1 /* Measure strstr functions.
2 Copyright (C) 2013-2023 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
15 You should have received a copy of the GNU Lesser General Public
16 License along with the GNU C Library; if not, see
17 <https://www.gnu.org/licenses/>. */
19 #define MIN_PAGE_SIZE 131072
21 #define TEST_NAME "strstr"
22 #include "bench-string.h"
26 static const char input
[] =
27 "This manual is written with the assumption that you are at least "
28 "somewhat familiar with the C programming language and basic programming "
29 "concepts. Specifically, familiarity with ISO standard C (*note ISO "
30 "C::), rather than “traditional” pre-ISO C dialects, is assumed.\n"
32 " The GNU C Library includes several “header files”, each of which "
33 "provides definitions and declarations for a group of related facilities; "
34 "this information is used by the C compiler when processing your program. "
35 "For example, the header file ‘stdio.h’ declares facilities for "
36 "performing input and output, and the header file ‘string.h’ declares "
37 "string processing utilities. The organization of this manual generally "
38 "follows the same division as the header files.\n"
40 " If you are reading this manual for the first time, you should read "
41 "all of the introductory material and skim the remaining chapters. There "
42 "are a _lot_ of functions in the GNU C Library and it’s not realistic to "
43 "expect that you will be able to remember exactly _how_ to use each and "
44 "every one of them. It’s more important to become generally familiar "
45 "with the kinds of facilities that the library provides, so that when you "
46 "are writing your programs you can recognize _when_ to make use of "
47 "library functions, and _where_ in this manual you can find more specific "
48 "information about them.\n";
50 /* Simple yet efficient strstr - for needles < 32 bytes it is 2-4 times
51 faster than the optimized twoway_strstr. */
53 basic_strstr (const char *s1
, const char *s2
)
61 for ( ; s1
[0] != '\0'; s1
++)
65 for (i
= 1; s2
[i
] != 0; i
++)
75 #define RETURN_TYPE char *
76 #define AVAILABLE(h, h_l, j, n_l) \
77 (((j) + (n_l) <= (h_l)) \
78 || ((h_l) += __strnlen ((void*)((h) + (h_l)), (n_l) + 512), \
79 (j) + (n_l) <= (h_l)))
81 #define RET0_IF_0(a) if (!a) goto ret0
82 #define FASTSEARCH(S,C,N) (void*) strchr ((void*)(S), (C))
83 #define LONG_NEEDLE_THRESHOLD 32U
84 #define __strnlen strnlen
85 #include "string/str-two-way.h"
87 /* Optimized Two-way implementation from GLIBC 2.29. */
89 twoway_strstr (const char *haystack
, const char *needle
)
91 size_t needle_len
; /* Length of NEEDLE. */
92 size_t haystack_len
; /* Known minimum length of HAYSTACK. */
94 /* Handle empty NEEDLE special case. */
95 if (needle
[0] == '\0')
96 return (char *) haystack
;
98 /* Skip until we find the first matching char from NEEDLE. */
99 haystack
= strchr (haystack
, needle
[0]);
100 if (haystack
== NULL
|| needle
[1] == '\0')
101 return (char *) haystack
;
103 /* Ensure HAYSTACK length is at least as long as NEEDLE length.
104 Since a match may occur early on in a huge HAYSTACK, use strnlen
105 and read ahead a few cachelines for improved performance. */
106 needle_len
= strlen (needle
);
107 haystack_len
= __strnlen (haystack
, needle_len
+ 256);
108 if (haystack_len
< needle_len
)
111 /* Check whether we have a match. This improves performance since we avoid
112 the initialization overhead of the two-way algorithm. */
113 if (memcmp (haystack
, needle
, needle_len
) == 0)
114 return (char *) haystack
;
116 /* Perform the search. Abstract memory is considered to be an array
117 of 'unsigned char' values, not an array of 'char' values. See
118 ISO C 99 section 6.2.6.1. */
119 if (needle_len
< LONG_NEEDLE_THRESHOLD
)
120 return two_way_short_needle ((const unsigned char *) haystack
,
122 (const unsigned char *) needle
, needle_len
);
123 return two_way_long_needle ((const unsigned char *) haystack
, haystack_len
,
124 (const unsigned char *) needle
, needle_len
);
127 typedef char *(*proto_t
) (const char *, const char *);
130 IMPL (twoway_strstr
, 0)
131 IMPL (basic_strstr
, 0)
134 do_one_test (json_ctx_t
*json_ctx
, impl_t
*impl
, const char *s1
,
135 const char *s2
, char *exp_result
)
137 size_t i
, iters
= INNER_LOOP_ITERS_SMALL
/ 8;
138 timing_t start
, stop
, cur
;
142 for (i
= 0; i
< iters
; ++i
)
143 res
= CALL (impl
, s1
, s2
);
146 TIMING_DIFF (cur
, start
, stop
);
148 json_element_double (json_ctx
, (double) cur
/ (double) iters
);
150 if (res
!= exp_result
)
152 error (0, 0, "Wrong result in function %s %s %s", impl
->name
,
153 (res
== NULL
) ? "(null)" : res
,
154 (exp_result
== NULL
) ? "(null)" : exp_result
);
160 do_test (json_ctx_t
*json_ctx
, size_t align1
, size_t align2
, size_t len1
,
161 size_t len2
, int fail
)
163 char *s1
= (char *) (buf1
+ align1
);
164 char *s2
= (char *) (buf2
+ align2
);
166 size_t size
= sizeof (input
) - 1;
167 size_t pos
= (len1
+ len2
) % size
;
170 for (size_t l
= len2
; l
> 0; l
= l
> size
? l
- size
: 0)
172 size_t t
= l
> size
? size
: l
;
174 ss2
= mempcpy (ss2
, input
+ pos
, t
);
177 ss2
= mempcpy (ss2
, input
+ pos
, size
- pos
);
178 ss2
= mempcpy (ss2
, input
, t
- (size
- pos
));
184 for (size_t l
= len1
; l
> 0; l
= l
> size
? l
- size
: 0)
186 size_t t
= l
> size
? size
: l
;
187 memcpy (ss1
, input
, t
);
192 memcpy (s1
+ len1
- len2
, s2
, len2
);
195 /* Remove any accidental matches except for the last if !fail. */
196 for (ss1
= basic_strstr (s1
, s2
); ss1
; ss1
= basic_strstr (ss1
+ 1, s2
))
197 if (fail
|| ss1
!= s1
+ len1
- len2
)
200 json_element_object_begin (json_ctx
);
201 json_attr_uint (json_ctx
, "len_haystack", len1
);
202 json_attr_uint (json_ctx
, "len_needle", len2
);
203 json_attr_uint (json_ctx
, "align_haystack", align1
);
204 json_attr_uint (json_ctx
, "align_needle", align2
);
205 json_attr_uint (json_ctx
, "fail", fail
);
207 json_array_begin (json_ctx
, "timings");
209 FOR_EACH_IMPL (impl
, 0)
210 do_one_test (json_ctx
, impl
, s1
, s2
, fail
? NULL
: s1
+ len1
- len2
);
212 json_array_end (json_ctx
);
213 json_element_object_end (json_ctx
);
217 /* Test needles which exhibit worst-case performance. This shows that
218 basic_strstr is quadratic and thus unsuitable for large needles.
219 On the other hand Two-way and skip table implementations are linear with
220 increasing needle sizes. The slowest cases of the two implementations are
221 within a factor of 2 on several different microarchitectures. */
224 test_hard_needle (json_ctx_t
*json_ctx
, size_t ne_len
, size_t hs_len
)
226 char *ne
= (char *) buf1
;
227 char *hs
= (char *) buf2
;
229 /* Hard needle for strstr algorithm using skip table. This results in many
230 memcmp calls comparing most of the needle. */
232 memset (ne
, 'a', ne_len
);
234 ne
[ne_len
- 14] = 'b';
236 memset (hs
, 'a', hs_len
);
237 for (size_t i
= ne_len
; i
<= hs_len
; i
+= ne_len
)
243 json_element_object_begin (json_ctx
);
244 json_attr_uint (json_ctx
, "len_haystack", hs_len
);
245 json_attr_uint (json_ctx
, "len_needle", ne_len
);
246 json_attr_uint (json_ctx
, "align_haystack", 0);
247 json_attr_uint (json_ctx
, "align_needle", 0);
248 json_attr_uint (json_ctx
, "fail", 1);
249 json_attr_string (json_ctx
, "desc", "Difficult skiptable(0)");
251 json_array_begin (json_ctx
, "timings");
253 FOR_EACH_IMPL (impl
, 0)
254 do_one_test (json_ctx
, impl
, hs
, ne
, NULL
);
256 json_array_end (json_ctx
);
257 json_element_object_end (json_ctx
);
260 /* 2nd hard needle for strstr algorithm using skip table. This results in
261 many memcmp calls comparing most of the needle. */
263 memset (ne
, 'a', ne_len
);
265 ne
[ne_len
- 6] = 'b';
267 memset (hs
, 'a', hs_len
);
268 for (size_t i
= ne_len
; i
<= hs_len
; i
+= ne_len
)
274 json_element_object_begin (json_ctx
);
275 json_attr_uint (json_ctx
, "len_haystack", hs_len
);
276 json_attr_uint (json_ctx
, "len_needle", ne_len
);
277 json_attr_uint (json_ctx
, "align_haystack", 0);
278 json_attr_uint (json_ctx
, "align_needle", 0);
279 json_attr_uint (json_ctx
, "fail", 1);
280 json_attr_string (json_ctx
, "desc", "Difficult skiptable(1)");
282 json_array_begin (json_ctx
, "timings");
284 FOR_EACH_IMPL (impl
, 0)
285 do_one_test (json_ctx
, impl
, hs
, ne
, NULL
);
287 json_array_end (json_ctx
);
288 json_element_object_end (json_ctx
);
291 /* Hard needle for Two-way algorithm - the random input causes a large number
292 of branch mispredictions which significantly reduces performance on modern
293 micro architectures. */
295 for (int i
= 0; i
< hs_len
; i
++)
296 hs
[i
] = (rand () & 255) > 155 ? 'a' : 'b';
299 memset (ne
, 'a', ne_len
);
300 ne
[ne_len
- 2] = 'b';
304 json_element_object_begin (json_ctx
);
305 json_attr_uint (json_ctx
, "len_haystack", hs_len
);
306 json_attr_uint (json_ctx
, "len_needle", ne_len
);
307 json_attr_uint (json_ctx
, "align_haystack", 0);
308 json_attr_uint (json_ctx
, "align_needle", 0);
309 json_attr_uint (json_ctx
, "fail", 1);
310 json_attr_string (json_ctx
, "desc", "Difficult 2-way");
312 json_array_begin (json_ctx
, "timings");
314 FOR_EACH_IMPL (impl
, 0)
315 do_one_test (json_ctx
, impl
, hs
, ne
, NULL
);
317 json_array_end (json_ctx
);
318 json_element_object_end (json_ctx
);
321 /* Hard needle for standard algorithm testing first few characters of
324 for (int i
= 0; i
< hs_len
; i
++)
325 hs
[i
] = (rand () & 255) >= 128 ? 'a' : 'b';
328 for (int i
= 0; i
< ne_len
; i
++)
339 json_element_object_begin (json_ctx
);
340 json_attr_uint (json_ctx
, "len_haystack", hs_len
);
341 json_attr_uint (json_ctx
, "len_needle", ne_len
);
342 json_attr_uint (json_ctx
, "align_haystack", 0);
343 json_attr_uint (json_ctx
, "align_needle", 0);
344 json_attr_uint (json_ctx
, "fail", 1);
345 json_attr_string (json_ctx
, "desc", "Difficult testing first 2");
347 json_array_begin (json_ctx
, "timings");
349 FOR_EACH_IMPL (impl
, 0)
350 do_one_test (json_ctx
, impl
, hs
, ne
, NULL
);
352 json_array_end (json_ctx
);
353 json_element_object_end (json_ctx
);
363 json_init (&json_ctx
, 0, stdout
);
365 json_document_begin (&json_ctx
);
366 json_attr_string (&json_ctx
, "timing_type", TIMING_TYPE
);
368 json_attr_object_begin (&json_ctx
, "functions");
369 json_attr_object_begin (&json_ctx
, TEST_NAME
);
370 json_attr_string (&json_ctx
, "bench-variant", "");
372 json_array_begin (&json_ctx
, "ifuncs");
373 FOR_EACH_IMPL (impl
, 0)
374 json_element_string (&json_ctx
, impl
->name
);
375 json_array_end (&json_ctx
);
377 json_array_begin (&json_ctx
, "results");
379 for (size_t hlen
= 8; hlen
<= 256;)
380 for (size_t klen
= 1; klen
<= 16; klen
++)
382 do_test (&json_ctx
, 1, 3, hlen
, klen
, 0);
383 do_test (&json_ctx
, 0, 9, hlen
, klen
, 1);
385 do_test (&json_ctx
, 1, 3, hlen
+ 1, klen
, 0);
386 do_test (&json_ctx
, 0, 9, hlen
+ 1, klen
, 1);
388 do_test (&json_ctx
, getpagesize () - 15, 9, hlen
, klen
, 1);
399 for (size_t hlen
= 256; hlen
<= 65536; hlen
*= 2)
400 for (size_t klen
= 4; klen
<= 256; klen
*= 2)
402 do_test (&json_ctx
, 1, 11, hlen
, klen
, 0);
403 do_test (&json_ctx
, 14, 5, hlen
, klen
, 1);
405 do_test (&json_ctx
, 1, 11, hlen
+ 1, klen
+ 1, 0);
406 do_test (&json_ctx
, 14, 5, hlen
+ 1, klen
+ 1, 1);
408 do_test (&json_ctx
, 1, 11, hlen
+ 1, klen
, 0);
409 do_test (&json_ctx
, 14, 5, hlen
+ 1, klen
, 1);
411 do_test (&json_ctx
, getpagesize () - 15, 5, hlen
+ 1, klen
, 1);
414 test_hard_needle (&json_ctx
, 64, 65536);
415 test_hard_needle (&json_ctx
, 256, 65536);
416 test_hard_needle (&json_ctx
, 1024, 65536);
418 json_array_end (&json_ctx
);
419 json_attr_object_end (&json_ctx
);
420 json_attr_object_end (&json_ctx
);
421 json_document_end (&json_ctx
);
426 #include <support/test-driver.c>