1 /* Profiling of shared libraries.
2 Copyright (C) 1997-2014 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
5 Based on the BSD mcount implementation.
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Lesser General Public License for more details.
17 You should have received a copy of the GNU Lesser General Public
18 License along with the GNU C Library; if not, see
19 <http://www.gnu.org/licenses/>. */
33 #include <sys/gmon_out.h>
35 #include <sys/param.h>
39 /* The LD_PROFILE feature has to be implemented different to the
40 normal profiling using the gmon/ functions. The problem is that an
41 arbitrary amount of processes simulataneously can be run using
42 profiling and all write the results in the same file. To provide
43 this mechanism one could implement a complicated mechanism to merge
44 the content of two profiling runs or one could extend the file
45 format to allow more than one data set. For the second solution we
46 would have the problem that the file can grow in size beyond any
47 limit and both solutions have the problem that the concurrency of
48 writing the results is a big problem.
50 Another much simpler method is to use mmap to map the same file in
51 all using programs and modify the data in the mmap'ed area and so
52 also automatically on the disk. Using the MAP_SHARED option of
53 mmap(2) this can be done without big problems in more than one
56 This approach is very different from the normal profiling. We have
57 to use the profiling data in exactly the way they are expected to
58 be written to disk. But the normal format used by gprof is not usable
59 to do this. It is optimized for size. It writes the tags as single
60 bytes but this means that the following 32/64 bit values are
63 Therefore we use a new format. This will look like this
65 0 1 2 3 <- byte is 32 bit word
67 0004 *version* <- GMON_SHOBJ_VERSION
72 0014 *tag* <- GMON_TAG_TIME_HIST
74 ?? ?? ?? ?? <- 32/64 bit LowPC
76 ?? ?? ?? ?? <- 32/64 bit HighPC
85 0030+2*A ?? ?? ?? ?? <- Count data
87 0030+2*A+K ?? ?? ?? ??
89 0030+2*A+K *tag* <- GMON_TAG_CG_ARC
91 0038+2*A+K ?? ?? ?? ??
92 ?? ?? ?? ?? <- FromPC#1
93 0038+3*A+K ?? ?? ?? ??
95 0038+4*A+K ?? ?? ?? ?? <- Count#1
97 0038+(2*(CN-1)+2)*A+(CN-1)*4+K ?? ?? ?? ??
98 ?? ?? ?? ?? <- FromPC#CGN
99 0038+(2*(CN-1)+3)*A+(CN-1)*4+K ?? ?? ?? ??
100 ?? ?? ?? ?? <- ToPC#CGN
101 0038+(2*CN+2)*A+(CN-1)*4+K ?? ?? ?? ?? <- Count#CGN
103 We put (for now?) no basic block information in the file since this would
104 introduce rase conditions among all the processes who want to write them.
106 `K' is the number of count entries which is computed as
108 textsize / HISTFRACTION
110 `CG' in the above table is the number of call graph arcs. Normally,
111 the table is sparse and the profiling code writes out only the those
112 entries which are really used in the program run. But since we must
113 not extend this table (the profiling file) we'll keep them all here.
114 So CN can be executed in advance as
116 MINARCS <= textsize*(ARCDENSITY/100) <= MAXARCS
118 Now the remaining question is: how to build the data structures we can
119 work with from this data. We need the from set and must associate the
120 froms with all the associated tos. We will do this by constructing this
121 data structures at the program start. To do this we'll simply visit all
122 entries in the call graph table and add it to the appropriate list. */
124 extern int __profile_frequency (void);
125 libc_hidden_proto (__profile_frequency
)
127 /* We define a special type to address the elements of the arc table.
128 This is basically the `gmon_cg_arc_record' format but it includes
129 the room for the tag and it uses real types. */
130 struct here_cg_arc_record
134 /* The count field is atomically incremented in _dl_mcount, which
135 requires it to be properly aligned for its type, and for this
136 alignment to be visible to the compiler. The amount of data
137 before an array of this structure is calculated as
138 expected_size in _dl_start_profile. Everything in that
139 calculation is a multiple of 4 bytes (in the case of
140 kcountsize, because it is derived from a subtraction of
141 page-aligned values, and the corresponding calculation in
142 __monstartup also ensures it is at least a multiple of the size
143 of u_long), so all copies of this field do in fact have the
144 appropriate alignment. */
145 uint32_t count
__attribute__ ((aligned (__alignof__ (uint32_t))));
146 } __attribute__ ((packed
));
148 static struct here_cg_arc_record
*data
;
150 /* Nonzero if profiling is under way. */
153 /* This is the number of entry which have been incorporated in the toset. */
154 static uint32_t narcs
;
155 /* This is a pointer to the object representing the number of entries
156 currently in the mmaped file. At no point of time this has to be the
157 same as NARCS. If it is equal all entries from the file are in our
159 static volatile uint32_t *narcsp
;
162 struct here_fromstruct
164 struct here_cg_arc_record
volatile *here
;
168 static volatile uint16_t *tos
;
170 static struct here_fromstruct
*froms
;
171 static uint32_t fromlimit
;
172 static volatile uint32_t fromidx
;
174 static uintptr_t lowpc
;
175 static size_t textsize
;
176 static unsigned int log_hashfraction
;
180 /* Set up profiling data to profile object desribed by MAP. The output
181 file is found (or created) in OUTPUT_DIR. */
184 _dl_start_profile (void)
189 const ElfW(Phdr
) *ph
;
190 ElfW(Addr
) mapstart
= ~((ElfW(Addr
)) 0);
191 ElfW(Addr
) mapend
= 0;
199 struct gmon_hdr
*addr
= NULL
;
201 /* See profil(2) where this is described. */
203 #define SCALE_1_TO_1 0x10000L
204 const char *errstr
= NULL
;
206 /* Compute the size of the sections which contain program code. */
207 for (ph
= GL(dl_profile_map
)->l_phdr
;
208 ph
< &GL(dl_profile_map
)->l_phdr
[GL(dl_profile_map
)->l_phnum
]; ++ph
)
209 if (ph
->p_type
== PT_LOAD
&& (ph
->p_flags
& PF_X
))
211 ElfW(Addr
) start
= (ph
->p_vaddr
& ~(GLRO(dl_pagesize
) - 1));
212 ElfW(Addr
) end
= ((ph
->p_vaddr
+ ph
->p_memsz
+ GLRO(dl_pagesize
) - 1)
213 & ~(GLRO(dl_pagesize
) - 1));
215 if (start
< mapstart
)
221 /* Now we can compute the size of the profiling data. This is done
222 with the same formulars as in `monstartup' (see gmon.c). */
224 lowpc
= ROUNDDOWN (mapstart
+ GL(dl_profile_map
)->l_addr
,
225 HISTFRACTION
* sizeof (HISTCOUNTER
));
226 highpc
= ROUNDUP (mapend
+ GL(dl_profile_map
)->l_addr
,
227 HISTFRACTION
* sizeof (HISTCOUNTER
));
228 textsize
= highpc
- lowpc
;
229 kcountsize
= textsize
/ HISTFRACTION
;
230 if ((HASHFRACTION
& (HASHFRACTION
- 1)) == 0)
232 /* If HASHFRACTION is a power of two, mcount can use shifting
233 instead of integer division. Precompute shift amount.
235 This is a constant but the compiler cannot compile the
236 expression away since the __ffs implementation is not known
237 to the compiler. Help the compiler by precomputing the
239 assert (HASHFRACTION
== 2);
241 if (sizeof (*froms
) == 8)
242 log_hashfraction
= 4;
243 else if (sizeof (*froms
) == 16)
244 log_hashfraction
= 5;
246 log_hashfraction
= __ffs (HASHFRACTION
* sizeof (*froms
)) - 1;
249 log_hashfraction
= -1;
250 tossize
= textsize
/ HASHFRACTION
;
251 fromlimit
= textsize
* ARCDENSITY
/ 100;
252 if (fromlimit
< MINARCS
)
254 if (fromlimit
> MAXARCS
)
256 fromssize
= fromlimit
* sizeof (struct here_fromstruct
);
258 expected_size
= (sizeof (struct gmon_hdr
)
259 + 4 + sizeof (struct gmon_hist_hdr
) + kcountsize
260 + 4 + 4 + fromssize
* sizeof (struct here_cg_arc_record
));
262 /* Create the gmon_hdr we expect or write. */
269 if (sizeof (gmon_hdr
) != sizeof (struct gmon_hdr
)
270 || (offsetof (struct real_gmon_hdr
, cookie
)
271 != offsetof (struct gmon_hdr
, cookie
))
272 || (offsetof (struct real_gmon_hdr
, version
)
273 != offsetof (struct gmon_hdr
, version
)))
276 memcpy (&gmon_hdr
.cookie
[0], GMON_MAGIC
, sizeof (gmon_hdr
.cookie
));
277 gmon_hdr
.version
= GMON_SHOBJ_VERSION
;
278 memset (gmon_hdr
.spare
, '\0', sizeof (gmon_hdr
.spare
));
280 /* Create the hist_hdr we expect or write. */
281 struct real_gmon_hist_hdr
290 if (sizeof (hist_hdr
) != sizeof (struct gmon_hist_hdr
)
291 || (offsetof (struct real_gmon_hist_hdr
, low_pc
)
292 != offsetof (struct gmon_hist_hdr
, low_pc
))
293 || (offsetof (struct real_gmon_hist_hdr
, high_pc
)
294 != offsetof (struct gmon_hist_hdr
, high_pc
))
295 || (offsetof (struct real_gmon_hist_hdr
, hist_size
)
296 != offsetof (struct gmon_hist_hdr
, hist_size
))
297 || (offsetof (struct real_gmon_hist_hdr
, prof_rate
)
298 != offsetof (struct gmon_hist_hdr
, prof_rate
))
299 || (offsetof (struct real_gmon_hist_hdr
, dimen
)
300 != offsetof (struct gmon_hist_hdr
, dimen
))
301 || (offsetof (struct real_gmon_hist_hdr
, dimen_abbrev
)
302 != offsetof (struct gmon_hist_hdr
, dimen_abbrev
)))
305 hist_hdr
.low_pc
= (char *) mapstart
;
306 hist_hdr
.high_pc
= (char *) mapend
;
307 hist_hdr
.hist_size
= kcountsize
/ sizeof (HISTCOUNTER
);
308 hist_hdr
.prof_rate
= __profile_frequency ();
309 if (sizeof (hist_hdr
.dimen
) >= sizeof ("seconds"))
311 memcpy (hist_hdr
.dimen
, "seconds", sizeof ("seconds"));
312 memset (hist_hdr
.dimen
+ sizeof ("seconds"), '\0',
313 sizeof (hist_hdr
.dimen
) - sizeof ("seconds"));
316 strncpy (hist_hdr
.dimen
, "seconds", sizeof (hist_hdr
.dimen
));
317 hist_hdr
.dimen_abbrev
= 's';
319 /* First determine the output name. We write in the directory
320 OUTPUT_DIR and the name is composed from the shared objects
321 soname (or the file name) and the ending ".profile". */
322 filename
= (char *) alloca (strlen (GLRO(dl_profile_output
)) + 1
323 + strlen (GLRO(dl_profile
)) + sizeof ".profile");
324 cp
= __stpcpy (filename
, GLRO(dl_profile_output
));
326 __stpcpy (__stpcpy (cp
, GLRO(dl_profile
)), ".profile");
329 # define EXTRA_FLAGS | O_NOFOLLOW
333 fd
= __open (filename
, O_RDWR
| O_CREAT EXTRA_FLAGS
, DEFFILEMODE
);
339 /* We cannot write the profiling data so don't do anything. */
340 errstr
= "%s: cannot open file: %s\n";
345 _dl_error_printf (errstr
, filename
,
346 __strerror_r (errnum
, buf
, sizeof buf
));
350 if (__fxstat64 (_STAT_VER
, fd
, &st
) < 0 || !S_ISREG (st
.st_mode
))
352 /* Not stat'able or not a regular file => don't use it. */
353 errstr
= "%s: cannot stat file: %s\n";
357 /* Test the size. If it does not match what we expect from the size
358 values in the map MAP we don't use it and warn the user. */
361 /* We have to create the file. */
362 char buf
[GLRO(dl_pagesize
)];
364 memset (buf
, '\0', GLRO(dl_pagesize
));
366 if (__lseek (fd
, expected_size
& ~(GLRO(dl_pagesize
) - 1), SEEK_SET
) == -1)
369 errstr
= "%s: cannot create file: %s\n";
373 if (TEMP_FAILURE_RETRY (__libc_write (fd
, buf
, (expected_size
379 else if (st
.st_size
!= expected_size
)
385 __munmap ((void *) addr
, expected_size
);
387 _dl_error_printf ("%s: file is no correct profile data file for `%s'\n",
388 filename
, GLRO(dl_profile
));
392 addr
= (struct gmon_hdr
*) __mmap (NULL
, expected_size
, PROT_READ
|PROT_WRITE
,
393 MAP_SHARED
|MAP_FILE
, fd
, 0);
394 if (addr
== (struct gmon_hdr
*) MAP_FAILED
)
396 errstr
= "%s: cannot map file: %s\n";
400 /* We don't need the file descriptor anymore. */
403 /* Pointer to data after the header. */
404 hist
= (char *) (addr
+ 1);
405 kcount
= (uint16_t *) ((char *) hist
+ sizeof (uint32_t)
406 + sizeof (struct gmon_hist_hdr
));
408 /* Compute pointer to array of the arc information. */
409 narcsp
= (uint32_t *) ((char *) kcount
+ kcountsize
+ sizeof (uint32_t));
410 data
= (struct here_cg_arc_record
*) ((char *) narcsp
+ sizeof (uint32_t));
414 /* Create the signature. */
415 memcpy (addr
, &gmon_hdr
, sizeof (struct gmon_hdr
));
417 *(uint32_t *) hist
= GMON_TAG_TIME_HIST
;
418 memcpy (hist
+ sizeof (uint32_t), &hist_hdr
,
419 sizeof (struct gmon_hist_hdr
));
421 narcsp
[-1] = GMON_TAG_CG_ARC
;
425 /* Test the signature in the file. */
426 if (memcmp (addr
, &gmon_hdr
, sizeof (struct gmon_hdr
)) != 0
427 || *(uint32_t *) hist
!= GMON_TAG_TIME_HIST
428 || memcmp (hist
+ sizeof (uint32_t), &hist_hdr
,
429 sizeof (struct gmon_hist_hdr
)) != 0
430 || narcsp
[-1] != GMON_TAG_CG_ARC
)
434 /* Allocate memory for the froms data and the pointer to the tos records. */
435 tos
= (uint16_t *) calloc (tossize
+ fromssize
, 1);
438 __munmap ((void *) addr
, expected_size
);
439 _dl_fatal_printf ("Out of memory while initializing profiler\n");
443 froms
= (struct here_fromstruct
*) ((char *) tos
+ tossize
);
446 /* Now we have to process all the arc count entries. BTW: it is
447 not critical whether the *NARCSP value changes meanwhile. Before
448 we enter a new entry in to toset we will check that everything is
449 available in TOS. This happens in _dl_mcount.
451 Loading the entries in reverse order should help to get the most
452 frequently used entries at the front of the list. */
453 for (idx
= narcs
= MIN (*narcsp
, fromlimit
); idx
> 0; )
458 to_index
= (data
[idx
].self_pc
/ (HASHFRACTION
* sizeof (*tos
)));
459 newfromidx
= fromidx
++;
460 froms
[newfromidx
].here
= &data
[idx
];
461 froms
[newfromidx
].link
= tos
[to_index
];
462 tos
[to_index
] = newfromidx
;
465 /* Setup counting data. */
466 if (kcountsize
< highpc
- lowpc
)
469 s_scale
= ((double) kcountsize
/ (highpc
- lowpc
)) * SCALE_1_TO_1
;
471 size_t range
= highpc
- lowpc
;
472 size_t quot
= range
/ kcountsize
;
474 if (quot
>= SCALE_1_TO_1
)
476 else if (quot
>= SCALE_1_TO_1
/ 256)
477 s_scale
= SCALE_1_TO_1
/ quot
;
478 else if (range
> ULONG_MAX
/ 256)
479 s_scale
= (SCALE_1_TO_1
* 256) / (range
/ (kcountsize
/ 256));
481 s_scale
= (SCALE_1_TO_1
* 256) / ((range
* 256) / kcountsize
);
485 s_scale
= SCALE_1_TO_1
;
487 /* Start the profiler. */
488 __profil ((void *) kcount
, kcountsize
, lowpc
, s_scale
);
490 /* Turn on profiling. */
496 _dl_mcount (ElfW(Addr
) frompc
, ElfW(Addr
) selfpc
)
498 volatile uint16_t *topcindex
;
500 struct here_fromstruct
*fromp
;
505 /* Compute relative addresses. The shared object can be loaded at
506 any address. The value of frompc could be anything. We cannot
507 restrict it in any way, just set to a fixed value (0) in case it
508 is outside the allowed range. These calls show up as calls from
509 <external> in the gprof output. */
511 if (frompc
>= textsize
)
514 if (selfpc
>= textsize
)
517 /* Getting here we now have to find out whether the location was
518 already used. If yes we are lucky and only have to increment a
519 counter (this also has to be atomic). If the entry is new things
520 are getting complicated... */
522 /* Avoid integer divide if possible. */
523 if ((HASHFRACTION
& (HASHFRACTION
- 1)) == 0)
524 i
= selfpc
>> log_hashfraction
;
526 i
= selfpc
/ (HASHFRACTION
* sizeof (*tos
));
529 fromindex
= *topcindex
;
532 goto check_new_or_add
;
534 fromp
= &froms
[fromindex
];
536 /* We have to look through the chain of arcs whether there is already
537 an entry for our arc. */
538 while (fromp
->here
->from_pc
!= frompc
)
540 if (fromp
->link
!= 0)
542 fromp
= &froms
[fromp
->link
];
543 while (fromp
->link
!= 0 && fromp
->here
->from_pc
!= frompc
);
545 if (fromp
->here
->from_pc
!= frompc
)
547 topcindex
= &fromp
->link
;
550 /* Our entry is not among the entries we read so far from the
551 data file. Now see whether we have to update the list. */
552 while (narcs
!= *narcsp
&& narcs
< fromlimit
)
556 to_index
= (data
[narcs
].self_pc
557 / (HASHFRACTION
* sizeof (*tos
)));
558 newfromidx
= catomic_exchange_and_add (&fromidx
, 1) + 1;
559 froms
[newfromidx
].here
= &data
[narcs
];
560 froms
[newfromidx
].link
= tos
[to_index
];
561 tos
[to_index
] = newfromidx
;
562 catomic_increment (&narcs
);
565 /* If we still have no entry stop searching and insert. */
568 uint_fast32_t newarc
= catomic_exchange_and_add (narcsp
, 1);
570 /* In rare cases it could happen that all entries in FROMS are
571 occupied. So we cannot count this anymore. */
572 if (newarc
>= fromlimit
)
575 *topcindex
= catomic_exchange_and_add (&fromidx
, 1) + 1;
576 fromp
= &froms
[*topcindex
];
578 fromp
->here
= &data
[newarc
];
579 data
[newarc
].from_pc
= frompc
;
580 data
[newarc
].self_pc
= selfpc
;
581 data
[newarc
].count
= 0;
583 catomic_increment (&narcs
);
588 fromp
= &froms
[*topcindex
];
595 /* Increment the counter. */
596 catomic_increment (&fromp
->here
->count
);