This patch renames all uses of __isinf*, __isnan*, __finite* and __signbit* to use...
[glibc.git] / sysdeps / ieee754 / ldbl-128ibm / e_jnl.c
blobd2b93183273fc3fa018053dd6c94a64320d8f130
1 /*
2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 * Developed at SunPro, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
8 * is preserved.
9 * ====================================================
12 /* Modifications for 128-bit long double are
13 Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
14 and are incorporated herein by permission of the author. The author
15 reserves the right to distribute this material elsewhere under different
16 copying permissions. These modifications are distributed here under
17 the following terms:
19 This library is free software; you can redistribute it and/or
20 modify it under the terms of the GNU Lesser General Public
21 License as published by the Free Software Foundation; either
22 version 2.1 of the License, or (at your option) any later version.
24 This library is distributed in the hope that it will be useful,
25 but WITHOUT ANY WARRANTY; without even the implied warranty of
26 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
27 Lesser General Public License for more details.
29 You should have received a copy of the GNU Lesser General Public
30 License along with this library; if not, see
31 <http://www.gnu.org/licenses/>. */
34 * __ieee754_jn(n, x), __ieee754_yn(n, x)
35 * floating point Bessel's function of the 1st and 2nd kind
36 * of order n
38 * Special cases:
39 * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
40 * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
41 * Note 2. About jn(n,x), yn(n,x)
42 * For n=0, j0(x) is called,
43 * for n=1, j1(x) is called,
44 * for n<x, forward recursion us used starting
45 * from values of j0(x) and j1(x).
46 * for n>x, a continued fraction approximation to
47 * j(n,x)/j(n-1,x) is evaluated and then backward
48 * recursion is used starting from a supposed value
49 * for j(n,x). The resulting value of j(0,x) is
50 * compared with the actual value to correct the
51 * supposed value of j(n,x).
53 * yn(n,x) is similar in all respects, except
54 * that forward recursion is used for all
55 * values of n>1.
59 #include <errno.h>
60 #include <float.h>
61 #include <math.h>
62 #include <math_private.h>
64 static const long double
65 invsqrtpi = 5.6418958354775628694807945156077258584405E-1L,
66 two = 2.0e0L,
67 one = 1.0e0L,
68 zero = 0.0L;
71 long double
72 __ieee754_jnl (int n, long double x)
74 uint32_t se, lx;
75 int32_t i, ix, sgn;
76 long double a, b, temp, di;
77 long double z, w;
78 double xhi;
81 /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
82 * Thus, J(-n,x) = J(n,-x)
85 xhi = ldbl_high (x);
86 EXTRACT_WORDS (se, lx, xhi);
87 ix = se & 0x7fffffff;
89 /* if J(n,NaN) is NaN */
90 if (ix >= 0x7ff00000)
92 if (((ix - 0x7ff00000) | lx) != 0)
93 return x + x;
96 if (n < 0)
98 n = -n;
99 x = -x;
100 se ^= 0x80000000;
102 if (n == 0)
103 return (__ieee754_j0l (x));
104 if (n == 1)
105 return (__ieee754_j1l (x));
106 sgn = (n & 1) & (se >> 31); /* even n -- 0, odd n -- sign(x) */
107 x = fabsl (x);
109 if (x == 0.0L || ix >= 0x7ff00000) /* if x is 0 or inf */
110 b = zero;
111 else if ((long double) n <= x)
113 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
114 if (ix >= 0x52d00000)
115 { /* x > 2**302 */
117 /* ??? Could use an expansion for large x here. */
119 /* (x >> n**2)
120 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
121 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
122 * Let s=sin(x), c=cos(x),
123 * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
125 * n sin(xn)*sqt2 cos(xn)*sqt2
126 * ----------------------------------
127 * 0 s-c c+s
128 * 1 -s-c -c+s
129 * 2 -s+c -c-s
130 * 3 s+c c-s
132 long double s;
133 long double c;
134 __sincosl (x, &s, &c);
135 switch (n & 3)
137 case 0:
138 temp = c + s;
139 break;
140 case 1:
141 temp = -c + s;
142 break;
143 case 2:
144 temp = -c - s;
145 break;
146 case 3:
147 temp = c - s;
148 break;
150 b = invsqrtpi * temp / __ieee754_sqrtl (x);
152 else
154 a = __ieee754_j0l (x);
155 b = __ieee754_j1l (x);
156 for (i = 1; i < n; i++)
158 temp = b;
159 b = b * ((long double) (i + i) / x) - a; /* avoid underflow */
160 a = temp;
164 else
166 if (ix < 0x3e100000)
167 { /* x < 2**-29 */
168 /* x is tiny, return the first Taylor expansion of J(n,x)
169 * J(n,x) = 1/n!*(x/2)^n - ...
171 if (n >= 33) /* underflow, result < 10^-300 */
172 b = zero;
173 else
175 temp = x * 0.5;
176 b = temp;
177 for (a = one, i = 2; i <= n; i++)
179 a *= (long double) i; /* a = n! */
180 b *= temp; /* b = (x/2)^n */
182 b = b / a;
185 else
187 /* use backward recurrence */
188 /* x x^2 x^2
189 * J(n,x)/J(n-1,x) = ---- ------ ------ .....
190 * 2n - 2(n+1) - 2(n+2)
192 * 1 1 1
193 * (for large x) = ---- ------ ------ .....
194 * 2n 2(n+1) 2(n+2)
195 * -- - ------ - ------ -
196 * x x x
198 * Let w = 2n/x and h=2/x, then the above quotient
199 * is equal to the continued fraction:
201 * = -----------------------
203 * w - -----------------
205 * w+h - ---------
206 * w+2h - ...
208 * To determine how many terms needed, let
209 * Q(0) = w, Q(1) = w(w+h) - 1,
210 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
211 * When Q(k) > 1e4 good for single
212 * When Q(k) > 1e9 good for double
213 * When Q(k) > 1e17 good for quadruple
215 /* determine k */
216 long double t, v;
217 long double q0, q1, h, tmp;
218 int32_t k, m;
219 w = (n + n) / (long double) x;
220 h = 2.0L / (long double) x;
221 q0 = w;
222 z = w + h;
223 q1 = w * z - 1.0L;
224 k = 1;
225 while (q1 < 1.0e17L)
227 k += 1;
228 z += h;
229 tmp = z * q1 - q0;
230 q0 = q1;
231 q1 = tmp;
233 m = n + n;
234 for (t = zero, i = 2 * (n + k); i >= m; i -= 2)
235 t = one / (i / x - t);
236 a = t;
237 b = one;
238 /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
239 * Hence, if n*(log(2n/x)) > ...
240 * single 8.8722839355e+01
241 * double 7.09782712893383973096e+02
242 * long double 1.1356523406294143949491931077970765006170e+04
243 * then recurrent value may overflow and the result is
244 * likely underflow to zero
246 tmp = n;
247 v = two / x;
248 tmp = tmp * __ieee754_logl (fabsl (v * tmp));
250 if (tmp < 1.1356523406294143949491931077970765006170e+04L)
252 for (i = n - 1, di = (long double) (i + i); i > 0; i--)
254 temp = b;
255 b *= di;
256 b = b / x - a;
257 a = temp;
258 di -= two;
261 else
263 for (i = n - 1, di = (long double) (i + i); i > 0; i--)
265 temp = b;
266 b *= di;
267 b = b / x - a;
268 a = temp;
269 di -= two;
270 /* scale b to avoid spurious overflow */
271 if (b > 1e100L)
273 a /= b;
274 t /= b;
275 b = one;
279 /* j0() and j1() suffer enormous loss of precision at and
280 * near zero; however, we know that their zero points never
281 * coincide, so just choose the one further away from zero.
283 z = __ieee754_j0l (x);
284 w = __ieee754_j1l (x);
285 if (fabsl (z) >= fabsl (w))
286 b = (t * z / b);
287 else
288 b = (t * w / a);
291 if (sgn == 1)
292 return -b;
293 else
294 return b;
296 strong_alias (__ieee754_jnl, __jnl_finite)
298 long double
299 __ieee754_ynl (int n, long double x)
301 uint32_t se, lx;
302 int32_t i, ix;
303 int32_t sign;
304 long double a, b, temp, ret;
305 double xhi;
307 xhi = ldbl_high (x);
308 EXTRACT_WORDS (se, lx, xhi);
309 ix = se & 0x7fffffff;
311 /* if Y(n,NaN) is NaN */
312 if (ix >= 0x7ff00000)
314 if (((ix - 0x7ff00000) | lx) != 0)
315 return x + x;
317 if (x <= 0.0L)
319 if (x == 0.0L)
320 return ((n < 0 && (n & 1) != 0) ? 1.0L : -1.0L) / 0.0L;
321 if (se & 0x80000000)
322 return zero / (zero * x);
324 sign = 1;
325 if (n < 0)
327 n = -n;
328 sign = 1 - ((n & 1) << 1);
330 if (n == 0)
331 return (__ieee754_y0l (x));
333 SET_RESTORE_ROUNDL (FE_TONEAREST);
334 if (n == 1)
336 ret = sign * __ieee754_y1l (x);
337 goto out;
339 if (ix >= 0x7ff00000)
340 return zero;
341 if (ix >= 0x52D00000)
342 { /* x > 2**302 */
344 /* ??? See comment above on the possible futility of this. */
346 /* (x >> n**2)
347 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
348 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
349 * Let s=sin(x), c=cos(x),
350 * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
352 * n sin(xn)*sqt2 cos(xn)*sqt2
353 * ----------------------------------
354 * 0 s-c c+s
355 * 1 -s-c -c+s
356 * 2 -s+c -c-s
357 * 3 s+c c-s
359 long double s;
360 long double c;
361 __sincosl (x, &s, &c);
362 switch (n & 3)
364 case 0:
365 temp = s - c;
366 break;
367 case 1:
368 temp = -s - c;
369 break;
370 case 2:
371 temp = -s + c;
372 break;
373 case 3:
374 temp = s + c;
375 break;
377 b = invsqrtpi * temp / __ieee754_sqrtl (x);
379 else
381 a = __ieee754_y0l (x);
382 b = __ieee754_y1l (x);
383 /* quit if b is -inf */
384 xhi = ldbl_high (b);
385 GET_HIGH_WORD (se, xhi);
386 se &= 0xfff00000;
387 for (i = 1; i < n && se != 0xfff00000; i++)
389 temp = b;
390 b = ((long double) (i + i) / x) * b - a;
391 xhi = ldbl_high (b);
392 GET_HIGH_WORD (se, xhi);
393 se &= 0xfff00000;
394 a = temp;
397 /* If B is +-Inf, set up errno accordingly. */
398 if (! isfinite (b))
399 __set_errno (ERANGE);
400 if (sign > 0)
401 ret = b;
402 else
403 ret = -b;
405 out:
406 if (isinf (ret))
407 ret = __copysignl (LDBL_MAX, ret) * LDBL_MAX;
408 return ret;
410 strong_alias (__ieee754_ynl, __ynl_finite)