1 /* Floating point output for `printf'.
2 Copyright (C) 1995-2003, 2006-2008, 2011 Free Software Foundation, Inc.
4 This file is part of the GNU C Library.
5 Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995.
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Lesser General Public License for more details.
17 You should have received a copy of the GNU Lesser General Public
18 License along with the GNU C Library; if not, see
19 <http://www.gnu.org/licenses/>. */
21 /* The gmp headers need some configuration frobs. */
28 #include <gmp-mparam.h>
31 #include <stdlib/gmp-impl.h>
32 #include <stdlib/longlong.h>
33 #include <stdlib/fpioconst.h>
34 #include <locale/localeinfo.h>
43 #ifdef COMPILE_WPRINTF
44 # define CHAR_T wchar_t
49 #include "_i18n_number.h"
52 # define NDEBUG /* Undefine this for debugging assertions. */
56 /* This defines make it possible to use the same code for GNU C library and
57 the GNU I/O library. */
58 #define PUT(f, s, n) _IO_sputn (f, s, n)
59 #define PAD(f, c, n) (wide ? _IO_wpadn (f, c, n) : INTUSE(_IO_padn) (f, c, n))
60 /* We use this file GNU C library and GNU I/O library. So make
63 #define putc(c, f) (wide \
64 ? (int)_IO_putwc_unlocked (c, f) : _IO_putc_unlocked (c, f))
65 #define size_t _IO_size_t
68 /* Macros for doing the actual output. */
73 register const int outc = (ch); \
74 if (putc (outc, fp) == EOF) \
76 if (buffer_malloced) \
83 #define PRINT(ptr, wptr, len) \
86 register size_t outlen = (len); \
89 if (PUT (fp, wide ? (const char *) wptr : ptr, outlen) != outlen) \
91 if (buffer_malloced) \
101 while (outlen-- > 0) \
104 while (outlen-- > 0) \
109 #define PADN(ch, len) \
112 if (PAD (fp, ch, len) != len) \
114 if (buffer_malloced) \
122 /* We use the GNU MP library to handle large numbers.
124 An MP variable occupies a varying number of entries in its array. We keep
125 track of this number for efficiency reasons. Otherwise we would always
126 have to process the whole array. */
127 #define MPN_VAR(name) mp_limb_t *name; mp_size_t name##size
129 #define MPN_ASSIGN(dst,src) \
130 memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t))
131 #define MPN_GE(u,v) \
132 (u##size > v##size || (u##size == v##size && __mpn_cmp (u, v, u##size) >= 0))
134 extern int __isinfl_internal (long double) attribute_hidden
;
135 extern int __isnanl_internal (long double) attribute_hidden
;
137 extern mp_size_t
__mpn_extract_double (mp_ptr res_ptr
, mp_size_t size
,
138 int *expt
, int *is_neg
,
140 extern mp_size_t
__mpn_extract_long_double (mp_ptr res_ptr
, mp_size_t size
,
141 int *expt
, int *is_neg
,
143 extern unsigned int __guess_grouping (unsigned int intdig_max
,
144 const char *grouping
);
147 static wchar_t *group_number (wchar_t *buf
, wchar_t *bufend
,
148 unsigned int intdig_no
, const char *grouping
,
149 wchar_t thousands_sep
, int ngroups
)
154 ___printf_fp (FILE *fp
,
155 const struct printf_info
*info
,
156 const void *const *args
)
158 /* The floating-point value to output. */
162 __long_double_t ldbl
;
166 /* Locale-dependent representation of decimal point. */
170 /* Locale-dependent thousands separator and grouping specification. */
171 const char *thousands_sep
= NULL
;
172 wchar_t thousands_sepwc
= 0;
173 const char *grouping
;
175 /* "NaN" or "Inf" for the special cases. */
176 const char *special
= NULL
;
177 const wchar_t *wspecial
= NULL
;
179 /* We need just a few limbs for the input before shifting to the right
181 mp_limb_t fp_input
[(LDBL_MANT_DIG
+ BITS_PER_MP_LIMB
- 1) / BITS_PER_MP_LIMB
];
182 /* We need to shift the contents of fp_input by this amount of bits. */
185 /* The fraction of the floting-point value in question */
187 /* and the exponent. */
189 /* Sign of the exponent. */
191 /* Sign of float number. */
194 /* Scaling factor. */
197 /* Temporary bignum value. */
200 /* Digit which is result of last hack_digit() call. */
203 /* The type of output format that will be used: 'e'/'E' or 'f'. */
206 /* Counter for number of written characters. */
209 /* General helper (carry limb). */
212 /* Nonzero if this is output on a wide character stream. */
213 int wide
= info
->wide
;
215 /* Buffer in which we produce the output. */
216 wchar_t *wbuffer
= NULL
;
217 /* Flag whether wbuffer is malloc'ed or not. */
218 int buffer_malloced
= 0;
220 auto wchar_t hack_digit (void);
222 wchar_t hack_digit (void)
226 if (expsign
!= 0 && type
== 'f' && exponent
-- > 0)
228 else if (scalesize
== 0)
230 hi
= frac
[fracsize
- 1];
231 frac
[fracsize
- 1] = __mpn_mul_1 (frac
, frac
, fracsize
- 1, 10);
235 if (fracsize
< scalesize
)
239 hi
= mpn_divmod (tmp
, frac
, fracsize
, scale
, scalesize
);
240 tmp
[fracsize
- scalesize
] = hi
;
243 fracsize
= scalesize
;
244 while (fracsize
!= 0 && frac
[fracsize
- 1] == 0)
248 /* We're not prepared for an mpn variable with zero
255 mp_limb_t _cy
= __mpn_mul_1 (frac
, frac
, fracsize
, 10);
257 frac
[fracsize
++] = _cy
;
264 /* Figure out the decimal point character. */
265 if (info
->extra
== 0)
267 decimal
= _NL_CURRENT (LC_NUMERIC
, DECIMAL_POINT
);
268 decimalwc
= _NL_CURRENT_WORD (LC_NUMERIC
, _NL_NUMERIC_DECIMAL_POINT_WC
);
272 decimal
= _NL_CURRENT (LC_MONETARY
, MON_DECIMAL_POINT
);
273 if (*decimal
== '\0')
274 decimal
= _NL_CURRENT (LC_NUMERIC
, DECIMAL_POINT
);
275 decimalwc
= _NL_CURRENT_WORD (LC_MONETARY
,
276 _NL_MONETARY_DECIMAL_POINT_WC
);
277 if (decimalwc
== L
'\0')
278 decimalwc
= _NL_CURRENT_WORD (LC_NUMERIC
,
279 _NL_NUMERIC_DECIMAL_POINT_WC
);
281 /* The decimal point character must not be zero. */
282 assert (*decimal
!= '\0');
283 assert (decimalwc
!= L
'\0');
287 if (info
->extra
== 0)
288 grouping
= _NL_CURRENT (LC_NUMERIC
, GROUPING
);
290 grouping
= _NL_CURRENT (LC_MONETARY
, MON_GROUPING
);
292 if (*grouping
<= 0 || *grouping
== CHAR_MAX
)
296 /* Figure out the thousands separator character. */
299 if (info
->extra
== 0)
301 _NL_CURRENT_WORD (LC_NUMERIC
, _NL_NUMERIC_THOUSANDS_SEP_WC
);
304 _NL_CURRENT_WORD (LC_MONETARY
,
305 _NL_MONETARY_THOUSANDS_SEP_WC
);
309 if (info
->extra
== 0)
310 thousands_sep
= _NL_CURRENT (LC_NUMERIC
, THOUSANDS_SEP
);
312 thousands_sep
= _NL_CURRENT (LC_MONETARY
, MON_THOUSANDS_SEP
);
315 if ((wide
&& thousands_sepwc
== L
'\0')
316 || (! wide
&& *thousands_sep
== '\0'))
318 else if (thousands_sepwc
== L
'\0')
319 /* If we are printing multibyte characters and there is a
320 multibyte representation for the thousands separator,
321 we must ensure the wide character thousands separator
322 is available, even if it is fake. */
323 thousands_sepwc
= 0xfffffffe;
329 /* Fetch the argument value. */
330 #ifndef __NO_LONG_DOUBLE_MATH
331 if (info
->is_long_double
&& sizeof (long double) > sizeof (double))
333 fpnum
.ldbl
= *(const long double *) args
[0];
335 /* Check for special values: not a number or infinity. */
337 if (__isnanl (fpnum
.ldbl
))
339 union ieee854_long_double u
= { .d
= fpnum
.ldbl
};
340 is_neg
= u
.ieee
.negative
!= 0;
341 if (isupper (info
->spec
))
352 else if ((res
= __isinfl (fpnum
.ldbl
)))
355 if (isupper (info
->spec
))
368 fracsize
= __mpn_extract_long_double (fp_input
,
370 sizeof (fp_input
[0])),
373 to_shift
= 1 + fracsize
* BITS_PER_MP_LIMB
- LDBL_MANT_DIG
;
377 #endif /* no long double */
379 fpnum
.dbl
= *(const double *) args
[0];
381 /* Check for special values: not a number or infinity. */
383 if (__isnan (fpnum
.dbl
))
385 union ieee754_double u
= { .d
= fpnum
.dbl
};
386 is_neg
= u
.ieee
.negative
!= 0;
387 if (isupper (info
->spec
))
398 else if ((res
= __isinf (fpnum
.dbl
)))
401 if (isupper (info
->spec
))
414 fracsize
= __mpn_extract_double (fp_input
,
416 / sizeof (fp_input
[0])),
417 &exponent
, &is_neg
, fpnum
.dbl
);
418 to_shift
= 1 + fracsize
* BITS_PER_MP_LIMB
- DBL_MANT_DIG
;
424 int width
= info
->width
;
426 if (is_neg
|| info
->showsign
|| info
->space
)
430 if (!info
->left
&& width
> 0)
435 else if (info
->showsign
)
437 else if (info
->space
)
440 PRINT (special
, wspecial
, 3);
442 if (info
->left
&& width
> 0)
449 /* We need three multiprecision variables. Now that we have the exponent
450 of the number we can allocate the needed memory. It would be more
451 efficient to use variables of the fixed maximum size but because this
452 would be really big it could lead to memory problems. */
454 mp_size_t bignum_size
= ((ABS (exponent
) + BITS_PER_MP_LIMB
- 1)
456 + (LDBL_MANT_DIG
/ BITS_PER_MP_LIMB
> 2 ? 8 : 4))
457 * sizeof (mp_limb_t
);
458 frac
= (mp_limb_t
*) alloca (bignum_size
);
459 tmp
= (mp_limb_t
*) alloca (bignum_size
);
460 scale
= (mp_limb_t
*) alloca (bignum_size
);
463 /* We now have to distinguish between numbers with positive and negative
464 exponents because the method used for the one is not applicable/efficient
471 int explog
= LDBL_MAX_10_EXP_LOG
;
473 const struct mp_power
*powers
= &_fpioconst_pow10
[explog
+ 1];
476 if ((exponent
+ to_shift
) % BITS_PER_MP_LIMB
== 0)
478 MPN_COPY_DECR (frac
+ (exponent
+ to_shift
) / BITS_PER_MP_LIMB
,
480 fracsize
+= (exponent
+ to_shift
) / BITS_PER_MP_LIMB
;
484 cy
= __mpn_lshift (frac
+ (exponent
+ to_shift
) / BITS_PER_MP_LIMB
,
486 (exponent
+ to_shift
) % BITS_PER_MP_LIMB
);
487 fracsize
+= (exponent
+ to_shift
) / BITS_PER_MP_LIMB
;
489 frac
[fracsize
++] = cy
;
491 MPN_ZERO (frac
, (exponent
+ to_shift
) / BITS_PER_MP_LIMB
);
493 assert (powers
> &_fpioconst_pow10
[0]);
498 /* The number of the product of two binary numbers with n and m
499 bits respectively has m+n or m+n-1 bits. */
500 if (exponent
>= scaleexpo
+ powers
->p_expo
- 1)
504 #ifndef __NO_LONG_DOUBLE_MATH
505 if (LDBL_MANT_DIG
> _FPIO_CONST_OFFSET
* BITS_PER_MP_LIMB
506 && info
->is_long_double
)
508 #define _FPIO_CONST_SHIFT \
509 (((LDBL_MANT_DIG + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB) \
510 - _FPIO_CONST_OFFSET)
511 /* 64bit const offset is not enough for
512 IEEE quad long double. */
513 tmpsize
= powers
->arraysize
+ _FPIO_CONST_SHIFT
;
514 memcpy (tmp
+ _FPIO_CONST_SHIFT
,
515 &__tens
[powers
->arrayoff
],
516 tmpsize
* sizeof (mp_limb_t
));
517 MPN_ZERO (tmp
, _FPIO_CONST_SHIFT
);
518 /* Adjust exponent, as scaleexpo will be this much
520 exponent
+= _FPIO_CONST_SHIFT
* BITS_PER_MP_LIMB
;
525 tmpsize
= powers
->arraysize
;
526 memcpy (tmp
, &__tens
[powers
->arrayoff
],
527 tmpsize
* sizeof (mp_limb_t
));
532 cy
= __mpn_mul (tmp
, scale
, scalesize
,
533 &__tens
[powers
->arrayoff
534 + _FPIO_CONST_OFFSET
],
535 powers
->arraysize
- _FPIO_CONST_OFFSET
);
536 tmpsize
= scalesize
+ powers
->arraysize
- _FPIO_CONST_OFFSET
;
541 if (MPN_GE (frac
, tmp
))
544 MPN_ASSIGN (scale
, tmp
);
545 count_leading_zeros (cnt
, scale
[scalesize
- 1]);
546 scaleexpo
= (scalesize
- 2) * BITS_PER_MP_LIMB
- cnt
- 1;
547 exp10
|= 1 << explog
;
552 while (powers
> &_fpioconst_pow10
[0]);
555 /* Optimize number representations. We want to represent the numbers
556 with the lowest number of bytes possible without losing any
557 bytes. Also the highest bit in the scaling factor has to be set
558 (this is a requirement of the MPN division routines). */
561 /* Determine minimum number of zero bits at the end of
563 for (i
= 0; scale
[i
] == 0 && frac
[i
] == 0; i
++)
566 /* Determine number of bits the scaling factor is misplaced. */
567 count_leading_zeros (cnt_h
, scale
[scalesize
- 1]);
571 /* The highest bit of the scaling factor is already set. So
572 we only have to remove the trailing empty limbs. */
575 MPN_COPY_INCR (scale
, scale
+ i
, scalesize
- i
);
577 MPN_COPY_INCR (frac
, frac
+ i
, fracsize
- i
);
585 count_trailing_zeros (cnt_l
, scale
[i
]);
589 count_trailing_zeros (cnt_l2
, frac
[i
]);
595 count_trailing_zeros (cnt_l
, frac
[i
]);
597 /* Now shift the numbers to their optimal position. */
598 if (i
== 0 && BITS_PER_MP_LIMB
- cnt_h
> cnt_l
)
600 /* We cannot save any memory. So just roll both numbers
601 so that the scaling factor has its highest bit set. */
603 (void) __mpn_lshift (scale
, scale
, scalesize
, cnt_h
);
604 cy
= __mpn_lshift (frac
, frac
, fracsize
, cnt_h
);
606 frac
[fracsize
++] = cy
;
608 else if (BITS_PER_MP_LIMB
- cnt_h
<= cnt_l
)
610 /* We can save memory by removing the trailing zero limbs
611 and by packing the non-zero limbs which gain another
614 (void) __mpn_rshift (scale
, scale
+ i
, scalesize
- i
,
615 BITS_PER_MP_LIMB
- cnt_h
);
617 (void) __mpn_rshift (frac
, frac
+ i
, fracsize
- i
,
618 BITS_PER_MP_LIMB
- cnt_h
);
619 fracsize
-= frac
[fracsize
- i
- 1] == 0 ? i
+ 1 : i
;
623 /* We can only save the memory of the limbs which are zero.
624 The non-zero parts occupy the same number of limbs. */
626 (void) __mpn_rshift (scale
, scale
+ (i
- 1),
628 BITS_PER_MP_LIMB
- cnt_h
);
630 (void) __mpn_rshift (frac
, frac
+ (i
- 1),
632 BITS_PER_MP_LIMB
- cnt_h
);
633 fracsize
-= frac
[fracsize
- (i
- 1) - 1] == 0 ? i
: i
- 1;
638 else if (exponent
< 0)
642 int explog
= LDBL_MAX_10_EXP_LOG
;
643 const struct mp_power
*powers
= &_fpioconst_pow10
[explog
+ 1];
645 /* Now shift the input value to its right place. */
646 cy
= __mpn_lshift (frac
, fp_input
, fracsize
, to_shift
);
647 frac
[fracsize
++] = cy
;
648 assert (cy
== 1 || (frac
[fracsize
- 2] == 0 && frac
[0] == 0));
651 exponent
= -exponent
;
653 assert (powers
!= &_fpioconst_pow10
[0]);
658 if (exponent
>= powers
->m_expo
)
660 int i
, incr
, cnt_h
, cnt_l
;
663 /* The __mpn_mul function expects the first argument to be
664 bigger than the second. */
665 if (fracsize
< powers
->arraysize
- _FPIO_CONST_OFFSET
)
666 cy
= __mpn_mul (tmp
, &__tens
[powers
->arrayoff
667 + _FPIO_CONST_OFFSET
],
668 powers
->arraysize
- _FPIO_CONST_OFFSET
,
671 cy
= __mpn_mul (tmp
, frac
, fracsize
,
672 &__tens
[powers
->arrayoff
+ _FPIO_CONST_OFFSET
],
673 powers
->arraysize
- _FPIO_CONST_OFFSET
);
674 tmpsize
= fracsize
+ powers
->arraysize
- _FPIO_CONST_OFFSET
;
678 count_leading_zeros (cnt_h
, tmp
[tmpsize
- 1]);
679 incr
= (tmpsize
- fracsize
) * BITS_PER_MP_LIMB
680 + BITS_PER_MP_LIMB
- 1 - cnt_h
;
682 assert (incr
<= powers
->p_expo
);
684 /* If we increased the exponent by exactly 3 we have to test
685 for overflow. This is done by comparing with 10 shifted
686 to the right position. */
687 if (incr
== exponent
+ 3)
689 if (cnt_h
<= BITS_PER_MP_LIMB
- 4)
693 = ((mp_limb_t
) 10) << (BITS_PER_MP_LIMB
- 4 - cnt_h
);
697 topval
[0] = ((mp_limb_t
) 10) << (BITS_PER_MP_LIMB
- 4);
699 (void) __mpn_lshift (topval
, topval
, 2,
700 BITS_PER_MP_LIMB
- cnt_h
);
704 /* We have to be careful when multiplying the last factor.
705 If the result is greater than 1.0 be have to test it
706 against 10.0. If it is greater or equal to 10.0 the
707 multiplication was not valid. This is because we cannot
708 determine the number of bits in the result in advance. */
709 if (incr
< exponent
+ 3
710 || (incr
== exponent
+ 3 &&
711 (tmp
[tmpsize
- 1] < topval
[1]
712 || (tmp
[tmpsize
- 1] == topval
[1]
713 && tmp
[tmpsize
- 2] < topval
[0]))))
715 /* The factor is right. Adapt binary and decimal
718 exp10
|= 1 << explog
;
720 /* If this factor yields a number greater or equal to
721 1.0, we must not shift the non-fractional digits down. */
725 /* Now we optimize the number representation. */
726 for (i
= 0; tmp
[i
] == 0; ++i
);
727 if (cnt_h
== BITS_PER_MP_LIMB
- 1)
729 MPN_COPY (frac
, tmp
+ i
, tmpsize
- i
);
730 fracsize
= tmpsize
- i
;
734 count_trailing_zeros (cnt_l
, tmp
[i
]);
736 /* Now shift the numbers to their optimal position. */
737 if (i
== 0 && BITS_PER_MP_LIMB
- 1 - cnt_h
> cnt_l
)
739 /* We cannot save any memory. Just roll the
740 number so that the leading digit is in a
743 cy
= __mpn_lshift (frac
, tmp
, tmpsize
, cnt_h
+ 1);
744 fracsize
= tmpsize
+ 1;
745 frac
[fracsize
- 1] = cy
;
747 else if (BITS_PER_MP_LIMB
- 1 - cnt_h
<= cnt_l
)
749 (void) __mpn_rshift (frac
, tmp
+ i
, tmpsize
- i
,
750 BITS_PER_MP_LIMB
- 1 - cnt_h
);
751 fracsize
= tmpsize
- i
;
755 /* We can only save the memory of the limbs which
756 are zero. The non-zero parts occupy the same
759 (void) __mpn_rshift (frac
, tmp
+ (i
- 1),
761 BITS_PER_MP_LIMB
- 1 - cnt_h
);
762 fracsize
= tmpsize
- (i
- 1);
769 while (powers
!= &_fpioconst_pow10
[1] && exponent
> 0);
770 /* All factors but 10^-1 are tested now. */
775 cy
= __mpn_mul_1 (tmp
, frac
, fracsize
, 10);
777 assert (cy
== 0 || tmp
[tmpsize
- 1] < 20);
779 count_trailing_zeros (cnt_l
, tmp
[0]);
780 if (cnt_l
< MIN (4, exponent
))
782 cy
= __mpn_lshift (frac
, tmp
, tmpsize
,
783 BITS_PER_MP_LIMB
- MIN (4, exponent
));
785 frac
[tmpsize
++] = cy
;
788 (void) __mpn_rshift (frac
, tmp
, tmpsize
, MIN (4, exponent
));
791 assert (frac
[fracsize
- 1] < 10);
797 /* This is a special case. We don't need a factor because the
798 numbers are in the range of 1.0 <= |fp| < 8.0. We simply
799 shift it to the right place and divide it by 1.0 to get the
800 leading digit. (Of course this division is not really made.) */
801 assert (0 <= exponent
&& exponent
< 3 &&
802 exponent
+ to_shift
< BITS_PER_MP_LIMB
);
804 /* Now shift the input value to its right place. */
805 cy
= __mpn_lshift (frac
, fp_input
, fracsize
, (exponent
+ to_shift
));
806 frac
[fracsize
++] = cy
;
811 int width
= info
->width
;
812 wchar_t *wstartp
, *wcp
;
815 int intdig_max
, intdig_no
= 0;
821 char spec
= _tolower (info
->spec
);
827 fracdig_min
= fracdig_max
= info
->prec
< 0 ? 6 : info
->prec
;
828 chars_needed
= 1 + 1 + (size_t) fracdig_max
+ 1 + 1 + 4;
829 /* d . ddd e +- ddd */
830 dig_max
= INT_MAX
; /* Unlimited. */
831 significant
= 1; /* Does not matter here. */
833 else if (spec
== 'f')
836 fracdig_min
= fracdig_max
= info
->prec
< 0 ? 6 : info
->prec
;
837 dig_max
= INT_MAX
; /* Unlimited. */
838 significant
= 1; /* Does not matter here. */
841 intdig_max
= exponent
+ 1;
842 /* This can be really big! */ /* XXX Maybe malloc if too big? */
843 chars_needed
= (size_t) exponent
+ 1 + 1 + (size_t) fracdig_max
;
848 chars_needed
= 1 + 1 + (size_t) fracdig_max
;
853 dig_max
= info
->prec
< 0 ? 6 : (info
->prec
== 0 ? 1 : info
->prec
);
854 if ((expsign
== 0 && exponent
>= dig_max
)
855 || (expsign
!= 0 && exponent
> 4))
857 if ('g' - 'G' == 'e' - 'E')
858 type
= 'E' + (info
->spec
- 'G');
860 type
= isupper (info
->spec
) ? 'E' : 'e';
861 fracdig_max
= dig_max
- 1;
863 chars_needed
= 1 + 1 + (size_t) fracdig_max
+ 1 + 1 + 4;
868 intdig_max
= expsign
== 0 ? exponent
+ 1 : 0;
869 fracdig_max
= dig_max
- intdig_max
;
870 /* We need space for the significant digits and perhaps
871 for leading zeros when < 1.0. The number of leading
872 zeros can be as many as would be required for
873 exponential notation with a negative two-digit
874 exponent, which is 4. */
875 chars_needed
= (size_t) dig_max
+ 1 + 4;
877 fracdig_min
= info
->alt
? fracdig_max
: 0;
878 significant
= 0; /* We count significant digits. */
883 /* Guess the number of groups we will make, and thus how
884 many spaces we need for separator characters. */
885 ngroups
= __guess_grouping (intdig_max
, grouping
);
886 /* Allocate one more character in case rounding increases the
888 chars_needed
+= ngroups
+ 1;
891 /* Allocate buffer for output. We need two more because while rounding
892 it is possible that we need two more characters in front of all the
893 other output. If the amount of memory we have to allocate is too
894 large use `malloc' instead of `alloca'. */
895 if (__builtin_expect (chars_needed
>= (size_t) -1 / sizeof (wchar_t) - 2
896 || chars_needed
< fracdig_max
, 0))
898 /* Some overflow occurred. */
899 __set_errno (ERANGE
);
902 size_t wbuffer_to_alloc
= (2 + chars_needed
) * sizeof (wchar_t);
903 buffer_malloced
= ! __libc_use_alloca (wbuffer_to_alloc
);
904 if (__builtin_expect (buffer_malloced
, 0))
906 wbuffer
= (wchar_t *) malloc (wbuffer_to_alloc
);
908 /* Signal an error to the caller. */
912 wbuffer
= (wchar_t *) alloca (wbuffer_to_alloc
);
913 wcp
= wstartp
= wbuffer
+ 2; /* Let room for rounding. */
915 /* Do the real work: put digits in allocated buffer. */
916 if (expsign
== 0 || type
!= 'f')
918 assert (expsign
== 0 || intdig_max
== 1);
919 while (intdig_no
< intdig_max
)
922 *wcp
++ = hack_digit ();
927 || (fracdig_max
> 0 && (fracsize
> 1 || frac
[0] != 0)))
932 /* |fp| < 1.0 and the selected type is 'f', so put "0."
939 /* Generate the needed number of fractional digits. */
942 while (fracdig_no
< fracdig_min
+ added_zeros
943 || (fracdig_no
< fracdig_max
&& (fracsize
> 1 || frac
[0] != 0)))
946 *wcp
= hack_digit ();
949 else if (significant
== 0)
958 digit
= hack_digit ();
964 && ((*(wcp
- 1) != decimalwc
&& (*(wcp
- 1) & 1) == 0)
965 || ((*(wcp
- 1) == decimalwc
&& (*(wcp
- 2) & 1) == 0))))
967 /* This is the critical case. */
968 if (fracsize
== 1 && frac
[0] == 0)
969 /* Rest of the number is zero -> round to even.
970 (IEEE 754-1985 4.1 says this is the default rounding.) */
972 else if (scalesize
== 0)
974 /* Here we have to see whether all limbs are zero since no
975 normalization happened. */
976 size_t lcnt
= fracsize
;
977 while (lcnt
>= 1 && frac
[lcnt
- 1] == 0)
980 /* Rest of the number is zero -> round to even.
981 (IEEE 754-1985 4.1 says this is the default rounding.) */
988 /* Process fractional digits. Terminate if not rounded or
989 radix character is reached. */
991 while (*--wtp
!= decimalwc
&& *wtp
== L
'9')
996 if (removed
== fracdig_min
&& added_zeros
> 0)
998 if (*wtp
!= decimalwc
)
1001 else if (__builtin_expect (spec
== 'g' && type
== 'f' && info
->alt
1002 && wtp
== wstartp
+ 1
1003 && wstartp
[0] == L
'0',
1005 /* This is a special case: the rounded number is 1.0,
1006 the format is 'g' or 'G', and the alternative format
1007 is selected. This means the result must be "1.". */
1011 if (fracdig_no
== 0 || *wtp
== decimalwc
)
1013 /* Round the integer digits. */
1014 if (*(wtp
- 1) == decimalwc
)
1017 while (--wtp
>= wstartp
&& *wtp
== L
'9')
1024 /* It is more critical. All digits were 9's. */
1029 exponent
+= expsign
== 0 ? 1 : -1;
1031 /* The above exponent adjustment could lead to 1.0e-00,
1032 e.g. for 0.999999999. Make sure exponent 0 always
1037 else if (intdig_no
== dig_max
)
1039 /* This is the case where for type %g the number fits
1040 really in the range for %f output but after rounding
1041 the number of digits is too big. */
1042 *--wstartp
= decimalwc
;
1045 if (info
->alt
|| fracdig_no
> 0)
1047 /* Overwrite the old radix character. */
1048 wstartp
[intdig_no
+ 2] = L
'0';
1052 fracdig_no
+= intdig_no
;
1054 fracdig_max
= intdig_max
- intdig_no
;
1056 /* Now we must print the exponent. */
1057 type
= isupper (info
->spec
) ? 'E' : 'e';
1061 /* We can simply add another another digit before the
1067 /* While rounding the number of digits can change.
1068 If the number now exceeds the limits remove some
1069 fractional digits. */
1070 if (intdig_no
+ fracdig_no
> dig_max
)
1072 wcp
-= intdig_no
+ fracdig_no
- dig_max
;
1073 fracdig_no
-= intdig_no
+ fracdig_no
- dig_max
;
1080 /* Now remove unnecessary '0' at the end of the string. */
1081 while (fracdig_no
> fracdig_min
+ added_zeros
&& *(wcp
- 1) == L
'0')
1086 /* If we eliminate all fractional digits we perhaps also can remove
1087 the radix character. */
1088 if (fracdig_no
== 0 && !info
->alt
&& *(wcp
- 1) == decimalwc
)
1093 /* Rounding might have changed the number of groups. We allocated
1094 enough memory but we need here the correct number of groups. */
1095 if (intdig_no
!= intdig_max
)
1096 ngroups
= __guess_grouping (intdig_no
, grouping
);
1098 /* Add in separator characters, overwriting the same buffer. */
1099 wcp
= group_number (wstartp
, wcp
, intdig_no
, grouping
, thousands_sepwc
,
1103 /* Write the exponent if it is needed. */
1106 if (__builtin_expect (expsign
!= 0 && exponent
== 4 && spec
== 'g', 0))
1108 /* This is another special case. The exponent of the number is
1109 really smaller than -4, which requires the 'e'/'E' format.
1110 But after rounding the number has an exponent of -4. */
1111 assert (wcp
>= wstartp
+ 1);
1112 assert (wstartp
[0] == L
'1');
1113 __wmemcpy (wstartp
, L
"0.0001", 6);
1114 wstartp
[1] = decimalwc
;
1115 if (wcp
>= wstartp
+ 2)
1117 wmemset (wstartp
+ 6, L
'0', wcp
- (wstartp
+ 2));
1125 *wcp
++ = (wchar_t) type
;
1126 *wcp
++ = expsign
? L
'-' : L
'+';
1128 /* Find the magnitude of the exponent. */
1130 while (expscale
<= exponent
)
1134 /* Exponent always has at least two digits. */
1140 *wcp
++ = L
'0' + (exponent
/ expscale
);
1141 exponent
%= expscale
;
1143 while (expscale
> 10);
1144 *wcp
++ = L
'0' + exponent
;
1148 /* Compute number of characters which must be filled with the padding
1150 if (is_neg
|| info
->showsign
|| info
->space
)
1152 width
-= wcp
- wstartp
;
1154 if (!info
->left
&& info
->pad
!= '0' && width
> 0)
1155 PADN (info
->pad
, width
);
1159 else if (info
->showsign
)
1161 else if (info
->space
)
1164 if (!info
->left
&& info
->pad
== '0' && width
> 0)
1168 char *buffer
= NULL
;
1169 char *buffer_end
= NULL
;
1175 /* Create the single byte string. */
1177 size_t thousands_sep_len
;
1179 size_t factor
= (info
->i18n
1180 ? _NL_CURRENT_WORD (LC_CTYPE
, _NL_CTYPE_MB_CUR_MAX
)
1183 decimal_len
= strlen (decimal
);
1185 if (thousands_sep
== NULL
)
1186 thousands_sep_len
= 0;
1188 thousands_sep_len
= strlen (thousands_sep
);
1190 size_t nbuffer
= (2 + chars_needed
* factor
+ decimal_len
1191 + ngroups
* thousands_sep_len
);
1192 if (__builtin_expect (buffer_malloced
, 0))
1194 buffer
= (char *) malloc (nbuffer
);
1197 /* Signal an error to the caller. */
1203 buffer
= (char *) alloca (nbuffer
);
1204 buffer_end
= buffer
+ nbuffer
;
1206 /* Now copy the wide character string. Since the character
1207 (except for the decimal point and thousands separator) must
1208 be coming from the ASCII range we can esily convert the
1209 string without mapping tables. */
1210 for (cp
= buffer
, copywc
= wstartp
; copywc
< wcp
; ++copywc
)
1211 if (*copywc
== decimalwc
)
1212 cp
= (char *) __mempcpy (cp
, decimal
, decimal_len
);
1213 else if (*copywc
== thousands_sepwc
)
1214 cp
= (char *) __mempcpy (cp
, thousands_sep
, thousands_sep_len
);
1216 *cp
++ = (char) *copywc
;
1220 if (__builtin_expect (info
->i18n
, 0))
1222 #ifdef COMPILE_WPRINTF
1223 wstartp
= _i18n_number_rewrite (wstartp
, wcp
,
1224 wbuffer
+ wbuffer_to_alloc
);
1225 wcp
= wbuffer
+ wbuffer_to_alloc
;
1226 assert ((uintptr_t) wbuffer
<= (uintptr_t) wstartp
);
1227 assert ((uintptr_t) wstartp
1228 < (uintptr_t) wbuffer
+ wbuffer_to_alloc
);
1230 tmpptr
= _i18n_number_rewrite (tmpptr
, cp
, buffer_end
);
1232 assert ((uintptr_t) buffer
<= (uintptr_t) tmpptr
);
1233 assert ((uintptr_t) tmpptr
< (uintptr_t) buffer_end
);
1237 PRINT (tmpptr
, wstartp
, wide
? wcp
- wstartp
: cp
- tmpptr
);
1239 /* Free the memory if necessary. */
1240 if (__builtin_expect (buffer_malloced
, 0))
1247 if (info
->left
&& width
> 0)
1248 PADN (info
->pad
, width
);
1252 ldbl_hidden_def (___printf_fp
, __printf_fp
)
1253 ldbl_strong_alias (___printf_fp
, __printf_fp
)
1255 /* Return the number of extra grouping characters that will be inserted
1256 into a number with INTDIG_MAX integer digits. */
1259 __guess_grouping (unsigned int intdig_max
, const char *grouping
)
1261 unsigned int groups
;
1263 /* We treat all negative values like CHAR_MAX. */
1265 if (*grouping
== CHAR_MAX
|| *grouping
<= 0)
1266 /* No grouping should be done. */
1270 while (intdig_max
> (unsigned int) *grouping
)
1273 intdig_max
-= *grouping
++;
1275 if (*grouping
== CHAR_MAX
1280 /* No more grouping should be done. */
1282 else if (*grouping
== 0)
1284 /* Same grouping repeats. */
1285 groups
+= (intdig_max
- 1) / grouping
[-1];
1293 /* Group the INTDIG_NO integer digits of the number in [BUF,BUFEND).
1294 There is guaranteed enough space past BUFEND to extend it.
1295 Return the new end of buffer. */
1299 group_number (wchar_t *buf
, wchar_t *bufend
, unsigned int intdig_no
,
1300 const char *grouping
, wchar_t thousands_sep
, int ngroups
)
1307 /* Move the fractional part down. */
1308 __wmemmove (buf
+ intdig_no
+ ngroups
, buf
+ intdig_no
,
1309 bufend
- (buf
+ intdig_no
));
1311 p
= buf
+ intdig_no
+ ngroups
- 1;
1314 unsigned int len
= *grouping
++;
1316 *p
-- = buf
[--intdig_no
];
1318 *p
-- = thousands_sep
;
1320 if (*grouping
== CHAR_MAX
1325 /* No more grouping should be done. */
1327 else if (*grouping
== 0)
1328 /* Same grouping repeats. */
1330 } while (intdig_no
> (unsigned int) *grouping
);
1332 /* Copy the remaining ungrouped digits. */
1334 *p
-- = buf
[--intdig_no
];
1337 return bufend
+ ngroups
;