Add NT_PPC_PKEY from Linux 4.16 to elf.h.
[glibc.git] / sysdeps / unix / sysv / linux / ifaddrs.c
blob32381f54e4e0e10c42c47aed0ebeb1df03bf19af
1 /* getifaddrs -- get names and addresses of all network interfaces
2 Copyright (C) 2003-2018 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
15 You should have received a copy of the GNU Lesser General Public
16 License along with the GNU C Library; if not, see
17 <http://www.gnu.org/licenses/>. */
19 #include <alloca.h>
20 #include <assert.h>
21 #include <errno.h>
22 #include <ifaddrs.h>
23 #include <net/if.h>
24 #include <netinet/in.h>
25 #include <netpacket/packet.h>
26 #include <stdbool.h>
27 #include <stdint.h>
28 #include <stdlib.h>
29 #include <string.h>
30 #include <sys/ioctl.h>
31 #include <sys/socket.h>
32 #include <sysdep.h>
33 #include <time.h>
34 #include <unistd.h>
36 #include "netlinkaccess.h"
39 /* There is a problem with this type. The address length for
40 Infiniband sockets is much longer than the 8 bytes allocated in the
41 sockaddr_ll definition. Hence we use here a special
42 definition. */
43 struct sockaddr_ll_max
45 unsigned short int sll_family;
46 unsigned short int sll_protocol;
47 int sll_ifindex;
48 unsigned short int sll_hatype;
49 unsigned char sll_pkttype;
50 unsigned char sll_halen;
51 unsigned char sll_addr[24];
55 /* struct to hold the data for one ifaddrs entry, so we can allocate
56 everything at once. */
57 struct ifaddrs_storage
59 struct ifaddrs ifa;
60 union
62 /* Save space for the biggest of the four used sockaddr types and
63 avoid a lot of casts. */
64 struct sockaddr sa;
65 struct sockaddr_ll_max sl;
66 struct sockaddr_in s4;
67 struct sockaddr_in6 s6;
68 } addr, netmask, broadaddr;
69 char name[IF_NAMESIZE + 1];
73 void
74 __netlink_free_handle (struct netlink_handle *h)
76 struct netlink_res *ptr;
77 int saved_errno = errno;
79 ptr = h->nlm_list;
80 while (ptr != NULL)
82 struct netlink_res *tmpptr;
84 tmpptr = ptr->next;
85 free (ptr);
86 ptr = tmpptr;
89 __set_errno (saved_errno);
93 static int
94 __netlink_sendreq (struct netlink_handle *h, int type)
96 struct req
98 struct nlmsghdr nlh;
99 struct rtgenmsg g;
100 char pad[0];
101 } req;
102 struct sockaddr_nl nladdr;
104 if (h->seq == 0)
105 h->seq = time (NULL);
107 req.nlh.nlmsg_len = sizeof (req);
108 req.nlh.nlmsg_type = type;
109 req.nlh.nlmsg_flags = NLM_F_ROOT | NLM_F_MATCH | NLM_F_REQUEST;
110 req.nlh.nlmsg_pid = 0;
111 req.nlh.nlmsg_seq = h->seq;
112 req.g.rtgen_family = AF_UNSPEC;
113 if (sizeof (req) != offsetof (struct req, pad))
114 memset (req.pad, '\0', sizeof (req) - offsetof (struct req, pad));
116 memset (&nladdr, '\0', sizeof (nladdr));
117 nladdr.nl_family = AF_NETLINK;
119 return TEMP_FAILURE_RETRY (__sendto (h->fd, (void *) &req, sizeof (req), 0,
120 (struct sockaddr *) &nladdr,
121 sizeof (nladdr)));
126 __netlink_request (struct netlink_handle *h, int type)
128 struct netlink_res *nlm_next;
129 struct sockaddr_nl nladdr;
130 struct nlmsghdr *nlmh;
131 ssize_t read_len;
132 bool done = false;
134 #ifdef PAGE_SIZE
135 /* Help the compiler optimize out the malloc call if PAGE_SIZE
136 is constant and smaller or equal to PTHREAD_STACK_MIN/4. */
137 const size_t buf_size = PAGE_SIZE;
138 #else
139 const size_t buf_size = __getpagesize ();
140 #endif
141 bool use_malloc = false;
142 char *buf;
144 if (__libc_use_alloca (buf_size))
145 buf = alloca (buf_size);
146 else
148 buf = malloc (buf_size);
149 if (buf != NULL)
150 use_malloc = true;
151 else
152 goto out_fail;
155 struct iovec iov = { buf, buf_size };
157 if (__netlink_sendreq (h, type) < 0)
158 goto out_fail;
160 while (! done)
162 struct msghdr msg =
164 .msg_name = (void *) &nladdr,
165 .msg_namelen = sizeof (nladdr),
166 .msg_iov = &iov,
167 .msg_iovlen = 1,
168 .msg_control = NULL,
169 .msg_controllen = 0,
170 .msg_flags = 0
173 read_len = TEMP_FAILURE_RETRY (__recvmsg (h->fd, &msg, 0));
174 __netlink_assert_response (h->fd, read_len);
175 if (read_len < 0)
176 goto out_fail;
178 if (nladdr.nl_pid != 0)
179 continue;
181 if (__glibc_unlikely (msg.msg_flags & MSG_TRUNC))
182 goto out_fail;
184 size_t count = 0;
185 size_t remaining_len = read_len;
186 for (nlmh = (struct nlmsghdr *) buf;
187 NLMSG_OK (nlmh, remaining_len);
188 nlmh = (struct nlmsghdr *) NLMSG_NEXT (nlmh, remaining_len))
190 if ((pid_t) nlmh->nlmsg_pid != h->pid
191 || nlmh->nlmsg_seq != h->seq)
192 continue;
194 ++count;
195 if (nlmh->nlmsg_type == NLMSG_DONE)
197 /* We found the end, leave the loop. */
198 done = true;
199 break;
201 if (nlmh->nlmsg_type == NLMSG_ERROR)
203 struct nlmsgerr *nlerr = (struct nlmsgerr *) NLMSG_DATA (nlmh);
204 if (nlmh->nlmsg_len < NLMSG_LENGTH (sizeof (struct nlmsgerr)))
205 errno = EIO;
206 else
207 errno = -nlerr->error;
208 goto out_fail;
212 /* If there was nothing with the expected nlmsg_pid and nlmsg_seq,
213 there is no point to record it. */
214 if (count == 0)
215 continue;
217 nlm_next = (struct netlink_res *) malloc (sizeof (struct netlink_res)
218 + read_len);
219 if (nlm_next == NULL)
220 goto out_fail;
221 nlm_next->next = NULL;
222 nlm_next->nlh = memcpy (nlm_next + 1, buf, read_len);
223 nlm_next->size = read_len;
224 nlm_next->seq = h->seq;
225 if (h->nlm_list == NULL)
226 h->nlm_list = nlm_next;
227 else
228 h->end_ptr->next = nlm_next;
229 h->end_ptr = nlm_next;
232 if (use_malloc)
233 free (buf);
234 return 0;
236 out_fail:
237 if (use_malloc)
238 free (buf);
239 return -1;
243 void
244 __netlink_close (struct netlink_handle *h)
246 /* Don't modify errno. */
247 INTERNAL_SYSCALL_DECL (err);
248 (void) INTERNAL_SYSCALL (close, err, 1, h->fd);
252 /* Open a NETLINK socket. */
254 __netlink_open (struct netlink_handle *h)
256 struct sockaddr_nl nladdr;
258 h->fd = __socket (PF_NETLINK, SOCK_RAW | SOCK_CLOEXEC, NETLINK_ROUTE);
259 if (h->fd < 0)
260 goto out;
262 memset (&nladdr, '\0', sizeof (nladdr));
263 nladdr.nl_family = AF_NETLINK;
264 if (__bind (h->fd, (struct sockaddr *) &nladdr, sizeof (nladdr)) < 0)
266 close_and_out:
267 __netlink_close (h);
268 out:
269 return -1;
271 /* Determine the ID the kernel assigned for this netlink connection.
272 It is not necessarily the PID if there is more than one socket
273 open. */
274 socklen_t addr_len = sizeof (nladdr);
275 if (__getsockname (h->fd, (struct sockaddr *) &nladdr, &addr_len) < 0)
276 goto close_and_out;
277 h->pid = nladdr.nl_pid;
278 return 0;
282 /* We know the number of RTM_NEWLINK entries, so we reserve the first
283 # of entries for this type. All RTM_NEWADDR entries have an index
284 pointer to the RTM_NEWLINK entry. To find the entry, create
285 a table to map kernel index entries to our index numbers.
286 Since we get at first all RTM_NEWLINK entries, it can never happen
287 that a RTM_NEWADDR index is not known to this map. */
288 static int
289 map_newlink (int index, struct ifaddrs_storage *ifas, int *map, int max)
291 int i;
293 for (i = 0; i < max; i++)
295 if (map[i] == -1)
297 map[i] = index;
298 if (i > 0)
299 ifas[i - 1].ifa.ifa_next = &ifas[i].ifa;
300 return i;
302 else if (map[i] == index)
303 return i;
306 /* This means interfaces changed between the reading of the
307 RTM_GETLINK and RTM_GETADDR information. We have to repeat
308 everything. */
309 return -1;
313 /* Create a linked list of `struct ifaddrs' structures, one for each
314 network interface on the host machine. If successful, store the
315 list in *IFAP and return 0. On errors, return -1 and set `errno'. */
316 static int
317 getifaddrs_internal (struct ifaddrs **ifap)
319 struct netlink_handle nh = { 0, 0, 0, NULL, NULL };
320 struct netlink_res *nlp;
321 struct ifaddrs_storage *ifas;
322 unsigned int i, newlink, newaddr, newaddr_idx;
323 int *map_newlink_data;
324 size_t ifa_data_size = 0; /* Size to allocate for all ifa_data. */
325 char *ifa_data_ptr; /* Pointer to the unused part of memory for
326 ifa_data. */
327 int result = 0;
329 *ifap = NULL;
331 if (__netlink_open (&nh) < 0)
332 return -1;
334 /* Tell the kernel that we wish to get a list of all
335 active interfaces, collect all data for every interface. */
336 if (__netlink_request (&nh, RTM_GETLINK) < 0)
338 result = -1;
339 goto exit_free;
342 /* Now ask the kernel for all addresses which are assigned
343 to an interface and collect all data for every interface.
344 Since we store the addresses after the interfaces in the
345 list, we will later always find the interface before the
346 corresponding addresses. */
347 ++nh.seq;
348 if (__netlink_request (&nh, RTM_GETADDR) < 0)
350 result = -1;
351 goto exit_free;
354 /* Count all RTM_NEWLINK and RTM_NEWADDR entries to allocate
355 enough memory. */
356 newlink = newaddr = 0;
357 for (nlp = nh.nlm_list; nlp; nlp = nlp->next)
359 struct nlmsghdr *nlh;
360 size_t size = nlp->size;
362 if (nlp->nlh == NULL)
363 continue;
365 /* Walk through all entries we got from the kernel and look, which
366 message type they contain. */
367 for (nlh = nlp->nlh; NLMSG_OK (nlh, size); nlh = NLMSG_NEXT (nlh, size))
369 /* Check if the message is what we want. */
370 if ((pid_t) nlh->nlmsg_pid != nh.pid || nlh->nlmsg_seq != nlp->seq)
371 continue;
373 if (nlh->nlmsg_type == NLMSG_DONE)
374 break; /* ok */
376 if (nlh->nlmsg_type == RTM_NEWLINK)
378 /* A RTM_NEWLINK message can have IFLA_STATS data. We need to
379 know the size before creating the list to allocate enough
380 memory. */
381 struct ifinfomsg *ifim = (struct ifinfomsg *) NLMSG_DATA (nlh);
382 struct rtattr *rta = IFLA_RTA (ifim);
383 size_t rtasize = IFLA_PAYLOAD (nlh);
385 while (RTA_OK (rta, rtasize))
387 size_t rta_payload = RTA_PAYLOAD (rta);
389 if (rta->rta_type == IFLA_STATS)
391 ifa_data_size += rta_payload;
392 break;
394 else
395 rta = RTA_NEXT (rta, rtasize);
397 ++newlink;
399 else if (nlh->nlmsg_type == RTM_NEWADDR)
400 ++newaddr;
404 /* Return if no interface is up. */
405 if ((newlink + newaddr) == 0)
406 goto exit_free;
408 /* Allocate memory for all entries we have and initialize next
409 pointer. */
410 ifas = (struct ifaddrs_storage *) calloc (1,
411 (newlink + newaddr)
412 * sizeof (struct ifaddrs_storage)
413 + ifa_data_size);
414 if (ifas == NULL)
416 result = -1;
417 goto exit_free;
420 /* Table for mapping kernel index to entry in our list. */
421 map_newlink_data = alloca (newlink * sizeof (int));
422 memset (map_newlink_data, '\xff', newlink * sizeof (int));
424 ifa_data_ptr = (char *) &ifas[newlink + newaddr];
425 newaddr_idx = 0; /* Counter for newaddr index. */
427 /* Walk through the list of data we got from the kernel. */
428 for (nlp = nh.nlm_list; nlp; nlp = nlp->next)
430 struct nlmsghdr *nlh;
431 size_t size = nlp->size;
433 if (nlp->nlh == NULL)
434 continue;
436 /* Walk through one message and look at the type: If it is our
437 message, we need RTM_NEWLINK/RTM_NEWADDR and stop if we reach
438 the end or we find the end marker (in this case we ignore the
439 following data. */
440 for (nlh = nlp->nlh; NLMSG_OK (nlh, size); nlh = NLMSG_NEXT (nlh, size))
442 int ifa_index = 0;
444 /* Check if the message is the one we want */
445 if ((pid_t) nlh->nlmsg_pid != nh.pid || nlh->nlmsg_seq != nlp->seq)
446 continue;
448 if (nlh->nlmsg_type == NLMSG_DONE)
449 break; /* ok */
451 if (nlh->nlmsg_type == RTM_NEWLINK)
453 /* We found a new interface. Now extract everything from the
454 interface data we got and need. */
455 struct ifinfomsg *ifim = (struct ifinfomsg *) NLMSG_DATA (nlh);
456 struct rtattr *rta = IFLA_RTA (ifim);
457 size_t rtasize = IFLA_PAYLOAD (nlh);
459 /* Interfaces are stored in the first "newlink" entries
460 of our list, starting in the order as we got from the
461 kernel. */
462 ifa_index = map_newlink (ifim->ifi_index - 1, ifas,
463 map_newlink_data, newlink);
464 if (__glibc_unlikely (ifa_index == -1))
466 try_again:
467 result = -EAGAIN;
468 free (ifas);
469 goto exit_free;
471 ifas[ifa_index].ifa.ifa_flags = ifim->ifi_flags;
473 while (RTA_OK (rta, rtasize))
475 char *rta_data = RTA_DATA (rta);
476 size_t rta_payload = RTA_PAYLOAD (rta);
478 switch (rta->rta_type)
480 case IFLA_ADDRESS:
481 if (rta_payload <= sizeof (ifas[ifa_index].addr))
483 ifas[ifa_index].addr.sl.sll_family = AF_PACKET;
484 memcpy (ifas[ifa_index].addr.sl.sll_addr,
485 (char *) rta_data, rta_payload);
486 ifas[ifa_index].addr.sl.sll_halen = rta_payload;
487 ifas[ifa_index].addr.sl.sll_ifindex
488 = ifim->ifi_index;
489 ifas[ifa_index].addr.sl.sll_hatype = ifim->ifi_type;
491 ifas[ifa_index].ifa.ifa_addr
492 = &ifas[ifa_index].addr.sa;
494 break;
496 case IFLA_BROADCAST:
497 if (rta_payload <= sizeof (ifas[ifa_index].broadaddr))
499 ifas[ifa_index].broadaddr.sl.sll_family = AF_PACKET;
500 memcpy (ifas[ifa_index].broadaddr.sl.sll_addr,
501 (char *) rta_data, rta_payload);
502 ifas[ifa_index].broadaddr.sl.sll_halen = rta_payload;
503 ifas[ifa_index].broadaddr.sl.sll_ifindex
504 = ifim->ifi_index;
505 ifas[ifa_index].broadaddr.sl.sll_hatype
506 = ifim->ifi_type;
508 ifas[ifa_index].ifa.ifa_broadaddr
509 = &ifas[ifa_index].broadaddr.sa;
511 break;
513 case IFLA_IFNAME: /* Name of Interface */
514 if ((rta_payload + 1) <= sizeof (ifas[ifa_index].name))
516 ifas[ifa_index].ifa.ifa_name = ifas[ifa_index].name;
517 *(char *) __mempcpy (ifas[ifa_index].name, rta_data,
518 rta_payload) = '\0';
520 break;
522 case IFLA_STATS: /* Statistics of Interface */
523 ifas[ifa_index].ifa.ifa_data = ifa_data_ptr;
524 ifa_data_ptr += rta_payload;
525 memcpy (ifas[ifa_index].ifa.ifa_data, rta_data,
526 rta_payload);
527 break;
529 case IFLA_UNSPEC:
530 break;
531 case IFLA_MTU:
532 break;
533 case IFLA_LINK:
534 break;
535 case IFLA_QDISC:
536 break;
537 default:
538 break;
541 rta = RTA_NEXT (rta, rtasize);
544 else if (nlh->nlmsg_type == RTM_NEWADDR)
546 struct ifaddrmsg *ifam = (struct ifaddrmsg *) NLMSG_DATA (nlh);
547 struct rtattr *rta = IFA_RTA (ifam);
548 size_t rtasize = IFA_PAYLOAD (nlh);
550 /* New Addresses are stored in the order we got them from
551 the kernel after the interfaces. Theoretically it is possible
552 that we have holes in the interface part of the list,
553 but we always have already the interface for this address. */
554 ifa_index = newlink + newaddr_idx;
555 int idx = map_newlink (ifam->ifa_index - 1, ifas,
556 map_newlink_data, newlink);
557 if (__glibc_unlikely (idx == -1))
558 goto try_again;
559 ifas[ifa_index].ifa.ifa_flags = ifas[idx].ifa.ifa_flags;
560 if (ifa_index > 0)
561 ifas[ifa_index - 1].ifa.ifa_next = &ifas[ifa_index].ifa;
562 ++newaddr_idx;
564 while (RTA_OK (rta, rtasize))
566 char *rta_data = RTA_DATA (rta);
567 size_t rta_payload = RTA_PAYLOAD (rta);
569 switch (rta->rta_type)
571 case IFA_ADDRESS:
573 struct sockaddr *sa;
575 if (ifas[ifa_index].ifa.ifa_addr != NULL)
577 /* In a point-to-poing network IFA_ADDRESS
578 contains the destination address, local
579 address is supplied in IFA_LOCAL attribute.
580 destination address and broadcast address
581 are stored in an union, so it doesn't matter
582 which name we use. */
583 ifas[ifa_index].ifa.ifa_broadaddr
584 = &ifas[ifa_index].broadaddr.sa;
585 sa = &ifas[ifa_index].broadaddr.sa;
587 else
589 ifas[ifa_index].ifa.ifa_addr
590 = &ifas[ifa_index].addr.sa;
591 sa = &ifas[ifa_index].addr.sa;
594 sa->sa_family = ifam->ifa_family;
596 switch (ifam->ifa_family)
598 case AF_INET:
599 /* Size must match that of an address for IPv4. */
600 if (rta_payload == 4)
601 memcpy (&((struct sockaddr_in *) sa)->sin_addr,
602 rta_data, rta_payload);
603 break;
605 case AF_INET6:
606 /* Size must match that of an address for IPv6. */
607 if (rta_payload == 16)
609 memcpy (&((struct sockaddr_in6 *) sa)->sin6_addr,
610 rta_data, rta_payload);
611 if (IN6_IS_ADDR_LINKLOCAL (rta_data)
612 || IN6_IS_ADDR_MC_LINKLOCAL (rta_data))
613 ((struct sockaddr_in6 *) sa)->sin6_scope_id
614 = ifam->ifa_index;
616 break;
618 default:
619 if (rta_payload <= sizeof (ifas[ifa_index].addr))
620 memcpy (sa->sa_data, rta_data, rta_payload);
621 break;
624 break;
626 case IFA_LOCAL:
627 if (ifas[ifa_index].ifa.ifa_addr != NULL)
629 /* If ifa_addr is set and we get IFA_LOCAL,
630 assume we have a point-to-point network.
631 Move address to correct field. */
632 ifas[ifa_index].broadaddr = ifas[ifa_index].addr;
633 ifas[ifa_index].ifa.ifa_broadaddr
634 = &ifas[ifa_index].broadaddr.sa;
635 memset (&ifas[ifa_index].addr, '\0',
636 sizeof (ifas[ifa_index].addr));
639 ifas[ifa_index].ifa.ifa_addr = &ifas[ifa_index].addr.sa;
640 ifas[ifa_index].ifa.ifa_addr->sa_family
641 = ifam->ifa_family;
643 switch (ifam->ifa_family)
645 case AF_INET:
646 /* Size must match that of an address for IPv4. */
647 if (rta_payload == 4)
648 memcpy (&ifas[ifa_index].addr.s4.sin_addr,
649 rta_data, rta_payload);
650 break;
652 case AF_INET6:
653 /* Size must match that of an address for IPv6. */
654 if (rta_payload == 16)
656 memcpy (&ifas[ifa_index].addr.s6.sin6_addr,
657 rta_data, rta_payload);
658 if (IN6_IS_ADDR_LINKLOCAL (rta_data)
659 || IN6_IS_ADDR_MC_LINKLOCAL (rta_data))
660 ifas[ifa_index].addr.s6.sin6_scope_id =
661 ifam->ifa_index;
663 break;
665 default:
666 if (rta_payload <= sizeof (ifas[ifa_index].addr))
667 memcpy (ifas[ifa_index].addr.sa.sa_data,
668 rta_data, rta_payload);
669 break;
671 break;
673 case IFA_BROADCAST:
674 /* We get IFA_BROADCAST, so IFA_LOCAL was too much. */
675 if (ifas[ifa_index].ifa.ifa_broadaddr != NULL)
676 memset (&ifas[ifa_index].broadaddr, '\0',
677 sizeof (ifas[ifa_index].broadaddr));
679 ifas[ifa_index].ifa.ifa_broadaddr
680 = &ifas[ifa_index].broadaddr.sa;
681 ifas[ifa_index].ifa.ifa_broadaddr->sa_family
682 = ifam->ifa_family;
684 switch (ifam->ifa_family)
686 case AF_INET:
687 /* Size must match that of an address for IPv4. */
688 if (rta_payload == 4)
689 memcpy (&ifas[ifa_index].broadaddr.s4.sin_addr,
690 rta_data, rta_payload);
691 break;
693 case AF_INET6:
694 /* Size must match that of an address for IPv6. */
695 if (rta_payload == 16)
697 memcpy (&ifas[ifa_index].broadaddr.s6.sin6_addr,
698 rta_data, rta_payload);
699 if (IN6_IS_ADDR_LINKLOCAL (rta_data)
700 || IN6_IS_ADDR_MC_LINKLOCAL (rta_data))
701 ifas[ifa_index].broadaddr.s6.sin6_scope_id
702 = ifam->ifa_index;
704 break;
706 default:
707 if (rta_payload <= sizeof (ifas[ifa_index].addr))
708 memcpy (&ifas[ifa_index].broadaddr.sa.sa_data,
709 rta_data, rta_payload);
710 break;
712 break;
714 case IFA_LABEL:
715 if (rta_payload + 1 <= sizeof (ifas[ifa_index].name))
717 ifas[ifa_index].ifa.ifa_name = ifas[ifa_index].name;
718 *(char *) __mempcpy (ifas[ifa_index].name, rta_data,
719 rta_payload) = '\0';
721 else
722 abort ();
723 break;
725 case IFA_UNSPEC:
726 break;
727 case IFA_CACHEINFO:
728 break;
729 default:
730 break;
733 rta = RTA_NEXT (rta, rtasize);
736 /* If we didn't get the interface name with the
737 address, use the name from the interface entry. */
738 if (ifas[ifa_index].ifa.ifa_name == NULL)
740 int idx = map_newlink (ifam->ifa_index - 1, ifas,
741 map_newlink_data, newlink);
742 if (__glibc_unlikely (idx == -1))
743 goto try_again;
744 ifas[ifa_index].ifa.ifa_name = ifas[idx].ifa.ifa_name;
747 /* Calculate the netmask. */
748 if (ifas[ifa_index].ifa.ifa_addr
749 && ifas[ifa_index].ifa.ifa_addr->sa_family != AF_UNSPEC
750 && ifas[ifa_index].ifa.ifa_addr->sa_family != AF_PACKET)
752 uint32_t max_prefixlen = 0;
753 char *cp = NULL;
755 ifas[ifa_index].ifa.ifa_netmask
756 = &ifas[ifa_index].netmask.sa;
758 switch (ifas[ifa_index].ifa.ifa_addr->sa_family)
760 case AF_INET:
761 cp = (char *) &ifas[ifa_index].netmask.s4.sin_addr;
762 max_prefixlen = 32;
763 break;
765 case AF_INET6:
766 cp = (char *) &ifas[ifa_index].netmask.s6.sin6_addr;
767 max_prefixlen = 128;
768 break;
771 ifas[ifa_index].ifa.ifa_netmask->sa_family
772 = ifas[ifa_index].ifa.ifa_addr->sa_family;
774 if (cp != NULL)
776 unsigned int preflen;
778 if (ifam->ifa_prefixlen > max_prefixlen)
779 preflen = max_prefixlen;
780 else
781 preflen = ifam->ifa_prefixlen;
783 for (i = 0; i < preflen / 8; i++)
784 *cp++ = 0xff;
785 if (preflen % 8)
786 *cp = 0xff << (8 - preflen % 8);
793 assert (ifa_data_ptr <= (char *) &ifas[newlink + newaddr] + ifa_data_size);
795 if (newaddr_idx > 0)
797 for (i = 0; i < newlink; ++i)
798 if (map_newlink_data[i] == -1)
800 /* We have fewer links then we anticipated. Adjust the
801 forward pointer to the first address entry. */
802 ifas[i - 1].ifa.ifa_next = &ifas[newlink].ifa;
805 if (i == 0 && newlink > 0)
806 /* No valid link, but we allocated memory. We have to
807 populate the first entry. */
808 memmove (ifas, &ifas[newlink], sizeof (struct ifaddrs_storage));
811 *ifap = &ifas[0].ifa;
813 exit_free:
814 __netlink_free_handle (&nh);
815 __netlink_close (&nh);
817 return result;
821 /* Create a linked list of `struct ifaddrs' structures, one for each
822 network interface on the host machine. If successful, store the
823 list in *IFAP and return 0. On errors, return -1 and set `errno'. */
825 __getifaddrs (struct ifaddrs **ifap)
827 int res;
830 res = getifaddrs_internal (ifap);
831 while (res == -EAGAIN);
833 return res;
835 weak_alias (__getifaddrs, getifaddrs)
836 libc_hidden_def (__getifaddrs)
837 libc_hidden_weak (getifaddrs)
840 void
841 __freeifaddrs (struct ifaddrs *ifa)
843 free (ifa);
845 weak_alias (__freeifaddrs, freeifaddrs)
846 libc_hidden_def (__freeifaddrs)
847 libc_hidden_weak (freeifaddrs)