Define IPTOS_CLASS_* macros according to RFC 2474.
[glibc.git] / sysdeps / ieee754 / ldbl-128ibm / s_erfl.c
blob02b450efce916f5825ac5e734bce57c32b9149b1
1 /*
2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 * Developed at SunPro, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
8 * is preserved.
9 * ====================================================
12 /* Modifications and expansions for 128-bit long double are
13 Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
14 and are incorporated herein by permission of the author. The author
15 reserves the right to distribute this material elsewhere under different
16 copying permissions. These modifications are distributed here under
17 the following terms:
19 This library is free software; you can redistribute it and/or
20 modify it under the terms of the GNU Lesser General Public
21 License as published by the Free Software Foundation; either
22 version 2.1 of the License, or (at your option) any later version.
24 This library is distributed in the hope that it will be useful,
25 but WITHOUT ANY WARRANTY; without even the implied warranty of
26 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
27 Lesser General Public License for more details.
29 You should have received a copy of the GNU Lesser General Public
30 License along with this library; if not, write to the Free Software
31 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
33 /* double erf(double x)
34 * double erfc(double x)
35 * x
36 * 2 |\
37 * erf(x) = --------- | exp(-t*t)dt
38 * sqrt(pi) \|
39 * 0
41 * erfc(x) = 1-erf(x)
42 * Note that
43 * erf(-x) = -erf(x)
44 * erfc(-x) = 2 - erfc(x)
46 * Method:
47 * 1. erf(x) = x + x*R(x^2) for |x| in [0, 7/8]
48 * Remark. The formula is derived by noting
49 * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
50 * and that
51 * 2/sqrt(pi) = 1.128379167095512573896158903121545171688
52 * is close to one.
54 * 1a. erf(x) = 1 - erfc(x), for |x| > 1.0
55 * erfc(x) = 1 - erf(x) if |x| < 1/4
57 * 2. For |x| in [7/8, 1], let s = |x| - 1, and
58 * c = 0.84506291151 rounded to single (24 bits)
59 * erf(s + c) = sign(x) * (c + P1(s)/Q1(s))
60 * Remark: here we use the taylor series expansion at x=1.
61 * erf(1+s) = erf(1) + s*Poly(s)
62 * = 0.845.. + P1(s)/Q1(s)
63 * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
65 * 3. For x in [1/4, 5/4],
66 * erfc(s + const) = erfc(const) + s P1(s)/Q1(s)
67 * for const = 1/4, 3/8, ..., 9/8
68 * and 0 <= s <= 1/8 .
70 * 4. For x in [5/4, 107],
71 * erfc(x) = (1/x)*exp(-x*x-0.5625 + R(z))
72 * z=1/x^2
73 * The interval is partitioned into several segments
74 * of width 1/8 in 1/x.
76 * Note1:
77 * To compute exp(-x*x-0.5625+R/S), let s be a single
78 * precision number and s := x; then
79 * -x*x = -s*s + (s-x)*(s+x)
80 * exp(-x*x-0.5626+R/S) =
81 * exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
82 * Note2:
83 * Here 4 and 5 make use of the asymptotic series
84 * exp(-x*x)
85 * erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
86 * x*sqrt(pi)
88 * 5. For inf > x >= 107
89 * erf(x) = sign(x) *(1 - tiny) (raise inexact)
90 * erfc(x) = tiny*tiny (raise underflow) if x > 0
91 * = 2 - tiny if x<0
93 * 7. Special case:
94 * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
95 * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
96 * erfc/erf(NaN) is NaN
99 #include "math.h"
100 #include "math_private.h"
101 #include <math_ldbl_opt.h>
103 /* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */
105 static long double
106 neval (long double x, const long double *p, int n)
108 long double y;
110 p += n;
111 y = *p--;
114 y = y * x + *p--;
116 while (--n > 0);
117 return y;
121 /* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */
123 static long double
124 deval (long double x, const long double *p, int n)
126 long double y;
128 p += n;
129 y = x + *p--;
132 y = y * x + *p--;
134 while (--n > 0);
135 return y;
140 #ifdef __STDC__
141 static const long double
142 #else
143 static long double
144 #endif
145 tiny = 1e-300L,
146 half = 0.5L,
147 one = 1.0L,
148 two = 2.0L,
149 /* 2/sqrt(pi) - 1 */
150 efx = 1.2837916709551257389615890312154517168810E-1L,
151 /* 8 * (2/sqrt(pi) - 1) */
152 efx8 = 1.0270333367641005911692712249723613735048E0L;
155 /* erf(x) = x + x R(x^2)
156 0 <= x <= 7/8
157 Peak relative error 1.8e-35 */
158 #define NTN1 8
159 static const long double TN1[NTN1 + 1] =
161 -3.858252324254637124543172907442106422373E10L,
162 9.580319248590464682316366876952214879858E10L,
163 1.302170519734879977595901236693040544854E10L,
164 2.922956950426397417800321486727032845006E9L,
165 1.764317520783319397868923218385468729799E8L,
166 1.573436014601118630105796794840834145120E7L,
167 4.028077380105721388745632295157816229289E5L,
168 1.644056806467289066852135096352853491530E4L,
169 3.390868480059991640235675479463287886081E1L
171 #define NTD1 8
172 static const long double TD1[NTD1 + 1] =
174 -3.005357030696532927149885530689529032152E11L,
175 -1.342602283126282827411658673839982164042E11L,
176 -2.777153893355340961288511024443668743399E10L,
177 -3.483826391033531996955620074072768276974E9L,
178 -2.906321047071299585682722511260895227921E8L,
179 -1.653347985722154162439387878512427542691E7L,
180 -6.245520581562848778466500301865173123136E5L,
181 -1.402124304177498828590239373389110545142E4L,
182 -1.209368072473510674493129989468348633579E2L
183 /* 1.0E0 */
187 /* erf(z+1) = erf_const + P(z)/Q(z)
188 -.125 <= z <= 0
189 Peak relative error 7.3e-36 */
190 static const long double erf_const = 0.845062911510467529296875L;
191 #define NTN2 8
192 static const long double TN2[NTN2 + 1] =
194 -4.088889697077485301010486931817357000235E1L,
195 7.157046430681808553842307502826960051036E3L,
196 -2.191561912574409865550015485451373731780E3L,
197 2.180174916555316874988981177654057337219E3L,
198 2.848578658049670668231333682379720943455E2L,
199 1.630362490952512836762810462174798925274E2L,
200 6.317712353961866974143739396865293596895E0L,
201 2.450441034183492434655586496522857578066E1L,
202 5.127662277706787664956025545897050896203E-1L
204 #define NTD2 8
205 static const long double TD2[NTD2 + 1] =
207 1.731026445926834008273768924015161048885E4L,
208 1.209682239007990370796112604286048173750E4L,
209 1.160950290217993641320602282462976163857E4L,
210 5.394294645127126577825507169061355698157E3L,
211 2.791239340533632669442158497532521776093E3L,
212 8.989365571337319032943005387378993827684E2L,
213 2.974016493766349409725385710897298069677E2L,
214 6.148192754590376378740261072533527271947E1L,
215 1.178502892490738445655468927408440847480E1L
216 /* 1.0E0 */
220 /* erfc(x + 0.25) = erfc(0.25) + x R(x)
221 0 <= x < 0.125
222 Peak relative error 1.4e-35 */
223 #define NRNr13 8
224 static const long double RNr13[NRNr13 + 1] =
226 -2.353707097641280550282633036456457014829E3L,
227 3.871159656228743599994116143079870279866E2L,
228 -3.888105134258266192210485617504098426679E2L,
229 -2.129998539120061668038806696199343094971E1L,
230 -8.125462263594034672468446317145384108734E1L,
231 8.151549093983505810118308635926270319660E0L,
232 -5.033362032729207310462422357772568553670E0L,
233 -4.253956621135136090295893547735851168471E-2L,
234 -8.098602878463854789780108161581050357814E-2L
236 #define NRDr13 7
237 static const long double RDr13[NRDr13 + 1] =
239 2.220448796306693503549505450626652881752E3L,
240 1.899133258779578688791041599040951431383E2L,
241 1.061906712284961110196427571557149268454E3L,
242 7.497086072306967965180978101974566760042E1L,
243 2.146796115662672795876463568170441327274E2L,
244 1.120156008362573736664338015952284925592E1L,
245 2.211014952075052616409845051695042741074E1L,
246 6.469655675326150785692908453094054988938E-1L
247 /* 1.0E0 */
249 /* erfc(0.25) = C13a + C13b to extra precision. */
250 static const long double C13a = 0.723663330078125L;
251 static const long double C13b = 1.0279753638067014931732235184287934646022E-5L;
254 /* erfc(x + 0.375) = erfc(0.375) + x R(x)
255 0 <= x < 0.125
256 Peak relative error 1.2e-35 */
257 #define NRNr14 8
258 static const long double RNr14[NRNr14 + 1] =
260 -2.446164016404426277577283038988918202456E3L,
261 6.718753324496563913392217011618096698140E2L,
262 -4.581631138049836157425391886957389240794E2L,
263 -2.382844088987092233033215402335026078208E1L,
264 -7.119237852400600507927038680970936336458E1L,
265 1.313609646108420136332418282286454287146E1L,
266 -6.188608702082264389155862490056401365834E0L,
267 -2.787116601106678287277373011101132659279E-2L,
268 -2.230395570574153963203348263549700967918E-2L
270 #define NRDr14 7
271 static const long double RDr14[NRDr14 + 1] =
273 2.495187439241869732696223349840963702875E3L,
274 2.503549449872925580011284635695738412162E2L,
275 1.159033560988895481698051531263861842461E3L,
276 9.493751466542304491261487998684383688622E1L,
277 2.276214929562354328261422263078480321204E2L,
278 1.367697521219069280358984081407807931847E1L,
279 2.276988395995528495055594829206582732682E1L,
280 7.647745753648996559837591812375456641163E-1L
281 /* 1.0E0 */
283 /* erfc(0.375) = C14a + C14b to extra precision. */
284 static const long double C14a = 0.5958709716796875L;
285 static const long double C14b = 1.2118885490201676174914080878232469565953E-5L;
287 /* erfc(x + 0.5) = erfc(0.5) + x R(x)
288 0 <= x < 0.125
289 Peak relative error 4.7e-36 */
290 #define NRNr15 8
291 static const long double RNr15[NRNr15 + 1] =
293 -2.624212418011181487924855581955853461925E3L,
294 8.473828904647825181073831556439301342756E2L,
295 -5.286207458628380765099405359607331669027E2L,
296 -3.895781234155315729088407259045269652318E1L,
297 -6.200857908065163618041240848728398496256E1L,
298 1.469324610346924001393137895116129204737E1L,
299 -6.961356525370658572800674953305625578903E0L,
300 5.145724386641163809595512876629030548495E-3L,
301 1.990253655948179713415957791776180406812E-2L
303 #define NRDr15 7
304 static const long double RDr15[NRDr15 + 1] =
306 2.986190760847974943034021764693341524962E3L,
307 5.288262758961073066335410218650047725985E2L,
308 1.363649178071006978355113026427856008978E3L,
309 1.921707975649915894241864988942255320833E2L,
310 2.588651100651029023069013885900085533226E2L,
311 2.628752920321455606558942309396855629459E1L,
312 2.455649035885114308978333741080991380610E1L,
313 1.378826653595128464383127836412100939126E0L
314 /* 1.0E0 */
316 /* erfc(0.5) = C15a + C15b to extra precision. */
317 static const long double C15a = 0.4794921875L;
318 static const long double C15b = 7.9346869534623172533461080354712635484242E-6L;
320 /* erfc(x + 0.625) = erfc(0.625) + x R(x)
321 0 <= x < 0.125
322 Peak relative error 5.1e-36 */
323 #define NRNr16 8
324 static const long double RNr16[NRNr16 + 1] =
326 -2.347887943200680563784690094002722906820E3L,
327 8.008590660692105004780722726421020136482E2L,
328 -5.257363310384119728760181252132311447963E2L,
329 -4.471737717857801230450290232600243795637E1L,
330 -4.849540386452573306708795324759300320304E1L,
331 1.140885264677134679275986782978655952843E1L,
332 -6.731591085460269447926746876983786152300E0L,
333 1.370831653033047440345050025876085121231E-1L,
334 2.022958279982138755020825717073966576670E-2L,
336 #define NRDr16 7
337 static const long double RDr16[NRDr16 + 1] =
339 3.075166170024837215399323264868308087281E3L,
340 8.730468942160798031608053127270430036627E2L,
341 1.458472799166340479742581949088453244767E3L,
342 3.230423687568019709453130785873540386217E2L,
343 2.804009872719893612081109617983169474655E2L,
344 4.465334221323222943418085830026979293091E1L,
345 2.612723259683205928103787842214809134746E1L,
346 2.341526751185244109722204018543276124997E0L,
347 /* 1.0E0 */
349 /* erfc(0.625) = C16a + C16b to extra precision. */
350 static const long double C16a = 0.3767547607421875L;
351 static const long double C16b = 4.3570693945275513594941232097252997287766E-6L;
353 /* erfc(x + 0.75) = erfc(0.75) + x R(x)
354 0 <= x < 0.125
355 Peak relative error 1.7e-35 */
356 #define NRNr17 8
357 static const long double RNr17[NRNr17 + 1] =
359 -1.767068734220277728233364375724380366826E3L,
360 6.693746645665242832426891888805363898707E2L,
361 -4.746224241837275958126060307406616817753E2L,
362 -2.274160637728782675145666064841883803196E1L,
363 -3.541232266140939050094370552538987982637E1L,
364 6.988950514747052676394491563585179503865E0L,
365 -5.807687216836540830881352383529281215100E0L,
366 3.631915988567346438830283503729569443642E-1L,
367 -1.488945487149634820537348176770282391202E-2L
369 #define NRDr17 7
370 static const long double RDr17[NRDr17 + 1] =
372 2.748457523498150741964464942246913394647E3L,
373 1.020213390713477686776037331757871252652E3L,
374 1.388857635935432621972601695296561952738E3L,
375 3.903363681143817750895999579637315491087E2L,
376 2.784568344378139499217928969529219886578E2L,
377 5.555800830216764702779238020065345401144E1L,
378 2.646215470959050279430447295801291168941E1L,
379 2.984905282103517497081766758550112011265E0L,
380 /* 1.0E0 */
382 /* erfc(0.75) = C17a + C17b to extra precision. */
383 static const long double C17a = 0.2888336181640625L;
384 static const long double C17b = 1.0748182422368401062165408589222625794046E-5L;
387 /* erfc(x + 0.875) = erfc(0.875) + x R(x)
388 0 <= x < 0.125
389 Peak relative error 2.2e-35 */
390 #define NRNr18 8
391 static const long double RNr18[NRNr18 + 1] =
393 -1.342044899087593397419622771847219619588E3L,
394 6.127221294229172997509252330961641850598E2L,
395 -4.519821356522291185621206350470820610727E2L,
396 1.223275177825128732497510264197915160235E1L,
397 -2.730789571382971355625020710543532867692E1L,
398 4.045181204921538886880171727755445395862E0L,
399 -4.925146477876592723401384464691452700539E0L,
400 5.933878036611279244654299924101068088582E-1L,
401 -5.557645435858916025452563379795159124753E-2L
403 #define NRDr18 7
404 static const long double RDr18[NRDr18 + 1] =
406 2.557518000661700588758505116291983092951E3L,
407 1.070171433382888994954602511991940418588E3L,
408 1.344842834423493081054489613250688918709E3L,
409 4.161144478449381901208660598266288188426E2L,
410 2.763670252219855198052378138756906980422E2L,
411 5.998153487868943708236273854747564557632E1L,
412 2.657695108438628847733050476209037025318E1L,
413 3.252140524394421868923289114410336976512E0L,
414 /* 1.0E0 */
416 /* erfc(0.875) = C18a + C18b to extra precision. */
417 static const long double C18a = 0.215911865234375L;
418 static const long double C18b = 1.3073705765341685464282101150637224028267E-5L;
420 /* erfc(x + 1.0) = erfc(1.0) + x R(x)
421 0 <= x < 0.125
422 Peak relative error 1.6e-35 */
423 #define NRNr19 8
424 static const long double RNr19[NRNr19 + 1] =
426 -1.139180936454157193495882956565663294826E3L,
427 6.134903129086899737514712477207945973616E2L,
428 -4.628909024715329562325555164720732868263E2L,
429 4.165702387210732352564932347500364010833E1L,
430 -2.286979913515229747204101330405771801610E1L,
431 1.870695256449872743066783202326943667722E0L,
432 -4.177486601273105752879868187237000032364E0L,
433 7.533980372789646140112424811291782526263E-1L,
434 -8.629945436917752003058064731308767664446E-2L
436 #define NRDr19 7
437 static const long double RDr19[NRDr19 + 1] =
439 2.744303447981132701432716278363418643778E3L,
440 1.266396359526187065222528050591302171471E3L,
441 1.466739461422073351497972255511919814273E3L,
442 4.868710570759693955597496520298058147162E2L,
443 2.993694301559756046478189634131722579643E2L,
444 6.868976819510254139741559102693828237440E1L,
445 2.801505816247677193480190483913753613630E1L,
446 3.604439909194350263552750347742663954481E0L,
447 /* 1.0E0 */
449 /* erfc(1.0) = C19a + C19b to extra precision. */
450 static const long double C19a = 0.15728759765625L;
451 static const long double C19b = 1.1609394035130658779364917390740703933002E-5L;
453 /* erfc(x + 1.125) = erfc(1.125) + x R(x)
454 0 <= x < 0.125
455 Peak relative error 3.6e-36 */
456 #define NRNr20 8
457 static const long double RNr20[NRNr20 + 1] =
459 -9.652706916457973956366721379612508047640E2L,
460 5.577066396050932776683469951773643880634E2L,
461 -4.406335508848496713572223098693575485978E2L,
462 5.202893466490242733570232680736966655434E1L,
463 -1.931311847665757913322495948705563937159E1L,
464 -9.364318268748287664267341457164918090611E-2L,
465 -3.306390351286352764891355375882586201069E0L,
466 7.573806045289044647727613003096916516475E-1L,
467 -9.611744011489092894027478899545635991213E-2L
469 #define NRDr20 7
470 static const long double RDr20[NRDr20 + 1] =
472 3.032829629520142564106649167182428189014E3L,
473 1.659648470721967719961167083684972196891E3L,
474 1.703545128657284619402511356932569292535E3L,
475 6.393465677731598872500200253155257708763E2L,
476 3.489131397281030947405287112726059221934E2L,
477 8.848641738570783406484348434387611713070E1L,
478 3.132269062552392974833215844236160958502E1L,
479 4.430131663290563523933419966185230513168E0L
480 /* 1.0E0 */
482 /* erfc(1.125) = C20a + C20b to extra precision. */
483 static const long double C20a = 0.111602783203125L;
484 static const long double C20b = 8.9850951672359304215530728365232161564636E-6L;
486 /* erfc(1/x) = 1/x exp (-1/x^2 - 0.5625 + R(1/x^2))
487 7/8 <= 1/x < 1
488 Peak relative error 1.4e-35 */
489 #define NRNr8 9
490 static const long double RNr8[NRNr8 + 1] =
492 3.587451489255356250759834295199296936784E1L,
493 5.406249749087340431871378009874875889602E2L,
494 2.931301290625250886238822286506381194157E3L,
495 7.359254185241795584113047248898753470923E3L,
496 9.201031849810636104112101947312492532314E3L,
497 5.749697096193191467751650366613289284777E3L,
498 1.710415234419860825710780802678697889231E3L,
499 2.150753982543378580859546706243022719599E2L,
500 8.740953582272147335100537849981160931197E0L,
501 4.876422978828717219629814794707963640913E-2L
503 #define NRDr8 8
504 static const long double RDr8[NRDr8 + 1] =
506 6.358593134096908350929496535931630140282E1L,
507 9.900253816552450073757174323424051765523E2L,
508 5.642928777856801020545245437089490805186E3L,
509 1.524195375199570868195152698617273739609E4L,
510 2.113829644500006749947332935305800887345E4L,
511 1.526438562626465706267943737310282977138E4L,
512 5.561370922149241457131421914140039411782E3L,
513 9.394035530179705051609070428036834496942E2L,
514 6.147019596150394577984175188032707343615E1L
515 /* 1.0E0 */
518 /* erfc(1/x) = 1/x exp (-1/x^2 - 0.5625 + R(1/x^2))
519 0.75 <= 1/x <= 0.875
520 Peak relative error 2.0e-36 */
521 #define NRNr7 9
522 static const long double RNr7[NRNr7 + 1] =
524 1.686222193385987690785945787708644476545E1L,
525 1.178224543567604215602418571310612066594E3L,
526 1.764550584290149466653899886088166091093E4L,
527 1.073758321890334822002849369898232811561E5L,
528 3.132840749205943137619839114451290324371E5L,
529 4.607864939974100224615527007793867585915E5L,
530 3.389781820105852303125270837910972384510E5L,
531 1.174042187110565202875011358512564753399E5L,
532 1.660013606011167144046604892622504338313E4L,
533 6.700393957480661937695573729183733234400E2L
535 #define NRDr7 9
536 static const long double RDr7[NRDr7 + 1] =
538 -1.709305024718358874701575813642933561169E3L,
539 -3.280033887481333199580464617020514788369E4L,
540 -2.345284228022521885093072363418750835214E5L,
541 -8.086758123097763971926711729242327554917E5L,
542 -1.456900414510108718402423999575992450138E6L,
543 -1.391654264881255068392389037292702041855E6L,
544 -6.842360801869939983674527468509852583855E5L,
545 -1.597430214446573566179675395199807533371E5L,
546 -1.488876130609876681421645314851760773480E4L,
547 -3.511762950935060301403599443436465645703E2L
548 /* 1.0E0 */
551 /* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2))
552 5/8 <= 1/x < 3/4
553 Peak relative error 1.9e-35 */
554 #define NRNr6 9
555 static const long double RNr6[NRNr6 + 1] =
557 1.642076876176834390623842732352935761108E0L,
558 1.207150003611117689000664385596211076662E2L,
559 2.119260779316389904742873816462800103939E3L,
560 1.562942227734663441801452930916044224174E4L,
561 5.656779189549710079988084081145693580479E4L,
562 1.052166241021481691922831746350942786299E5L,
563 9.949798524786000595621602790068349165758E4L,
564 4.491790734080265043407035220188849562856E4L,
565 8.377074098301530326270432059434791287601E3L,
566 4.506934806567986810091824791963991057083E2L
568 #define NRDr6 9
569 static const long double RDr6[NRDr6 + 1] =
571 -1.664557643928263091879301304019826629067E2L,
572 -3.800035902507656624590531122291160668452E3L,
573 -3.277028191591734928360050685359277076056E4L,
574 -1.381359471502885446400589109566587443987E5L,
575 -3.082204287382581873532528989283748656546E5L,
576 -3.691071488256738343008271448234631037095E5L,
577 -2.300482443038349815750714219117566715043E5L,
578 -6.873955300927636236692803579555752171530E4L,
579 -8.262158817978334142081581542749986845399E3L,
580 -2.517122254384430859629423488157361983661E2L
581 /* 1.00 */
584 /* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2))
585 1/2 <= 1/x < 5/8
586 Peak relative error 4.6e-36 */
587 #define NRNr5 10
588 static const long double RNr5[NRNr5 + 1] =
590 -3.332258927455285458355550878136506961608E-3L,
591 -2.697100758900280402659586595884478660721E-1L,
592 -6.083328551139621521416618424949137195536E0L,
593 -6.119863528983308012970821226810162441263E1L,
594 -3.176535282475593173248810678636522589861E2L,
595 -8.933395175080560925809992467187963260693E2L,
596 -1.360019508488475978060917477620199499560E3L,
597 -1.075075579828188621541398761300910213280E3L,
598 -4.017346561586014822824459436695197089916E2L,
599 -5.857581368145266249509589726077645791341E1L,
600 -2.077715925587834606379119585995758954399E0L
602 #define NRDr5 9
603 static const long double RDr5[NRDr5 + 1] =
605 3.377879570417399341550710467744693125385E-1L,
606 1.021963322742390735430008860602594456187E1L,
607 1.200847646592942095192766255154827011939E2L,
608 7.118915528142927104078182863387116942836E2L,
609 2.318159380062066469386544552429625026238E3L,
610 4.238729853534009221025582008928765281620E3L,
611 4.279114907284825886266493994833515580782E3L,
612 2.257277186663261531053293222591851737504E3L,
613 5.570475501285054293371908382916063822957E2L,
614 5.142189243856288981145786492585432443560E1L
615 /* 1.0E0 */
618 /* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2))
619 3/8 <= 1/x < 1/2
620 Peak relative error 2.0e-36 */
621 #define NRNr4 10
622 static const long double RNr4[NRNr4 + 1] =
624 3.258530712024527835089319075288494524465E-3L,
625 2.987056016877277929720231688689431056567E-1L,
626 8.738729089340199750734409156830371528862E0L,
627 1.207211160148647782396337792426311125923E2L,
628 8.997558632489032902250523945248208224445E2L,
629 3.798025197699757225978410230530640879762E3L,
630 9.113203668683080975637043118209210146846E3L,
631 1.203285891339933238608683715194034900149E4L,
632 8.100647057919140328536743641735339740855E3L,
633 2.383888249907144945837976899822927411769E3L,
634 2.127493573166454249221983582495245662319E2L
636 #define NRDr4 10
637 static const long double RDr4[NRDr4 + 1] =
639 -3.303141981514540274165450687270180479586E-1L,
640 -1.353768629363605300707949368917687066724E1L,
641 -2.206127630303621521950193783894598987033E2L,
642 -1.861800338758066696514480386180875607204E3L,
643 -8.889048775872605708249140016201753255599E3L,
644 -2.465888106627948210478692168261494857089E4L,
645 -3.934642211710774494879042116768390014289E4L,
646 -3.455077258242252974937480623730228841003E4L,
647 -1.524083977439690284820586063729912653196E4L,
648 -2.810541887397984804237552337349093953857E3L,
649 -1.343929553541159933824901621702567066156E2L
650 /* 1.0E0 */
653 /* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2))
654 1/4 <= 1/x < 3/8
655 Peak relative error 8.4e-37 */
656 #define NRNr3 11
657 static const long double RNr3[NRNr3 + 1] =
659 -1.952401126551202208698629992497306292987E-6L,
660 -2.130881743066372952515162564941682716125E-4L,
661 -8.376493958090190943737529486107282224387E-3L,
662 -1.650592646560987700661598877522831234791E-1L,
663 -1.839290818933317338111364667708678163199E0L,
664 -1.216278715570882422410442318517814388470E1L,
665 -4.818759344462360427612133632533779091386E1L,
666 -1.120994661297476876804405329172164436784E2L,
667 -1.452850765662319264191141091859300126931E2L,
668 -9.485207851128957108648038238656777241333E1L,
669 -2.563663855025796641216191848818620020073E1L,
670 -1.787995944187565676837847610706317833247E0L
672 #define NRDr3 10
673 static const long double RDr3[NRDr3 + 1] =
675 1.979130686770349481460559711878399476903E-4L,
676 1.156941716128488266238105813374635099057E-2L,
677 2.752657634309886336431266395637285974292E-1L,
678 3.482245457248318787349778336603569327521E0L,
679 2.569347069372696358578399521203959253162E1L,
680 1.142279000180457419740314694631879921561E2L,
681 3.056503977190564294341422623108332700840E2L,
682 4.780844020923794821656358157128719184422E2L,
683 4.105972727212554277496256802312730410518E2L,
684 1.724072188063746970865027817017067646246E2L,
685 2.815939183464818198705278118326590370435E1L
686 /* 1.0E0 */
689 /* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2))
690 1/8 <= 1/x < 1/4
691 Peak relative error 1.5e-36 */
692 #define NRNr2 11
693 static const long double RNr2[NRNr2 + 1] =
695 -2.638914383420287212401687401284326363787E-8L,
696 -3.479198370260633977258201271399116766619E-6L,
697 -1.783985295335697686382487087502222519983E-4L,
698 -4.777876933122576014266349277217559356276E-3L,
699 -7.450634738987325004070761301045014986520E-2L,
700 -7.068318854874733315971973707247467326619E-1L,
701 -4.113919921935944795764071670806867038732E0L,
702 -1.440447573226906222417767283691888875082E1L,
703 -2.883484031530718428417168042141288943905E1L,
704 -2.990886974328476387277797361464279931446E1L,
705 -1.325283914915104866248279787536128997331E1L,
706 -1.572436106228070195510230310658206154374E0L
708 #define NRDr2 10
709 static const long double RDr2[NRDr2 + 1] =
711 2.675042728136731923554119302571867799673E-6L,
712 2.170997868451812708585443282998329996268E-4L,
713 7.249969752687540289422684951196241427445E-3L,
714 1.302040375859768674620410563307838448508E-1L,
715 1.380202483082910888897654537144485285549E0L,
716 8.926594113174165352623847870299170069350E0L,
717 3.521089584782616472372909095331572607185E1L,
718 8.233547427533181375185259050330809105570E1L,
719 1.072971579885803033079469639073292840135E2L,
720 6.943803113337964469736022094105143158033E1L,
721 1.775695341031607738233608307835017282662E1L
722 /* 1.0E0 */
725 /* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2))
726 1/128 <= 1/x < 1/8
727 Peak relative error 2.2e-36 */
728 #define NRNr1 9
729 static const long double RNr1[NRNr1 + 1] =
731 -4.250780883202361946697751475473042685782E-8L,
732 -5.375777053288612282487696975623206383019E-6L,
733 -2.573645949220896816208565944117382460452E-4L,
734 -6.199032928113542080263152610799113086319E-3L,
735 -8.262721198693404060380104048479916247786E-2L,
736 -6.242615227257324746371284637695778043982E-1L,
737 -2.609874739199595400225113299437099626386E0L,
738 -5.581967563336676737146358534602770006970E0L,
739 -5.124398923356022609707490956634280573882E0L,
740 -1.290865243944292370661544030414667556649E0L
742 #define NRDr1 8
743 static const long double RDr1[NRDr1 + 1] =
745 4.308976661749509034845251315983612976224E-6L,
746 3.265390126432780184125233455960049294580E-4L,
747 9.811328839187040701901866531796570418691E-3L,
748 1.511222515036021033410078631914783519649E-1L,
749 1.289264341917429958858379585970225092274E0L,
750 6.147640356182230769548007536914983522270E0L,
751 1.573966871337739784518246317003956180750E1L,
752 1.955534123435095067199574045529218238263E1L,
753 9.472613121363135472247929109615785855865E0L
754 /* 1.0E0 */
758 #ifdef __STDC__
759 long double
760 __erfl (long double x)
761 #else
762 double
763 __erfl (x)
764 long double x;
765 #endif
767 long double a, y, z;
768 int32_t i, ix, sign;
769 ieee854_long_double_shape_type u;
771 u.value = x;
772 sign = u.parts32.w0;
773 ix = sign & 0x7fffffff;
775 if (ix >= 0x7ff00000)
776 { /* erf(nan)=nan */
777 i = ((sign & 0xfff00000) >> 31) << 1;
778 return (long double) (1 - i) + one / x; /* erf(+-inf)=+-1 */
781 if (ix >= 0x3ff00000) /* |x| >= 1.0 */
783 y = __erfcl (x);
784 return (one - y);
785 /* return (one - __erfcl (x)); */
787 u.parts32.w0 = ix;
788 a = u.value;
789 z = x * x;
790 if (ix < 0x3fec0000) /* a < 0.875 */
792 if (ix < 0x3c600000) /* |x|<2**-57 */
794 if (ix < 0x00800000)
796 /* erf (-0) = -0. Unfortunately, for IBM extended double
797 0.125 * (8.0 * x + efx8 * x) for x = -0 evaluates to 0. */
798 if (x == 0)
799 return x;
800 return 0.125 * (8.0 * x + efx8 * x); /*avoid underflow */
802 return x + efx * x;
804 y = a + a * neval (z, TN1, NTN1) / deval (z, TD1, NTD1);
806 else
808 a = a - one;
809 y = erf_const + neval (a, TN2, NTN2) / deval (a, TD2, NTD2);
812 if (sign & 0x80000000) /* x < 0 */
813 y = -y;
814 return( y );
817 long_double_symbol (libm, __erfl, erfl);
818 #ifdef __STDC__
819 long double
820 __erfcl (long double x)
821 #else
822 long double
823 __erfcl (x)
824 double
826 #endif
828 long double y, z, p, r;
829 int32_t i, ix, sign;
830 ieee854_long_double_shape_type u;
832 u.value = x;
833 sign = u.parts32.w0;
834 ix = sign & 0x7fffffff;
835 u.parts32.w0 = ix;
837 if (ix >= 0x7ff00000)
838 { /* erfc(nan)=nan */
839 /* erfc(+-inf)=0,2 */
840 return (long double) (((u_int32_t) sign >> 31) << 1) + one / x;
843 if (ix < 0x3fd00000) /* |x| <1/4 */
845 if (ix < 0x38d00000) /* |x|<2**-114 */
846 return one - x;
847 return one - __erfl (x);
849 if (ix < 0x3ff40000) /* 1.25 */
851 x = u.value;
852 i = 8.0 * x;
853 switch (i)
855 case 2:
856 z = x - 0.25L;
857 y = C13b + z * neval (z, RNr13, NRNr13) / deval (z, RDr13, NRDr13);
858 y += C13a;
859 break;
860 case 3:
861 z = x - 0.375L;
862 y = C14b + z * neval (z, RNr14, NRNr14) / deval (z, RDr14, NRDr14);
863 y += C14a;
864 break;
865 case 4:
866 z = x - 0.5L;
867 y = C15b + z * neval (z, RNr15, NRNr15) / deval (z, RDr15, NRDr15);
868 y += C15a;
869 break;
870 case 5:
871 z = x - 0.625L;
872 y = C16b + z * neval (z, RNr16, NRNr16) / deval (z, RDr16, NRDr16);
873 y += C16a;
874 break;
875 case 6:
876 z = x - 0.75L;
877 y = C17b + z * neval (z, RNr17, NRNr17) / deval (z, RDr17, NRDr17);
878 y += C17a;
879 break;
880 case 7:
881 z = x - 0.875L;
882 y = C18b + z * neval (z, RNr18, NRNr18) / deval (z, RDr18, NRDr18);
883 y += C18a;
884 break;
885 case 8:
886 z = x - 1.0L;
887 y = C19b + z * neval (z, RNr19, NRNr19) / deval (z, RDr19, NRDr19);
888 y += C19a;
889 break;
890 case 9:
891 z = x - 1.125L;
892 y = C20b + z * neval (z, RNr20, NRNr20) / deval (z, RDr20, NRDr20);
893 y += C20a;
894 break;
896 if (sign & 0x80000000)
897 y = 2.0L - y;
898 return y;
900 /* 1.25 < |x| < 107 */
901 if (ix < 0x405ac000)
903 /* x < -9 */
904 if ((ix >= 0x40220000) && (sign & 0x80000000))
905 return two - tiny;
907 x = fabsl (x);
908 z = one / (x * x);
909 i = 8.0 / x;
910 switch (i)
912 default:
913 case 0:
914 p = neval (z, RNr1, NRNr1) / deval (z, RDr1, NRDr1);
915 break;
916 case 1:
917 p = neval (z, RNr2, NRNr2) / deval (z, RDr2, NRDr2);
918 break;
919 case 2:
920 p = neval (z, RNr3, NRNr3) / deval (z, RDr3, NRDr3);
921 break;
922 case 3:
923 p = neval (z, RNr4, NRNr4) / deval (z, RDr4, NRDr4);
924 break;
925 case 4:
926 p = neval (z, RNr5, NRNr5) / deval (z, RDr5, NRDr5);
927 break;
928 case 5:
929 p = neval (z, RNr6, NRNr6) / deval (z, RDr6, NRDr6);
930 break;
931 case 6:
932 p = neval (z, RNr7, NRNr7) / deval (z, RDr7, NRDr7);
933 break;
934 case 7:
935 p = neval (z, RNr8, NRNr8) / deval (z, RDr8, NRDr8);
936 break;
938 u.value = x;
939 u.parts32.w3 = 0;
940 u.parts32.w2 &= 0xffffe000;
941 z = u.value;
942 r = __ieee754_expl (-z * z - 0.5625) *
943 __ieee754_expl ((z - x) * (z + x) + p);
944 if ((sign & 0x80000000) == 0)
945 return r / x;
946 else
947 return two - r / x;
949 else
951 if ((sign & 0x80000000) == 0)
952 return tiny * tiny;
953 else
954 return two - tiny;
958 long_double_symbol (libm, __erfcl, erfcl);