at all: no valid number. */
823 RETURN (0.0, nptr);
825 if (tp < startp)
826 /* The number is validly grouped, but consists
827 only of zeroes. The whole value is zero. */
828 RETURN (negative ? -0.0 : 0.0, tp);
830 /* Recompute DIG_NO so we won't read more digits than
831 are properly grouped. */
832 cp = tp;
833 dig_no = 0;
834 for (tp = startp; tp < cp; ++tp)
835 if (*tp >= L_('0') && *tp <= L_('9'))
836 ++dig_no;
838 int_no = dig_no;
839 lead_zero = 0;
841 goto number_parsed;
845 /* We have the number of digits in the integer part. Whether these
846 are all or any is really a fractional digit will be decided
847 later. */
848 int_no = dig_no;
849 lead_zero = int_no == 0 ? (size_t) -1 : 0;
851 /* Read the fractional digits. A special case are the 'american
852 style' numbers like `16.' i.e. with decimal point but without
853 trailing digits. */
854 if (
855 #ifdef USE_WIDE_CHAR
856 c == (wint_t) decimal
857 #else
858 ({ for (cnt = 0; decimal[cnt] != '\0'; ++cnt)
859 if (decimal[cnt] != cp[cnt])
860 break;
861 decimal[cnt] == '\0'; })
862 #endif
865 cp += decimal_len;
866 c = *cp;
867 while ((c >= L_('0') && c <= L_('9')) ||
868 (base == 16 && ({ CHAR_TYPE lo = TOLOWER (c);
869 lo >= L_('a') && lo <= L_('f'); })))
871 if (c != L_('0') && lead_zero == (size_t) -1)
872 lead_zero = dig_no - int_no;
873 ++dig_no;
874 c = *++cp;
877 assert (dig_no <= (uintmax_t) INTMAX_MAX);
879 /* Remember start of exponent (if any). */
880 expp = cp;
882 /* Read exponent. */
883 lowc = TOLOWER (c);
884 if ((base == 16 && lowc == L_('p'))
885 || (base != 16 && lowc == L_('e')))
887 int exp_negative = 0;
889 c = *++cp;
890 if (c == L_('-'))
892 exp_negative = 1;
893 c = *++cp;
895 else if (c == L_('+'))
896 c = *++cp;
898 if (c >= L_('0') && c <= L_('9'))
900 intmax_t exp_limit;
902 /* Get the exponent limit. */
903 if (base == 16)
905 if (exp_negative)
907 assert (int_no <= (uintmax_t) (INTMAX_MAX
908 + MIN_EXP - MANT_DIG) / 4);
909 exp_limit = -MIN_EXP + MANT_DIG + 4 * (intmax_t) int_no;
911 else
913 if (int_no)
915 assert (lead_zero == 0
916 && int_no <= (uintmax_t) INTMAX_MAX / 4);
917 exp_limit = MAX_EXP - 4 * (intmax_t) int_no + 3;
919 else if (lead_zero == (size_t) -1)
921 /* The number is zero and this limit is
922 arbitrary. */
923 exp_limit = MAX_EXP + 3;
925 else
927 assert (lead_zero
928 <= (uintmax_t) (INTMAX_MAX - MAX_EXP - 3) / 4);
929 exp_limit = (MAX_EXP
930 + 4 * (intmax_t) lead_zero
931 + 3);
935 else
937 if (exp_negative)
939 assert (int_no
940 <= (uintmax_t) (INTMAX_MAX + MIN_10_EXP - MANT_DIG));
941 exp_limit = -MIN_10_EXP + MANT_DIG + (intmax_t) int_no;
943 else
945 if (int_no)
947 assert (lead_zero == 0
948 && int_no <= (uintmax_t) INTMAX_MAX);
949 exp_limit = MAX_10_EXP - (intmax_t) int_no + 1;
951 else if (lead_zero == (size_t) -1)
953 /* The number is zero and this limit is
954 arbitrary. */
955 exp_limit = MAX_10_EXP + 1;
957 else
959 assert (lead_zero
960 <= (uintmax_t) (INTMAX_MAX - MAX_10_EXP - 1));
961 exp_limit = MAX_10_EXP + (intmax_t) lead_zero + 1;
966 if (exp_limit < 0)
967 exp_limit = 0;
971 if (__builtin_expect ((exponent > exp_limit / 10
972 || (exponent == exp_limit / 10
973 && c - L_('0') > exp_limit % 10)), 0))
974 /* The exponent is too large/small to represent a valid
975 number. */
977 FLOAT result;
979 /* We have to take care for special situation: a joker
980 might have written "0.0e100000" which is in fact
981 zero. */
982 if (lead_zero == (size_t) -1)
983 result = negative ? -0.0 : 0.0;
984 else
986 /* Overflow or underflow. */
987 result = (exp_negative
988 ? underflow_value (negative)
989 : overflow_value (negative));
992 /* Accept all following digits as part of the exponent. */
994 ++cp;
995 while (*cp >= L_('0') && *cp <= L_('9'));
997 RETURN (result, cp);
998 /* NOTREACHED */
1001 exponent *= 10;
1002 exponent += c - L_('0');
1004 c = *++cp;
1006 while (c >= L_('0') && c <= L_('9'));
1008 if (exp_negative)
1009 exponent = -exponent;
1011 else
1012 cp = expp;
1015 /* We don't want to have to work with trailing zeroes after the radix. */
1016 if (dig_no > int_no)
1018 while (expp[-1] == L_('0'))
1020 --expp;
1021 --dig_no;
1023 assert (dig_no >= int_no);
1026 if (dig_no == int_no && dig_no > 0 && exponent < 0)
1029 while (! (base == 16 ? ISXDIGIT (expp[-1]) : ISDIGIT (expp[-1])))
1030 --expp;
1032 if (expp[-1] != L_('0'))
1033 break;
1035 --expp;
1036 --dig_no;
1037 --int_no;
1038 exponent += base == 16 ? 4 : 1;
1040 while (dig_no > 0 && exponent < 0);
1042 number_parsed:
1044 /* The whole string is parsed. Store the address of the next character. */
1045 if (endptr)
1046 *endptr = (STRING_TYPE *) cp;
1048 if (dig_no == 0)
1049 return negative ? -0.0 : 0.0;
1051 if (lead_zero)
1053 /* Find the decimal point */
1054 #ifdef USE_WIDE_CHAR
1055 while (*startp != decimal)
1056 ++startp;
1057 #else
1058 while (1)
1060 if (*startp == decimal[0])
1062 for (cnt = 1; decimal[cnt] != '\0'; ++cnt)
1063 if (decimal[cnt] != startp[cnt])
1064 break;
1065 if (decimal[cnt] == '\0')
1066 break;
1068 ++startp;
1070 #endif
1071 startp += lead_zero + decimal_len;
1072 assert (lead_zero <= (base == 16
1073 ? (uintmax_t) INTMAX_MAX / 4
1074 : (uintmax_t) INTMAX_MAX));
1075 assert (lead_zero <= (base == 16
1076 ? ((uintmax_t) exponent
1077 - (uintmax_t) INTMAX_MIN) / 4
1078 : ((uintmax_t) exponent - (uintmax_t) INTMAX_MIN)));
1079 exponent -= base == 16 ? 4 * (intmax_t) lead_zero : (intmax_t) lead_zero;
1080 dig_no -= lead_zero;
1083 /* If the BASE is 16 we can use a simpler algorithm. */
1084 if (base == 16)
1086 static const int nbits[16] = { 0, 1, 2, 2, 3, 3, 3, 3,
1087 4, 4, 4, 4, 4, 4, 4, 4 };
1088 int idx = (MANT_DIG - 1) / BITS_PER_MP_LIMB;
1089 int pos = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
1090 mp_limb_t val;
1092 while (!ISXDIGIT (*startp))
1093 ++startp;
1094 while (*startp == L_('0'))
1095 ++startp;
1096 if (ISDIGIT (*startp))
1097 val = *startp++ - L_('0');
1098 else
1099 val = 10 + TOLOWER (*startp++) - L_('a');
1100 bits = nbits[val];
1101 /* We cannot have a leading zero. */
1102 assert (bits != 0);
1104 if (pos + 1 >= 4 || pos + 1 >= bits)
1106 /* We don't have to care for wrapping. This is the normal
1107 case so we add the first clause in the `if' expression as
1108 an optimization. It is a compile-time constant and so does
1109 not cost anything. */
1110 retval[idx] = val << (pos - bits + 1);
1111 pos -= bits;
1113 else
1115 retval[idx--] = val >> (bits - pos - 1);
1116 retval[idx] = val << (BITS_PER_MP_LIMB - (bits - pos - 1));
1117 pos = BITS_PER_MP_LIMB - 1 - (bits - pos - 1);
1120 /* Adjust the exponent for the bits we are shifting in. */
1121 assert (int_no <= (uintmax_t) (exponent < 0
1122 ? (INTMAX_MAX - bits + 1) / 4
1123 : (INTMAX_MAX - exponent - bits + 1) / 4));
1124 exponent += bits - 1 + ((intmax_t) int_no - 1) * 4;
1126 while (--dig_no > 0 && idx >= 0)
1128 if (!ISXDIGIT (*startp))
1129 startp += decimal_len;
1130 if (ISDIGIT (*startp))
1131 val = *startp++ - L_('0');
1132 else
1133 val = 10 + TOLOWER (*startp++) - L_('a');
1135 if (pos + 1 >= 4)
1137 retval[idx] |= val << (pos - 4 + 1);
1138 pos -= 4;
1140 else
1142 retval[idx--] |= val >> (4 - pos - 1);
1143 val <<= BITS_PER_MP_LIMB - (4 - pos - 1);
1144 if (idx < 0)
1146 int rest_nonzero = 0;
1147 while (--dig_no > 0)
1149 if (*startp != L_('0'))
1151 rest_nonzero = 1;
1152 break;
1154 startp++;
1156 return round_and_return (retval, exponent, negative, val,
1157 BITS_PER_MP_LIMB - 1, rest_nonzero);
1160 retval[idx] = val;
1161 pos = BITS_PER_MP_LIMB - 1 - (4 - pos - 1);
1165 /* We ran out of digits. */
1166 MPN_ZERO (retval, idx);
1168 return round_and_return (retval, exponent, negative, 0, 0, 0);
1171 /* Now we have the number of digits in total and the integer digits as well
1172 as the exponent and its sign. We can decide whether the read digits are
1173 really integer digits or belong to the fractional part; i.e. we normalize
1174 123e-2 to 1.23. */
1176 intmax_t incr = (exponent < 0
1177 ? MAX (-(intmax_t) int_no, exponent)
1178 : MIN ((intmax_t) dig_no - (intmax_t) int_no, exponent));
1179 int_no += incr;
1180 exponent -= incr;
1183 if (__glibc_unlikely (exponent > MAX_10_EXP + 1 - (intmax_t) int_no))
1184 return overflow_value (negative);
1186 /* 10^(MIN_10_EXP-1) is not normal. Thus, 10^(MIN_10_EXP-1) /
1187 2^MANT_DIG is below half the least subnormal, so anything with a
1188 base-10 exponent less than the base-10 exponent (which is
1189 MIN_10_EXP - 1 - ceil(MANT_DIG*log10(2))) of that value
1190 underflows. DIG is floor((MANT_DIG-1)log10(2)), so an exponent
1191 below MIN_10_EXP - (DIG + 3) underflows. But EXPONENT is
1192 actually an exponent multiplied only by a fractional part, not an
1193 integer part, so an exponent below MIN_10_EXP - (DIG + 2)
1194 underflows. */
1195 if (__glibc_unlikely (exponent < MIN_10_EXP - (DIG + 2)))
1196 return underflow_value (negative);
1198 if (int_no > 0)
1200 /* Read the integer part as a multi-precision number to NUM. */
1201 startp = str_to_mpn (startp, int_no, num, &numsize, &exponent
1202 #ifndef USE_WIDE_CHAR
1203 , decimal, decimal_len, thousands
1204 #endif
1207 if (exponent > 0)
1209 /* We now multiply the gained number by the given power of ten. */
1210 mp_limb_t *psrc = num;
1211 mp_limb_t *pdest = den;
1212 int expbit = 1;
1213 const struct mp_power *ttab = &_fpioconst_pow10[0];
1217 if ((exponent & expbit) != 0)
1219 size_t size = ttab->arraysize - _FPIO_CONST_OFFSET;
1220 mp_limb_t cy;
1221 exponent ^= expbit;
1223 /* FIXME: not the whole multiplication has to be
1224 done. If we have the needed number of bits we
1225 only need the information whether more non-zero
1226 bits follow. */
1227 if (numsize >= ttab->arraysize - _FPIO_CONST_OFFSET)
1228 cy = __mpn_mul (pdest, psrc, numsize,
1229 &__tens[ttab->arrayoff
1230 + _FPIO_CONST_OFFSET],
1231 size);
1232 else
1233 cy = __mpn_mul (pdest, &__tens[ttab->arrayoff
1234 + _FPIO_CONST_OFFSET],
1235 size, psrc, numsize);
1236 numsize += size;
1237 if (cy == 0)
1238 --numsize;
1239 (void) SWAP (psrc, pdest);
1241 expbit <<= 1;
1242 ++ttab;
1244 while (exponent != 0);
1246 if (psrc == den)
1247 memcpy (num, den, numsize * sizeof (mp_limb_t));
1250 /* Determine how many bits of the result we already have. */
1251 count_leading_zeros (bits, num[numsize - 1]);
1252 bits = numsize * BITS_PER_MP_LIMB - bits;
1254 /* Now we know the exponent of the number in base two.
1255 Check it against the maximum possible exponent. */
1256 if (__glibc_unlikely (bits > MAX_EXP))
1257 return overflow_value (negative);
1259 /* We have already the first BITS bits of the result. Together with
1260 the information whether more non-zero bits follow this is enough
1261 to determine the result. */
1262 if (bits > MANT_DIG)
1264 int i;
1265 const mp_size_t least_idx = (bits - MANT_DIG) / BITS_PER_MP_LIMB;
1266 const mp_size_t least_bit = (bits - MANT_DIG) % BITS_PER_MP_LIMB;
1267 const mp_size_t round_idx = least_bit == 0 ? least_idx - 1
1268 : least_idx;
1269 const mp_size_t round_bit = least_bit == 0 ? BITS_PER_MP_LIMB - 1
1270 : least_bit - 1;
1272 if (least_bit == 0)
1273 memcpy (retval, &num[least_idx],
1274 RETURN_LIMB_SIZE * sizeof (mp_limb_t));
1275 else
1277 for (i = least_idx; i < numsize - 1; ++i)
1278 retval[i - least_idx] = (num[i] >> least_bit)
1279 | (num[i + 1]
1280 << (BITS_PER_MP_LIMB - least_bit));
1281 if (i - least_idx < RETURN_LIMB_SIZE)
1282 retval[RETURN_LIMB_SIZE - 1] = num[i] >> least_bit;
1285 /* Check whether any limb beside the ones in RETVAL are non-zero. */
1286 for (i = 0; num[i] == 0; ++i)
1289 return round_and_return (retval, bits - 1, negative,
1290 num[round_idx], round_bit,
1291 int_no < dig_no || i < round_idx);
1292 /* NOTREACHED */
1294 else if (dig_no == int_no)
1296 const mp_size_t target_bit = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
1297 const mp_size_t is_bit = (bits - 1) % BITS_PER_MP_LIMB;
1299 if (target_bit == is_bit)
1301 memcpy (&retval[RETURN_LIMB_SIZE - numsize], num,
1302 numsize * sizeof (mp_limb_t));
1303 /* FIXME: the following loop can be avoided if we assume a
1304 maximal MANT_DIG value. */
1305 MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize);
1307 else if (target_bit > is_bit)
1309 (void) __mpn_lshift (&retval[RETURN_LIMB_SIZE - numsize],
1310 num, numsize, target_bit - is_bit);
1311 /* FIXME: the following loop can be avoided if we assume a
1312 maximal MANT_DIG value. */
1313 MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize);
1315 else
1317 mp_limb_t cy;
1318 assert (numsize < RETURN_LIMB_SIZE);
1320 cy = __mpn_rshift (&retval[RETURN_LIMB_SIZE - numsize],
1321 num, numsize, is_bit - target_bit);
1322 retval[RETURN_LIMB_SIZE - numsize - 1] = cy;
1323 /* FIXME: the following loop can be avoided if we assume a
1324 maximal MANT_DIG value. */
1325 MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize - 1);
1328 return round_and_return (retval, bits - 1, negative, 0, 0, 0);
1329 /* NOTREACHED */
1332 /* Store the bits we already have. */
1333 memcpy (retval, num, numsize * sizeof (mp_limb_t));
1334 #if RETURN_LIMB_SIZE > 1
1335 if (numsize < RETURN_LIMB_SIZE)
1336 # if RETURN_LIMB_SIZE == 2
1337 retval[numsize] = 0;
1338 # else
1339 MPN_ZERO (retval + numsize, RETURN_LIMB_SIZE - numsize);
1340 # endif
1341 #endif
1344 /* We have to compute at least some of the fractional digits. */
1346 /* We construct a fraction and the result of the division gives us
1347 the needed digits. The denominator is 1.0 multiplied by the
1348 exponent of the lowest digit; i.e. 0.123 gives 123 / 1000 and
1349 123e-6 gives 123 / 1000000. */
1351 int expbit;
1352 int neg_exp;
1353 int more_bits;
1354 int need_frac_digits;
1355 mp_limb_t cy;
1356 mp_limb_t *psrc = den;
1357 mp_limb_t *pdest = num;
1358 const struct mp_power *ttab = &_fpioconst_pow10[0];
1360 assert (dig_no > int_no
1361 && exponent <= 0
1362 && exponent >= MIN_10_EXP - (DIG + 2));
1364 /* We need to compute MANT_DIG - BITS fractional bits that lie
1365 within the mantissa of the result, the following bit for
1366 rounding, and to know whether any subsequent bit is 0.
1367 Computing a bit with value 2^-n means looking at n digits after
1368 the decimal point. */
1369 if (bits > 0)
1371 /* The bits required are those immediately after the point. */
1372 assert (int_no > 0 && exponent == 0);
1373 need_frac_digits = 1 + MANT_DIG - bits;
1375 else
1377 /* The number is in the form .123eEXPONENT. */
1378 assert (int_no == 0 && *startp != L_('0'));
1379 /* The number is at least 10^(EXPONENT-1), and 10^3 <
1380 2^10. */
1381 int neg_exp_2 = ((1 - exponent) * 10) / 3 + 1;
1382 /* The number is at least 2^-NEG_EXP_2. We need up to
1383 MANT_DIG bits following that bit. */
1384 need_frac_digits = neg_exp_2 + MANT_DIG;
1385 /* However, we never need bits beyond 1/4 ulp of the smallest
1386 representable value. (That 1/4 ulp bit is only needed to
1387 determine tinyness on machines where tinyness is determined
1388 after rounding.) */
1389 if (need_frac_digits > MANT_DIG - MIN_EXP + 2)
1390 need_frac_digits = MANT_DIG - MIN_EXP + 2;
1391 /* At this point, NEED_FRAC_DIGITS is the total number of
1392 digits needed after the point, but some of those may be
1393 leading 0s. */
1394 need_frac_digits += exponent;
1395 /* Any cases underflowing enough that none of the fractional
1396 digits are needed should have been caught earlier (such
1397 cases are on the order of 10^-n or smaller where 2^-n is
1398 the least subnormal). */
1399 assert (need_frac_digits > 0);
1402 if (need_frac_digits > (intmax_t) dig_no - (intmax_t) int_no)
1403 need_frac_digits = (intmax_t) dig_no - (intmax_t) int_no;
1405 if ((intmax_t) dig_no > (intmax_t) int_no + need_frac_digits)
1407 dig_no = int_no + need_frac_digits;
1408 more_bits = 1;
1410 else
1411 more_bits = 0;
1413 neg_exp = (intmax_t) dig_no - (intmax_t) int_no - exponent;
1415 /* Construct the denominator. */
1416 densize = 0;
1417 expbit = 1;
1420 if ((neg_exp & expbit) != 0)
1422 mp_limb_t cy;
1423 neg_exp ^= expbit;
1425 if (densize == 0)
1427 densize = ttab->arraysize - _FPIO_CONST_OFFSET;
1428 memcpy (psrc, &__tens[ttab->arrayoff + _FPIO_CONST_OFFSET],
1429 densize * sizeof (mp_limb_t));
1431 else
1433 cy = __mpn_mul (pdest, &__tens[ttab->arrayoff
1434 + _FPIO_CONST_OFFSET],
1435 ttab->arraysize - _FPIO_CONST_OFFSET,
1436 psrc, densize);
1437 densize += ttab->arraysize - _FPIO_CONST_OFFSET;
1438 if (cy == 0)
1439 --densize;
1440 (void) SWAP (psrc, pdest);
1443 expbit <<= 1;
1444 ++ttab;
1446 while (neg_exp != 0);
1448 if (psrc == num)
1449 memcpy (den, num, densize * sizeof (mp_limb_t));
1451 /* Read the fractional digits from the string. */
1452 (void) str_to_mpn (startp, dig_no - int_no, num, &numsize, &exponent
1453 #ifndef USE_WIDE_CHAR
1454 , decimal, decimal_len, thousands
1455 #endif
1458 /* We now have to shift both numbers so that the highest bit in the
1459 denominator is set. In the same process we copy the numerator to
1460 a high place in the array so that the division constructs the wanted
1461 digits. This is done by a "quasi fix point" number representation.
1463 num: ddddddddddd . 0000000000000000000000
1464 |--- m ---|
1465 den: ddddddddddd n >= m
1466 |--- n ---|
1469 count_leading_zeros (cnt, den[densize - 1]);
1471 if (cnt > 0)
1473 /* Don't call `mpn_shift' with a count of zero since the specification
1474 does not allow this. */
1475 (void) __mpn_lshift (den, den, densize, cnt);
1476 cy = __mpn_lshift (num, num, numsize, cnt);
1477 if (cy != 0)
1478 num[numsize++] = cy;
1481 /* Now we are ready for the division. But it is not necessary to
1482 do a full multi-precision division because we only need a small
1483 number of bits for the result. So we do not use __mpn_divmod
1484 here but instead do the division here by hand and stop whenever
1485 the needed number of bits is reached. The code itself comes
1486 from the GNU MP Library by Torbj\"orn Granlund. */
1488 exponent = bits;
1490 switch (densize)
1492 case 1:
1494 mp_limb_t d, n, quot;
1495 int used = 0;
1497 n = num[0];
1498 d = den[0];
1499 assert (numsize == 1 && n < d);
1503 udiv_qrnnd (quot, n, n, 0, d);
1505 #define got_limb \
1506 if (bits == 0) \
1508 int cnt; \
1509 if (quot == 0) \
1510 cnt = BITS_PER_MP_LIMB; \
1511 else \
1512 count_leading_zeros (cnt, quot); \
1513 exponent -= cnt; \
1514 if (BITS_PER_MP_LIMB - cnt > MANT_DIG) \
1516 used = MANT_DIG + cnt; \
1517 retval[0] = quot >> (BITS_PER_MP_LIMB - used); \
1518 bits = MANT_DIG + 1; \
1520 else \
1522 /* Note that we only clear the second element. */ \
1523 /* The conditional is determined at compile time. */ \
1524 if (RETURN_LIMB_SIZE > 1) \
1525 retval[1] = 0; \
1526 retval[0] = quot; \
1527 bits = -cnt; \
1530 else if (bits + BITS_PER_MP_LIMB <= MANT_DIG) \
1531 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, BITS_PER_MP_LIMB, \
1532 quot); \
1533 else \
1535 used = MANT_DIG - bits; \
1536 if (used > 0) \
1537 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, quot); \
1539 bits += BITS_PER_MP_LIMB
1541 got_limb;
1543 while (bits <= MANT_DIG);
1545 return round_and_return (retval, exponent - 1, negative,
1546 quot, BITS_PER_MP_LIMB - 1 - used,
1547 more_bits || n != 0);
1549 case 2:
1551 mp_limb_t d0, d1, n0, n1;
1552 mp_limb_t quot = 0;
1553 int used = 0;
1555 d0 = den[0];
1556 d1 = den[1];
1558 if (numsize < densize)
1560 if (num[0] >= d1)
1562 /* The numerator of the number occupies fewer bits than
1563 the denominator but the one limb is bigger than the
1564 high limb of the numerator. */
1565 n1 = 0;
1566 n0 = num[0];
1568 else
1570 if (bits <= 0)
1571 exponent -= BITS_PER_MP_LIMB;
1572 else
1574 if (bits + BITS_PER_MP_LIMB <= MANT_DIG)
1575 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE,
1576 BITS_PER_MP_LIMB, 0);
1577 else
1579 used = MANT_DIG - bits;
1580 if (used > 0)
1581 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, 0);
1583 bits += BITS_PER_MP_LIMB;
1585 n1 = num[0];
1586 n0 = 0;
1589 else
1591 n1 = num[1];
1592 n0 = num[0];
1595 while (bits <= MANT_DIG)
1597 mp_limb_t r;
1599 if (n1 == d1)
1601 /* QUOT should be either 111..111 or 111..110. We need
1602 special treatment of this rare case as normal division
1603 would give overflow. */
1604 quot = ~(mp_limb_t) 0;
1606 r = n0 + d1;
1607 if (r < d1) /* Carry in the addition? */
1609 add_ssaaaa (n1, n0, r - d0, 0, 0, d0);
1610 goto have_quot;
1612 n1 = d0 - (d0 != 0);
1613 n0 = -d0;
1615 else
1617 udiv_qrnnd (quot, r, n1, n0, d1);
1618 umul_ppmm (n1, n0, d0, quot);
1621 q_test:
1622 if (n1 > r || (n1 == r && n0 > 0))
1624 /* The estimated QUOT was too large. */
1625 --quot;
1627 sub_ddmmss (n1, n0, n1, n0, 0, d0);
1628 r += d1;
1629 if (r >= d1) /* If not carry, test QUOT again. */
1630 goto q_test;
1632 sub_ddmmss (n1, n0, r, 0, n1, n0);
1634 have_quot:
1635 got_limb;
1638 return round_and_return (retval, exponent - 1, negative,
1639 quot, BITS_PER_MP_LIMB - 1 - used,
1640 more_bits || n1 != 0 || n0 != 0);
1642 default:
1644 int i;
1645 mp_limb_t cy, dX, d1, n0, n1;
1646 mp_limb_t quot = 0;
1647 int used = 0;
1649 dX = den[densize - 1];
1650 d1 = den[densize - 2];
1652 /* The division does not work if the upper limb of the two-limb
1653 numerator is greater than the denominator. */
1654 if (__mpn_cmp (num, &den[densize - numsize], numsize) > 0)
1655 num[numsize++] = 0;
1657 if (numsize < densize)
1659 mp_size_t empty = densize - numsize;
1660 int i;
1662 if (bits <= 0)
1663 exponent -= empty * BITS_PER_MP_LIMB;
1664 else
1666 if (bits + empty * BITS_PER_MP_LIMB <= MANT_DIG)
1668 /* We make a difference here because the compiler
1669 cannot optimize the `else' case that good and
1670 this reflects all currently used FLOAT types
1671 and GMP implementations. */
1672 #if RETURN_LIMB_SIZE <= 2
1673 assert (empty == 1);
1674 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE,
1675 BITS_PER_MP_LIMB, 0);
1676 #else
1677 for (i = RETURN_LIMB_SIZE - 1; i >= empty; --i)
1678 retval[i] = retval[i - empty];
1679 while (i >= 0)
1680 retval[i--] = 0;
1681 #endif
1683 else
1685 used = MANT_DIG - bits;
1686 if (used >= BITS_PER_MP_LIMB)
1688 int i;
1689 (void) __mpn_lshift (&retval[used
1690 / BITS_PER_MP_LIMB],
1691 retval,
1692 (RETURN_LIMB_SIZE
1693 - used / BITS_PER_MP_LIMB),
1694 used % BITS_PER_MP_LIMB);
1695 for (i = used / BITS_PER_MP_LIMB - 1; i >= 0; --i)
1696 retval[i] = 0;
1698 else if (used > 0)
1699 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, 0);
1701 bits += empty * BITS_PER_MP_LIMB;
1703 for (i = numsize; i > 0; --i)
1704 num[i + empty] = num[i - 1];
1705 MPN_ZERO (num, empty + 1);
1707 else
1709 int i;
1710 assert (numsize == densize);
1711 for (i = numsize; i > 0; --i)
1712 num[i] = num[i - 1];
1713 num[0] = 0;
1716 den[densize] = 0;
1717 n0 = num[densize];
1719 while (bits <= MANT_DIG)
1721 if (n0 == dX)
1722 /* This might over-estimate QUOT, but it's probably not
1723 worth the extra code here to find out. */
1724 quot = ~(mp_limb_t) 0;
1725 else
1727 mp_limb_t r;
1729 udiv_qrnnd (quot, r, n0, num[densize - 1], dX);
1730 umul_ppmm (n1, n0, d1, quot);
1732 while (n1 > r || (n1 == r && n0 > num[densize - 2]))
1734 --quot;
1735 r += dX;
1736 if (r < dX) /* I.e. "carry in previous addition?" */
1737 break;
1738 n1 -= n0 < d1;
1739 n0 -= d1;
1743 /* Possible optimization: We already have (q * n0) and (1 * n1)
1744 after the calculation of QUOT. Taking advantage of this, we
1745 could make this loop make two iterations less. */
1747 cy = __mpn_submul_1 (num, den, densize + 1, quot);
1749 if (num[densize] != cy)
1751 cy = __mpn_add_n (num, num, den, densize);
1752 assert (cy != 0);
1753 --quot;
1755 n0 = num[densize] = num[densize - 1];
1756 for (i = densize - 1; i > 0; --i)
1757 num[i] = num[i - 1];
1758 num[0] = 0;
1760 got_limb;
1763 for (i = densize; i >= 0 && num[i] == 0; --i)
1765 return round_and_return (retval, exponent - 1, negative,
1766 quot, BITS_PER_MP_LIMB - 1 - used,
1767 more_bits || i >= 0);
1772 /* NOTREACHED */
1774 #if defined _LIBC && !defined USE_WIDE_CHAR
1775 libc_hidden_def (____STRTOF_INTERNAL)
1776 #endif
1778 /* External user entry point. */
1780 FLOAT
1781 #ifdef weak_function
1782 weak_function
1783 #endif
1784 __STRTOF (const STRING_TYPE *nptr, STRING_TYPE **endptr, __locale_t loc)
1786 return ____STRTOF_INTERNAL (nptr, endptr, 0, loc);
1788 #if defined _LIBC
1789 libc_hidden_def (__STRTOF)
1790 libc_hidden_ver (__STRTOF, STRTOF)
1791 #endif
1792 weak_alias (__STRTOF, STRTOF)
1794 #ifdef LONG_DOUBLE_COMPAT
1795 # if LONG_DOUBLE_COMPAT(libc, GLIBC_2_1)
1796 # ifdef USE_WIDE_CHAR
1797 compat_symbol (libc, __wcstod_l, __wcstold_l, GLIBC_2_1);
1798 # else
1799 compat_symbol (libc, __strtod_l, __strtold_l, GLIBC_2_1);
1800 # endif
1801 # endif
1802 # if LONG_DOUBLE_COMPAT(libc, GLIBC_2_3)
1803 # ifdef USE_WIDE_CHAR
1804 compat_symbol (libc, wcstod_l, wcstold_l, GLIBC_2_3);
1805 # else
1806 compat_symbol (libc, strtod_l, strtold_l, GLIBC_2_3);
1807 # endif
1808 # endif
1809 #endif