Update.
[glibc.git] / stdlib / strtod.c
blob63a3a9749d7412d759cb397f9abb307fbea6c8eb
1 /* Read decimal floating point numbers.
2 This file is part of the GNU C Library.
3 Copyright (C) 1995,96,97,98,99,2000,01,02 Free Software Foundation, Inc.
4 Contributed by Ulrich Drepper <drepper@gnu.org>, 1995.
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; if not, write to the Free
18 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
19 02111-1307 USA. */
21 /* Configuration part. These macros are defined by `strtold.c',
22 `strtof.c', `wcstod.c', `wcstold.c', and `wcstof.c' to produce the
23 `long double' and `float' versions of the reader. */
24 #ifndef FLOAT
25 # define FLOAT double
26 # define FLT DBL
27 # ifdef USE_WIDE_CHAR
28 # ifdef USE_IN_EXTENDED_LOCALE_MODEL
29 # define STRTOF __wcstod_l
30 # else
31 # define STRTOF wcstod
32 # endif
33 # else
34 # ifdef USE_IN_EXTENDED_LOCALE_MODEL
35 # define STRTOF __strtod_l
36 # else
37 # define STRTOF strtod
38 # endif
39 # endif
40 # define MPN2FLOAT __mpn_construct_double
41 # define FLOAT_HUGE_VAL HUGE_VAL
42 # define SET_MANTISSA(flt, mant) \
43 do { union ieee754_double u; \
44 u.d = (flt); \
45 if ((mant & 0xfffffffffffffULL) == 0) \
46 mant = 0x8000000000000ULL; \
47 u.ieee.mantissa0 = ((mant) >> 32) & 0xfffff; \
48 u.ieee.mantissa1 = (mant) & 0xffffffff; \
49 (flt) = u.d; \
50 } while (0)
51 #endif
52 /* End of configuration part. */
54 #include <ctype.h>
55 #include <errno.h>
56 #include <float.h>
57 #include <ieee754.h>
58 #include "../locale/localeinfo.h"
59 #include <locale.h>
60 #include <math.h>
61 #include <stdlib.h>
62 #include <string.h>
64 /* The gmp headers need some configuration frobs. */
65 #define HAVE_ALLOCA 1
67 #include <gmp.h>
68 #include <gmp-impl.h>
69 #include <gmp-mparam.h>
70 #include <longlong.h>
71 #include "fpioconst.h"
73 #define NDEBUG 1
74 #include <assert.h>
77 /* We use this code also for the extended locale handling where the
78 function gets as an additional argument the locale which has to be
79 used. To access the values we have to redefine the _NL_CURRENT
80 macro. */
81 #ifdef USE_IN_EXTENDED_LOCALE_MODEL
82 # undef _NL_CURRENT
83 # define _NL_CURRENT(category, item) \
84 (current->values[_NL_ITEM_INDEX (item)].string)
85 # define LOCALE_PARAM , loc
86 # define LOCALE_PARAM_DECL __locale_t loc;
87 #else
88 # define LOCALE_PARAM
89 # define LOCALE_PARAM_DECL
90 #endif
92 #if defined _LIBC || defined HAVE_WCHAR_H
93 # include <wchar.h>
94 #endif
96 #ifdef USE_WIDE_CHAR
97 # include <wctype.h>
98 # define STRING_TYPE wchar_t
99 # define CHAR_TYPE wint_t
100 # define L_(Ch) L##Ch
101 # ifdef USE_IN_EXTENDED_LOCALE_MODEL
102 # define ISSPACE(Ch) __iswspace_l ((Ch), loc)
103 # define ISDIGIT(Ch) __iswdigit_l ((Ch), loc)
104 # define ISXDIGIT(Ch) __iswxdigit_l ((Ch), loc)
105 # define TOLOWER(Ch) __towlower_l ((Ch), loc)
106 # define STRNCASECMP(S1, S2, N) __wcsncasecmp_l ((S1), (S2), (N), loc)
107 # define STRTOULL(S, E, B) ____wcstoull_l_internal ((S), (E), (B), 0, loc)
108 # else
109 # define ISSPACE(Ch) iswspace (Ch)
110 # define ISDIGIT(Ch) iswdigit (Ch)
111 # define ISXDIGIT(Ch) iswxdigit (Ch)
112 # define TOLOWER(Ch) towlower (Ch)
113 # define STRNCASECMP(S1, S2, N) __wcsncasecmp ((S1), (S2), (N))
114 # define STRTOULL(S, E, B) __wcstoull_internal ((S), (E), (B), 0)
115 # endif
116 #else
117 # define STRING_TYPE char
118 # define CHAR_TYPE char
119 # define L_(Ch) Ch
120 # ifdef USE_IN_EXTENDED_LOCALE_MODEL
121 # define ISSPACE(Ch) __isspace_l ((Ch), loc)
122 # define ISDIGIT(Ch) __isdigit_l ((Ch), loc)
123 # define ISXDIGIT(Ch) __isxdigit_l ((Ch), loc)
124 # define TOLOWER(Ch) __tolower_l ((Ch), loc)
125 # define STRNCASECMP(S1, S2, N) __strncasecmp_l ((S1), (S2), (N), loc)
126 # define STRTOULL(S, E, B) ____strtoull_l_internal ((S), (E), (B), 0, loc)
127 # else
128 # define ISSPACE(Ch) isspace (Ch)
129 # define ISDIGIT(Ch) isdigit (Ch)
130 # define ISXDIGIT(Ch) isxdigit (Ch)
131 # define TOLOWER(Ch) tolower (Ch)
132 # define STRNCASECMP(S1, S2, N) __strncasecmp ((S1), (S2), (N))
133 # define STRTOULL(S, E, B) __strtoull_internal ((S), (E), 0, (B))
134 # endif
135 #endif
138 /* Constants we need from float.h; select the set for the FLOAT precision. */
139 #define MANT_DIG PASTE(FLT,_MANT_DIG)
140 #define DIG PASTE(FLT,_DIG)
141 #define MAX_EXP PASTE(FLT,_MAX_EXP)
142 #define MIN_EXP PASTE(FLT,_MIN_EXP)
143 #define MAX_10_EXP PASTE(FLT,_MAX_10_EXP)
144 #define MIN_10_EXP PASTE(FLT,_MIN_10_EXP)
146 /* Extra macros required to get FLT expanded before the pasting. */
147 #define PASTE(a,b) PASTE1(a,b)
148 #define PASTE1(a,b) a##b
150 /* Function to construct a floating point number from an MP integer
151 containing the fraction bits, a base 2 exponent, and a sign flag. */
152 extern FLOAT MPN2FLOAT (mp_srcptr mpn, int exponent, int negative);
154 /* Definitions according to limb size used. */
155 #if BITS_PER_MP_LIMB == 32
156 # define MAX_DIG_PER_LIMB 9
157 # define MAX_FAC_PER_LIMB 1000000000UL
158 #elif BITS_PER_MP_LIMB == 64
159 # define MAX_DIG_PER_LIMB 19
160 # define MAX_FAC_PER_LIMB 10000000000000000000UL
161 #else
162 # error "mp_limb_t size " BITS_PER_MP_LIMB "not accounted for"
163 #endif
166 /* Local data structure. */
167 static const mp_limb_t _tens_in_limb[MAX_DIG_PER_LIMB + 1] =
168 { 0, 10, 100,
169 1000, 10000, 100000,
170 1000000, 10000000, 100000000,
171 1000000000
172 #if BITS_PER_MP_LIMB > 32
173 , 10000000000U, 100000000000U,
174 1000000000000U, 10000000000000U, 100000000000000U,
175 1000000000000000U, 10000000000000000U, 100000000000000000U,
176 1000000000000000000U, 10000000000000000000U
177 #endif
178 #if BITS_PER_MP_LIMB > 64
179 #error "Need to expand tens_in_limb table to" MAX_DIG_PER_LIMB
180 #endif
183 #ifndef howmany
184 #define howmany(x,y) (((x)+((y)-1))/(y))
185 #endif
186 #define SWAP(x, y) ({ typeof(x) _tmp = x; x = y; y = _tmp; })
188 #define NDIG (MAX_10_EXP - MIN_10_EXP + 2 * MANT_DIG)
189 #define HEXNDIG ((MAX_EXP - MIN_EXP + 7) / 8 + 2 * MANT_DIG)
190 #define RETURN_LIMB_SIZE howmany (MANT_DIG, BITS_PER_MP_LIMB)
192 #define RETURN(val,end) \
193 do { if (endptr != NULL) *endptr = (STRING_TYPE *) (end); \
194 return val; } while (0)
196 /* Maximum size necessary for mpn integers to hold floating point numbers. */
197 #define MPNSIZE (howmany (MAX_EXP + 2 * MANT_DIG, BITS_PER_MP_LIMB) \
198 + 2)
199 /* Declare an mpn integer variable that big. */
200 #define MPN_VAR(name) mp_limb_t name[MPNSIZE]; mp_size_t name##size
201 /* Copy an mpn integer value. */
202 #define MPN_ASSIGN(dst, src) \
203 memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t))
206 /* Return a floating point number of the needed type according to the given
207 multi-precision number after possible rounding. */
208 static inline FLOAT
209 round_and_return (mp_limb_t *retval, int exponent, int negative,
210 mp_limb_t round_limb, mp_size_t round_bit, int more_bits)
212 if (exponent < MIN_EXP - 1)
214 mp_size_t shift = MIN_EXP - 1 - exponent;
216 if (shift > MANT_DIG)
218 __set_errno (EDOM);
219 return 0.0;
222 more_bits |= (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0;
223 if (shift == MANT_DIG)
224 /* This is a special case to handle the very seldom case where
225 the mantissa will be empty after the shift. */
227 int i;
229 round_limb = retval[RETURN_LIMB_SIZE - 1];
230 round_bit = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
231 for (i = 0; i < RETURN_LIMB_SIZE; ++i)
232 more_bits |= retval[i] != 0;
233 MPN_ZERO (retval, RETURN_LIMB_SIZE);
235 else if (shift >= BITS_PER_MP_LIMB)
237 int i;
239 round_limb = retval[(shift - 1) / BITS_PER_MP_LIMB];
240 round_bit = (shift - 1) % BITS_PER_MP_LIMB;
241 for (i = 0; i < (shift - 1) / BITS_PER_MP_LIMB; ++i)
242 more_bits |= retval[i] != 0;
243 more_bits |= ((round_limb & ((((mp_limb_t) 1) << round_bit) - 1))
244 != 0);
246 (void) __mpn_rshift (retval, &retval[shift / BITS_PER_MP_LIMB],
247 RETURN_LIMB_SIZE - (shift / BITS_PER_MP_LIMB),
248 shift % BITS_PER_MP_LIMB);
249 MPN_ZERO (&retval[RETURN_LIMB_SIZE - (shift / BITS_PER_MP_LIMB)],
250 shift / BITS_PER_MP_LIMB);
252 else if (shift > 0)
254 round_limb = retval[0];
255 round_bit = shift - 1;
256 (void) __mpn_rshift (retval, retval, RETURN_LIMB_SIZE, shift);
258 /* This is a hook for the m68k long double format, where the
259 exponent bias is the same for normalized and denormalized
260 numbers. */
261 #ifndef DENORM_EXP
262 # define DENORM_EXP (MIN_EXP - 2)
263 #endif
264 exponent = DENORM_EXP;
267 if ((round_limb & (((mp_limb_t) 1) << round_bit)) != 0
268 && (more_bits || (retval[0] & 1) != 0
269 || (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0))
271 mp_limb_t cy = __mpn_add_1 (retval, retval, RETURN_LIMB_SIZE, 1);
273 if (((MANT_DIG % BITS_PER_MP_LIMB) == 0 && cy) ||
274 ((MANT_DIG % BITS_PER_MP_LIMB) != 0 &&
275 (retval[RETURN_LIMB_SIZE - 1]
276 & (((mp_limb_t) 1) << (MANT_DIG % BITS_PER_MP_LIMB))) != 0))
278 ++exponent;
279 (void) __mpn_rshift (retval, retval, RETURN_LIMB_SIZE, 1);
280 retval[RETURN_LIMB_SIZE - 1]
281 |= ((mp_limb_t) 1) << ((MANT_DIG - 1) % BITS_PER_MP_LIMB);
283 else if (exponent == DENORM_EXP
284 && (retval[RETURN_LIMB_SIZE - 1]
285 & (((mp_limb_t) 1) << ((MANT_DIG - 1) % BITS_PER_MP_LIMB)))
286 != 0)
287 /* The number was denormalized but now normalized. */
288 exponent = MIN_EXP - 1;
291 if (exponent > MAX_EXP)
292 return negative ? -FLOAT_HUGE_VAL : FLOAT_HUGE_VAL;
294 return MPN2FLOAT (retval, exponent, negative);
298 /* Read a multi-precision integer starting at STR with exactly DIGCNT digits
299 into N. Return the size of the number limbs in NSIZE at the first
300 character od the string that is not part of the integer as the function
301 value. If the EXPONENT is small enough to be taken as an additional
302 factor for the resulting number (see code) multiply by it. */
303 static inline const STRING_TYPE *
304 str_to_mpn (const STRING_TYPE *str, int digcnt, mp_limb_t *n, mp_size_t *nsize,
305 int *exponent
306 #ifndef USE_WIDE_CHAR
307 , const char *decimal, size_t decimal_len, const char *thousands
308 #endif
312 /* Number of digits for actual limb. */
313 int cnt = 0;
314 mp_limb_t low = 0;
315 mp_limb_t start;
317 *nsize = 0;
318 assert (digcnt > 0);
321 if (cnt == MAX_DIG_PER_LIMB)
323 if (*nsize == 0)
325 n[0] = low;
326 *nsize = 1;
328 else
330 mp_limb_t cy;
331 cy = __mpn_mul_1 (n, n, *nsize, MAX_FAC_PER_LIMB);
332 cy += __mpn_add_1 (n, n, *nsize, low);
333 if (cy != 0)
335 n[*nsize] = cy;
336 ++(*nsize);
339 cnt = 0;
340 low = 0;
343 /* There might be thousands separators or radix characters in
344 the string. But these all can be ignored because we know the
345 format of the number is correct and we have an exact number
346 of characters to read. */
347 #ifdef USE_WIDE_CHAR
348 if (*str < L'0' || *str > L'9')
349 ++str;
350 #else
351 if (*str < '0' || *str > '9')
353 int inner = 0;
354 if (thousands != NULL && *str == *thousands
355 && ({ for (inner = 1; thousands[inner] != '\0'; ++inner)
356 if (thousands[inner] != str[inner])
357 break;
358 thousands[inner] == '\0'; }))
359 str += inner;
360 else
361 str += decimal_len;
363 #endif
364 low = low * 10 + *str++ - L_('0');
365 ++cnt;
367 while (--digcnt > 0);
369 if (*exponent > 0 && cnt + *exponent <= MAX_DIG_PER_LIMB)
371 low *= _tens_in_limb[*exponent];
372 start = _tens_in_limb[cnt + *exponent];
373 *exponent = 0;
375 else
376 start = _tens_in_limb[cnt];
378 if (*nsize == 0)
380 n[0] = low;
381 *nsize = 1;
383 else
385 mp_limb_t cy;
386 cy = __mpn_mul_1 (n, n, *nsize, start);
387 cy += __mpn_add_1 (n, n, *nsize, low);
388 if (cy != 0)
389 n[(*nsize)++] = cy;
392 return str;
396 /* Shift {PTR, SIZE} COUNT bits to the left, and fill the vacated bits
397 with the COUNT most significant bits of LIMB.
399 Tege doesn't like this function so I have to write it here myself. :)
400 --drepper */
401 static inline void
402 __mpn_lshift_1 (mp_limb_t *ptr, mp_size_t size, unsigned int count,
403 mp_limb_t limb)
405 if (count == BITS_PER_MP_LIMB)
407 /* Optimize the case of shifting by exactly a word:
408 just copy words, with no actual bit-shifting. */
409 mp_size_t i;
410 for (i = size - 1; i > 0; --i)
411 ptr[i] = ptr[i - 1];
412 ptr[0] = limb;
414 else
416 (void) __mpn_lshift (ptr, ptr, size, count);
417 ptr[0] |= limb >> (BITS_PER_MP_LIMB - count);
422 #define INTERNAL(x) INTERNAL1(x)
423 #define INTERNAL1(x) __##x##_internal
425 /* This file defines a function to check for correct grouping. */
426 #include "grouping.h"
429 /* Return a floating point number with the value of the given string NPTR.
430 Set *ENDPTR to the character after the last used one. If the number is
431 smaller than the smallest representable number, set `errno' to ERANGE and
432 return 0.0. If the number is too big to be represented, set `errno' to
433 ERANGE and return HUGE_VAL with the appropriate sign. */
434 FLOAT
435 INTERNAL (STRTOF) (nptr, endptr, group LOCALE_PARAM)
436 const STRING_TYPE *nptr;
437 STRING_TYPE **endptr;
438 int group;
439 LOCALE_PARAM_DECL
441 int negative; /* The sign of the number. */
442 MPN_VAR (num); /* MP representation of the number. */
443 int exponent; /* Exponent of the number. */
445 /* Numbers starting `0X' or `0x' have to be processed with base 16. */
446 int base = 10;
448 /* When we have to compute fractional digits we form a fraction with a
449 second multi-precision number (and we sometimes need a second for
450 temporary results). */
451 MPN_VAR (den);
453 /* Representation for the return value. */
454 mp_limb_t retval[RETURN_LIMB_SIZE];
455 /* Number of bits currently in result value. */
456 int bits;
458 /* Running pointer after the last character processed in the string. */
459 const STRING_TYPE *cp, *tp;
460 /* Start of significant part of the number. */
461 const STRING_TYPE *startp, *start_of_digits;
462 /* Points at the character following the integer and fractional digits. */
463 const STRING_TYPE *expp;
464 /* Total number of digit and number of digits in integer part. */
465 int dig_no, int_no, lead_zero;
466 /* Contains the last character read. */
467 CHAR_TYPE c;
469 /* We should get wint_t from <stddef.h>, but not all GCC versions define it
470 there. So define it ourselves if it remains undefined. */
471 #ifndef _WINT_T
472 typedef unsigned int wint_t;
473 #endif
474 /* The radix character of the current locale. */
475 #ifdef USE_WIDE_CHAR
476 wchar_t decimal;
477 #else
478 const char *decimal;
479 size_t decimal_len;
480 #endif
481 /* The thousands character of the current locale. */
482 #ifdef USE_WIDE_CHAR
483 wchar_t thousands = L'\0';
484 #else
485 const char *thousands = NULL;
486 #endif
487 /* The numeric grouping specification of the current locale,
488 in the format described in <locale.h>. */
489 const char *grouping;
490 /* Used in several places. */
491 int cnt;
493 #ifdef USE_IN_EXTENDED_LOCALE_MODEL
494 struct locale_data *current = loc->__locales[LC_NUMERIC];
495 #endif
497 if (group)
499 grouping = _NL_CURRENT (LC_NUMERIC, GROUPING);
500 if (*grouping <= 0 || *grouping == CHAR_MAX)
501 grouping = NULL;
502 else
504 /* Figure out the thousands separator character. */
505 #ifdef USE_WIDE_CHAR
506 thousands = _NL_CURRENT_WORD (LC_NUMERIC,
507 _NL_NUMERIC_THOUSANDS_SEP_WC);
508 if (thousands == L'\0')
509 grouping = NULL;
510 #else
511 thousands = _NL_CURRENT (LC_NUMERIC, THOUSANDS_SEP);
512 if (*thousands == '\0')
514 thousands = NULL;
515 grouping = NULL;
517 #endif
520 else
521 grouping = NULL;
523 /* Find the locale's decimal point character. */
524 #ifdef USE_WIDE_CHAR
525 decimal = _NL_CURRENT_WORD (LC_NUMERIC, _NL_NUMERIC_DECIMAL_POINT_WC);
526 assert (decimal != L'\0');
527 # define decimal_len 1
528 #else
529 decimal = _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT);
530 decimal_len = strlen (decimal);
531 assert (decimal_len > 0);
532 #endif
534 /* Prepare number representation. */
535 exponent = 0;
536 negative = 0;
537 bits = 0;
539 /* Parse string to get maximal legal prefix. We need the number of
540 characters of the integer part, the fractional part and the exponent. */
541 cp = nptr - 1;
542 /* Ignore leading white space. */
544 c = *++cp;
545 while (ISSPACE (c));
547 /* Get sign of the result. */
548 if (c == L_('-'))
550 negative = 1;
551 c = *++cp;
553 else if (c == L_('+'))
554 c = *++cp;
556 /* Return 0.0 if no legal string is found.
557 No character is used even if a sign was found. */
558 #ifdef USE_WIDE_CHAR
559 if (c == (wint_t) decimal
560 && (wint_t) cp[1] >= L'0' && (wint_t) cp[1] <= L'9')
562 /* We accept it. This funny construct is here only to indent
563 the code directly. */
565 #else
566 for (cnt = 0; decimal[cnt] != '\0'; ++cnt)
567 if (cp[cnt] != decimal[cnt])
568 break;
569 if (decimal[cnt] == '\0' && cp[1] >= '0' && cp[1] <= '9')
571 /* We accept it. This funny construct is here only to indent
572 the code directly. */
574 #endif
575 else if (c < L_('0') || c > L_('9'))
577 /* Check for `INF' or `INFINITY'. */
578 if (TOLOWER (c) == L_('i') && STRNCASECMP (cp, L_("inf"), 3) == 0)
580 /* Return +/- infinity. */
581 if (endptr != NULL)
582 *endptr = (STRING_TYPE *)
583 (cp + (STRNCASECMP (cp + 3, L_("inity"), 5) == 0
584 ? 8 : 3));
586 return negative ? -FLOAT_HUGE_VAL : FLOAT_HUGE_VAL;
589 if (TOLOWER (c) == L_('n') && STRNCASECMP (cp, L_("nan"), 3) == 0)
591 /* Return NaN. */
592 FLOAT retval = NAN;
594 cp += 3;
596 /* Match `(n-char-sequence-digit)'. */
597 if (*cp == L_('('))
599 const STRING_TYPE *startp = cp;
601 ++cp;
602 while ((*cp >= L_('0') && *cp <= L_('9'))
603 || (TOLOWER (*cp) >= L_('a') && TOLOWER (*cp) <= L_('z'))
604 || *cp == L_('_'));
606 if (*cp != L_(')'))
607 /* The closing brace is missing. Only match the NAN
608 part. */
609 cp = startp;
610 else
612 /* This is a system-dependent way to specify the
613 bitmask used for the NaN. We expect it to be
614 a number which is put in the mantissa of the
615 number. */
616 STRING_TYPE *endp;
617 unsigned long long int mant;
619 mant = STRTOULL (startp + 1, &endp, 0);
620 if (endp == cp)
621 SET_MANTISSA (retval, mant);
625 if (endptr != NULL)
626 *endptr = (STRING_TYPE *) cp;
628 return retval;
631 /* It is really a text we do not recognize. */
632 RETURN (0.0, nptr);
635 /* First look whether we are faced with a hexadecimal number. */
636 if (c == L_('0') && TOLOWER (cp[1]) == L_('x'))
638 /* Okay, it is a hexa-decimal number. Remember this and skip
639 the characters. BTW: hexadecimal numbers must not be
640 grouped. */
641 base = 16;
642 cp += 2;
643 c = *cp;
644 grouping = NULL;
647 /* Record the start of the digits, in case we will check their grouping. */
648 start_of_digits = startp = cp;
650 /* Ignore leading zeroes. This helps us to avoid useless computations. */
651 #ifdef USE_WIDE_CHAR
652 while (c == L'0' || ((wint_t) thousands != L'\0' && c == (wint_t) thousands))
653 c = *++cp;
654 #else
655 if (thousands == NULL)
656 while (c == '0')
657 c = *++cp;
658 else
660 /* We also have the multibyte thousands string. */
661 while (1)
663 if (c != '0')
665 for (cnt = 0; thousands[cnt] != '\0'; ++cnt)
666 if (c != thousands[cnt])
667 break;
668 if (thousands[cnt] != '\0')
669 break;
671 c = *++cp;
674 #endif
676 /* If no other digit but a '0' is found the result is 0.0.
677 Return current read pointer. */
678 if ((c < L_('0') || c > L_('9'))
679 && (base == 16 && (c < (CHAR_TYPE) TOLOWER (L_('a'))
680 || c > (CHAR_TYPE) TOLOWER (L_('f'))))
681 #ifdef USE_WIDE_CHAR
682 && c != (wint_t) decimal
683 #else
684 && ({ for (cnt = 0; decimal[cnt] != '\0'; ++cnt)
685 if (decimal[cnt] != cp[cnt])
686 break;
687 decimal[cnt] != '\0'; })
688 #endif
689 && (base == 16 && (cp == start_of_digits
690 || (CHAR_TYPE) TOLOWER (c) != L_('p')))
691 && (base != 16 && (CHAR_TYPE) TOLOWER (c) != L_('e')))
693 tp = correctly_grouped_prefix (start_of_digits, cp, thousands, grouping);
694 /* If TP is at the start of the digits, there was no correctly
695 grouped prefix of the string; so no number found. */
696 RETURN (0.0, tp == start_of_digits ? (base == 16 ? cp - 1 : nptr) : tp);
699 /* Remember first significant digit and read following characters until the
700 decimal point, exponent character or any non-FP number character. */
701 startp = cp;
702 dig_no = 0;
703 while (1)
705 if ((c >= L_('0') && c <= L_('9'))
706 || (base == 16 && (wint_t) TOLOWER (c) >= L_('a')
707 && (wint_t) TOLOWER (c) <= L_('f')))
708 ++dig_no;
709 else
711 #ifdef USE_WIDE_CHAR
712 if ((wint_t) thousands == L'\0' || c != (wint_t) thousands)
713 /* Not a digit or separator: end of the integer part. */
714 break;
715 #else
716 if (thousands == NULL)
717 break;
718 else
720 for (cnt = 0; thousands[cnt] != '\0'; ++cnt)
721 if (thousands[cnt] != cp[cnt])
722 break;
723 if (thousands[cnt] != '\0')
724 break;
726 #endif
728 c = *++cp;
731 if (grouping && dig_no > 0)
733 /* Check the grouping of the digits. */
734 tp = correctly_grouped_prefix (start_of_digits, cp, thousands, grouping);
735 if (cp != tp)
737 /* Less than the entire string was correctly grouped. */
739 if (tp == start_of_digits)
740 /* No valid group of numbers at all: no valid number. */
741 RETURN (0.0, nptr);
743 if (tp < startp)
744 /* The number is validly grouped, but consists
745 only of zeroes. The whole value is zero. */
746 RETURN (0.0, tp);
748 /* Recompute DIG_NO so we won't read more digits than
749 are properly grouped. */
750 cp = tp;
751 dig_no = 0;
752 for (tp = startp; tp < cp; ++tp)
753 if (*tp >= L_('0') && *tp <= L_('9'))
754 ++dig_no;
756 int_no = dig_no;
757 lead_zero = 0;
759 goto number_parsed;
763 /* We have the number digits in the integer part. Whether these are all or
764 any is really a fractional digit will be decided later. */
765 int_no = dig_no;
766 lead_zero = int_no == 0 ? -1 : 0;
768 /* Read the fractional digits. A special case are the 'american style'
769 numbers like `16.' i.e. with decimal but without trailing digits. */
770 if (
771 #ifdef USE_WIDE_CHAR
772 c == (wint_t) decimal
773 #else
774 ({ for (cnt = 0; decimal[cnt] != '\0'; ++cnt)
775 if (decimal[cnt] != cp[cnt])
776 break;
777 decimal[cnt] == '\0'; })
778 #endif
781 cp += decimal_len;
782 c = *cp;
783 while ((c >= L_('0') && c <= L_('9')) ||
784 (base == 16 && TOLOWER (c) >= L_('a') && TOLOWER (c) <= L_('f')))
786 if (c != L_('0') && lead_zero == -1)
787 lead_zero = dig_no - int_no;
788 ++dig_no;
789 c = *++cp;
793 /* Remember start of exponent (if any). */
794 expp = cp;
796 /* Read exponent. */
797 if ((base == 16 && TOLOWER (c) == L_('p'))
798 || (base != 16 && TOLOWER (c) == L_('e')))
800 int exp_negative = 0;
802 c = *++cp;
803 if (c == L_('-'))
805 exp_negative = 1;
806 c = *++cp;
808 else if (c == L_('+'))
809 c = *++cp;
811 if (c >= L_('0') && c <= L_('9'))
813 int exp_limit;
815 /* Get the exponent limit. */
816 if (base == 16)
817 exp_limit = (exp_negative ?
818 -MIN_EXP + MANT_DIG + 4 * int_no :
819 MAX_EXP - 4 * int_no + lead_zero);
820 else
821 exp_limit = (exp_negative ?
822 -MIN_10_EXP + MANT_DIG + int_no :
823 MAX_10_EXP - int_no + lead_zero);
827 exponent *= 10;
829 if (exponent > exp_limit)
830 /* The exponent is too large/small to represent a valid
831 number. */
833 FLOAT result;
835 /* We have to take care for special situation: a joker
836 might have written "0.0e100000" which is in fact
837 zero. */
838 if (lead_zero == -1)
839 result = negative ? -0.0 : 0.0;
840 else
842 /* Overflow or underflow. */
843 __set_errno (ERANGE);
844 result = (exp_negative ? 0.0 :
845 negative ? -FLOAT_HUGE_VAL : FLOAT_HUGE_VAL);
848 /* Accept all following digits as part of the exponent. */
850 ++cp;
851 while (*cp >= L_('0') && *cp <= L_('9'));
853 RETURN (result, cp);
854 /* NOTREACHED */
857 exponent += c - L_('0');
858 c = *++cp;
860 while (c >= L_('0') && c <= L_('9'));
862 if (exp_negative)
863 exponent = -exponent;
865 else
866 cp = expp;
869 /* We don't want to have to work with trailing zeroes after the radix. */
870 if (dig_no > int_no)
872 while (expp[-1] == L_('0'))
874 --expp;
875 --dig_no;
877 assert (dig_no >= int_no);
880 if (dig_no == int_no && dig_no > 0 && exponent < 0)
883 while (expp[-1] < L_('0') || expp[-1] > L_('9'))
884 --expp;
886 if (expp[-1] != L_('0'))
887 break;
889 --expp;
890 --dig_no;
891 --int_no;
892 ++exponent;
894 while (dig_no > 0 && exponent < 0);
896 number_parsed:
898 /* The whole string is parsed. Store the address of the next character. */
899 if (endptr)
900 *endptr = (STRING_TYPE *) cp;
902 if (dig_no == 0)
903 return negative ? -0.0 : 0.0;
905 if (lead_zero)
907 /* Find the decimal point */
908 #ifdef USE_WIDE_CHAR
909 while (*startp != decimal)
910 ++startp;
911 #else
912 while (1)
914 if (*startp == decimal[0])
916 for (cnt = 1; decimal[cnt] != '\0'; ++cnt)
917 if (decimal[cnt] != startp[cnt])
918 break;
919 if (decimal[cnt] == '\0')
920 break;
922 ++startp;
924 #endif
925 startp += lead_zero + decimal_len;
926 exponent -= base == 16 ? 4 * lead_zero : lead_zero;
927 dig_no -= lead_zero;
930 /* If the BASE is 16 we can use a simpler algorithm. */
931 if (base == 16)
933 static const int nbits[16] = { 0, 1, 2, 2, 3, 3, 3, 3,
934 4, 4, 4, 4, 4, 4, 4, 4 };
935 int idx = (MANT_DIG - 1) / BITS_PER_MP_LIMB;
936 int pos = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
937 mp_limb_t val;
939 while (!ISXDIGIT (*startp))
940 ++startp;
941 while (*startp == L_('0'))
942 ++startp;
943 if (ISDIGIT (*startp))
944 val = *startp++ - L_('0');
945 else
946 val = 10 + TOLOWER (*startp++) - L_('a');
947 bits = nbits[val];
948 /* We cannot have a leading zero. */
949 assert (bits != 0);
951 if (pos + 1 >= 4 || pos + 1 >= bits)
953 /* We don't have to care for wrapping. This is the normal
954 case so we add the first clause in the `if' expression as
955 an optimization. It is a compile-time constant and so does
956 not cost anything. */
957 retval[idx] = val << (pos - bits + 1);
958 pos -= bits;
960 else
962 retval[idx--] = val >> (bits - pos - 1);
963 retval[idx] = val << (BITS_PER_MP_LIMB - (bits - pos - 1));
964 pos = BITS_PER_MP_LIMB - 1 - (bits - pos - 1);
967 /* Adjust the exponent for the bits we are shifting in. */
968 exponent += bits - 1 + (int_no - 1) * 4;
970 while (--dig_no > 0 && idx >= 0)
972 if (!ISXDIGIT (*startp))
973 startp += decimal_len;
974 if (ISDIGIT (*startp))
975 val = *startp++ - L_('0');
976 else
977 val = 10 + TOLOWER (*startp++) - L_('a');
979 if (pos + 1 >= 4)
981 retval[idx] |= val << (pos - 4 + 1);
982 pos -= 4;
984 else
986 retval[idx--] |= val >> (4 - pos - 1);
987 val <<= BITS_PER_MP_LIMB - (4 - pos - 1);
988 if (idx < 0)
989 return round_and_return (retval, exponent, negative, val,
990 BITS_PER_MP_LIMB - 1, dig_no > 0);
992 retval[idx] = val;
993 pos = BITS_PER_MP_LIMB - 1 - (4 - pos - 1);
997 /* We ran out of digits. */
998 MPN_ZERO (retval, idx);
1000 return round_and_return (retval, exponent, negative, 0, 0, 0);
1003 /* Now we have the number of digits in total and the integer digits as well
1004 as the exponent and its sign. We can decide whether the read digits are
1005 really integer digits or belong to the fractional part; i.e. we normalize
1006 123e-2 to 1.23. */
1008 register int incr = (exponent < 0 ? MAX (-int_no, exponent)
1009 : MIN (dig_no - int_no, exponent));
1010 int_no += incr;
1011 exponent -= incr;
1014 if (int_no + exponent > MAX_10_EXP + 1)
1016 __set_errno (ERANGE);
1017 return negative ? -FLOAT_HUGE_VAL : FLOAT_HUGE_VAL;
1020 if (exponent < MIN_10_EXP - (DIG + 1))
1022 __set_errno (ERANGE);
1023 return 0.0;
1026 if (int_no > 0)
1028 /* Read the integer part as a multi-precision number to NUM. */
1029 startp = str_to_mpn (startp, int_no, num, &numsize, &exponent
1030 #ifndef USE_WIDE_CHAR
1031 , decimal, decimal_len, thousands
1032 #endif
1035 if (exponent > 0)
1037 /* We now multiply the gained number by the given power of ten. */
1038 mp_limb_t *psrc = num;
1039 mp_limb_t *pdest = den;
1040 int expbit = 1;
1041 const struct mp_power *ttab = &_fpioconst_pow10[0];
1045 if ((exponent & expbit) != 0)
1047 size_t size = ttab->arraysize - _FPIO_CONST_OFFSET;
1048 mp_limb_t cy;
1049 exponent ^= expbit;
1051 /* FIXME: not the whole multiplication has to be
1052 done. If we have the needed number of bits we
1053 only need the information whether more non-zero
1054 bits follow. */
1055 if (numsize >= ttab->arraysize - _FPIO_CONST_OFFSET)
1056 cy = __mpn_mul (pdest, psrc, numsize,
1057 &__tens[ttab->arrayoff
1058 + _FPIO_CONST_OFFSET],
1059 size);
1060 else
1061 cy = __mpn_mul (pdest, &__tens[ttab->arrayoff
1062 + _FPIO_CONST_OFFSET],
1063 size, psrc, numsize);
1064 numsize += size;
1065 if (cy == 0)
1066 --numsize;
1067 (void) SWAP (psrc, pdest);
1069 expbit <<= 1;
1070 ++ttab;
1072 while (exponent != 0);
1074 if (psrc == den)
1075 memcpy (num, den, numsize * sizeof (mp_limb_t));
1078 /* Determine how many bits of the result we already have. */
1079 count_leading_zeros (bits, num[numsize - 1]);
1080 bits = numsize * BITS_PER_MP_LIMB - bits;
1082 /* Now we know the exponent of the number in base two.
1083 Check it against the maximum possible exponent. */
1084 if (bits > MAX_EXP)
1086 __set_errno (ERANGE);
1087 return negative ? -FLOAT_HUGE_VAL : FLOAT_HUGE_VAL;
1090 /* We have already the first BITS bits of the result. Together with
1091 the information whether more non-zero bits follow this is enough
1092 to determine the result. */
1093 if (bits > MANT_DIG)
1095 int i;
1096 const mp_size_t least_idx = (bits - MANT_DIG) / BITS_PER_MP_LIMB;
1097 const mp_size_t least_bit = (bits - MANT_DIG) % BITS_PER_MP_LIMB;
1098 const mp_size_t round_idx = least_bit == 0 ? least_idx - 1
1099 : least_idx;
1100 const mp_size_t round_bit = least_bit == 0 ? BITS_PER_MP_LIMB - 1
1101 : least_bit - 1;
1103 if (least_bit == 0)
1104 memcpy (retval, &num[least_idx],
1105 RETURN_LIMB_SIZE * sizeof (mp_limb_t));
1106 else
1108 for (i = least_idx; i < numsize - 1; ++i)
1109 retval[i - least_idx] = (num[i] >> least_bit)
1110 | (num[i + 1]
1111 << (BITS_PER_MP_LIMB - least_bit));
1112 if (i - least_idx < RETURN_LIMB_SIZE)
1113 retval[RETURN_LIMB_SIZE - 1] = num[i] >> least_bit;
1116 /* Check whether any limb beside the ones in RETVAL are non-zero. */
1117 for (i = 0; num[i] == 0; ++i)
1120 return round_and_return (retval, bits - 1, negative,
1121 num[round_idx], round_bit,
1122 int_no < dig_no || i < round_idx);
1123 /* NOTREACHED */
1125 else if (dig_no == int_no)
1127 const mp_size_t target_bit = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
1128 const mp_size_t is_bit = (bits - 1) % BITS_PER_MP_LIMB;
1130 if (target_bit == is_bit)
1132 memcpy (&retval[RETURN_LIMB_SIZE - numsize], num,
1133 numsize * sizeof (mp_limb_t));
1134 /* FIXME: the following loop can be avoided if we assume a
1135 maximal MANT_DIG value. */
1136 MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize);
1138 else if (target_bit > is_bit)
1140 (void) __mpn_lshift (&retval[RETURN_LIMB_SIZE - numsize],
1141 num, numsize, target_bit - is_bit);
1142 /* FIXME: the following loop can be avoided if we assume a
1143 maximal MANT_DIG value. */
1144 MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize);
1146 else
1148 mp_limb_t cy;
1149 assert (numsize < RETURN_LIMB_SIZE);
1151 cy = __mpn_rshift (&retval[RETURN_LIMB_SIZE - numsize],
1152 num, numsize, is_bit - target_bit);
1153 retval[RETURN_LIMB_SIZE - numsize - 1] = cy;
1154 /* FIXME: the following loop can be avoided if we assume a
1155 maximal MANT_DIG value. */
1156 MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize - 1);
1159 return round_and_return (retval, bits - 1, negative, 0, 0, 0);
1160 /* NOTREACHED */
1163 /* Store the bits we already have. */
1164 memcpy (retval, num, numsize * sizeof (mp_limb_t));
1165 #if RETURN_LIMB_SIZE > 1
1166 if (numsize < RETURN_LIMB_SIZE)
1167 retval[numsize] = 0;
1168 #endif
1171 /* We have to compute at least some of the fractional digits. */
1173 /* We construct a fraction and the result of the division gives us
1174 the needed digits. The denominator is 1.0 multiplied by the
1175 exponent of the lowest digit; i.e. 0.123 gives 123 / 1000 and
1176 123e-6 gives 123 / 1000000. */
1178 int expbit;
1179 int neg_exp;
1180 int more_bits;
1181 mp_limb_t cy;
1182 mp_limb_t *psrc = den;
1183 mp_limb_t *pdest = num;
1184 const struct mp_power *ttab = &_fpioconst_pow10[0];
1186 assert (dig_no > int_no && exponent <= 0);
1189 /* For the fractional part we need not process too many digits. One
1190 decimal digits gives us log_2(10) ~ 3.32 bits. If we now compute
1191 ceil(BITS / 3) =: N
1192 digits we should have enough bits for the result. The remaining
1193 decimal digits give us the information that more bits are following.
1194 This can be used while rounding. (One added as a safety margin.) */
1195 if (dig_no - int_no > (MANT_DIG - bits + 2) / 3 + 1)
1197 dig_no = int_no + (MANT_DIG - bits + 2) / 3 + 1;
1198 more_bits = 1;
1200 else
1201 more_bits = 0;
1203 neg_exp = dig_no - int_no - exponent;
1205 /* Construct the denominator. */
1206 densize = 0;
1207 expbit = 1;
1210 if ((neg_exp & expbit) != 0)
1212 mp_limb_t cy;
1213 neg_exp ^= expbit;
1215 if (densize == 0)
1217 densize = ttab->arraysize - _FPIO_CONST_OFFSET;
1218 memcpy (psrc, &__tens[ttab->arrayoff + _FPIO_CONST_OFFSET],
1219 densize * sizeof (mp_limb_t));
1221 else
1223 cy = __mpn_mul (pdest, &__tens[ttab->arrayoff
1224 + _FPIO_CONST_OFFSET],
1225 ttab->arraysize - _FPIO_CONST_OFFSET,
1226 psrc, densize);
1227 densize += ttab->arraysize - _FPIO_CONST_OFFSET;
1228 if (cy == 0)
1229 --densize;
1230 (void) SWAP (psrc, pdest);
1233 expbit <<= 1;
1234 ++ttab;
1236 while (neg_exp != 0);
1238 if (psrc == num)
1239 memcpy (den, num, densize * sizeof (mp_limb_t));
1241 /* Read the fractional digits from the string. */
1242 (void) str_to_mpn (startp, dig_no - int_no, num, &numsize, &exponent
1243 #ifndef USE_WIDE_CHAR
1244 , decimal, decimal_len, thousands
1245 #endif
1248 /* We now have to shift both numbers so that the highest bit in the
1249 denominator is set. In the same process we copy the numerator to
1250 a high place in the array so that the division constructs the wanted
1251 digits. This is done by a "quasi fix point" number representation.
1253 num: ddddddddddd . 0000000000000000000000
1254 |--- m ---|
1255 den: ddddddddddd n >= m
1256 |--- n ---|
1259 count_leading_zeros (cnt, den[densize - 1]);
1261 if (cnt > 0)
1263 /* Don't call `mpn_shift' with a count of zero since the specification
1264 does not allow this. */
1265 (void) __mpn_lshift (den, den, densize, cnt);
1266 cy = __mpn_lshift (num, num, numsize, cnt);
1267 if (cy != 0)
1268 num[numsize++] = cy;
1271 /* Now we are ready for the division. But it is not necessary to
1272 do a full multi-precision division because we only need a small
1273 number of bits for the result. So we do not use __mpn_divmod
1274 here but instead do the division here by hand and stop whenever
1275 the needed number of bits is reached. The code itself comes
1276 from the GNU MP Library by Torbj\"orn Granlund. */
1278 exponent = bits;
1280 switch (densize)
1282 case 1:
1284 mp_limb_t d, n, quot;
1285 int used = 0;
1287 n = num[0];
1288 d = den[0];
1289 assert (numsize == 1 && n < d);
1293 udiv_qrnnd (quot, n, n, 0, d);
1295 #define got_limb \
1296 if (bits == 0) \
1298 register int cnt; \
1299 if (quot == 0) \
1300 cnt = BITS_PER_MP_LIMB; \
1301 else \
1302 count_leading_zeros (cnt, quot); \
1303 exponent -= cnt; \
1304 if (BITS_PER_MP_LIMB - cnt > MANT_DIG) \
1306 used = MANT_DIG + cnt; \
1307 retval[0] = quot >> (BITS_PER_MP_LIMB - used); \
1308 bits = MANT_DIG + 1; \
1310 else \
1312 /* Note that we only clear the second element. */ \
1313 /* The conditional is determined at compile time. */ \
1314 if (RETURN_LIMB_SIZE > 1) \
1315 retval[1] = 0; \
1316 retval[0] = quot; \
1317 bits = -cnt; \
1320 else if (bits + BITS_PER_MP_LIMB <= MANT_DIG) \
1321 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, BITS_PER_MP_LIMB, \
1322 quot); \
1323 else \
1325 used = MANT_DIG - bits; \
1326 if (used > 0) \
1327 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, quot); \
1329 bits += BITS_PER_MP_LIMB
1331 got_limb;
1333 while (bits <= MANT_DIG);
1335 return round_and_return (retval, exponent - 1, negative,
1336 quot, BITS_PER_MP_LIMB - 1 - used,
1337 more_bits || n != 0);
1339 case 2:
1341 mp_limb_t d0, d1, n0, n1;
1342 mp_limb_t quot = 0;
1343 int used = 0;
1345 d0 = den[0];
1346 d1 = den[1];
1348 if (numsize < densize)
1350 if (num[0] >= d1)
1352 /* The numerator of the number occupies fewer bits than
1353 the denominator but the one limb is bigger than the
1354 high limb of the numerator. */
1355 n1 = 0;
1356 n0 = num[0];
1358 else
1360 if (bits <= 0)
1361 exponent -= BITS_PER_MP_LIMB;
1362 else
1364 if (bits + BITS_PER_MP_LIMB <= MANT_DIG)
1365 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE,
1366 BITS_PER_MP_LIMB, 0);
1367 else
1369 used = MANT_DIG - bits;
1370 if (used > 0)
1371 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, 0);
1373 bits += BITS_PER_MP_LIMB;
1375 n1 = num[0];
1376 n0 = 0;
1379 else
1381 n1 = num[1];
1382 n0 = num[0];
1385 while (bits <= MANT_DIG)
1387 mp_limb_t r;
1389 if (n1 == d1)
1391 /* QUOT should be either 111..111 or 111..110. We need
1392 special treatment of this rare case as normal division
1393 would give overflow. */
1394 quot = ~(mp_limb_t) 0;
1396 r = n0 + d1;
1397 if (r < d1) /* Carry in the addition? */
1399 add_ssaaaa (n1, n0, r - d0, 0, 0, d0);
1400 goto have_quot;
1402 n1 = d0 - (d0 != 0);
1403 n0 = -d0;
1405 else
1407 udiv_qrnnd (quot, r, n1, n0, d1);
1408 umul_ppmm (n1, n0, d0, quot);
1411 q_test:
1412 if (n1 > r || (n1 == r && n0 > 0))
1414 /* The estimated QUOT was too large. */
1415 --quot;
1417 sub_ddmmss (n1, n0, n1, n0, 0, d0);
1418 r += d1;
1419 if (r >= d1) /* If not carry, test QUOT again. */
1420 goto q_test;
1422 sub_ddmmss (n1, n0, r, 0, n1, n0);
1424 have_quot:
1425 got_limb;
1428 return round_and_return (retval, exponent - 1, negative,
1429 quot, BITS_PER_MP_LIMB - 1 - used,
1430 more_bits || n1 != 0 || n0 != 0);
1432 default:
1434 int i;
1435 mp_limb_t cy, dX, d1, n0, n1;
1436 mp_limb_t quot = 0;
1437 int used = 0;
1439 dX = den[densize - 1];
1440 d1 = den[densize - 2];
1442 /* The division does not work if the upper limb of the two-limb
1443 numerator is greater than the denominator. */
1444 if (__mpn_cmp (num, &den[densize - numsize], numsize) > 0)
1445 num[numsize++] = 0;
1447 if (numsize < densize)
1449 mp_size_t empty = densize - numsize;
1451 if (bits <= 0)
1453 register int i;
1454 for (i = numsize; i > 0; --i)
1455 num[i + empty] = num[i - 1];
1456 MPN_ZERO (num, empty + 1);
1457 exponent -= empty * BITS_PER_MP_LIMB;
1459 else
1461 if (bits + empty * BITS_PER_MP_LIMB <= MANT_DIG)
1463 /* We make a difference here because the compiler
1464 cannot optimize the `else' case that good and
1465 this reflects all currently used FLOAT types
1466 and GMP implementations. */
1467 register int i;
1468 #if RETURN_LIMB_SIZE <= 2
1469 assert (empty == 1);
1470 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE,
1471 BITS_PER_MP_LIMB, 0);
1472 #else
1473 for (i = RETURN_LIMB_SIZE; i > empty; --i)
1474 retval[i] = retval[i - empty];
1475 #endif
1476 #if RETURN_LIMB_SIZE > 1
1477 retval[1] = 0;
1478 #endif
1479 for (i = numsize; i > 0; --i)
1480 num[i + empty] = num[i - 1];
1481 MPN_ZERO (num, empty + 1);
1483 else
1485 used = MANT_DIG - bits;
1486 if (used >= BITS_PER_MP_LIMB)
1488 register int i;
1489 (void) __mpn_lshift (&retval[used
1490 / BITS_PER_MP_LIMB],
1491 retval, RETURN_LIMB_SIZE,
1492 used % BITS_PER_MP_LIMB);
1493 for (i = used / BITS_PER_MP_LIMB; i >= 0; --i)
1494 retval[i] = 0;
1496 else if (used > 0)
1497 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, 0);
1499 bits += empty * BITS_PER_MP_LIMB;
1502 else
1504 int i;
1505 assert (numsize == densize);
1506 for (i = numsize; i > 0; --i)
1507 num[i] = num[i - 1];
1510 den[densize] = 0;
1511 n0 = num[densize];
1513 while (bits <= MANT_DIG)
1515 if (n0 == dX)
1516 /* This might over-estimate QUOT, but it's probably not
1517 worth the extra code here to find out. */
1518 quot = ~(mp_limb_t) 0;
1519 else
1521 mp_limb_t r;
1523 udiv_qrnnd (quot, r, n0, num[densize - 1], dX);
1524 umul_ppmm (n1, n0, d1, quot);
1526 while (n1 > r || (n1 == r && n0 > num[densize - 2]))
1528 --quot;
1529 r += dX;
1530 if (r < dX) /* I.e. "carry in previous addition?" */
1531 break;
1532 n1 -= n0 < d1;
1533 n0 -= d1;
1537 /* Possible optimization: We already have (q * n0) and (1 * n1)
1538 after the calculation of QUOT. Taking advantage of this, we
1539 could make this loop make two iterations less. */
1541 cy = __mpn_submul_1 (num, den, densize + 1, quot);
1543 if (num[densize] != cy)
1545 cy = __mpn_add_n (num, num, den, densize);
1546 assert (cy != 0);
1547 --quot;
1549 n0 = num[densize] = num[densize - 1];
1550 for (i = densize - 1; i > 0; --i)
1551 num[i] = num[i - 1];
1553 got_limb;
1556 for (i = densize; num[i] == 0 && i >= 0; --i)
1558 return round_and_return (retval, exponent - 1, negative,
1559 quot, BITS_PER_MP_LIMB - 1 - used,
1560 more_bits || i >= 0);
1565 /* NOTREACHED */
1567 #if defined _LIBC \
1568 && !(defined USE_IN_EXTENDED_LOCALE_MODEL && defined USE_WIDE_CHAR)
1569 libc_hidden_def (INTERNAL (STRTOF))
1570 #endif
1572 /* External user entry point. */
1574 FLOAT
1575 #ifdef weak_function
1576 weak_function
1577 #endif
1578 STRTOF (nptr, endptr LOCALE_PARAM)
1579 const STRING_TYPE *nptr;
1580 STRING_TYPE **endptr;
1581 LOCALE_PARAM_DECL
1583 return INTERNAL (STRTOF) (nptr, endptr, 0 LOCALE_PARAM);