1 /* Extended regular expression matching and search library,
3 (Implements POSIX draft P1003.2/D11.2, except for some of the
4 internationalization features.)
5 Copyright (C) 1993, 94, 95, 96, 97, 98, 99 Free Software Foundation, Inc.
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Library General Public License as
9 published by the Free Software Foundation; either version 2 of the
10 License, or (at your option) any later version.
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Library General Public License for more details.
17 You should have received a copy of the GNU Library General Public
18 License along with the GNU C Library; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* AIX requires this to be the first thing in the file. */
23 #if defined _AIX && !defined REGEX_MALLOC
35 # if defined __GNUC__ || (defined __STDC__ && __STDC__)
36 # define PARAMS(args) args
38 # define PARAMS(args) ()
40 #endif /* Not PARAMS. */
42 #if defined STDC_HEADERS && !defined emacs
45 /* We need this for `regex.h', and perhaps for the Emacs include files. */
46 # include <sys/types.h>
49 #define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
51 /* For platform which support the ISO C amendement 1 functionality we
52 support user defined character classes. */
53 #if defined _LIBC || WIDE_CHAR_SUPPORT
54 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
60 /* We have to keep the namespace clean. */
61 # define regfree(preg) __regfree (preg)
62 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
63 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
64 # define regerror(errcode, preg, errbuf, errbuf_size) \
65 __regerror(errcode, preg, errbuf, errbuf_size)
66 # define re_set_registers(bu, re, nu, st, en) \
67 __re_set_registers (bu, re, nu, st, en)
68 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
69 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
70 # define re_match(bufp, string, size, pos, regs) \
71 __re_match (bufp, string, size, pos, regs)
72 # define re_search(bufp, string, size, startpos, range, regs) \
73 __re_search (bufp, string, size, startpos, range, regs)
74 # define re_compile_pattern(pattern, length, bufp) \
75 __re_compile_pattern (pattern, length, bufp)
76 # define re_set_syntax(syntax) __re_set_syntax (syntax)
77 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
78 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
79 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
84 /* This is for other GNU distributions with internationalized messages. */
85 #if HAVE_LIBINTL_H || defined _LIBC
88 # define gettext(msgid) (msgid)
92 /* This define is so xgettext can find the internationalizable
94 # define gettext_noop(String) String
97 /* The `emacs' switch turns on certain matching commands
98 that make sense only in Emacs. */
105 #else /* not emacs */
107 /* If we are not linking with Emacs proper,
108 we can't use the relocating allocator
109 even if config.h says that we can. */
112 # if defined STDC_HEADERS || defined _LIBC
119 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
120 If nothing else has been done, use the method below. */
121 # ifdef INHIBIT_STRING_HEADER
122 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
123 # if !defined bzero && !defined bcopy
124 # undef INHIBIT_STRING_HEADER
129 /* This is the normal way of making sure we have a bcopy and a bzero.
130 This is used in most programs--a few other programs avoid this
131 by defining INHIBIT_STRING_HEADER. */
132 # ifndef INHIBIT_STRING_HEADER
133 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
137 # define bzero(s, n) (memset (s, '\0', n), (s))
139 # define bzero(s, n) __bzero (s, n)
143 # include <strings.h>
145 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
148 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
153 /* Define the syntax stuff for \<, \>, etc. */
155 /* This must be nonzero for the wordchar and notwordchar pattern
156 commands in re_match_2. */
161 # ifdef SWITCH_ENUM_BUG
162 # define SWITCH_ENUM_CAST(x) ((int)(x))
164 # define SWITCH_ENUM_CAST(x) (x)
167 /* How many characters in the character set. */
168 # define CHAR_SET_SIZE 256
172 extern char *re_syntax_table
;
174 # else /* not SYNTAX_TABLE */
176 static char re_syntax_table
[CHAR_SET_SIZE
];
187 bzero (re_syntax_table
, sizeof re_syntax_table
);
189 for (c
= 'a'; c
<= 'z'; c
++)
190 re_syntax_table
[c
] = Sword
;
192 for (c
= 'A'; c
<= 'Z'; c
++)
193 re_syntax_table
[c
] = Sword
;
195 for (c
= '0'; c
<= '9'; c
++)
196 re_syntax_table
[c
] = Sword
;
198 re_syntax_table
['_'] = Sword
;
203 # endif /* not SYNTAX_TABLE */
205 # define SYNTAX(c) re_syntax_table[c]
207 #endif /* not emacs */
209 /* Get the interface, including the syntax bits. */
212 /* isalpha etc. are used for the character classes. */
215 /* Jim Meyering writes:
217 "... Some ctype macros are valid only for character codes that
218 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
219 using /bin/cc or gcc but without giving an ansi option). So, all
220 ctype uses should be through macros like ISPRINT... If
221 STDC_HEADERS is defined, then autoconf has verified that the ctype
222 macros don't need to be guarded with references to isascii. ...
223 Defining isascii to 1 should let any compiler worth its salt
224 eliminate the && through constant folding."
225 Solaris defines some of these symbols so we must undefine them first. */
228 #if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
229 # define ISASCII(c) 1
231 # define ISASCII(c) isascii(c)
235 # define ISBLANK(c) (ISASCII (c) && isblank (c))
237 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
240 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
242 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
246 #define ISPRINT(c) (ISASCII (c) && isprint (c))
247 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
248 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
249 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
250 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
251 #define ISLOWER(c) (ISASCII (c) && islower (c))
252 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
253 #define ISSPACE(c) (ISASCII (c) && isspace (c))
254 #define ISUPPER(c) (ISASCII (c) && isupper (c))
255 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
258 # define TOLOWER(c) _tolower(c)
260 # define TOLOWER(c) tolower(c)
264 # define NULL (void *)0
267 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
268 since ours (we hope) works properly with all combinations of
269 machines, compilers, `char' and `unsigned char' argument types.
270 (Per Bothner suggested the basic approach.) */
271 #undef SIGN_EXTEND_CHAR
273 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
274 #else /* not __STDC__ */
275 /* As in Harbison and Steele. */
276 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
279 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
280 use `alloca' instead of `malloc'. This is because using malloc in
281 re_search* or re_match* could cause memory leaks when C-g is used in
282 Emacs; also, malloc is slower and causes storage fragmentation. On
283 the other hand, malloc is more portable, and easier to debug.
285 Because we sometimes use alloca, some routines have to be macros,
286 not functions -- `alloca'-allocated space disappears at the end of the
287 function it is called in. */
291 # define REGEX_ALLOCATE malloc
292 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
293 # define REGEX_FREE free
295 #else /* not REGEX_MALLOC */
297 /* Emacs already defines alloca, sometimes. */
300 /* Make alloca work the best possible way. */
302 # define alloca __builtin_alloca
303 # else /* not __GNUC__ */
306 # endif /* HAVE_ALLOCA_H */
307 # endif /* not __GNUC__ */
309 # endif /* not alloca */
311 # define REGEX_ALLOCATE alloca
313 /* Assumes a `char *destination' variable. */
314 # define REGEX_REALLOCATE(source, osize, nsize) \
315 (destination = (char *) alloca (nsize), \
316 memcpy (destination, source, osize))
318 /* No need to do anything to free, after alloca. */
319 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
321 #endif /* not REGEX_MALLOC */
323 /* Define how to allocate the failure stack. */
325 #if defined REL_ALLOC && defined REGEX_MALLOC
327 # define REGEX_ALLOCATE_STACK(size) \
328 r_alloc (&failure_stack_ptr, (size))
329 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
330 r_re_alloc (&failure_stack_ptr, (nsize))
331 # define REGEX_FREE_STACK(ptr) \
332 r_alloc_free (&failure_stack_ptr)
334 #else /* not using relocating allocator */
338 # define REGEX_ALLOCATE_STACK malloc
339 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
340 # define REGEX_FREE_STACK free
342 # else /* not REGEX_MALLOC */
344 # define REGEX_ALLOCATE_STACK alloca
346 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
347 REGEX_REALLOCATE (source, osize, nsize)
348 /* No need to explicitly free anything. */
349 # define REGEX_FREE_STACK(arg)
351 # endif /* not REGEX_MALLOC */
352 #endif /* not using relocating allocator */
355 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
356 `string1' or just past its end. This works if PTR is NULL, which is
358 #define FIRST_STRING_P(ptr) \
359 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
361 /* (Re)Allocate N items of type T using malloc, or fail. */
362 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
363 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
364 #define RETALLOC_IF(addr, n, t) \
365 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
366 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
368 #define BYTEWIDTH 8 /* In bits. */
370 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
374 #define MAX(a, b) ((a) > (b) ? (a) : (b))
375 #define MIN(a, b) ((a) < (b) ? (a) : (b))
377 typedef char boolean
;
381 static int re_match_2_internal
PARAMS ((struct re_pattern_buffer
*bufp
,
382 const char *string1
, int size1
,
383 const char *string2
, int size2
,
385 struct re_registers
*regs
,
388 /* These are the command codes that appear in compiled regular
389 expressions. Some opcodes are followed by argument bytes. A
390 command code can specify any interpretation whatsoever for its
391 arguments. Zero bytes may appear in the compiled regular expression. */
397 /* Succeed right away--no more backtracking. */
400 /* Followed by one byte giving n, then by n literal bytes. */
403 /* Matches any (more or less) character. */
406 /* Matches any one char belonging to specified set. First
407 following byte is number of bitmap bytes. Then come bytes
408 for a bitmap saying which chars are in. Bits in each byte
409 are ordered low-bit-first. A character is in the set if its
410 bit is 1. A character too large to have a bit in the map is
411 automatically not in the set. */
414 /* Same parameters as charset, but match any character that is
415 not one of those specified. */
418 /* Start remembering the text that is matched, for storing in a
419 register. Followed by one byte with the register number, in
420 the range 0 to one less than the pattern buffer's re_nsub
421 field. Then followed by one byte with the number of groups
422 inner to this one. (This last has to be part of the
423 start_memory only because we need it in the on_failure_jump
427 /* Stop remembering the text that is matched and store it in a
428 memory register. Followed by one byte with the register
429 number, in the range 0 to one less than `re_nsub' in the
430 pattern buffer, and one byte with the number of inner groups,
431 just like `start_memory'. (We need the number of inner
432 groups here because we don't have any easy way of finding the
433 corresponding start_memory when we're at a stop_memory.) */
436 /* Match a duplicate of something remembered. Followed by one
437 byte containing the register number. */
440 /* Fail unless at beginning of line. */
443 /* Fail unless at end of line. */
446 /* Succeeds if at beginning of buffer (if emacs) or at beginning
447 of string to be matched (if not). */
450 /* Analogously, for end of buffer/string. */
453 /* Followed by two byte relative address to which to jump. */
456 /* Same as jump, but marks the end of an alternative. */
459 /* Followed by two-byte relative address of place to resume at
460 in case of failure. */
463 /* Like on_failure_jump, but pushes a placeholder instead of the
464 current string position when executed. */
465 on_failure_keep_string_jump
,
467 /* Throw away latest failure point and then jump to following
468 two-byte relative address. */
471 /* Change to pop_failure_jump if know won't have to backtrack to
472 match; otherwise change to jump. This is used to jump
473 back to the beginning of a repeat. If what follows this jump
474 clearly won't match what the repeat does, such that we can be
475 sure that there is no use backtracking out of repetitions
476 already matched, then we change it to a pop_failure_jump.
477 Followed by two-byte address. */
480 /* Jump to following two-byte address, and push a dummy failure
481 point. This failure point will be thrown away if an attempt
482 is made to use it for a failure. A `+' construct makes this
483 before the first repeat. Also used as an intermediary kind
484 of jump when compiling an alternative. */
487 /* Push a dummy failure point and continue. Used at the end of
491 /* Followed by two-byte relative address and two-byte number n.
492 After matching N times, jump to the address upon failure. */
495 /* Followed by two-byte relative address, and two-byte number n.
496 Jump to the address N times, then fail. */
499 /* Set the following two-byte relative address to the
500 subsequent two-byte number. The address *includes* the two
504 wordchar
, /* Matches any word-constituent character. */
505 notwordchar
, /* Matches any char that is not a word-constituent. */
507 wordbeg
, /* Succeeds if at word beginning. */
508 wordend
, /* Succeeds if at word end. */
510 wordbound
, /* Succeeds if at a word boundary. */
511 notwordbound
/* Succeeds if not at a word boundary. */
514 ,before_dot
, /* Succeeds if before point. */
515 at_dot
, /* Succeeds if at point. */
516 after_dot
, /* Succeeds if after point. */
518 /* Matches any character whose syntax is specified. Followed by
519 a byte which contains a syntax code, e.g., Sword. */
522 /* Matches any character whose syntax is not that specified. */
527 /* Common operations on the compiled pattern. */
529 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
531 #define STORE_NUMBER(destination, number) \
533 (destination)[0] = (number) & 0377; \
534 (destination)[1] = (number) >> 8; \
537 /* Same as STORE_NUMBER, except increment DESTINATION to
538 the byte after where the number is stored. Therefore, DESTINATION
539 must be an lvalue. */
541 #define STORE_NUMBER_AND_INCR(destination, number) \
543 STORE_NUMBER (destination, number); \
544 (destination) += 2; \
547 /* Put into DESTINATION a number stored in two contiguous bytes starting
550 #define EXTRACT_NUMBER(destination, source) \
552 (destination) = *(source) & 0377; \
553 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
557 static void extract_number
_RE_ARGS ((int *dest
, unsigned char *source
));
559 extract_number (dest
, source
)
561 unsigned char *source
;
563 int temp
= SIGN_EXTEND_CHAR (*(source
+ 1));
564 *dest
= *source
& 0377;
568 # ifndef EXTRACT_MACROS /* To debug the macros. */
569 # undef EXTRACT_NUMBER
570 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
571 # endif /* not EXTRACT_MACROS */
575 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
576 SOURCE must be an lvalue. */
578 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
580 EXTRACT_NUMBER (destination, source); \
585 static void extract_number_and_incr
_RE_ARGS ((int *destination
,
586 unsigned char **source
));
588 extract_number_and_incr (destination
, source
)
590 unsigned char **source
;
592 extract_number (destination
, *source
);
596 # ifndef EXTRACT_MACROS
597 # undef EXTRACT_NUMBER_AND_INCR
598 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
599 extract_number_and_incr (&dest, &src)
600 # endif /* not EXTRACT_MACROS */
604 /* If DEBUG is defined, Regex prints many voluminous messages about what
605 it is doing (if the variable `debug' is nonzero). If linked with the
606 main program in `iregex.c', you can enter patterns and strings
607 interactively. And if linked with the main program in `main.c' and
608 the other test files, you can run the already-written tests. */
612 /* We use standard I/O for debugging. */
615 /* It is useful to test things that ``must'' be true when debugging. */
618 static int debug
= 0;
620 # define DEBUG_STATEMENT(e) e
621 # define DEBUG_PRINT1(x) if (debug) printf (x)
622 # define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
623 # define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
624 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
625 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
626 if (debug) print_partial_compiled_pattern (s, e)
627 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
628 if (debug) print_double_string (w, s1, sz1, s2, sz2)
631 /* Print the fastmap in human-readable form. */
634 print_fastmap (fastmap
)
637 unsigned was_a_range
= 0;
640 while (i
< (1 << BYTEWIDTH
))
646 while (i
< (1 << BYTEWIDTH
) && fastmap
[i
])
662 /* Print a compiled pattern string in human-readable form, starting at
663 the START pointer into it and ending just before the pointer END. */
666 print_partial_compiled_pattern (start
, end
)
667 unsigned char *start
;
672 unsigned char *p
= start
;
673 unsigned char *pend
= end
;
681 /* Loop over pattern commands. */
684 printf ("%d:\t", p
- start
);
686 switch ((re_opcode_t
) *p
++)
694 printf ("/exactn/%d", mcnt
);
705 printf ("/start_memory/%d/%d", mcnt
, *p
++);
710 printf ("/stop_memory/%d/%d", mcnt
, *p
++);
714 printf ("/duplicate/%d", *p
++);
724 register int c
, last
= -100;
725 register int in_range
= 0;
727 printf ("/charset [%s",
728 (re_opcode_t
) *(p
- 1) == charset_not
? "^" : "");
730 assert (p
+ *p
< pend
);
732 for (c
= 0; c
< 256; c
++)
734 && (p
[1 + (c
/8)] & (1 << (c
% 8))))
736 /* Are we starting a range? */
737 if (last
+ 1 == c
&& ! in_range
)
742 /* Have we broken a range? */
743 else if (last
+ 1 != c
&& in_range
)
772 case on_failure_jump
:
773 extract_number_and_incr (&mcnt
, &p
);
774 printf ("/on_failure_jump to %d", p
+ mcnt
- start
);
777 case on_failure_keep_string_jump
:
778 extract_number_and_incr (&mcnt
, &p
);
779 printf ("/on_failure_keep_string_jump to %d", p
+ mcnt
- start
);
782 case dummy_failure_jump
:
783 extract_number_and_incr (&mcnt
, &p
);
784 printf ("/dummy_failure_jump to %d", p
+ mcnt
- start
);
787 case push_dummy_failure
:
788 printf ("/push_dummy_failure");
792 extract_number_and_incr (&mcnt
, &p
);
793 printf ("/maybe_pop_jump to %d", p
+ mcnt
- start
);
796 case pop_failure_jump
:
797 extract_number_and_incr (&mcnt
, &p
);
798 printf ("/pop_failure_jump to %d", p
+ mcnt
- start
);
802 extract_number_and_incr (&mcnt
, &p
);
803 printf ("/jump_past_alt to %d", p
+ mcnt
- start
);
807 extract_number_and_incr (&mcnt
, &p
);
808 printf ("/jump to %d", p
+ mcnt
- start
);
812 extract_number_and_incr (&mcnt
, &p
);
814 extract_number_and_incr (&mcnt2
, &p
);
815 printf ("/succeed_n to %d, %d times", p1
- start
, mcnt2
);
819 extract_number_and_incr (&mcnt
, &p
);
821 extract_number_and_incr (&mcnt2
, &p
);
822 printf ("/jump_n to %d, %d times", p1
- start
, mcnt2
);
826 extract_number_and_incr (&mcnt
, &p
);
828 extract_number_and_incr (&mcnt2
, &p
);
829 printf ("/set_number_at location %d to %d", p1
- start
, mcnt2
);
833 printf ("/wordbound");
837 printf ("/notwordbound");
849 printf ("/before_dot");
857 printf ("/after_dot");
861 printf ("/syntaxspec");
863 printf ("/%d", mcnt
);
867 printf ("/notsyntaxspec");
869 printf ("/%d", mcnt
);
874 printf ("/wordchar");
878 printf ("/notwordchar");
890 printf ("?%d", *(p
-1));
896 printf ("%d:\tend of pattern.\n", p
- start
);
901 print_compiled_pattern (bufp
)
902 struct re_pattern_buffer
*bufp
;
904 unsigned char *buffer
= bufp
->buffer
;
906 print_partial_compiled_pattern (buffer
, buffer
+ bufp
->used
);
907 printf ("%ld bytes used/%ld bytes allocated.\n",
908 bufp
->used
, bufp
->allocated
);
910 if (bufp
->fastmap_accurate
&& bufp
->fastmap
)
912 printf ("fastmap: ");
913 print_fastmap (bufp
->fastmap
);
916 printf ("re_nsub: %d\t", bufp
->re_nsub
);
917 printf ("regs_alloc: %d\t", bufp
->regs_allocated
);
918 printf ("can_be_null: %d\t", bufp
->can_be_null
);
919 printf ("newline_anchor: %d\n", bufp
->newline_anchor
);
920 printf ("no_sub: %d\t", bufp
->no_sub
);
921 printf ("not_bol: %d\t", bufp
->not_bol
);
922 printf ("not_eol: %d\t", bufp
->not_eol
);
923 printf ("syntax: %lx\n", bufp
->syntax
);
924 /* Perhaps we should print the translate table? */
929 print_double_string (where
, string1
, size1
, string2
, size2
)
942 if (FIRST_STRING_P (where
))
944 for (this_char
= where
- string1
; this_char
< size1
; this_char
++)
945 putchar (string1
[this_char
]);
950 for (this_char
= where
- string2
; this_char
< size2
; this_char
++)
951 putchar (string2
[this_char
]);
962 #else /* not DEBUG */
967 # define DEBUG_STATEMENT(e)
968 # define DEBUG_PRINT1(x)
969 # define DEBUG_PRINT2(x1, x2)
970 # define DEBUG_PRINT3(x1, x2, x3)
971 # define DEBUG_PRINT4(x1, x2, x3, x4)
972 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
973 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
975 #endif /* not DEBUG */
977 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
978 also be assigned to arbitrarily: each pattern buffer stores its own
979 syntax, so it can be changed between regex compilations. */
980 /* This has no initializer because initialized variables in Emacs
981 become read-only after dumping. */
982 reg_syntax_t re_syntax_options
;
985 /* Specify the precise syntax of regexps for compilation. This provides
986 for compatibility for various utilities which historically have
987 different, incompatible syntaxes.
989 The argument SYNTAX is a bit mask comprised of the various bits
990 defined in regex.h. We return the old syntax. */
993 re_set_syntax (syntax
)
996 reg_syntax_t ret
= re_syntax_options
;
998 re_syntax_options
= syntax
;
1000 if (syntax
& RE_DEBUG
)
1002 else if (debug
) /* was on but now is not */
1008 weak_alias (__re_set_syntax
, re_set_syntax
)
1011 /* This table gives an error message for each of the error codes listed
1012 in regex.h. Obviously the order here has to be same as there.
1013 POSIX doesn't require that we do anything for REG_NOERROR,
1014 but why not be nice? */
1016 static const char *re_error_msgid
[] =
1018 gettext_noop ("Success"), /* REG_NOERROR */
1019 gettext_noop ("No match"), /* REG_NOMATCH */
1020 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1021 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1022 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1023 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1024 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1025 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1026 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1027 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1028 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1029 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1030 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1031 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1032 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1033 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1034 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1037 /* Avoiding alloca during matching, to placate r_alloc. */
1039 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1040 searching and matching functions should not call alloca. On some
1041 systems, alloca is implemented in terms of malloc, and if we're
1042 using the relocating allocator routines, then malloc could cause a
1043 relocation, which might (if the strings being searched are in the
1044 ralloc heap) shift the data out from underneath the regexp
1047 Here's another reason to avoid allocation: Emacs
1048 processes input from X in a signal handler; processing X input may
1049 call malloc; if input arrives while a matching routine is calling
1050 malloc, then we're scrod. But Emacs can't just block input while
1051 calling matching routines; then we don't notice interrupts when
1052 they come in. So, Emacs blocks input around all regexp calls
1053 except the matching calls, which it leaves unprotected, in the
1054 faith that they will not malloc. */
1056 /* Normally, this is fine. */
1057 #define MATCH_MAY_ALLOCATE
1059 /* When using GNU C, we are not REALLY using the C alloca, no matter
1060 what config.h may say. So don't take precautions for it. */
1065 /* The match routines may not allocate if (1) they would do it with malloc
1066 and (2) it's not safe for them to use malloc.
1067 Note that if REL_ALLOC is defined, matching would not use malloc for the
1068 failure stack, but we would still use it for the register vectors;
1069 so REL_ALLOC should not affect this. */
1070 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1071 # undef MATCH_MAY_ALLOCATE
1075 /* Failure stack declarations and macros; both re_compile_fastmap and
1076 re_match_2 use a failure stack. These have to be macros because of
1077 REGEX_ALLOCATE_STACK. */
1080 /* Number of failure points for which to initially allocate space
1081 when matching. If this number is exceeded, we allocate more
1082 space, so it is not a hard limit. */
1083 #ifndef INIT_FAILURE_ALLOC
1084 # define INIT_FAILURE_ALLOC 5
1087 /* Roughly the maximum number of failure points on the stack. Would be
1088 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1089 This is a variable only so users of regex can assign to it; we never
1090 change it ourselves. */
1094 # if defined MATCH_MAY_ALLOCATE
1095 /* 4400 was enough to cause a crash on Alpha OSF/1,
1096 whose default stack limit is 2mb. */
1097 long int re_max_failures
= 4000;
1099 long int re_max_failures
= 2000;
1102 union fail_stack_elt
1104 unsigned char *pointer
;
1108 typedef union fail_stack_elt fail_stack_elt_t
;
1112 fail_stack_elt_t
*stack
;
1113 unsigned long int size
;
1114 unsigned long int avail
; /* Offset of next open position. */
1117 #else /* not INT_IS_16BIT */
1119 # if defined MATCH_MAY_ALLOCATE
1120 /* 4400 was enough to cause a crash on Alpha OSF/1,
1121 whose default stack limit is 2mb. */
1122 int re_max_failures
= 20000;
1124 int re_max_failures
= 2000;
1127 union fail_stack_elt
1129 unsigned char *pointer
;
1133 typedef union fail_stack_elt fail_stack_elt_t
;
1137 fail_stack_elt_t
*stack
;
1139 unsigned avail
; /* Offset of next open position. */
1142 #endif /* INT_IS_16BIT */
1144 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1145 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1146 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1149 /* Define macros to initialize and free the failure stack.
1150 Do `return -2' if the alloc fails. */
1152 #ifdef MATCH_MAY_ALLOCATE
1153 # define INIT_FAIL_STACK() \
1155 fail_stack.stack = (fail_stack_elt_t *) \
1156 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1158 if (fail_stack.stack == NULL) \
1161 fail_stack.size = INIT_FAILURE_ALLOC; \
1162 fail_stack.avail = 0; \
1165 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1167 # define INIT_FAIL_STACK() \
1169 fail_stack.avail = 0; \
1172 # define RESET_FAIL_STACK()
1176 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1178 Return 1 if succeeds, and 0 if either ran out of memory
1179 allocating space for it or it was already too large.
1181 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1183 #define DOUBLE_FAIL_STACK(fail_stack) \
1184 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1186 : ((fail_stack).stack = (fail_stack_elt_t *) \
1187 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1188 (fail_stack).size * sizeof (fail_stack_elt_t), \
1189 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
1191 (fail_stack).stack == NULL \
1193 : ((fail_stack).size <<= 1, \
1197 /* Push pointer POINTER on FAIL_STACK.
1198 Return 1 if was able to do so and 0 if ran out of memory allocating
1200 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1201 ((FAIL_STACK_FULL () \
1202 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1204 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1207 /* Push a pointer value onto the failure stack.
1208 Assumes the variable `fail_stack'. Probably should only
1209 be called from within `PUSH_FAILURE_POINT'. */
1210 #define PUSH_FAILURE_POINTER(item) \
1211 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1213 /* This pushes an integer-valued item onto the failure stack.
1214 Assumes the variable `fail_stack'. Probably should only
1215 be called from within `PUSH_FAILURE_POINT'. */
1216 #define PUSH_FAILURE_INT(item) \
1217 fail_stack.stack[fail_stack.avail++].integer = (item)
1219 /* Push a fail_stack_elt_t value onto the failure stack.
1220 Assumes the variable `fail_stack'. Probably should only
1221 be called from within `PUSH_FAILURE_POINT'. */
1222 #define PUSH_FAILURE_ELT(item) \
1223 fail_stack.stack[fail_stack.avail++] = (item)
1225 /* These three POP... operations complement the three PUSH... operations.
1226 All assume that `fail_stack' is nonempty. */
1227 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1228 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1229 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1231 /* Used to omit pushing failure point id's when we're not debugging. */
1233 # define DEBUG_PUSH PUSH_FAILURE_INT
1234 # define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1236 # define DEBUG_PUSH(item)
1237 # define DEBUG_POP(item_addr)
1241 /* Push the information about the state we will need
1242 if we ever fail back to it.
1244 Requires variables fail_stack, regstart, regend, reg_info, and
1245 num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination'
1248 Does `return FAILURE_CODE' if runs out of memory. */
1250 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1252 char *destination; \
1253 /* Must be int, so when we don't save any registers, the arithmetic \
1254 of 0 + -1 isn't done as unsigned. */ \
1255 /* Can't be int, since there is not a shred of a guarantee that int \
1256 is wide enough to hold a value of something to which pointer can \
1258 active_reg_t this_reg; \
1260 DEBUG_STATEMENT (failure_id++); \
1261 DEBUG_STATEMENT (nfailure_points_pushed++); \
1262 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1263 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1264 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1266 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1267 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1269 /* Ensure we have enough space allocated for what we will push. */ \
1270 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1272 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1273 return failure_code; \
1275 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1276 (fail_stack).size); \
1277 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1280 /* Push the info, starting with the registers. */ \
1281 DEBUG_PRINT1 ("\n"); \
1284 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1287 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1288 DEBUG_STATEMENT (num_regs_pushed++); \
1290 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1291 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1293 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1294 PUSH_FAILURE_POINTER (regend[this_reg]); \
1296 DEBUG_PRINT2 (" info: %p\n ", \
1297 reg_info[this_reg].word.pointer); \
1298 DEBUG_PRINT2 (" match_null=%d", \
1299 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1300 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1301 DEBUG_PRINT2 (" matched_something=%d", \
1302 MATCHED_SOMETHING (reg_info[this_reg])); \
1303 DEBUG_PRINT2 (" ever_matched=%d", \
1304 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1305 DEBUG_PRINT1 ("\n"); \
1306 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1309 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1310 PUSH_FAILURE_INT (lowest_active_reg); \
1312 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1313 PUSH_FAILURE_INT (highest_active_reg); \
1315 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1316 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1317 PUSH_FAILURE_POINTER (pattern_place); \
1319 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1320 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1322 DEBUG_PRINT1 ("'\n"); \
1323 PUSH_FAILURE_POINTER (string_place); \
1325 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1326 DEBUG_PUSH (failure_id); \
1329 /* This is the number of items that are pushed and popped on the stack
1330 for each register. */
1331 #define NUM_REG_ITEMS 3
1333 /* Individual items aside from the registers. */
1335 # define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1337 # define NUM_NONREG_ITEMS 4
1340 /* We push at most this many items on the stack. */
1341 /* We used to use (num_regs - 1), which is the number of registers
1342 this regexp will save; but that was changed to 5
1343 to avoid stack overflow for a regexp with lots of parens. */
1344 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1346 /* We actually push this many items. */
1347 #define NUM_FAILURE_ITEMS \
1349 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1353 /* How many items can still be added to the stack without overflowing it. */
1354 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1357 /* Pops what PUSH_FAIL_STACK pushes.
1359 We restore into the parameters, all of which should be lvalues:
1360 STR -- the saved data position.
1361 PAT -- the saved pattern position.
1362 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1363 REGSTART, REGEND -- arrays of string positions.
1364 REG_INFO -- array of information about each subexpression.
1366 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1367 `pend', `string1', `size1', `string2', and `size2'. */
1369 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1371 DEBUG_STATEMENT (unsigned failure_id;) \
1372 active_reg_t this_reg; \
1373 const unsigned char *string_temp; \
1375 assert (!FAIL_STACK_EMPTY ()); \
1377 /* Remove failure points and point to how many regs pushed. */ \
1378 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1379 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1380 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1382 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1384 DEBUG_POP (&failure_id); \
1385 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1387 /* If the saved string location is NULL, it came from an \
1388 on_failure_keep_string_jump opcode, and we want to throw away the \
1389 saved NULL, thus retaining our current position in the string. */ \
1390 string_temp = POP_FAILURE_POINTER (); \
1391 if (string_temp != NULL) \
1392 str = (const char *) string_temp; \
1394 DEBUG_PRINT2 (" Popping string %p: `", str); \
1395 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1396 DEBUG_PRINT1 ("'\n"); \
1398 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1399 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1400 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1402 /* Restore register info. */ \
1403 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1404 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1406 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1407 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1410 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1412 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1414 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1415 DEBUG_PRINT2 (" info: %p\n", \
1416 reg_info[this_reg].word.pointer); \
1418 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1419 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1421 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1422 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1426 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1428 reg_info[this_reg].word.integer = 0; \
1429 regend[this_reg] = 0; \
1430 regstart[this_reg] = 0; \
1432 highest_active_reg = high_reg; \
1435 set_regs_matched_done = 0; \
1436 DEBUG_STATEMENT (nfailure_points_popped++); \
1437 } /* POP_FAILURE_POINT */
1441 /* Structure for per-register (a.k.a. per-group) information.
1442 Other register information, such as the
1443 starting and ending positions (which are addresses), and the list of
1444 inner groups (which is a bits list) are maintained in separate
1447 We are making a (strictly speaking) nonportable assumption here: that
1448 the compiler will pack our bit fields into something that fits into
1449 the type of `word', i.e., is something that fits into one item on the
1453 /* Declarations and macros for re_match_2. */
1457 fail_stack_elt_t word
;
1460 /* This field is one if this group can match the empty string,
1461 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1462 #define MATCH_NULL_UNSET_VALUE 3
1463 unsigned match_null_string_p
: 2;
1464 unsigned is_active
: 1;
1465 unsigned matched_something
: 1;
1466 unsigned ever_matched_something
: 1;
1468 } register_info_type
;
1470 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1471 #define IS_ACTIVE(R) ((R).bits.is_active)
1472 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1473 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1476 /* Call this when have matched a real character; it sets `matched' flags
1477 for the subexpressions which we are currently inside. Also records
1478 that those subexprs have matched. */
1479 #define SET_REGS_MATCHED() \
1482 if (!set_regs_matched_done) \
1485 set_regs_matched_done = 1; \
1486 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1488 MATCHED_SOMETHING (reg_info[r]) \
1489 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1496 /* Registers are set to a sentinel when they haven't yet matched. */
1497 static char reg_unset_dummy
;
1498 #define REG_UNSET_VALUE (®_unset_dummy)
1499 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1501 /* Subroutine declarations and macros for regex_compile. */
1503 static reg_errcode_t regex_compile
_RE_ARGS ((const char *pattern
, size_t size
,
1504 reg_syntax_t syntax
,
1505 struct re_pattern_buffer
*bufp
));
1506 static void store_op1
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
, int arg
));
1507 static void store_op2
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1508 int arg1
, int arg2
));
1509 static void insert_op1
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1510 int arg
, unsigned char *end
));
1511 static void insert_op2
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1512 int arg1
, int arg2
, unsigned char *end
));
1513 static boolean at_begline_loc_p
_RE_ARGS ((const char *pattern
, const char *p
,
1514 reg_syntax_t syntax
));
1515 static boolean at_endline_loc_p
_RE_ARGS ((const char *p
, const char *pend
,
1516 reg_syntax_t syntax
));
1517 static reg_errcode_t compile_range
_RE_ARGS ((const char **p_ptr
,
1520 reg_syntax_t syntax
,
1523 /* Fetch the next character in the uncompiled pattern---translating it
1524 if necessary. Also cast from a signed character in the constant
1525 string passed to us by the user to an unsigned char that we can use
1526 as an array index (in, e.g., `translate'). */
1528 # define PATFETCH(c) \
1529 do {if (p == pend) return REG_EEND; \
1530 c = (unsigned char) *p++; \
1531 if (translate) c = (unsigned char) translate[c]; \
1535 /* Fetch the next character in the uncompiled pattern, with no
1537 #define PATFETCH_RAW(c) \
1538 do {if (p == pend) return REG_EEND; \
1539 c = (unsigned char) *p++; \
1542 /* Go backwards one character in the pattern. */
1543 #define PATUNFETCH p--
1546 /* If `translate' is non-null, return translate[D], else just D. We
1547 cast the subscript to translate because some data is declared as
1548 `char *', to avoid warnings when a string constant is passed. But
1549 when we use a character as a subscript we must make it unsigned. */
1551 # define TRANSLATE(d) \
1552 (translate ? (char) translate[(unsigned char) (d)] : (d))
1556 /* Macros for outputting the compiled pattern into `buffer'. */
1558 /* If the buffer isn't allocated when it comes in, use this. */
1559 #define INIT_BUF_SIZE 32
1561 /* Make sure we have at least N more bytes of space in buffer. */
1562 #define GET_BUFFER_SPACE(n) \
1563 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
1566 /* Make sure we have one more byte of buffer space and then add C to it. */
1567 #define BUF_PUSH(c) \
1569 GET_BUFFER_SPACE (1); \
1570 *b++ = (unsigned char) (c); \
1574 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1575 #define BUF_PUSH_2(c1, c2) \
1577 GET_BUFFER_SPACE (2); \
1578 *b++ = (unsigned char) (c1); \
1579 *b++ = (unsigned char) (c2); \
1583 /* As with BUF_PUSH_2, except for three bytes. */
1584 #define BUF_PUSH_3(c1, c2, c3) \
1586 GET_BUFFER_SPACE (3); \
1587 *b++ = (unsigned char) (c1); \
1588 *b++ = (unsigned char) (c2); \
1589 *b++ = (unsigned char) (c3); \
1593 /* Store a jump with opcode OP at LOC to location TO. We store a
1594 relative address offset by the three bytes the jump itself occupies. */
1595 #define STORE_JUMP(op, loc, to) \
1596 store_op1 (op, loc, (int) ((to) - (loc) - 3))
1598 /* Likewise, for a two-argument jump. */
1599 #define STORE_JUMP2(op, loc, to, arg) \
1600 store_op2 (op, loc, (int) ((to) - (loc) - 3), arg)
1602 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1603 #define INSERT_JUMP(op, loc, to) \
1604 insert_op1 (op, loc, (int) ((to) - (loc) - 3), b)
1606 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1607 #define INSERT_JUMP2(op, loc, to, arg) \
1608 insert_op2 (op, loc, (int) ((to) - (loc) - 3), arg, b)
1611 /* This is not an arbitrary limit: the arguments which represent offsets
1612 into the pattern are two bytes long. So if 2^16 bytes turns out to
1613 be too small, many things would have to change. */
1614 /* Any other compiler which, like MSC, has allocation limit below 2^16
1615 bytes will have to use approach similar to what was done below for
1616 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1617 reallocating to 0 bytes. Such thing is not going to work too well.
1618 You have been warned!! */
1619 #if defined _MSC_VER && !defined WIN32
1620 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
1621 The REALLOC define eliminates a flurry of conversion warnings,
1622 but is not required. */
1623 # define MAX_BUF_SIZE 65500L
1624 # define REALLOC(p,s) realloc ((p), (size_t) (s))
1626 # define MAX_BUF_SIZE (1L << 16)
1627 # define REALLOC(p,s) realloc ((p), (s))
1630 /* Extend the buffer by twice its current size via realloc and
1631 reset the pointers that pointed into the old block to point to the
1632 correct places in the new one. If extending the buffer results in it
1633 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1634 #define EXTEND_BUFFER() \
1636 unsigned char *old_buffer = bufp->buffer; \
1637 if (bufp->allocated == MAX_BUF_SIZE) \
1639 bufp->allocated <<= 1; \
1640 if (bufp->allocated > MAX_BUF_SIZE) \
1641 bufp->allocated = MAX_BUF_SIZE; \
1642 bufp->buffer = (unsigned char *) REALLOC (bufp->buffer, bufp->allocated);\
1643 if (bufp->buffer == NULL) \
1644 return REG_ESPACE; \
1645 /* If the buffer moved, move all the pointers into it. */ \
1646 if (old_buffer != bufp->buffer) \
1648 b = (b - old_buffer) + bufp->buffer; \
1649 begalt = (begalt - old_buffer) + bufp->buffer; \
1650 if (fixup_alt_jump) \
1651 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1653 laststart = (laststart - old_buffer) + bufp->buffer; \
1654 if (pending_exact) \
1655 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1660 /* Since we have one byte reserved for the register number argument to
1661 {start,stop}_memory, the maximum number of groups we can report
1662 things about is what fits in that byte. */
1663 #define MAX_REGNUM 255
1665 /* But patterns can have more than `MAX_REGNUM' registers. We just
1666 ignore the excess. */
1667 typedef unsigned regnum_t
;
1670 /* Macros for the compile stack. */
1672 /* Since offsets can go either forwards or backwards, this type needs to
1673 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1674 /* int may be not enough when sizeof(int) == 2. */
1675 typedef long pattern_offset_t
;
1679 pattern_offset_t begalt_offset
;
1680 pattern_offset_t fixup_alt_jump
;
1681 pattern_offset_t inner_group_offset
;
1682 pattern_offset_t laststart_offset
;
1684 } compile_stack_elt_t
;
1689 compile_stack_elt_t
*stack
;
1691 unsigned avail
; /* Offset of next open position. */
1692 } compile_stack_type
;
1695 #define INIT_COMPILE_STACK_SIZE 32
1697 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1698 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1700 /* The next available element. */
1701 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1704 /* Set the bit for character C in a list. */
1705 #define SET_LIST_BIT(c) \
1706 (b[((unsigned char) (c)) / BYTEWIDTH] \
1707 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1710 /* Get the next unsigned number in the uncompiled pattern. */
1711 #define GET_UNSIGNED_NUMBER(num) \
1715 while (ISDIGIT (c)) \
1719 num = num * 10 + c - '0'; \
1727 #if defined _LIBC || WIDE_CHAR_SUPPORT
1728 /* The GNU C library provides support for user-defined character classes
1729 and the functions from ISO C amendement 1. */
1730 # ifdef CHARCLASS_NAME_MAX
1731 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1733 /* This shouldn't happen but some implementation might still have this
1734 problem. Use a reasonable default value. */
1735 # define CHAR_CLASS_MAX_LENGTH 256
1739 # define IS_CHAR_CLASS(string) __wctype (string)
1741 # define IS_CHAR_CLASS(string) wctype (string)
1744 # define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1746 # define IS_CHAR_CLASS(string) \
1747 (STREQ (string, "alpha") || STREQ (string, "upper") \
1748 || STREQ (string, "lower") || STREQ (string, "digit") \
1749 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1750 || STREQ (string, "space") || STREQ (string, "print") \
1751 || STREQ (string, "punct") || STREQ (string, "graph") \
1752 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1755 #ifndef MATCH_MAY_ALLOCATE
1757 /* If we cannot allocate large objects within re_match_2_internal,
1758 we make the fail stack and register vectors global.
1759 The fail stack, we grow to the maximum size when a regexp
1761 The register vectors, we adjust in size each time we
1762 compile a regexp, according to the number of registers it needs. */
1764 static fail_stack_type fail_stack
;
1766 /* Size with which the following vectors are currently allocated.
1767 That is so we can make them bigger as needed,
1768 but never make them smaller. */
1769 static int regs_allocated_size
;
1771 static const char ** regstart
, ** regend
;
1772 static const char ** old_regstart
, ** old_regend
;
1773 static const char **best_regstart
, **best_regend
;
1774 static register_info_type
*reg_info
;
1775 static const char **reg_dummy
;
1776 static register_info_type
*reg_info_dummy
;
1778 /* Make the register vectors big enough for NUM_REGS registers,
1779 but don't make them smaller. */
1782 regex_grow_registers (num_regs
)
1785 if (num_regs
> regs_allocated_size
)
1787 RETALLOC_IF (regstart
, num_regs
, const char *);
1788 RETALLOC_IF (regend
, num_regs
, const char *);
1789 RETALLOC_IF (old_regstart
, num_regs
, const char *);
1790 RETALLOC_IF (old_regend
, num_regs
, const char *);
1791 RETALLOC_IF (best_regstart
, num_regs
, const char *);
1792 RETALLOC_IF (best_regend
, num_regs
, const char *);
1793 RETALLOC_IF (reg_info
, num_regs
, register_info_type
);
1794 RETALLOC_IF (reg_dummy
, num_regs
, const char *);
1795 RETALLOC_IF (reg_info_dummy
, num_regs
, register_info_type
);
1797 regs_allocated_size
= num_regs
;
1801 #endif /* not MATCH_MAY_ALLOCATE */
1803 static boolean group_in_compile_stack
_RE_ARGS ((compile_stack_type
1807 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1808 Returns one of error codes defined in `regex.h', or zero for success.
1810 Assumes the `allocated' (and perhaps `buffer') and `translate'
1811 fields are set in BUFP on entry.
1813 If it succeeds, results are put in BUFP (if it returns an error, the
1814 contents of BUFP are undefined):
1815 `buffer' is the compiled pattern;
1816 `syntax' is set to SYNTAX;
1817 `used' is set to the length of the compiled pattern;
1818 `fastmap_accurate' is zero;
1819 `re_nsub' is the number of subexpressions in PATTERN;
1820 `not_bol' and `not_eol' are zero;
1822 The `fastmap' and `newline_anchor' fields are neither
1823 examined nor set. */
1825 /* Return, freeing storage we allocated. */
1826 #define FREE_STACK_RETURN(value) \
1827 return (free (compile_stack.stack), value)
1829 static reg_errcode_t
1830 regex_compile (pattern
, size
, syntax
, bufp
)
1831 const char *pattern
;
1833 reg_syntax_t syntax
;
1834 struct re_pattern_buffer
*bufp
;
1836 /* We fetch characters from PATTERN here. Even though PATTERN is
1837 `char *' (i.e., signed), we declare these variables as unsigned, so
1838 they can be reliably used as array indices. */
1839 register unsigned char c
, c1
;
1841 /* A random temporary spot in PATTERN. */
1844 /* Points to the end of the buffer, where we should append. */
1845 register unsigned char *b
;
1847 /* Keeps track of unclosed groups. */
1848 compile_stack_type compile_stack
;
1850 /* Points to the current (ending) position in the pattern. */
1851 const char *p
= pattern
;
1852 const char *pend
= pattern
+ size
;
1854 /* How to translate the characters in the pattern. */
1855 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
1857 /* Address of the count-byte of the most recently inserted `exactn'
1858 command. This makes it possible to tell if a new exact-match
1859 character can be added to that command or if the character requires
1860 a new `exactn' command. */
1861 unsigned char *pending_exact
= 0;
1863 /* Address of start of the most recently finished expression.
1864 This tells, e.g., postfix * where to find the start of its
1865 operand. Reset at the beginning of groups and alternatives. */
1866 unsigned char *laststart
= 0;
1868 /* Address of beginning of regexp, or inside of last group. */
1869 unsigned char *begalt
;
1871 /* Place in the uncompiled pattern (i.e., the {) to
1872 which to go back if the interval is invalid. */
1873 const char *beg_interval
;
1875 /* Address of the place where a forward jump should go to the end of
1876 the containing expression. Each alternative of an `or' -- except the
1877 last -- ends with a forward jump of this sort. */
1878 unsigned char *fixup_alt_jump
= 0;
1880 /* Counts open-groups as they are encountered. Remembered for the
1881 matching close-group on the compile stack, so the same register
1882 number is put in the stop_memory as the start_memory. */
1883 regnum_t regnum
= 0;
1886 DEBUG_PRINT1 ("\nCompiling pattern: ");
1889 unsigned debug_count
;
1891 for (debug_count
= 0; debug_count
< size
; debug_count
++)
1892 putchar (pattern
[debug_count
]);
1897 /* Initialize the compile stack. */
1898 compile_stack
.stack
= TALLOC (INIT_COMPILE_STACK_SIZE
, compile_stack_elt_t
);
1899 if (compile_stack
.stack
== NULL
)
1902 compile_stack
.size
= INIT_COMPILE_STACK_SIZE
;
1903 compile_stack
.avail
= 0;
1905 /* Initialize the pattern buffer. */
1906 bufp
->syntax
= syntax
;
1907 bufp
->fastmap_accurate
= 0;
1908 bufp
->not_bol
= bufp
->not_eol
= 0;
1910 /* Set `used' to zero, so that if we return an error, the pattern
1911 printer (for debugging) will think there's no pattern. We reset it
1915 /* Always count groups, whether or not bufp->no_sub is set. */
1918 #if !defined emacs && !defined SYNTAX_TABLE
1919 /* Initialize the syntax table. */
1920 init_syntax_once ();
1923 if (bufp
->allocated
== 0)
1926 { /* If zero allocated, but buffer is non-null, try to realloc
1927 enough space. This loses if buffer's address is bogus, but
1928 that is the user's responsibility. */
1929 RETALLOC (bufp
->buffer
, INIT_BUF_SIZE
, unsigned char);
1932 { /* Caller did not allocate a buffer. Do it for them. */
1933 bufp
->buffer
= TALLOC (INIT_BUF_SIZE
, unsigned char);
1935 if (!bufp
->buffer
) FREE_STACK_RETURN (REG_ESPACE
);
1937 bufp
->allocated
= INIT_BUF_SIZE
;
1940 begalt
= b
= bufp
->buffer
;
1942 /* Loop through the uncompiled pattern until we're at the end. */
1951 if ( /* If at start of pattern, it's an operator. */
1953 /* If context independent, it's an operator. */
1954 || syntax
& RE_CONTEXT_INDEP_ANCHORS
1955 /* Otherwise, depends on what's come before. */
1956 || at_begline_loc_p (pattern
, p
, syntax
))
1966 if ( /* If at end of pattern, it's an operator. */
1968 /* If context independent, it's an operator. */
1969 || syntax
& RE_CONTEXT_INDEP_ANCHORS
1970 /* Otherwise, depends on what's next. */
1971 || at_endline_loc_p (p
, pend
, syntax
))
1981 if ((syntax
& RE_BK_PLUS_QM
)
1982 || (syntax
& RE_LIMITED_OPS
))
1986 /* If there is no previous pattern... */
1989 if (syntax
& RE_CONTEXT_INVALID_OPS
)
1990 FREE_STACK_RETURN (REG_BADRPT
);
1991 else if (!(syntax
& RE_CONTEXT_INDEP_OPS
))
1996 /* Are we optimizing this jump? */
1997 boolean keep_string_p
= false;
1999 /* 1 means zero (many) matches is allowed. */
2000 char zero_times_ok
= 0, many_times_ok
= 0;
2002 /* If there is a sequence of repetition chars, collapse it
2003 down to just one (the right one). We can't combine
2004 interval operators with these because of, e.g., `a{2}*',
2005 which should only match an even number of `a's. */
2009 zero_times_ok
|= c
!= '+';
2010 many_times_ok
|= c
!= '?';
2018 || (!(syntax
& RE_BK_PLUS_QM
) && (c
== '+' || c
== '?')))
2021 else if (syntax
& RE_BK_PLUS_QM
&& c
== '\\')
2023 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2026 if (!(c1
== '+' || c1
== '?'))
2041 /* If we get here, we found another repeat character. */
2044 /* Star, etc. applied to an empty pattern is equivalent
2045 to an empty pattern. */
2049 /* Now we know whether or not zero matches is allowed
2050 and also whether or not two or more matches is allowed. */
2052 { /* More than one repetition is allowed, so put in at the
2053 end a backward relative jump from `b' to before the next
2054 jump we're going to put in below (which jumps from
2055 laststart to after this jump).
2057 But if we are at the `*' in the exact sequence `.*\n',
2058 insert an unconditional jump backwards to the .,
2059 instead of the beginning of the loop. This way we only
2060 push a failure point once, instead of every time
2061 through the loop. */
2062 assert (p
- 1 > pattern
);
2064 /* Allocate the space for the jump. */
2065 GET_BUFFER_SPACE (3);
2067 /* We know we are not at the first character of the pattern,
2068 because laststart was nonzero. And we've already
2069 incremented `p', by the way, to be the character after
2070 the `*'. Do we have to do something analogous here
2071 for null bytes, because of RE_DOT_NOT_NULL? */
2072 if (TRANSLATE (*(p
- 2)) == TRANSLATE ('.')
2074 && p
< pend
&& TRANSLATE (*p
) == TRANSLATE ('\n')
2075 && !(syntax
& RE_DOT_NEWLINE
))
2076 { /* We have .*\n. */
2077 STORE_JUMP (jump
, b
, laststart
);
2078 keep_string_p
= true;
2081 /* Anything else. */
2082 STORE_JUMP (maybe_pop_jump
, b
, laststart
- 3);
2084 /* We've added more stuff to the buffer. */
2088 /* On failure, jump from laststart to b + 3, which will be the
2089 end of the buffer after this jump is inserted. */
2090 GET_BUFFER_SPACE (3);
2091 INSERT_JUMP (keep_string_p
? on_failure_keep_string_jump
2099 /* At least one repetition is required, so insert a
2100 `dummy_failure_jump' before the initial
2101 `on_failure_jump' instruction of the loop. This
2102 effects a skip over that instruction the first time
2103 we hit that loop. */
2104 GET_BUFFER_SPACE (3);
2105 INSERT_JUMP (dummy_failure_jump
, laststart
, laststart
+ 6);
2120 boolean had_char_class
= false;
2122 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2124 /* Ensure that we have enough space to push a charset: the
2125 opcode, the length count, and the bitset; 34 bytes in all. */
2126 GET_BUFFER_SPACE (34);
2130 /* We test `*p == '^' twice, instead of using an if
2131 statement, so we only need one BUF_PUSH. */
2132 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
2136 /* Remember the first position in the bracket expression. */
2139 /* Push the number of bytes in the bitmap. */
2140 BUF_PUSH ((1 << BYTEWIDTH
) / BYTEWIDTH
);
2142 /* Clear the whole map. */
2143 bzero (b
, (1 << BYTEWIDTH
) / BYTEWIDTH
);
2145 /* charset_not matches newline according to a syntax bit. */
2146 if ((re_opcode_t
) b
[-2] == charset_not
2147 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
2148 SET_LIST_BIT ('\n');
2150 /* Read in characters and ranges, setting map bits. */
2153 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2157 /* \ might escape characters inside [...] and [^...]. */
2158 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
2160 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2167 /* Could be the end of the bracket expression. If it's
2168 not (i.e., when the bracket expression is `[]' so
2169 far), the ']' character bit gets set way below. */
2170 if (c
== ']' && p
!= p1
+ 1)
2173 /* Look ahead to see if it's a range when the last thing
2174 was a character class. */
2175 if (had_char_class
&& c
== '-' && *p
!= ']')
2176 FREE_STACK_RETURN (REG_ERANGE
);
2178 /* Look ahead to see if it's a range when the last thing
2179 was a character: if this is a hyphen not at the
2180 beginning or the end of a list, then it's the range
2183 && !(p
- 2 >= pattern
&& p
[-2] == '[')
2184 && !(p
- 3 >= pattern
&& p
[-3] == '[' && p
[-2] == '^')
2188 = compile_range (&p
, pend
, translate
, syntax
, b
);
2189 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
2192 else if (p
[0] == '-' && p
[1] != ']')
2193 { /* This handles ranges made up of characters only. */
2196 /* Move past the `-'. */
2199 ret
= compile_range (&p
, pend
, translate
, syntax
, b
);
2200 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
2203 /* See if we're at the beginning of a possible character
2206 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
2207 { /* Leave room for the null. */
2208 char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
2213 /* If pattern is `[[:'. */
2214 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2219 if ((c
== ':' && *p
== ']') || p
== pend
)
2221 if (c1
< CHAR_CLASS_MAX_LENGTH
)
2224 /* This is in any case an invalid class name. */
2229 /* If isn't a word bracketed by `[:' and `:]':
2230 undo the ending character, the letters, and leave
2231 the leading `:' and `[' (but set bits for them). */
2232 if (c
== ':' && *p
== ']')
2234 #if defined _LIBC || WIDE_CHAR_SUPPORT
2235 boolean is_lower
= STREQ (str
, "lower");
2236 boolean is_upper
= STREQ (str
, "upper");
2240 wt
= IS_CHAR_CLASS (str
);
2242 FREE_STACK_RETURN (REG_ECTYPE
);
2244 /* Throw away the ] at the end of the character
2248 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2250 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ++ch
)
2253 if (__iswctype (__btowc (ch
), wt
))
2256 if (iswctype (btowc (ch
), wt
))
2260 if (translate
&& (is_upper
|| is_lower
)
2261 && (ISUPPER (ch
) || ISLOWER (ch
)))
2265 had_char_class
= true;
2268 boolean is_alnum
= STREQ (str
, "alnum");
2269 boolean is_alpha
= STREQ (str
, "alpha");
2270 boolean is_blank
= STREQ (str
, "blank");
2271 boolean is_cntrl
= STREQ (str
, "cntrl");
2272 boolean is_digit
= STREQ (str
, "digit");
2273 boolean is_graph
= STREQ (str
, "graph");
2274 boolean is_lower
= STREQ (str
, "lower");
2275 boolean is_print
= STREQ (str
, "print");
2276 boolean is_punct
= STREQ (str
, "punct");
2277 boolean is_space
= STREQ (str
, "space");
2278 boolean is_upper
= STREQ (str
, "upper");
2279 boolean is_xdigit
= STREQ (str
, "xdigit");
2281 if (!IS_CHAR_CLASS (str
))
2282 FREE_STACK_RETURN (REG_ECTYPE
);
2284 /* Throw away the ] at the end of the character
2288 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2290 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ch
++)
2292 /* This was split into 3 if's to
2293 avoid an arbitrary limit in some compiler. */
2294 if ( (is_alnum
&& ISALNUM (ch
))
2295 || (is_alpha
&& ISALPHA (ch
))
2296 || (is_blank
&& ISBLANK (ch
))
2297 || (is_cntrl
&& ISCNTRL (ch
)))
2299 if ( (is_digit
&& ISDIGIT (ch
))
2300 || (is_graph
&& ISGRAPH (ch
))
2301 || (is_lower
&& ISLOWER (ch
))
2302 || (is_print
&& ISPRINT (ch
)))
2304 if ( (is_punct
&& ISPUNCT (ch
))
2305 || (is_space
&& ISSPACE (ch
))
2306 || (is_upper
&& ISUPPER (ch
))
2307 || (is_xdigit
&& ISXDIGIT (ch
)))
2309 if ( translate
&& (is_upper
|| is_lower
)
2310 && (ISUPPER (ch
) || ISLOWER (ch
)))
2313 had_char_class
= true;
2314 #endif /* libc || wctype.h */
2323 had_char_class
= false;
2328 had_char_class
= false;
2333 /* Discard any (non)matching list bytes that are all 0 at the
2334 end of the map. Decrease the map-length byte too. */
2335 while ((int) b
[-1] > 0 && b
[b
[-1] - 1] == 0)
2343 if (syntax
& RE_NO_BK_PARENS
)
2350 if (syntax
& RE_NO_BK_PARENS
)
2357 if (syntax
& RE_NEWLINE_ALT
)
2364 if (syntax
& RE_NO_BK_VBAR
)
2371 if (syntax
& RE_INTERVALS
&& syntax
& RE_NO_BK_BRACES
)
2372 goto handle_interval
;
2378 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2380 /* Do not translate the character after the \, so that we can
2381 distinguish, e.g., \B from \b, even if we normally would
2382 translate, e.g., B to b. */
2388 if (syntax
& RE_NO_BK_PARENS
)
2389 goto normal_backslash
;
2395 if (COMPILE_STACK_FULL
)
2397 RETALLOC (compile_stack
.stack
, compile_stack
.size
<< 1,
2398 compile_stack_elt_t
);
2399 if (compile_stack
.stack
== NULL
) return REG_ESPACE
;
2401 compile_stack
.size
<<= 1;
2404 /* These are the values to restore when we hit end of this
2405 group. They are all relative offsets, so that if the
2406 whole pattern moves because of realloc, they will still
2408 COMPILE_STACK_TOP
.begalt_offset
= begalt
- bufp
->buffer
;
2409 COMPILE_STACK_TOP
.fixup_alt_jump
2410 = fixup_alt_jump
? fixup_alt_jump
- bufp
->buffer
+ 1 : 0;
2411 COMPILE_STACK_TOP
.laststart_offset
= b
- bufp
->buffer
;
2412 COMPILE_STACK_TOP
.regnum
= regnum
;
2414 /* We will eventually replace the 0 with the number of
2415 groups inner to this one. But do not push a
2416 start_memory for groups beyond the last one we can
2417 represent in the compiled pattern. */
2418 if (regnum
<= MAX_REGNUM
)
2420 COMPILE_STACK_TOP
.inner_group_offset
= b
- bufp
->buffer
+ 2;
2421 BUF_PUSH_3 (start_memory
, regnum
, 0);
2424 compile_stack
.avail
++;
2429 /* If we've reached MAX_REGNUM groups, then this open
2430 won't actually generate any code, so we'll have to
2431 clear pending_exact explicitly. */
2437 if (syntax
& RE_NO_BK_PARENS
) goto normal_backslash
;
2439 if (COMPILE_STACK_EMPTY
)
2441 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
2442 goto normal_backslash
;
2444 FREE_STACK_RETURN (REG_ERPAREN
);
2449 { /* Push a dummy failure point at the end of the
2450 alternative for a possible future
2451 `pop_failure_jump' to pop. See comments at
2452 `push_dummy_failure' in `re_match_2'. */
2453 BUF_PUSH (push_dummy_failure
);
2455 /* We allocated space for this jump when we assigned
2456 to `fixup_alt_jump', in the `handle_alt' case below. */
2457 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
- 1);
2460 /* See similar code for backslashed left paren above. */
2461 if (COMPILE_STACK_EMPTY
)
2463 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
2466 FREE_STACK_RETURN (REG_ERPAREN
);
2469 /* Since we just checked for an empty stack above, this
2470 ``can't happen''. */
2471 assert (compile_stack
.avail
!= 0);
2473 /* We don't just want to restore into `regnum', because
2474 later groups should continue to be numbered higher,
2475 as in `(ab)c(de)' -- the second group is #2. */
2476 regnum_t this_group_regnum
;
2478 compile_stack
.avail
--;
2479 begalt
= bufp
->buffer
+ COMPILE_STACK_TOP
.begalt_offset
;
2481 = COMPILE_STACK_TOP
.fixup_alt_jump
2482 ? bufp
->buffer
+ COMPILE_STACK_TOP
.fixup_alt_jump
- 1
2484 laststart
= bufp
->buffer
+ COMPILE_STACK_TOP
.laststart_offset
;
2485 this_group_regnum
= COMPILE_STACK_TOP
.regnum
;
2486 /* If we've reached MAX_REGNUM groups, then this open
2487 won't actually generate any code, so we'll have to
2488 clear pending_exact explicitly. */
2491 /* We're at the end of the group, so now we know how many
2492 groups were inside this one. */
2493 if (this_group_regnum
<= MAX_REGNUM
)
2495 unsigned char *inner_group_loc
2496 = bufp
->buffer
+ COMPILE_STACK_TOP
.inner_group_offset
;
2498 *inner_group_loc
= regnum
- this_group_regnum
;
2499 BUF_PUSH_3 (stop_memory
, this_group_regnum
,
2500 regnum
- this_group_regnum
);
2506 case '|': /* `\|'. */
2507 if (syntax
& RE_LIMITED_OPS
|| syntax
& RE_NO_BK_VBAR
)
2508 goto normal_backslash
;
2510 if (syntax
& RE_LIMITED_OPS
)
2513 /* Insert before the previous alternative a jump which
2514 jumps to this alternative if the former fails. */
2515 GET_BUFFER_SPACE (3);
2516 INSERT_JUMP (on_failure_jump
, begalt
, b
+ 6);
2520 /* The alternative before this one has a jump after it
2521 which gets executed if it gets matched. Adjust that
2522 jump so it will jump to this alternative's analogous
2523 jump (put in below, which in turn will jump to the next
2524 (if any) alternative's such jump, etc.). The last such
2525 jump jumps to the correct final destination. A picture:
2531 If we are at `b', then fixup_alt_jump right now points to a
2532 three-byte space after `a'. We'll put in the jump, set
2533 fixup_alt_jump to right after `b', and leave behind three
2534 bytes which we'll fill in when we get to after `c'. */
2537 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
2539 /* Mark and leave space for a jump after this alternative,
2540 to be filled in later either by next alternative or
2541 when know we're at the end of a series of alternatives. */
2543 GET_BUFFER_SPACE (3);
2552 /* If \{ is a literal. */
2553 if (!(syntax
& RE_INTERVALS
)
2554 /* If we're at `\{' and it's not the open-interval
2556 || ((syntax
& RE_INTERVALS
) && (syntax
& RE_NO_BK_BRACES
))
2557 || (p
- 2 == pattern
&& p
== pend
))
2558 goto normal_backslash
;
2562 /* If got here, then the syntax allows intervals. */
2564 /* At least (most) this many matches must be made. */
2565 int lower_bound
= -1, upper_bound
= -1;
2567 beg_interval
= p
- 1;
2571 if (syntax
& RE_NO_BK_BRACES
)
2572 goto unfetch_interval
;
2574 FREE_STACK_RETURN (REG_EBRACE
);
2577 GET_UNSIGNED_NUMBER (lower_bound
);
2581 GET_UNSIGNED_NUMBER (upper_bound
);
2582 if (upper_bound
< 0) upper_bound
= RE_DUP_MAX
;
2585 /* Interval such as `{1}' => match exactly once. */
2586 upper_bound
= lower_bound
;
2588 if (lower_bound
< 0 || upper_bound
> RE_DUP_MAX
2589 || lower_bound
> upper_bound
)
2591 if (syntax
& RE_NO_BK_BRACES
)
2592 goto unfetch_interval
;
2594 FREE_STACK_RETURN (REG_BADBR
);
2597 if (!(syntax
& RE_NO_BK_BRACES
))
2599 if (c
!= '\\') FREE_STACK_RETURN (REG_EBRACE
);
2606 if (syntax
& RE_NO_BK_BRACES
)
2607 goto unfetch_interval
;
2609 FREE_STACK_RETURN (REG_BADBR
);
2612 /* We just parsed a valid interval. */
2614 /* If it's invalid to have no preceding re. */
2617 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2618 FREE_STACK_RETURN (REG_BADRPT
);
2619 else if (syntax
& RE_CONTEXT_INDEP_OPS
)
2622 goto unfetch_interval
;
2625 /* If the upper bound is zero, don't want to succeed at
2626 all; jump from `laststart' to `b + 3', which will be
2627 the end of the buffer after we insert the jump. */
2628 if (upper_bound
== 0)
2630 GET_BUFFER_SPACE (3);
2631 INSERT_JUMP (jump
, laststart
, b
+ 3);
2635 /* Otherwise, we have a nontrivial interval. When
2636 we're all done, the pattern will look like:
2637 set_number_at <jump count> <upper bound>
2638 set_number_at <succeed_n count> <lower bound>
2639 succeed_n <after jump addr> <succeed_n count>
2641 jump_n <succeed_n addr> <jump count>
2642 (The upper bound and `jump_n' are omitted if
2643 `upper_bound' is 1, though.) */
2645 { /* If the upper bound is > 1, we need to insert
2646 more at the end of the loop. */
2647 unsigned nbytes
= 10 + (upper_bound
> 1) * 10;
2649 GET_BUFFER_SPACE (nbytes
);
2651 /* Initialize lower bound of the `succeed_n', even
2652 though it will be set during matching by its
2653 attendant `set_number_at' (inserted next),
2654 because `re_compile_fastmap' needs to know.
2655 Jump to the `jump_n' we might insert below. */
2656 INSERT_JUMP2 (succeed_n
, laststart
,
2657 b
+ 5 + (upper_bound
> 1) * 5,
2661 /* Code to initialize the lower bound. Insert
2662 before the `succeed_n'. The `5' is the last two
2663 bytes of this `set_number_at', plus 3 bytes of
2664 the following `succeed_n'. */
2665 insert_op2 (set_number_at
, laststart
, 5, lower_bound
, b
);
2668 if (upper_bound
> 1)
2669 { /* More than one repetition is allowed, so
2670 append a backward jump to the `succeed_n'
2671 that starts this interval.
2673 When we've reached this during matching,
2674 we'll have matched the interval once, so
2675 jump back only `upper_bound - 1' times. */
2676 STORE_JUMP2 (jump_n
, b
, laststart
+ 5,
2680 /* The location we want to set is the second
2681 parameter of the `jump_n'; that is `b-2' as
2682 an absolute address. `laststart' will be
2683 the `set_number_at' we're about to insert;
2684 `laststart+3' the number to set, the source
2685 for the relative address. But we are
2686 inserting into the middle of the pattern --
2687 so everything is getting moved up by 5.
2688 Conclusion: (b - 2) - (laststart + 3) + 5,
2689 i.e., b - laststart.
2691 We insert this at the beginning of the loop
2692 so that if we fail during matching, we'll
2693 reinitialize the bounds. */
2694 insert_op2 (set_number_at
, laststart
, b
- laststart
,
2695 upper_bound
- 1, b
);
2700 beg_interval
= NULL
;
2705 /* If an invalid interval, match the characters as literals. */
2706 assert (beg_interval
);
2708 beg_interval
= NULL
;
2710 /* normal_char and normal_backslash need `c'. */
2713 if (!(syntax
& RE_NO_BK_BRACES
))
2715 if (p
> pattern
&& p
[-1] == '\\')
2716 goto normal_backslash
;
2721 /* There is no way to specify the before_dot and after_dot
2722 operators. rms says this is ok. --karl */
2730 BUF_PUSH_2 (syntaxspec
, syntax_spec_code
[c
]);
2736 BUF_PUSH_2 (notsyntaxspec
, syntax_spec_code
[c
]);
2742 if (syntax
& RE_NO_GNU_OPS
)
2745 BUF_PUSH (wordchar
);
2750 if (syntax
& RE_NO_GNU_OPS
)
2753 BUF_PUSH (notwordchar
);
2758 if (syntax
& RE_NO_GNU_OPS
)
2764 if (syntax
& RE_NO_GNU_OPS
)
2770 if (syntax
& RE_NO_GNU_OPS
)
2772 BUF_PUSH (wordbound
);
2776 if (syntax
& RE_NO_GNU_OPS
)
2778 BUF_PUSH (notwordbound
);
2782 if (syntax
& RE_NO_GNU_OPS
)
2788 if (syntax
& RE_NO_GNU_OPS
)
2793 case '1': case '2': case '3': case '4': case '5':
2794 case '6': case '7': case '8': case '9':
2795 if (syntax
& RE_NO_BK_REFS
)
2801 FREE_STACK_RETURN (REG_ESUBREG
);
2803 /* Can't back reference to a subexpression if inside of it. */
2804 if (group_in_compile_stack (compile_stack
, (regnum_t
) c1
))
2808 BUF_PUSH_2 (duplicate
, c1
);
2814 if (syntax
& RE_BK_PLUS_QM
)
2817 goto normal_backslash
;
2821 /* You might think it would be useful for \ to mean
2822 not to translate; but if we don't translate it
2823 it will never match anything. */
2831 /* Expects the character in `c'. */
2833 /* If no exactn currently being built. */
2836 /* If last exactn not at current position. */
2837 || pending_exact
+ *pending_exact
+ 1 != b
2839 /* We have only one byte following the exactn for the count. */
2840 || *pending_exact
== (1 << BYTEWIDTH
) - 1
2842 /* If followed by a repetition operator. */
2843 || *p
== '*' || *p
== '^'
2844 || ((syntax
& RE_BK_PLUS_QM
)
2845 ? *p
== '\\' && (p
[1] == '+' || p
[1] == '?')
2846 : (*p
== '+' || *p
== '?'))
2847 || ((syntax
& RE_INTERVALS
)
2848 && ((syntax
& RE_NO_BK_BRACES
)
2850 : (p
[0] == '\\' && p
[1] == '{'))))
2852 /* Start building a new exactn. */
2856 BUF_PUSH_2 (exactn
, 0);
2857 pending_exact
= b
- 1;
2864 } /* while p != pend */
2867 /* Through the pattern now. */
2870 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
2872 if (!COMPILE_STACK_EMPTY
)
2873 FREE_STACK_RETURN (REG_EPAREN
);
2875 /* If we don't want backtracking, force success
2876 the first time we reach the end of the compiled pattern. */
2877 if (syntax
& RE_NO_POSIX_BACKTRACKING
)
2880 free (compile_stack
.stack
);
2882 /* We have succeeded; set the length of the buffer. */
2883 bufp
->used
= b
- bufp
->buffer
;
2888 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2889 print_compiled_pattern (bufp
);
2893 #ifndef MATCH_MAY_ALLOCATE
2894 /* Initialize the failure stack to the largest possible stack. This
2895 isn't necessary unless we're trying to avoid calling alloca in
2896 the search and match routines. */
2898 int num_regs
= bufp
->re_nsub
+ 1;
2900 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2901 is strictly greater than re_max_failures, the largest possible stack
2902 is 2 * re_max_failures failure points. */
2903 if (fail_stack
.size
< (2 * re_max_failures
* MAX_FAILURE_ITEMS
))
2905 fail_stack
.size
= (2 * re_max_failures
* MAX_FAILURE_ITEMS
);
2908 if (! fail_stack
.stack
)
2910 = (fail_stack_elt_t
*) xmalloc (fail_stack
.size
2911 * sizeof (fail_stack_elt_t
));
2914 = (fail_stack_elt_t
*) xrealloc (fail_stack
.stack
,
2916 * sizeof (fail_stack_elt_t
)));
2917 # else /* not emacs */
2918 if (! fail_stack
.stack
)
2920 = (fail_stack_elt_t
*) malloc (fail_stack
.size
2921 * sizeof (fail_stack_elt_t
));
2924 = (fail_stack_elt_t
*) realloc (fail_stack
.stack
,
2926 * sizeof (fail_stack_elt_t
)));
2927 # endif /* not emacs */
2930 regex_grow_registers (num_regs
);
2932 #endif /* not MATCH_MAY_ALLOCATE */
2935 } /* regex_compile */
2937 /* Subroutines for `regex_compile'. */
2939 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2942 store_op1 (op
, loc
, arg
)
2947 *loc
= (unsigned char) op
;
2948 STORE_NUMBER (loc
+ 1, arg
);
2952 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2955 store_op2 (op
, loc
, arg1
, arg2
)
2960 *loc
= (unsigned char) op
;
2961 STORE_NUMBER (loc
+ 1, arg1
);
2962 STORE_NUMBER (loc
+ 3, arg2
);
2966 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2967 for OP followed by two-byte integer parameter ARG. */
2970 insert_op1 (op
, loc
, arg
, end
)
2976 register unsigned char *pfrom
= end
;
2977 register unsigned char *pto
= end
+ 3;
2979 while (pfrom
!= loc
)
2982 store_op1 (op
, loc
, arg
);
2986 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2989 insert_op2 (op
, loc
, arg1
, arg2
, end
)
2995 register unsigned char *pfrom
= end
;
2996 register unsigned char *pto
= end
+ 5;
2998 while (pfrom
!= loc
)
3001 store_op2 (op
, loc
, arg1
, arg2
);
3005 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3006 after an alternative or a begin-subexpression. We assume there is at
3007 least one character before the ^. */
3010 at_begline_loc_p (pattern
, p
, syntax
)
3011 const char *pattern
, *p
;
3012 reg_syntax_t syntax
;
3014 const char *prev
= p
- 2;
3015 boolean prev_prev_backslash
= prev
> pattern
&& prev
[-1] == '\\';
3018 /* After a subexpression? */
3019 (*prev
== '(' && (syntax
& RE_NO_BK_PARENS
|| prev_prev_backslash
))
3020 /* After an alternative? */
3021 || (*prev
== '|' && (syntax
& RE_NO_BK_VBAR
|| prev_prev_backslash
));
3025 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3026 at least one character after the $, i.e., `P < PEND'. */
3029 at_endline_loc_p (p
, pend
, syntax
)
3030 const char *p
, *pend
;
3031 reg_syntax_t syntax
;
3033 const char *next
= p
;
3034 boolean next_backslash
= *next
== '\\';
3035 const char *next_next
= p
+ 1 < pend
? p
+ 1 : 0;
3038 /* Before a subexpression? */
3039 (syntax
& RE_NO_BK_PARENS
? *next
== ')'
3040 : next_backslash
&& next_next
&& *next_next
== ')')
3041 /* Before an alternative? */
3042 || (syntax
& RE_NO_BK_VBAR
? *next
== '|'
3043 : next_backslash
&& next_next
&& *next_next
== '|');
3047 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3048 false if it's not. */
3051 group_in_compile_stack (compile_stack
, regnum
)
3052 compile_stack_type compile_stack
;
3057 for (this_element
= compile_stack
.avail
- 1;
3060 if (compile_stack
.stack
[this_element
].regnum
== regnum
)
3067 /* Read the ending character of a range (in a bracket expression) from the
3068 uncompiled pattern *P_PTR (which ends at PEND). We assume the
3069 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
3070 Then we set the translation of all bits between the starting and
3071 ending characters (inclusive) in the compiled pattern B.
3073 Return an error code.
3075 We use these short variable names so we can use the same macros as
3076 `regex_compile' itself. */
3078 static reg_errcode_t
3079 compile_range (p_ptr
, pend
, translate
, syntax
, b
)
3080 const char **p_ptr
, *pend
;
3081 RE_TRANSLATE_TYPE translate
;
3082 reg_syntax_t syntax
;
3087 const char *p
= *p_ptr
;
3088 unsigned int range_start
, range_end
;
3093 /* Even though the pattern is a signed `char *', we need to fetch
3094 with unsigned char *'s; if the high bit of the pattern character
3095 is set, the range endpoints will be negative if we fetch using a
3098 We also want to fetch the endpoints without translating them; the
3099 appropriate translation is done in the bit-setting loop below. */
3100 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
3101 range_start
= ((const unsigned char *) p
)[-2];
3102 range_end
= ((const unsigned char *) p
)[0];
3104 /* Have to increment the pointer into the pattern string, so the
3105 caller isn't still at the ending character. */
3108 /* If the start is after the end, the range is empty. */
3109 if (range_start
> range_end
)
3110 return syntax
& RE_NO_EMPTY_RANGES
? REG_ERANGE
: REG_NOERROR
;
3112 /* Here we see why `this_char' has to be larger than an `unsigned
3113 char' -- the range is inclusive, so if `range_end' == 0xff
3114 (assuming 8-bit characters), we would otherwise go into an infinite
3115 loop, since all characters <= 0xff. */
3116 for (this_char
= range_start
; this_char
<= range_end
; this_char
++)
3118 SET_LIST_BIT (TRANSLATE (this_char
));
3124 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3125 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3126 characters can start a string that matches the pattern. This fastmap
3127 is used by re_search to skip quickly over impossible starting points.
3129 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3130 area as BUFP->fastmap.
3132 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3135 Returns 0 if we succeed, -2 if an internal error. */
3138 re_compile_fastmap (bufp
)
3139 struct re_pattern_buffer
*bufp
;
3142 #ifdef MATCH_MAY_ALLOCATE
3143 fail_stack_type fail_stack
;
3145 #ifndef REGEX_MALLOC
3149 register char *fastmap
= bufp
->fastmap
;
3150 unsigned char *pattern
= bufp
->buffer
;
3151 unsigned char *p
= pattern
;
3152 register unsigned char *pend
= pattern
+ bufp
->used
;
3155 /* This holds the pointer to the failure stack, when
3156 it is allocated relocatably. */
3157 fail_stack_elt_t
*failure_stack_ptr
;
3160 /* Assume that each path through the pattern can be null until
3161 proven otherwise. We set this false at the bottom of switch
3162 statement, to which we get only if a particular path doesn't
3163 match the empty string. */
3164 boolean path_can_be_null
= true;
3166 /* We aren't doing a `succeed_n' to begin with. */
3167 boolean succeed_n_p
= false;
3169 assert (fastmap
!= NULL
&& p
!= NULL
);
3172 bzero (fastmap
, 1 << BYTEWIDTH
); /* Assume nothing's valid. */
3173 bufp
->fastmap_accurate
= 1; /* It will be when we're done. */
3174 bufp
->can_be_null
= 0;
3178 if (p
== pend
|| *p
== succeed
)
3180 /* We have reached the (effective) end of pattern. */
3181 if (!FAIL_STACK_EMPTY ())
3183 bufp
->can_be_null
|= path_can_be_null
;
3185 /* Reset for next path. */
3186 path_can_be_null
= true;
3188 p
= fail_stack
.stack
[--fail_stack
.avail
].pointer
;
3196 /* We should never be about to go beyond the end of the pattern. */
3199 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
3202 /* I guess the idea here is to simply not bother with a fastmap
3203 if a backreference is used, since it's too hard to figure out
3204 the fastmap for the corresponding group. Setting
3205 `can_be_null' stops `re_search_2' from using the fastmap, so
3206 that is all we do. */
3208 bufp
->can_be_null
= 1;
3212 /* Following are the cases which match a character. These end
3221 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
3222 if (p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
)))
3228 /* Chars beyond end of map must be allowed. */
3229 for (j
= *p
* BYTEWIDTH
; j
< (1 << BYTEWIDTH
); j
++)
3232 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
3233 if (!(p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
))))
3239 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3240 if (SYNTAX (j
) == Sword
)
3246 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3247 if (SYNTAX (j
) != Sword
)
3254 int fastmap_newline
= fastmap
['\n'];
3256 /* `.' matches anything ... */
3257 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3260 /* ... except perhaps newline. */
3261 if (!(bufp
->syntax
& RE_DOT_NEWLINE
))
3262 fastmap
['\n'] = fastmap_newline
;
3264 /* Return if we have already set `can_be_null'; if we have,
3265 then the fastmap is irrelevant. Something's wrong here. */
3266 else if (bufp
->can_be_null
)
3269 /* Otherwise, have to check alternative paths. */
3276 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3277 if (SYNTAX (j
) == (enum syntaxcode
) k
)
3284 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3285 if (SYNTAX (j
) != (enum syntaxcode
) k
)
3290 /* All cases after this match the empty string. These end with
3310 case push_dummy_failure
:
3315 case pop_failure_jump
:
3316 case maybe_pop_jump
:
3319 case dummy_failure_jump
:
3320 EXTRACT_NUMBER_AND_INCR (j
, p
);
3325 /* Jump backward implies we just went through the body of a
3326 loop and matched nothing. Opcode jumped to should be
3327 `on_failure_jump' or `succeed_n'. Just treat it like an
3328 ordinary jump. For a * loop, it has pushed its failure
3329 point already; if so, discard that as redundant. */
3330 if ((re_opcode_t
) *p
!= on_failure_jump
3331 && (re_opcode_t
) *p
!= succeed_n
)
3335 EXTRACT_NUMBER_AND_INCR (j
, p
);
3338 /* If what's on the stack is where we are now, pop it. */
3339 if (!FAIL_STACK_EMPTY ()
3340 && fail_stack
.stack
[fail_stack
.avail
- 1].pointer
== p
)
3346 case on_failure_jump
:
3347 case on_failure_keep_string_jump
:
3348 handle_on_failure_jump
:
3349 EXTRACT_NUMBER_AND_INCR (j
, p
);
3351 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3352 end of the pattern. We don't want to push such a point,
3353 since when we restore it above, entering the switch will
3354 increment `p' past the end of the pattern. We don't need
3355 to push such a point since we obviously won't find any more
3356 fastmap entries beyond `pend'. Such a pattern can match
3357 the null string, though. */
3360 if (!PUSH_PATTERN_OP (p
+ j
, fail_stack
))
3362 RESET_FAIL_STACK ();
3367 bufp
->can_be_null
= 1;
3371 EXTRACT_NUMBER_AND_INCR (k
, p
); /* Skip the n. */
3372 succeed_n_p
= false;
3379 /* Get to the number of times to succeed. */
3382 /* Increment p past the n for when k != 0. */
3383 EXTRACT_NUMBER_AND_INCR (k
, p
);
3387 succeed_n_p
= true; /* Spaghetti code alert. */
3388 goto handle_on_failure_jump
;
3405 abort (); /* We have listed all the cases. */
3408 /* Getting here means we have found the possible starting
3409 characters for one path of the pattern -- and that the empty
3410 string does not match. We need not follow this path further.
3411 Instead, look at the next alternative (remembered on the
3412 stack), or quit if no more. The test at the top of the loop
3413 does these things. */
3414 path_can_be_null
= false;
3418 /* Set `can_be_null' for the last path (also the first path, if the
3419 pattern is empty). */
3420 bufp
->can_be_null
|= path_can_be_null
;
3423 RESET_FAIL_STACK ();
3425 } /* re_compile_fastmap */
3427 weak_alias (__re_compile_fastmap
, re_compile_fastmap
)
3430 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3431 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3432 this memory for recording register information. STARTS and ENDS
3433 must be allocated using the malloc library routine, and must each
3434 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3436 If NUM_REGS == 0, then subsequent matches should allocate their own
3439 Unless this function is called, the first search or match using
3440 PATTERN_BUFFER will allocate its own register data, without
3441 freeing the old data. */
3444 re_set_registers (bufp
, regs
, num_regs
, starts
, ends
)
3445 struct re_pattern_buffer
*bufp
;
3446 struct re_registers
*regs
;
3448 regoff_t
*starts
, *ends
;
3452 bufp
->regs_allocated
= REGS_REALLOCATE
;
3453 regs
->num_regs
= num_regs
;
3454 regs
->start
= starts
;
3459 bufp
->regs_allocated
= REGS_UNALLOCATED
;
3461 regs
->start
= regs
->end
= (regoff_t
*) 0;
3465 weak_alias (__re_set_registers
, re_set_registers
)
3468 /* Searching routines. */
3470 /* Like re_search_2, below, but only one string is specified, and
3471 doesn't let you say where to stop matching. */
3474 re_search (bufp
, string
, size
, startpos
, range
, regs
)
3475 struct re_pattern_buffer
*bufp
;
3477 int size
, startpos
, range
;
3478 struct re_registers
*regs
;
3480 return re_search_2 (bufp
, NULL
, 0, string
, size
, startpos
, range
,
3484 weak_alias (__re_search
, re_search
)
3488 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3489 virtual concatenation of STRING1 and STRING2, starting first at index
3490 STARTPOS, then at STARTPOS + 1, and so on.
3492 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3494 RANGE is how far to scan while trying to match. RANGE = 0 means try
3495 only at STARTPOS; in general, the last start tried is STARTPOS +
3498 In REGS, return the indices of the virtual concatenation of STRING1
3499 and STRING2 that matched the entire BUFP->buffer and its contained
3502 Do not consider matching one past the index STOP in the virtual
3503 concatenation of STRING1 and STRING2.
3505 We return either the position in the strings at which the match was
3506 found, -1 if no match, or -2 if error (such as failure
3510 re_search_2 (bufp
, string1
, size1
, string2
, size2
, startpos
, range
, regs
, stop
)
3511 struct re_pattern_buffer
*bufp
;
3512 const char *string1
, *string2
;
3516 struct re_registers
*regs
;
3520 register char *fastmap
= bufp
->fastmap
;
3521 register RE_TRANSLATE_TYPE translate
= bufp
->translate
;
3522 int total_size
= size1
+ size2
;
3523 int endpos
= startpos
+ range
;
3525 /* Check for out-of-range STARTPOS. */
3526 if (startpos
< 0 || startpos
> total_size
)
3529 /* Fix up RANGE if it might eventually take us outside
3530 the virtual concatenation of STRING1 and STRING2.
3531 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3533 range
= 0 - startpos
;
3534 else if (endpos
> total_size
)
3535 range
= total_size
- startpos
;
3537 /* If the search isn't to be a backwards one, don't waste time in a
3538 search for a pattern that must be anchored. */
3539 if (bufp
->used
> 0 && range
> 0
3540 && ((re_opcode_t
) bufp
->buffer
[0] == begbuf
3541 /* `begline' is like `begbuf' if it cannot match at newlines. */
3542 || ((re_opcode_t
) bufp
->buffer
[0] == begline
3543 && !bufp
->newline_anchor
)))
3552 /* In a forward search for something that starts with \=.
3553 don't keep searching past point. */
3554 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == at_dot
&& range
> 0)
3556 range
= PT
- startpos
;
3562 /* Update the fastmap now if not correct already. */
3563 if (fastmap
&& !bufp
->fastmap_accurate
)
3564 if (re_compile_fastmap (bufp
) == -2)
3567 /* Loop through the string, looking for a place to start matching. */
3570 /* If a fastmap is supplied, skip quickly over characters that
3571 cannot be the start of a match. If the pattern can match the
3572 null string, however, we don't need to skip characters; we want
3573 the first null string. */
3574 if (fastmap
&& startpos
< total_size
&& !bufp
->can_be_null
)
3576 if (range
> 0) /* Searching forwards. */
3578 register const char *d
;
3579 register int lim
= 0;
3582 if (startpos
< size1
&& startpos
+ range
>= size1
)
3583 lim
= range
- (size1
- startpos
);
3585 d
= (startpos
>= size1
? string2
- size1
: string1
) + startpos
;
3587 /* Written out as an if-else to avoid testing `translate'
3591 && !fastmap
[(unsigned char)
3592 translate
[(unsigned char) *d
++]])
3595 while (range
> lim
&& !fastmap
[(unsigned char) *d
++])
3598 startpos
+= irange
- range
;
3600 else /* Searching backwards. */
3602 register char c
= (size1
== 0 || startpos
>= size1
3603 ? string2
[startpos
- size1
]
3604 : string1
[startpos
]);
3606 if (!fastmap
[(unsigned char) TRANSLATE (c
)])
3611 /* If can't match the null string, and that's all we have left, fail. */
3612 if (range
>= 0 && startpos
== total_size
&& fastmap
3613 && !bufp
->can_be_null
)
3616 val
= re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
3617 startpos
, regs
, stop
);
3618 #ifndef REGEX_MALLOC
3647 weak_alias (__re_search_2
, re_search_2
)
3650 /* This converts PTR, a pointer into one of the search strings `string1'
3651 and `string2' into an offset from the beginning of that string. */
3652 #define POINTER_TO_OFFSET(ptr) \
3653 (FIRST_STRING_P (ptr) \
3654 ? ((regoff_t) ((ptr) - string1)) \
3655 : ((regoff_t) ((ptr) - string2 + size1)))
3657 /* Macros for dealing with the split strings in re_match_2. */
3659 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3661 /* Call before fetching a character with *d. This switches over to
3662 string2 if necessary. */
3663 #define PREFETCH() \
3666 /* End of string2 => fail. */ \
3667 if (dend == end_match_2) \
3669 /* End of string1 => advance to string2. */ \
3671 dend = end_match_2; \
3675 /* Test if at very beginning or at very end of the virtual concatenation
3676 of `string1' and `string2'. If only one string, it's `string2'. */
3677 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3678 #define AT_STRINGS_END(d) ((d) == end2)
3681 /* Test if D points to a character which is word-constituent. We have
3682 two special cases to check for: if past the end of string1, look at
3683 the first character in string2; and if before the beginning of
3684 string2, look at the last character in string1. */
3685 #define WORDCHAR_P(d) \
3686 (SYNTAX ((d) == end1 ? *string2 \
3687 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3690 /* Disabled due to a compiler bug -- see comment at case wordbound */
3692 /* Test if the character before D and the one at D differ with respect
3693 to being word-constituent. */
3694 #define AT_WORD_BOUNDARY(d) \
3695 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3696 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3699 /* Free everything we malloc. */
3700 #ifdef MATCH_MAY_ALLOCATE
3701 # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
3702 # define FREE_VARIABLES() \
3704 REGEX_FREE_STACK (fail_stack.stack); \
3705 FREE_VAR (regstart); \
3706 FREE_VAR (regend); \
3707 FREE_VAR (old_regstart); \
3708 FREE_VAR (old_regend); \
3709 FREE_VAR (best_regstart); \
3710 FREE_VAR (best_regend); \
3711 FREE_VAR (reg_info); \
3712 FREE_VAR (reg_dummy); \
3713 FREE_VAR (reg_info_dummy); \
3716 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3717 #endif /* not MATCH_MAY_ALLOCATE */
3719 /* These values must meet several constraints. They must not be valid
3720 register values; since we have a limit of 255 registers (because
3721 we use only one byte in the pattern for the register number), we can
3722 use numbers larger than 255. They must differ by 1, because of
3723 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3724 be larger than the value for the highest register, so we do not try
3725 to actually save any registers when none are active. */
3726 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3727 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3729 /* Matching routines. */
3731 #ifndef emacs /* Emacs never uses this. */
3732 /* re_match is like re_match_2 except it takes only a single string. */
3735 re_match (bufp
, string
, size
, pos
, regs
)
3736 struct re_pattern_buffer
*bufp
;
3739 struct re_registers
*regs
;
3741 int result
= re_match_2_internal (bufp
, NULL
, 0, string
, size
,
3743 # ifndef REGEX_MALLOC
3751 weak_alias (__re_match
, re_match
)
3753 #endif /* not emacs */
3755 static boolean group_match_null_string_p
_RE_ARGS ((unsigned char **p
,
3757 register_info_type
*reg_info
));
3758 static boolean alt_match_null_string_p
_RE_ARGS ((unsigned char *p
,
3760 register_info_type
*reg_info
));
3761 static boolean common_op_match_null_string_p
_RE_ARGS ((unsigned char **p
,
3763 register_info_type
*reg_info
));
3764 static int bcmp_translate
_RE_ARGS ((const char *s1
, const char *s2
,
3765 int len
, char *translate
));
3767 /* re_match_2 matches the compiled pattern in BUFP against the
3768 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3769 and SIZE2, respectively). We start matching at POS, and stop
3772 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3773 store offsets for the substring each group matched in REGS. See the
3774 documentation for exactly how many groups we fill.
3776 We return -1 if no match, -2 if an internal error (such as the
3777 failure stack overflowing). Otherwise, we return the length of the
3778 matched substring. */
3781 re_match_2 (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
3782 struct re_pattern_buffer
*bufp
;
3783 const char *string1
, *string2
;
3786 struct re_registers
*regs
;
3789 int result
= re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
3791 #ifndef REGEX_MALLOC
3799 weak_alias (__re_match_2
, re_match_2
)
3802 /* This is a separate function so that we can force an alloca cleanup
3805 re_match_2_internal (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
3806 struct re_pattern_buffer
*bufp
;
3807 const char *string1
, *string2
;
3810 struct re_registers
*regs
;
3813 /* General temporaries. */
3817 /* Just past the end of the corresponding string. */
3818 const char *end1
, *end2
;
3820 /* Pointers into string1 and string2, just past the last characters in
3821 each to consider matching. */
3822 const char *end_match_1
, *end_match_2
;
3824 /* Where we are in the data, and the end of the current string. */
3825 const char *d
, *dend
;
3827 /* Where we are in the pattern, and the end of the pattern. */
3828 unsigned char *p
= bufp
->buffer
;
3829 register unsigned char *pend
= p
+ bufp
->used
;
3831 /* Mark the opcode just after a start_memory, so we can test for an
3832 empty subpattern when we get to the stop_memory. */
3833 unsigned char *just_past_start_mem
= 0;
3835 /* We use this to map every character in the string. */
3836 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
3838 /* Failure point stack. Each place that can handle a failure further
3839 down the line pushes a failure point on this stack. It consists of
3840 restart, regend, and reg_info for all registers corresponding to
3841 the subexpressions we're currently inside, plus the number of such
3842 registers, and, finally, two char *'s. The first char * is where
3843 to resume scanning the pattern; the second one is where to resume
3844 scanning the strings. If the latter is zero, the failure point is
3845 a ``dummy''; if a failure happens and the failure point is a dummy,
3846 it gets discarded and the next next one is tried. */
3847 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3848 fail_stack_type fail_stack
;
3851 static unsigned failure_id
= 0;
3852 unsigned nfailure_points_pushed
= 0, nfailure_points_popped
= 0;
3856 /* This holds the pointer to the failure stack, when
3857 it is allocated relocatably. */
3858 fail_stack_elt_t
*failure_stack_ptr
;
3861 /* We fill all the registers internally, independent of what we
3862 return, for use in backreferences. The number here includes
3863 an element for register zero. */
3864 size_t num_regs
= bufp
->re_nsub
+ 1;
3866 /* The currently active registers. */
3867 active_reg_t lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
3868 active_reg_t highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
3870 /* Information on the contents of registers. These are pointers into
3871 the input strings; they record just what was matched (on this
3872 attempt) by a subexpression part of the pattern, that is, the
3873 regnum-th regstart pointer points to where in the pattern we began
3874 matching and the regnum-th regend points to right after where we
3875 stopped matching the regnum-th subexpression. (The zeroth register
3876 keeps track of what the whole pattern matches.) */
3877 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3878 const char **regstart
, **regend
;
3881 /* If a group that's operated upon by a repetition operator fails to
3882 match anything, then the register for its start will need to be
3883 restored because it will have been set to wherever in the string we
3884 are when we last see its open-group operator. Similarly for a
3886 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3887 const char **old_regstart
, **old_regend
;
3890 /* The is_active field of reg_info helps us keep track of which (possibly
3891 nested) subexpressions we are currently in. The matched_something
3892 field of reg_info[reg_num] helps us tell whether or not we have
3893 matched any of the pattern so far this time through the reg_num-th
3894 subexpression. These two fields get reset each time through any
3895 loop their register is in. */
3896 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3897 register_info_type
*reg_info
;
3900 /* The following record the register info as found in the above
3901 variables when we find a match better than any we've seen before.
3902 This happens as we backtrack through the failure points, which in
3903 turn happens only if we have not yet matched the entire string. */
3904 unsigned best_regs_set
= false;
3905 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3906 const char **best_regstart
, **best_regend
;
3909 /* Logically, this is `best_regend[0]'. But we don't want to have to
3910 allocate space for that if we're not allocating space for anything
3911 else (see below). Also, we never need info about register 0 for
3912 any of the other register vectors, and it seems rather a kludge to
3913 treat `best_regend' differently than the rest. So we keep track of
3914 the end of the best match so far in a separate variable. We
3915 initialize this to NULL so that when we backtrack the first time
3916 and need to test it, it's not garbage. */
3917 const char *match_end
= NULL
;
3919 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
3920 int set_regs_matched_done
= 0;
3922 /* Used when we pop values we don't care about. */
3923 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3924 const char **reg_dummy
;
3925 register_info_type
*reg_info_dummy
;
3929 /* Counts the total number of registers pushed. */
3930 unsigned num_regs_pushed
= 0;
3933 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3937 #ifdef MATCH_MAY_ALLOCATE
3938 /* Do not bother to initialize all the register variables if there are
3939 no groups in the pattern, as it takes a fair amount of time. If
3940 there are groups, we include space for register 0 (the whole
3941 pattern), even though we never use it, since it simplifies the
3942 array indexing. We should fix this. */
3945 regstart
= REGEX_TALLOC (num_regs
, const char *);
3946 regend
= REGEX_TALLOC (num_regs
, const char *);
3947 old_regstart
= REGEX_TALLOC (num_regs
, const char *);
3948 old_regend
= REGEX_TALLOC (num_regs
, const char *);
3949 best_regstart
= REGEX_TALLOC (num_regs
, const char *);
3950 best_regend
= REGEX_TALLOC (num_regs
, const char *);
3951 reg_info
= REGEX_TALLOC (num_regs
, register_info_type
);
3952 reg_dummy
= REGEX_TALLOC (num_regs
, const char *);
3953 reg_info_dummy
= REGEX_TALLOC (num_regs
, register_info_type
);
3955 if (!(regstart
&& regend
&& old_regstart
&& old_regend
&& reg_info
3956 && best_regstart
&& best_regend
&& reg_dummy
&& reg_info_dummy
))
3964 /* We must initialize all our variables to NULL, so that
3965 `FREE_VARIABLES' doesn't try to free them. */
3966 regstart
= regend
= old_regstart
= old_regend
= best_regstart
3967 = best_regend
= reg_dummy
= NULL
;
3968 reg_info
= reg_info_dummy
= (register_info_type
*) NULL
;
3970 #endif /* MATCH_MAY_ALLOCATE */
3972 /* The starting position is bogus. */
3973 if (pos
< 0 || pos
> size1
+ size2
)
3979 /* Initialize subexpression text positions to -1 to mark ones that no
3980 start_memory/stop_memory has been seen for. Also initialize the
3981 register information struct. */
3982 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
3984 regstart
[mcnt
] = regend
[mcnt
]
3985 = old_regstart
[mcnt
] = old_regend
[mcnt
] = REG_UNSET_VALUE
;
3987 REG_MATCH_NULL_STRING_P (reg_info
[mcnt
]) = MATCH_NULL_UNSET_VALUE
;
3988 IS_ACTIVE (reg_info
[mcnt
]) = 0;
3989 MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
3990 EVER_MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
3993 /* We move `string1' into `string2' if the latter's empty -- but not if
3994 `string1' is null. */
3995 if (size2
== 0 && string1
!= NULL
)
4002 end1
= string1
+ size1
;
4003 end2
= string2
+ size2
;
4005 /* Compute where to stop matching, within the two strings. */
4008 end_match_1
= string1
+ stop
;
4009 end_match_2
= string2
;
4014 end_match_2
= string2
+ stop
- size1
;
4017 /* `p' scans through the pattern as `d' scans through the data.
4018 `dend' is the end of the input string that `d' points within. `d'
4019 is advanced into the following input string whenever necessary, but
4020 this happens before fetching; therefore, at the beginning of the
4021 loop, `d' can be pointing at the end of a string, but it cannot
4023 if (size1
> 0 && pos
<= size1
)
4030 d
= string2
+ pos
- size1
;
4034 DEBUG_PRINT1 ("The compiled pattern is:\n");
4035 DEBUG_PRINT_COMPILED_PATTERN (bufp
, p
, pend
);
4036 DEBUG_PRINT1 ("The string to match is: `");
4037 DEBUG_PRINT_DOUBLE_STRING (d
, string1
, size1
, string2
, size2
);
4038 DEBUG_PRINT1 ("'\n");
4040 /* This loops over pattern commands. It exits by returning from the
4041 function if the match is complete, or it drops through if the match
4042 fails at this starting point in the input data. */
4046 DEBUG_PRINT2 ("\n%p: ", p
);
4048 DEBUG_PRINT2 ("\n0x%x: ", p
);
4052 { /* End of pattern means we might have succeeded. */
4053 DEBUG_PRINT1 ("end of pattern ... ");
4055 /* If we haven't matched the entire string, and we want the
4056 longest match, try backtracking. */
4057 if (d
!= end_match_2
)
4059 /* 1 if this match ends in the same string (string1 or string2)
4060 as the best previous match. */
4061 boolean same_str_p
= (FIRST_STRING_P (match_end
)
4062 == MATCHING_IN_FIRST_STRING
);
4063 /* 1 if this match is the best seen so far. */
4064 boolean best_match_p
;
4066 /* AIX compiler got confused when this was combined
4067 with the previous declaration. */
4069 best_match_p
= d
> match_end
;
4071 best_match_p
= !MATCHING_IN_FIRST_STRING
;
4073 DEBUG_PRINT1 ("backtracking.\n");
4075 if (!FAIL_STACK_EMPTY ())
4076 { /* More failure points to try. */
4078 /* If exceeds best match so far, save it. */
4079 if (!best_regs_set
|| best_match_p
)
4081 best_regs_set
= true;
4084 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4086 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
4088 best_regstart
[mcnt
] = regstart
[mcnt
];
4089 best_regend
[mcnt
] = regend
[mcnt
];
4095 /* If no failure points, don't restore garbage. And if
4096 last match is real best match, don't restore second
4098 else if (best_regs_set
&& !best_match_p
)
4101 /* Restore best match. It may happen that `dend ==
4102 end_match_1' while the restored d is in string2.
4103 For example, the pattern `x.*y.*z' against the
4104 strings `x-' and `y-z-', if the two strings are
4105 not consecutive in memory. */
4106 DEBUG_PRINT1 ("Restoring best registers.\n");
4109 dend
= ((d
>= string1
&& d
<= end1
)
4110 ? end_match_1
: end_match_2
);
4112 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
4114 regstart
[mcnt
] = best_regstart
[mcnt
];
4115 regend
[mcnt
] = best_regend
[mcnt
];
4118 } /* d != end_match_2 */
4121 DEBUG_PRINT1 ("Accepting match.\n");
4123 /* If caller wants register contents data back, do it. */
4124 if (regs
&& !bufp
->no_sub
)
4126 /* Have the register data arrays been allocated? */
4127 if (bufp
->regs_allocated
== REGS_UNALLOCATED
)
4128 { /* No. So allocate them with malloc. We need one
4129 extra element beyond `num_regs' for the `-1' marker
4131 regs
->num_regs
= MAX (RE_NREGS
, num_regs
+ 1);
4132 regs
->start
= TALLOC (regs
->num_regs
, regoff_t
);
4133 regs
->end
= TALLOC (regs
->num_regs
, regoff_t
);
4134 if (regs
->start
== NULL
|| regs
->end
== NULL
)
4139 bufp
->regs_allocated
= REGS_REALLOCATE
;
4141 else if (bufp
->regs_allocated
== REGS_REALLOCATE
)
4142 { /* Yes. If we need more elements than were already
4143 allocated, reallocate them. If we need fewer, just
4145 if (regs
->num_regs
< num_regs
+ 1)
4147 regs
->num_regs
= num_regs
+ 1;
4148 RETALLOC (regs
->start
, regs
->num_regs
, regoff_t
);
4149 RETALLOC (regs
->end
, regs
->num_regs
, regoff_t
);
4150 if (regs
->start
== NULL
|| regs
->end
== NULL
)
4159 /* These braces fend off a "empty body in an else-statement"
4160 warning under GCC when assert expands to nothing. */
4161 assert (bufp
->regs_allocated
== REGS_FIXED
);
4164 /* Convert the pointer data in `regstart' and `regend' to
4165 indices. Register zero has to be set differently,
4166 since we haven't kept track of any info for it. */
4167 if (regs
->num_regs
> 0)
4169 regs
->start
[0] = pos
;
4170 regs
->end
[0] = (MATCHING_IN_FIRST_STRING
4171 ? ((regoff_t
) (d
- string1
))
4172 : ((regoff_t
) (d
- string2
+ size1
)));
4175 /* Go through the first `min (num_regs, regs->num_regs)'
4176 registers, since that is all we initialized. */
4177 for (mcnt
= 1; (unsigned) mcnt
< MIN (num_regs
, regs
->num_regs
);
4180 if (REG_UNSET (regstart
[mcnt
]) || REG_UNSET (regend
[mcnt
]))
4181 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
4185 = (regoff_t
) POINTER_TO_OFFSET (regstart
[mcnt
]);
4187 = (regoff_t
) POINTER_TO_OFFSET (regend
[mcnt
]);
4191 /* If the regs structure we return has more elements than
4192 were in the pattern, set the extra elements to -1. If
4193 we (re)allocated the registers, this is the case,
4194 because we always allocate enough to have at least one
4196 for (mcnt
= num_regs
; (unsigned) mcnt
< regs
->num_regs
; mcnt
++)
4197 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
4198 } /* regs && !bufp->no_sub */
4200 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4201 nfailure_points_pushed
, nfailure_points_popped
,
4202 nfailure_points_pushed
- nfailure_points_popped
);
4203 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed
);
4205 mcnt
= d
- pos
- (MATCHING_IN_FIRST_STRING
4209 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt
);
4215 /* Otherwise match next pattern command. */
4216 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
4218 /* Ignore these. Used to ignore the n of succeed_n's which
4219 currently have n == 0. */
4221 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4225 DEBUG_PRINT1 ("EXECUTING succeed.\n");
4228 /* Match the next n pattern characters exactly. The following
4229 byte in the pattern defines n, and the n bytes after that
4230 are the characters to match. */
4233 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt
);
4235 /* This is written out as an if-else so we don't waste time
4236 testing `translate' inside the loop. */
4242 if ((unsigned char) translate
[(unsigned char) *d
++]
4243 != (unsigned char) *p
++)
4253 if (*d
++ != (char) *p
++) goto fail
;
4257 SET_REGS_MATCHED ();
4261 /* Match any character except possibly a newline or a null. */
4263 DEBUG_PRINT1 ("EXECUTING anychar.\n");
4267 if ((!(bufp
->syntax
& RE_DOT_NEWLINE
) && TRANSLATE (*d
) == '\n')
4268 || (bufp
->syntax
& RE_DOT_NOT_NULL
&& TRANSLATE (*d
) == '\000'))
4271 SET_REGS_MATCHED ();
4272 DEBUG_PRINT2 (" Matched `%d'.\n", *d
);
4280 register unsigned char c
;
4281 boolean
not = (re_opcode_t
) *(p
- 1) == charset_not
;
4283 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4286 c
= TRANSLATE (*d
); /* The character to match. */
4288 /* Cast to `unsigned' instead of `unsigned char' in case the
4289 bit list is a full 32 bytes long. */
4290 if (c
< (unsigned) (*p
* BYTEWIDTH
)
4291 && p
[1 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4296 if (!not) goto fail
;
4298 SET_REGS_MATCHED ();
4304 /* The beginning of a group is represented by start_memory.
4305 The arguments are the register number in the next byte, and the
4306 number of groups inner to this one in the next. The text
4307 matched within the group is recorded (in the internal
4308 registers data structure) under the register number. */
4310 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p
, p
[1]);
4312 /* Find out if this group can match the empty string. */
4313 p1
= p
; /* To send to group_match_null_string_p. */
4315 if (REG_MATCH_NULL_STRING_P (reg_info
[*p
]) == MATCH_NULL_UNSET_VALUE
)
4316 REG_MATCH_NULL_STRING_P (reg_info
[*p
])
4317 = group_match_null_string_p (&p1
, pend
, reg_info
);
4319 /* Save the position in the string where we were the last time
4320 we were at this open-group operator in case the group is
4321 operated upon by a repetition operator, e.g., with `(a*)*b'
4322 against `ab'; then we want to ignore where we are now in
4323 the string in case this attempt to match fails. */
4324 old_regstart
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
4325 ? REG_UNSET (regstart
[*p
]) ? d
: regstart
[*p
]
4327 DEBUG_PRINT2 (" old_regstart: %d\n",
4328 POINTER_TO_OFFSET (old_regstart
[*p
]));
4331 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart
[*p
]));
4333 IS_ACTIVE (reg_info
[*p
]) = 1;
4334 MATCHED_SOMETHING (reg_info
[*p
]) = 0;
4336 /* Clear this whenever we change the register activity status. */
4337 set_regs_matched_done
= 0;
4339 /* This is the new highest active register. */
4340 highest_active_reg
= *p
;
4342 /* If nothing was active before, this is the new lowest active
4344 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
4345 lowest_active_reg
= *p
;
4347 /* Move past the register number and inner group count. */
4349 just_past_start_mem
= p
;
4354 /* The stop_memory opcode represents the end of a group. Its
4355 arguments are the same as start_memory's: the register
4356 number, and the number of inner groups. */
4358 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p
, p
[1]);
4360 /* We need to save the string position the last time we were at
4361 this close-group operator in case the group is operated
4362 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4363 against `aba'; then we want to ignore where we are now in
4364 the string in case this attempt to match fails. */
4365 old_regend
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
4366 ? REG_UNSET (regend
[*p
]) ? d
: regend
[*p
]
4368 DEBUG_PRINT2 (" old_regend: %d\n",
4369 POINTER_TO_OFFSET (old_regend
[*p
]));
4372 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend
[*p
]));
4374 /* This register isn't active anymore. */
4375 IS_ACTIVE (reg_info
[*p
]) = 0;
4377 /* Clear this whenever we change the register activity status. */
4378 set_regs_matched_done
= 0;
4380 /* If this was the only register active, nothing is active
4382 if (lowest_active_reg
== highest_active_reg
)
4384 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
4385 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
4388 { /* We must scan for the new highest active register, since
4389 it isn't necessarily one less than now: consider
4390 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4391 new highest active register is 1. */
4392 unsigned char r
= *p
- 1;
4393 while (r
> 0 && !IS_ACTIVE (reg_info
[r
]))
4396 /* If we end up at register zero, that means that we saved
4397 the registers as the result of an `on_failure_jump', not
4398 a `start_memory', and we jumped to past the innermost
4399 `stop_memory'. For example, in ((.)*) we save
4400 registers 1 and 2 as a result of the *, but when we pop
4401 back to the second ), we are at the stop_memory 1.
4402 Thus, nothing is active. */
4405 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
4406 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
4409 highest_active_reg
= r
;
4412 /* If just failed to match something this time around with a
4413 group that's operated on by a repetition operator, try to
4414 force exit from the ``loop'', and restore the register
4415 information for this group that we had before trying this
4417 if ((!MATCHED_SOMETHING (reg_info
[*p
])
4418 || just_past_start_mem
== p
- 1)
4421 boolean is_a_jump_n
= false;
4425 switch ((re_opcode_t
) *p1
++)
4429 case pop_failure_jump
:
4430 case maybe_pop_jump
:
4432 case dummy_failure_jump
:
4433 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4443 /* If the next operation is a jump backwards in the pattern
4444 to an on_failure_jump right before the start_memory
4445 corresponding to this stop_memory, exit from the loop
4446 by forcing a failure after pushing on the stack the
4447 on_failure_jump's jump in the pattern, and d. */
4448 if (mcnt
< 0 && (re_opcode_t
) *p1
== on_failure_jump
4449 && (re_opcode_t
) p1
[3] == start_memory
&& p1
[4] == *p
)
4451 /* If this group ever matched anything, then restore
4452 what its registers were before trying this last
4453 failed match, e.g., with `(a*)*b' against `ab' for
4454 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4455 against `aba' for regend[3].
4457 Also restore the registers for inner groups for,
4458 e.g., `((a*)(b*))*' against `aba' (register 3 would
4459 otherwise get trashed). */
4461 if (EVER_MATCHED_SOMETHING (reg_info
[*p
]))
4465 EVER_MATCHED_SOMETHING (reg_info
[*p
]) = 0;
4467 /* Restore this and inner groups' (if any) registers. */
4468 for (r
= *p
; r
< (unsigned) *p
+ (unsigned) *(p
+ 1);
4471 regstart
[r
] = old_regstart
[r
];
4473 /* xx why this test? */
4474 if (old_regend
[r
] >= regstart
[r
])
4475 regend
[r
] = old_regend
[r
];
4479 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4480 PUSH_FAILURE_POINT (p1
+ mcnt
, d
, -2);
4486 /* Move past the register number and the inner group count. */
4491 /* \<digit> has been turned into a `duplicate' command which is
4492 followed by the numeric value of <digit> as the register number. */
4495 register const char *d2
, *dend2
;
4496 int regno
= *p
++; /* Get which register to match against. */
4497 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno
);
4499 /* Can't back reference a group which we've never matched. */
4500 if (REG_UNSET (regstart
[regno
]) || REG_UNSET (regend
[regno
]))
4503 /* Where in input to try to start matching. */
4504 d2
= regstart
[regno
];
4506 /* Where to stop matching; if both the place to start and
4507 the place to stop matching are in the same string, then
4508 set to the place to stop, otherwise, for now have to use
4509 the end of the first string. */
4511 dend2
= ((FIRST_STRING_P (regstart
[regno
])
4512 == FIRST_STRING_P (regend
[regno
]))
4513 ? regend
[regno
] : end_match_1
);
4516 /* If necessary, advance to next segment in register
4520 if (dend2
== end_match_2
) break;
4521 if (dend2
== regend
[regno
]) break;
4523 /* End of string1 => advance to string2. */
4525 dend2
= regend
[regno
];
4527 /* At end of register contents => success */
4528 if (d2
== dend2
) break;
4530 /* If necessary, advance to next segment in data. */
4533 /* How many characters left in this segment to match. */
4536 /* Want how many consecutive characters we can match in
4537 one shot, so, if necessary, adjust the count. */
4538 if (mcnt
> dend2
- d2
)
4541 /* Compare that many; failure if mismatch, else move
4544 ? bcmp_translate (d
, d2
, mcnt
, translate
)
4545 : memcmp (d
, d2
, mcnt
))
4547 d
+= mcnt
, d2
+= mcnt
;
4549 /* Do this because we've match some characters. */
4550 SET_REGS_MATCHED ();
4556 /* begline matches the empty string at the beginning of the string
4557 (unless `not_bol' is set in `bufp'), and, if
4558 `newline_anchor' is set, after newlines. */
4560 DEBUG_PRINT1 ("EXECUTING begline.\n");
4562 if (AT_STRINGS_BEG (d
))
4564 if (!bufp
->not_bol
) break;
4566 else if (d
[-1] == '\n' && bufp
->newline_anchor
)
4570 /* In all other cases, we fail. */
4574 /* endline is the dual of begline. */
4576 DEBUG_PRINT1 ("EXECUTING endline.\n");
4578 if (AT_STRINGS_END (d
))
4580 if (!bufp
->not_eol
) break;
4583 /* We have to ``prefetch'' the next character. */
4584 else if ((d
== end1
? *string2
: *d
) == '\n'
4585 && bufp
->newline_anchor
)
4592 /* Match at the very beginning of the data. */
4594 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4595 if (AT_STRINGS_BEG (d
))
4600 /* Match at the very end of the data. */
4602 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4603 if (AT_STRINGS_END (d
))
4608 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4609 pushes NULL as the value for the string on the stack. Then
4610 `pop_failure_point' will keep the current value for the
4611 string, instead of restoring it. To see why, consider
4612 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4613 then the . fails against the \n. But the next thing we want
4614 to do is match the \n against the \n; if we restored the
4615 string value, we would be back at the foo.
4617 Because this is used only in specific cases, we don't need to
4618 check all the things that `on_failure_jump' does, to make
4619 sure the right things get saved on the stack. Hence we don't
4620 share its code. The only reason to push anything on the
4621 stack at all is that otherwise we would have to change
4622 `anychar's code to do something besides goto fail in this
4623 case; that seems worse than this. */
4624 case on_failure_keep_string_jump
:
4625 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4627 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4629 DEBUG_PRINT3 (" %d (to %p):\n", mcnt
, p
+ mcnt
);
4631 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt
, p
+ mcnt
);
4634 PUSH_FAILURE_POINT (p
+ mcnt
, NULL
, -2);
4638 /* Uses of on_failure_jump:
4640 Each alternative starts with an on_failure_jump that points
4641 to the beginning of the next alternative. Each alternative
4642 except the last ends with a jump that in effect jumps past
4643 the rest of the alternatives. (They really jump to the
4644 ending jump of the following alternative, because tensioning
4645 these jumps is a hassle.)
4647 Repeats start with an on_failure_jump that points past both
4648 the repetition text and either the following jump or
4649 pop_failure_jump back to this on_failure_jump. */
4650 case on_failure_jump
:
4652 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4654 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4656 DEBUG_PRINT3 (" %d (to %p)", mcnt
, p
+ mcnt
);
4658 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt
, p
+ mcnt
);
4661 /* If this on_failure_jump comes right before a group (i.e.,
4662 the original * applied to a group), save the information
4663 for that group and all inner ones, so that if we fail back
4664 to this point, the group's information will be correct.
4665 For example, in \(a*\)*\1, we need the preceding group,
4666 and in \(zz\(a*\)b*\)\2, we need the inner group. */
4668 /* We can't use `p' to check ahead because we push
4669 a failure point to `p + mcnt' after we do this. */
4672 /* We need to skip no_op's before we look for the
4673 start_memory in case this on_failure_jump is happening as
4674 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4676 while (p1
< pend
&& (re_opcode_t
) *p1
== no_op
)
4679 if (p1
< pend
&& (re_opcode_t
) *p1
== start_memory
)
4681 /* We have a new highest active register now. This will
4682 get reset at the start_memory we are about to get to,
4683 but we will have saved all the registers relevant to
4684 this repetition op, as described above. */
4685 highest_active_reg
= *(p1
+ 1) + *(p1
+ 2);
4686 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
4687 lowest_active_reg
= *(p1
+ 1);
4690 DEBUG_PRINT1 (":\n");
4691 PUSH_FAILURE_POINT (p
+ mcnt
, d
, -2);
4695 /* A smart repeat ends with `maybe_pop_jump'.
4696 We change it to either `pop_failure_jump' or `jump'. */
4697 case maybe_pop_jump
:
4698 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4699 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt
);
4701 register unsigned char *p2
= p
;
4703 /* Compare the beginning of the repeat with what in the
4704 pattern follows its end. If we can establish that there
4705 is nothing that they would both match, i.e., that we
4706 would have to backtrack because of (as in, e.g., `a*a')
4707 then we can change to pop_failure_jump, because we'll
4708 never have to backtrack.
4710 This is not true in the case of alternatives: in
4711 `(a|ab)*' we do need to backtrack to the `ab' alternative
4712 (e.g., if the string was `ab'). But instead of trying to
4713 detect that here, the alternative has put on a dummy
4714 failure point which is what we will end up popping. */
4716 /* Skip over open/close-group commands.
4717 If what follows this loop is a ...+ construct,
4718 look at what begins its body, since we will have to
4719 match at least one of that. */
4723 && ((re_opcode_t
) *p2
== stop_memory
4724 || (re_opcode_t
) *p2
== start_memory
))
4726 else if (p2
+ 6 < pend
4727 && (re_opcode_t
) *p2
== dummy_failure_jump
)
4734 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4735 to the `maybe_finalize_jump' of this case. Examine what
4738 /* If we're at the end of the pattern, we can change. */
4741 /* Consider what happens when matching ":\(.*\)"
4742 against ":/". I don't really understand this code
4744 p
[-3] = (unsigned char) pop_failure_jump
;
4746 (" End of pattern: change to `pop_failure_jump'.\n");
4749 else if ((re_opcode_t
) *p2
== exactn
4750 || (bufp
->newline_anchor
&& (re_opcode_t
) *p2
== endline
))
4752 register unsigned char c
4753 = *p2
== (unsigned char) endline
? '\n' : p2
[2];
4755 if ((re_opcode_t
) p1
[3] == exactn
&& p1
[5] != c
)
4757 p
[-3] = (unsigned char) pop_failure_jump
;
4758 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4762 else if ((re_opcode_t
) p1
[3] == charset
4763 || (re_opcode_t
) p1
[3] == charset_not
)
4765 int not = (re_opcode_t
) p1
[3] == charset_not
;
4767 if (c
< (unsigned char) (p1
[4] * BYTEWIDTH
)
4768 && p1
[5 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4771 /* `not' is equal to 1 if c would match, which means
4772 that we can't change to pop_failure_jump. */
4775 p
[-3] = (unsigned char) pop_failure_jump
;
4776 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4780 else if ((re_opcode_t
) *p2
== charset
)
4783 register unsigned char c
4784 = *p2
== (unsigned char) endline
? '\n' : p2
[2];
4788 if ((re_opcode_t
) p1
[3] == exactn
4789 && ! ((int) p2
[1] * BYTEWIDTH
> (int) p1
[5]
4790 && (p2
[2 + p1
[5] / BYTEWIDTH
]
4791 & (1 << (p1
[5] % BYTEWIDTH
)))))
4793 if ((re_opcode_t
) p1
[3] == exactn
4794 && ! ((int) p2
[1] * BYTEWIDTH
> (int) p1
[4]
4795 && (p2
[2 + p1
[4] / BYTEWIDTH
]
4796 & (1 << (p1
[4] % BYTEWIDTH
)))))
4799 p
[-3] = (unsigned char) pop_failure_jump
;
4800 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4804 else if ((re_opcode_t
) p1
[3] == charset_not
)
4807 /* We win if the charset_not inside the loop
4808 lists every character listed in the charset after. */
4809 for (idx
= 0; idx
< (int) p2
[1]; idx
++)
4810 if (! (p2
[2 + idx
] == 0
4811 || (idx
< (int) p1
[4]
4812 && ((p2
[2 + idx
] & ~ p1
[5 + idx
]) == 0))))
4817 p
[-3] = (unsigned char) pop_failure_jump
;
4818 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4821 else if ((re_opcode_t
) p1
[3] == charset
)
4824 /* We win if the charset inside the loop
4825 has no overlap with the one after the loop. */
4827 idx
< (int) p2
[1] && idx
< (int) p1
[4];
4829 if ((p2
[2 + idx
] & p1
[5 + idx
]) != 0)
4832 if (idx
== p2
[1] || idx
== p1
[4])
4834 p
[-3] = (unsigned char) pop_failure_jump
;
4835 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4840 p
-= 2; /* Point at relative address again. */
4841 if ((re_opcode_t
) p
[-1] != pop_failure_jump
)
4843 p
[-1] = (unsigned char) jump
;
4844 DEBUG_PRINT1 (" Match => jump.\n");
4845 goto unconditional_jump
;
4847 /* Note fall through. */
4850 /* The end of a simple repeat has a pop_failure_jump back to
4851 its matching on_failure_jump, where the latter will push a
4852 failure point. The pop_failure_jump takes off failure
4853 points put on by this pop_failure_jump's matching
4854 on_failure_jump; we got through the pattern to here from the
4855 matching on_failure_jump, so didn't fail. */
4856 case pop_failure_jump
:
4858 /* We need to pass separate storage for the lowest and
4859 highest registers, even though we don't care about the
4860 actual values. Otherwise, we will restore only one
4861 register from the stack, since lowest will == highest in
4862 `pop_failure_point'. */
4863 active_reg_t dummy_low_reg
, dummy_high_reg
;
4864 unsigned char *pdummy
;
4867 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4868 POP_FAILURE_POINT (sdummy
, pdummy
,
4869 dummy_low_reg
, dummy_high_reg
,
4870 reg_dummy
, reg_dummy
, reg_info_dummy
);
4872 /* Note fall through. */
4876 DEBUG_PRINT2 ("\n%p: ", p
);
4878 DEBUG_PRINT2 ("\n0x%x: ", p
);
4880 /* Note fall through. */
4882 /* Unconditionally jump (without popping any failure points). */
4884 EXTRACT_NUMBER_AND_INCR (mcnt
, p
); /* Get the amount to jump. */
4885 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt
);
4886 p
+= mcnt
; /* Do the jump. */
4888 DEBUG_PRINT2 ("(to %p).\n", p
);
4890 DEBUG_PRINT2 ("(to 0x%x).\n", p
);
4895 /* We need this opcode so we can detect where alternatives end
4896 in `group_match_null_string_p' et al. */
4898 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4899 goto unconditional_jump
;
4902 /* Normally, the on_failure_jump pushes a failure point, which
4903 then gets popped at pop_failure_jump. We will end up at
4904 pop_failure_jump, also, and with a pattern of, say, `a+', we
4905 are skipping over the on_failure_jump, so we have to push
4906 something meaningless for pop_failure_jump to pop. */
4907 case dummy_failure_jump
:
4908 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4909 /* It doesn't matter what we push for the string here. What
4910 the code at `fail' tests is the value for the pattern. */
4911 PUSH_FAILURE_POINT (NULL
, NULL
, -2);
4912 goto unconditional_jump
;
4915 /* At the end of an alternative, we need to push a dummy failure
4916 point in case we are followed by a `pop_failure_jump', because
4917 we don't want the failure point for the alternative to be
4918 popped. For example, matching `(a|ab)*' against `aab'
4919 requires that we match the `ab' alternative. */
4920 case push_dummy_failure
:
4921 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4922 /* See comments just above at `dummy_failure_jump' about the
4924 PUSH_FAILURE_POINT (NULL
, NULL
, -2);
4927 /* Have to succeed matching what follows at least n times.
4928 After that, handle like `on_failure_jump'. */
4930 EXTRACT_NUMBER (mcnt
, p
+ 2);
4931 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt
);
4934 /* Originally, this is how many times we HAVE to succeed. */
4939 STORE_NUMBER_AND_INCR (p
, mcnt
);
4941 DEBUG_PRINT3 (" Setting %p to %d.\n", p
- 2, mcnt
);
4943 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p
- 2, mcnt
);
4949 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n", p
+2);
4951 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p
+2);
4953 p
[2] = (unsigned char) no_op
;
4954 p
[3] = (unsigned char) no_op
;
4960 EXTRACT_NUMBER (mcnt
, p
+ 2);
4961 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt
);
4963 /* Originally, this is how many times we CAN jump. */
4967 STORE_NUMBER (p
+ 2, mcnt
);
4969 DEBUG_PRINT3 (" Setting %p to %d.\n", p
+ 2, mcnt
);
4971 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p
+ 2, mcnt
);
4973 goto unconditional_jump
;
4975 /* If don't have to jump any more, skip over the rest of command. */
4982 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4984 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4986 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4988 DEBUG_PRINT3 (" Setting %p to %d.\n", p1
, mcnt
);
4990 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1
, mcnt
);
4992 STORE_NUMBER (p1
, mcnt
);
4997 /* The DEC Alpha C compiler 3.x generates incorrect code for the
4998 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4999 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
5000 macro and introducing temporary variables works around the bug. */
5003 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
5004 if (AT_WORD_BOUNDARY (d
))
5009 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
5010 if (AT_WORD_BOUNDARY (d
))
5016 boolean prevchar
, thischar
;
5018 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
5019 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
5022 prevchar
= WORDCHAR_P (d
- 1);
5023 thischar
= WORDCHAR_P (d
);
5024 if (prevchar
!= thischar
)
5031 boolean prevchar
, thischar
;
5033 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
5034 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
5037 prevchar
= WORDCHAR_P (d
- 1);
5038 thischar
= WORDCHAR_P (d
);
5039 if (prevchar
!= thischar
)
5046 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5047 if (WORDCHAR_P (d
) && (AT_STRINGS_BEG (d
) || !WORDCHAR_P (d
- 1)))
5052 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5053 if (!AT_STRINGS_BEG (d
) && WORDCHAR_P (d
- 1)
5054 && (!WORDCHAR_P (d
) || AT_STRINGS_END (d
)))
5060 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5061 if (PTR_CHAR_POS ((unsigned char *) d
) >= point
)
5066 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5067 if (PTR_CHAR_POS ((unsigned char *) d
) != point
)
5072 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5073 if (PTR_CHAR_POS ((unsigned char *) d
) <= point
)
5078 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt
);
5083 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
5087 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5089 if (SYNTAX (d
[-1]) != (enum syntaxcode
) mcnt
)
5091 SET_REGS_MATCHED ();
5095 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt
);
5097 goto matchnotsyntax
;
5100 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
5104 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5106 if (SYNTAX (d
[-1]) == (enum syntaxcode
) mcnt
)
5108 SET_REGS_MATCHED ();
5111 #else /* not emacs */
5113 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
5115 if (!WORDCHAR_P (d
))
5117 SET_REGS_MATCHED ();
5122 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
5126 SET_REGS_MATCHED ();
5129 #endif /* not emacs */
5134 continue; /* Successfully executed one pattern command; keep going. */
5137 /* We goto here if a matching operation fails. */
5139 if (!FAIL_STACK_EMPTY ())
5140 { /* A restart point is known. Restore to that state. */
5141 DEBUG_PRINT1 ("\nFAIL:\n");
5142 POP_FAILURE_POINT (d
, p
,
5143 lowest_active_reg
, highest_active_reg
,
5144 regstart
, regend
, reg_info
);
5146 /* If this failure point is a dummy, try the next one. */
5150 /* If we failed to the end of the pattern, don't examine *p. */
5154 boolean is_a_jump_n
= false;
5156 /* If failed to a backwards jump that's part of a repetition
5157 loop, need to pop this failure point and use the next one. */
5158 switch ((re_opcode_t
) *p
)
5162 case maybe_pop_jump
:
5163 case pop_failure_jump
:
5166 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5169 if ((is_a_jump_n
&& (re_opcode_t
) *p1
== succeed_n
)
5171 && (re_opcode_t
) *p1
== on_failure_jump
))
5179 if (d
>= string1
&& d
<= end1
)
5183 break; /* Matching at this starting point really fails. */
5187 goto restore_best_regs
;
5191 return -1; /* Failure to match. */
5194 /* Subroutine definitions for re_match_2. */
5197 /* We are passed P pointing to a register number after a start_memory.
5199 Return true if the pattern up to the corresponding stop_memory can
5200 match the empty string, and false otherwise.
5202 If we find the matching stop_memory, sets P to point to one past its number.
5203 Otherwise, sets P to an undefined byte less than or equal to END.
5205 We don't handle duplicates properly (yet). */
5208 group_match_null_string_p (p
, end
, reg_info
)
5209 unsigned char **p
, *end
;
5210 register_info_type
*reg_info
;
5213 /* Point to after the args to the start_memory. */
5214 unsigned char *p1
= *p
+ 2;
5218 /* Skip over opcodes that can match nothing, and return true or
5219 false, as appropriate, when we get to one that can't, or to the
5220 matching stop_memory. */
5222 switch ((re_opcode_t
) *p1
)
5224 /* Could be either a loop or a series of alternatives. */
5225 case on_failure_jump
:
5227 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5229 /* If the next operation is not a jump backwards in the
5234 /* Go through the on_failure_jumps of the alternatives,
5235 seeing if any of the alternatives cannot match nothing.
5236 The last alternative starts with only a jump,
5237 whereas the rest start with on_failure_jump and end
5238 with a jump, e.g., here is the pattern for `a|b|c':
5240 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5241 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5244 So, we have to first go through the first (n-1)
5245 alternatives and then deal with the last one separately. */
5248 /* Deal with the first (n-1) alternatives, which start
5249 with an on_failure_jump (see above) that jumps to right
5250 past a jump_past_alt. */
5252 while ((re_opcode_t
) p1
[mcnt
-3] == jump_past_alt
)
5254 /* `mcnt' holds how many bytes long the alternative
5255 is, including the ending `jump_past_alt' and
5258 if (!alt_match_null_string_p (p1
, p1
+ mcnt
- 3,
5262 /* Move to right after this alternative, including the
5266 /* Break if it's the beginning of an n-th alternative
5267 that doesn't begin with an on_failure_jump. */
5268 if ((re_opcode_t
) *p1
!= on_failure_jump
)
5271 /* Still have to check that it's not an n-th
5272 alternative that starts with an on_failure_jump. */
5274 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5275 if ((re_opcode_t
) p1
[mcnt
-3] != jump_past_alt
)
5277 /* Get to the beginning of the n-th alternative. */
5283 /* Deal with the last alternative: go back and get number
5284 of the `jump_past_alt' just before it. `mcnt' contains
5285 the length of the alternative. */
5286 EXTRACT_NUMBER (mcnt
, p1
- 2);
5288 if (!alt_match_null_string_p (p1
, p1
+ mcnt
, reg_info
))
5291 p1
+= mcnt
; /* Get past the n-th alternative. */
5297 assert (p1
[1] == **p
);
5303 if (!common_op_match_null_string_p (&p1
, end
, reg_info
))
5306 } /* while p1 < end */
5309 } /* group_match_null_string_p */
5312 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5313 It expects P to be the first byte of a single alternative and END one
5314 byte past the last. The alternative can contain groups. */
5317 alt_match_null_string_p (p
, end
, reg_info
)
5318 unsigned char *p
, *end
;
5319 register_info_type
*reg_info
;
5322 unsigned char *p1
= p
;
5326 /* Skip over opcodes that can match nothing, and break when we get
5327 to one that can't. */
5329 switch ((re_opcode_t
) *p1
)
5332 case on_failure_jump
:
5334 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5339 if (!common_op_match_null_string_p (&p1
, end
, reg_info
))
5342 } /* while p1 < end */
5345 } /* alt_match_null_string_p */
5348 /* Deals with the ops common to group_match_null_string_p and
5349 alt_match_null_string_p.
5351 Sets P to one after the op and its arguments, if any. */
5354 common_op_match_null_string_p (p
, end
, reg_info
)
5355 unsigned char **p
, *end
;
5356 register_info_type
*reg_info
;
5361 unsigned char *p1
= *p
;
5363 switch ((re_opcode_t
) *p1
++)
5383 assert (reg_no
> 0 && reg_no
<= MAX_REGNUM
);
5384 ret
= group_match_null_string_p (&p1
, end
, reg_info
);
5386 /* Have to set this here in case we're checking a group which
5387 contains a group and a back reference to it. */
5389 if (REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) == MATCH_NULL_UNSET_VALUE
)
5390 REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) = ret
;
5396 /* If this is an optimized succeed_n for zero times, make the jump. */
5398 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5406 /* Get to the number of times to succeed. */
5408 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5413 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5421 if (!REG_MATCH_NULL_STRING_P (reg_info
[*p1
]))
5429 /* All other opcodes mean we cannot match the empty string. */
5435 } /* common_op_match_null_string_p */
5438 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5439 bytes; nonzero otherwise. */
5442 bcmp_translate (s1
, s2
, len
, translate
)
5443 const char *s1
, *s2
;
5445 RE_TRANSLATE_TYPE translate
;
5447 register const unsigned char *p1
= (const unsigned char *) s1
;
5448 register const unsigned char *p2
= (const unsigned char *) s2
;
5451 if (translate
[*p1
++] != translate
[*p2
++]) return 1;
5457 /* Entry points for GNU code. */
5459 /* re_compile_pattern is the GNU regular expression compiler: it
5460 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5461 Returns 0 if the pattern was valid, otherwise an error string.
5463 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5464 are set in BUFP on entry.
5466 We call regex_compile to do the actual compilation. */
5469 re_compile_pattern (pattern
, length
, bufp
)
5470 const char *pattern
;
5472 struct re_pattern_buffer
*bufp
;
5476 /* GNU code is written to assume at least RE_NREGS registers will be set
5477 (and at least one extra will be -1). */
5478 bufp
->regs_allocated
= REGS_UNALLOCATED
;
5480 /* And GNU code determines whether or not to get register information
5481 by passing null for the REGS argument to re_match, etc., not by
5485 /* Match anchors at newline. */
5486 bufp
->newline_anchor
= 1;
5488 ret
= regex_compile (pattern
, length
, re_syntax_options
, bufp
);
5492 return gettext (re_error_msgid
[(int) ret
]);
5495 weak_alias (__re_compile_pattern
, re_compile_pattern
)
5498 /* Entry points compatible with 4.2 BSD regex library. We don't define
5499 them unless specifically requested. */
5501 #if defined _REGEX_RE_COMP || defined _LIBC
5503 /* BSD has one and only one pattern buffer. */
5504 static struct re_pattern_buffer re_comp_buf
;
5508 /* Make these definitions weak in libc, so POSIX programs can redefine
5509 these names if they don't use our functions, and still use
5510 regcomp/regexec below without link errors. */
5520 if (!re_comp_buf
.buffer
)
5521 return gettext ("No previous regular expression");
5525 if (!re_comp_buf
.buffer
)
5527 re_comp_buf
.buffer
= (unsigned char *) malloc (200);
5528 if (re_comp_buf
.buffer
== NULL
)
5529 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
5530 re_comp_buf
.allocated
= 200;
5532 re_comp_buf
.fastmap
= (char *) malloc (1 << BYTEWIDTH
);
5533 if (re_comp_buf
.fastmap
== NULL
)
5534 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
5537 /* Since `re_exec' always passes NULL for the `regs' argument, we
5538 don't need to initialize the pattern buffer fields which affect it. */
5540 /* Match anchors at newlines. */
5541 re_comp_buf
.newline_anchor
= 1;
5543 ret
= regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
5548 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5549 return (char *) gettext (re_error_msgid
[(int) ret
]);
5560 const int len
= strlen (s
);
5562 0 <= re_search (&re_comp_buf
, s
, len
, 0, len
, (struct re_registers
*) 0);
5565 #endif /* _REGEX_RE_COMP */
5567 /* POSIX.2 functions. Don't define these for Emacs. */
5571 /* regcomp takes a regular expression as a string and compiles it.
5573 PREG is a regex_t *. We do not expect any fields to be initialized,
5574 since POSIX says we shouldn't. Thus, we set
5576 `buffer' to the compiled pattern;
5577 `used' to the length of the compiled pattern;
5578 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5579 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5580 RE_SYNTAX_POSIX_BASIC;
5581 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5582 `fastmap' to an allocated space for the fastmap;
5583 `fastmap_accurate' to zero;
5584 `re_nsub' to the number of subexpressions in PATTERN.
5586 PATTERN is the address of the pattern string.
5588 CFLAGS is a series of bits which affect compilation.
5590 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5591 use POSIX basic syntax.
5593 If REG_NEWLINE is set, then . and [^...] don't match newline.
5594 Also, regexec will try a match beginning after every newline.
5596 If REG_ICASE is set, then we considers upper- and lowercase
5597 versions of letters to be equivalent when matching.
5599 If REG_NOSUB is set, then when PREG is passed to regexec, that
5600 routine will report only success or failure, and nothing about the
5603 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
5604 the return codes and their meanings.) */
5607 regcomp (preg
, pattern
, cflags
)
5609 const char *pattern
;
5614 = (cflags
& REG_EXTENDED
) ?
5615 RE_SYNTAX_POSIX_EXTENDED
: RE_SYNTAX_POSIX_BASIC
;
5617 /* regex_compile will allocate the space for the compiled pattern. */
5619 preg
->allocated
= 0;
5622 /* Try to allocate space for the fastmap. */
5623 preg
->fastmap
= (char *) malloc (1 << BYTEWIDTH
);
5625 if (cflags
& REG_ICASE
)
5630 = (RE_TRANSLATE_TYPE
) malloc (CHAR_SET_SIZE
5631 * sizeof (*(RE_TRANSLATE_TYPE
)0));
5632 if (preg
->translate
== NULL
)
5633 return (int) REG_ESPACE
;
5635 /* Map uppercase characters to corresponding lowercase ones. */
5636 for (i
= 0; i
< CHAR_SET_SIZE
; i
++)
5637 preg
->translate
[i
] = ISUPPER (i
) ? TOLOWER (i
) : i
;
5640 preg
->translate
= NULL
;
5642 /* If REG_NEWLINE is set, newlines are treated differently. */
5643 if (cflags
& REG_NEWLINE
)
5644 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5645 syntax
&= ~RE_DOT_NEWLINE
;
5646 syntax
|= RE_HAT_LISTS_NOT_NEWLINE
;
5647 /* It also changes the matching behavior. */
5648 preg
->newline_anchor
= 1;
5651 preg
->newline_anchor
= 0;
5653 preg
->no_sub
= !!(cflags
& REG_NOSUB
);
5655 /* POSIX says a null character in the pattern terminates it, so we
5656 can use strlen here in compiling the pattern. */
5657 ret
= regex_compile (pattern
, strlen (pattern
), syntax
, preg
);
5659 /* POSIX doesn't distinguish between an unmatched open-group and an
5660 unmatched close-group: both are REG_EPAREN. */
5661 if (ret
== REG_ERPAREN
) ret
= REG_EPAREN
;
5663 if (ret
== REG_NOERROR
&& preg
->fastmap
)
5665 /* Compute the fastmap now, since regexec cannot modify the pattern
5667 if (re_compile_fastmap (preg
) == -2)
5669 /* Some error occured while computing the fastmap, just forget
5671 free (preg
->fastmap
);
5672 preg
->fastmap
= NULL
;
5679 weak_alias (__regcomp
, regcomp
)
5683 /* regexec searches for a given pattern, specified by PREG, in the
5686 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5687 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5688 least NMATCH elements, and we set them to the offsets of the
5689 corresponding matched substrings.
5691 EFLAGS specifies `execution flags' which affect matching: if
5692 REG_NOTBOL is set, then ^ does not match at the beginning of the
5693 string; if REG_NOTEOL is set, then $ does not match at the end.
5695 We return 0 if we find a match and REG_NOMATCH if not. */
5698 regexec (preg
, string
, nmatch
, pmatch
, eflags
)
5699 const regex_t
*preg
;
5702 regmatch_t pmatch
[];
5706 struct re_registers regs
;
5707 regex_t private_preg
;
5708 int len
= strlen (string
);
5709 boolean want_reg_info
= !preg
->no_sub
&& nmatch
> 0;
5711 private_preg
= *preg
;
5713 private_preg
.not_bol
= !!(eflags
& REG_NOTBOL
);
5714 private_preg
.not_eol
= !!(eflags
& REG_NOTEOL
);
5716 /* The user has told us exactly how many registers to return
5717 information about, via `nmatch'. We have to pass that on to the
5718 matching routines. */
5719 private_preg
.regs_allocated
= REGS_FIXED
;
5723 regs
.num_regs
= nmatch
;
5724 regs
.start
= TALLOC (nmatch
* 2, regoff_t
);
5725 if (regs
.start
== NULL
)
5726 return (int) REG_NOMATCH
;
5727 regs
.end
= regs
.start
+ nmatch
;
5730 /* Perform the searching operation. */
5731 ret
= re_search (&private_preg
, string
, len
,
5732 /* start: */ 0, /* range: */ len
,
5733 want_reg_info
? ®s
: (struct re_registers
*) 0);
5735 /* Copy the register information to the POSIX structure. */
5742 for (r
= 0; r
< nmatch
; r
++)
5744 pmatch
[r
].rm_so
= regs
.start
[r
];
5745 pmatch
[r
].rm_eo
= regs
.end
[r
];
5749 /* If we needed the temporary register info, free the space now. */
5753 /* We want zero return to mean success, unlike `re_search'. */
5754 return ret
>= 0 ? (int) REG_NOERROR
: (int) REG_NOMATCH
;
5757 weak_alias (__regexec
, regexec
)
5761 /* Returns a message corresponding to an error code, ERRCODE, returned
5762 from either regcomp or regexec. We don't use PREG here. */
5765 regerror (errcode
, preg
, errbuf
, errbuf_size
)
5767 const regex_t
*preg
;
5775 || errcode
>= (int) (sizeof (re_error_msgid
)
5776 / sizeof (re_error_msgid
[0])))
5777 /* Only error codes returned by the rest of the code should be passed
5778 to this routine. If we are given anything else, or if other regex
5779 code generates an invalid error code, then the program has a bug.
5780 Dump core so we can fix it. */
5783 msg
= gettext (re_error_msgid
[errcode
]);
5785 msg_size
= strlen (msg
) + 1; /* Includes the null. */
5787 if (errbuf_size
!= 0)
5789 if (msg_size
> errbuf_size
)
5791 #if defined HAVE_MEMPCPY || defined _LIBC
5792 *((char *) __mempcpy (errbuf
, msg
, errbuf_size
- 1)) = '\0';
5794 memcpy (errbuf
, msg
, errbuf_size
- 1);
5795 errbuf
[errbuf_size
- 1] = 0;
5799 memcpy (errbuf
, msg
, msg_size
);
5805 weak_alias (__regerror
, regerror
)
5809 /* Free dynamically allocated space used by PREG. */
5815 if (preg
->buffer
!= NULL
)
5816 free (preg
->buffer
);
5817 preg
->buffer
= NULL
;
5819 preg
->allocated
= 0;
5822 if (preg
->fastmap
!= NULL
)
5823 free (preg
->fastmap
);
5824 preg
->fastmap
= NULL
;
5825 preg
->fastmap_accurate
= 0;
5827 if (preg
->translate
!= NULL
)
5828 free (preg
->translate
);
5829 preg
->translate
= NULL
;
5832 weak_alias (__regfree
, regfree
)
5835 #endif /* not emacs */