Fix spurious UNAVAIL status is getaddrinfo
[glibc.git] / sysdeps / ieee754 / ldbl-128 / e_asinl.c
blob89f5d79582ea82d2d8a1248832c3e88a3c4677c6
1 /*
2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 * Developed at SunPro, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
8 * is preserved.
9 * ====================================================
13 Long double expansions are
14 Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
15 and are incorporated herein by permission of the author. The author
16 reserves the right to distribute this material elsewhere under different
17 copying permissions. These modifications are distributed here under the
18 following terms:
20 This library is free software; you can redistribute it and/or
21 modify it under the terms of the GNU Lesser General Public
22 License as published by the Free Software Foundation; either
23 version 2.1 of the License, or (at your option) any later version.
25 This library is distributed in the hope that it will be useful,
26 but WITHOUT ANY WARRANTY; without even the implied warranty of
27 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
28 Lesser General Public License for more details.
30 You should have received a copy of the GNU Lesser General Public
31 License along with this library; if not, write to the Free Software
32 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
34 /* __ieee754_asin(x)
35 * Method :
36 * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
37 * we approximate asin(x) on [0,0.5] by
38 * asin(x) = x + x*x^2*R(x^2)
39 * Between .5 and .625 the approximation is
40 * asin(0.5625 + x) = asin(0.5625) + x rS(x) / sS(x)
41 * For x in [0.625,1]
42 * asin(x) = pi/2-2*asin(sqrt((1-x)/2))
43 * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
44 * then for x>0.98
45 * asin(x) = pi/2 - 2*(s+s*z*R(z))
46 * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
47 * For x<=0.98, let pio4_hi = pio2_hi/2, then
48 * f = hi part of s;
49 * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
50 * and
51 * asin(x) = pi/2 - 2*(s+s*z*R(z))
52 * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
53 * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
55 * Special cases:
56 * if x is NaN, return x itself;
57 * if |x|>1, return NaN with invalid signal.
62 #include "math.h"
63 #include "math_private.h"
64 long double sqrtl (long double);
66 #ifdef __STDC__
67 static const long double
68 #else
69 static long double
70 #endif
71 one = 1.0L,
72 huge = 1.0e+4932L,
73 pio2_hi = 1.5707963267948966192313216916397514420986L,
74 pio2_lo = 4.3359050650618905123985220130216759843812E-35L,
75 pio4_hi = 7.8539816339744830961566084581987569936977E-1L,
77 /* coefficient for R(x^2) */
79 /* asin(x) = x + x^3 pS(x^2) / qS(x^2)
80 0 <= x <= 0.5
81 peak relative error 1.9e-35 */
82 pS0 = -8.358099012470680544198472400254596543711E2L,
83 pS1 = 3.674973957689619490312782828051860366493E3L,
84 pS2 = -6.730729094812979665807581609853656623219E3L,
85 pS3 = 6.643843795209060298375552684423454077633E3L,
86 pS4 = -3.817341990928606692235481812252049415993E3L,
87 pS5 = 1.284635388402653715636722822195716476156E3L,
88 pS6 = -2.410736125231549204856567737329112037867E2L,
89 pS7 = 2.219191969382402856557594215833622156220E1L,
90 pS8 = -7.249056260830627156600112195061001036533E-1L,
91 pS9 = 1.055923570937755300061509030361395604448E-3L,
93 qS0 = -5.014859407482408326519083440151745519205E3L,
94 qS1 = 2.430653047950480068881028451580393430537E4L,
95 qS2 = -4.997904737193653607449250593976069726962E4L,
96 qS3 = 5.675712336110456923807959930107347511086E4L,
97 qS4 = -3.881523118339661268482937768522572588022E4L,
98 qS5 = 1.634202194895541569749717032234510811216E4L,
99 qS6 = -4.151452662440709301601820849901296953752E3L,
100 qS7 = 5.956050864057192019085175976175695342168E2L,
101 qS8 = -4.175375777334867025769346564600396877176E1L,
102 /* 1.000000000000000000000000000000000000000E0 */
104 /* asin(0.5625 + x) = asin(0.5625) + x rS(x) / sS(x)
105 -0.0625 <= x <= 0.0625
106 peak relative error 3.3e-35 */
107 rS0 = -5.619049346208901520945464704848780243887E0L,
108 rS1 = 4.460504162777731472539175700169871920352E1L,
109 rS2 = -1.317669505315409261479577040530751477488E2L,
110 rS3 = 1.626532582423661989632442410808596009227E2L,
111 rS4 = -3.144806644195158614904369445440583873264E1L,
112 rS5 = -9.806674443470740708765165604769099559553E1L,
113 rS6 = 5.708468492052010816555762842394927806920E1L,
114 rS7 = 1.396540499232262112248553357962639431922E1L,
115 rS8 = -1.126243289311910363001762058295832610344E1L,
116 rS9 = -4.956179821329901954211277873774472383512E-1L,
117 rS10 = 3.313227657082367169241333738391762525780E-1L,
119 sS0 = -4.645814742084009935700221277307007679325E0L,
120 sS1 = 3.879074822457694323970438316317961918430E1L,
121 sS2 = -1.221986588013474694623973554726201001066E2L,
122 sS3 = 1.658821150347718105012079876756201905822E2L,
123 sS4 = -4.804379630977558197953176474426239748977E1L,
124 sS5 = -1.004296417397316948114344573811562952793E2L,
125 sS6 = 7.530281592861320234941101403870010111138E1L,
126 sS7 = 1.270735595411673647119592092304357226607E1L,
127 sS8 = -1.815144839646376500705105967064792930282E1L,
128 sS9 = -7.821597334910963922204235247786840828217E-2L,
129 /* 1.000000000000000000000000000000000000000E0 */
131 asinr5625 = 5.9740641664535021430381036628424864397707E-1L;
135 #ifdef __STDC__
136 long double
137 __ieee754_asinl (long double x)
138 #else
139 double
140 __ieee754_asinl (x)
141 long double x;
142 #endif
144 long double t, w, p, q, c, r, s;
145 int32_t ix, sign, flag;
146 ieee854_long_double_shape_type u;
148 flag = 0;
149 u.value = x;
150 sign = u.parts32.w0;
151 ix = sign & 0x7fffffff;
152 u.parts32.w0 = ix; /* |x| */
153 if (ix >= 0x3fff0000) /* |x|>= 1 */
155 if (ix == 0x3fff0000
156 && (u.parts32.w1 | u.parts32.w2 | u.parts32.w3) == 0)
157 /* asin(1)=+-pi/2 with inexact */
158 return x * pio2_hi + x * pio2_lo;
159 return (x - x) / (x - x); /* asin(|x|>1) is NaN */
161 else if (ix < 0x3ffe0000) /* |x| < 0.5 */
163 if (ix < 0x3fc60000) /* |x| < 2**-57 */
165 if (huge + x > one)
166 return x; /* return x with inexact if x!=0 */
168 else
170 t = x * x;
171 /* Mark to use pS, qS later on. */
172 flag = 1;
175 else if (ix < 0x3ffe4000) /* 0.625 */
177 t = u.value - 0.5625;
178 p = ((((((((((rS10 * t
179 + rS9) * t
180 + rS8) * t
181 + rS7) * t
182 + rS6) * t
183 + rS5) * t
184 + rS4) * t
185 + rS3) * t
186 + rS2) * t
187 + rS1) * t
188 + rS0) * t;
190 q = ((((((((( t
191 + sS9) * t
192 + sS8) * t
193 + sS7) * t
194 + sS6) * t
195 + sS5) * t
196 + sS4) * t
197 + sS3) * t
198 + sS2) * t
199 + sS1) * t
200 + sS0;
201 t = asinr5625 + p / q;
202 if ((sign & 0x80000000) == 0)
203 return t;
204 else
205 return -t;
207 else
209 /* 1 > |x| >= 0.625 */
210 w = one - u.value;
211 t = w * 0.5;
214 p = (((((((((pS9 * t
215 + pS8) * t
216 + pS7) * t
217 + pS6) * t
218 + pS5) * t
219 + pS4) * t
220 + pS3) * t
221 + pS2) * t
222 + pS1) * t
223 + pS0) * t;
225 q = (((((((( t
226 + qS8) * t
227 + qS7) * t
228 + qS6) * t
229 + qS5) * t
230 + qS4) * t
231 + qS3) * t
232 + qS2) * t
233 + qS1) * t
234 + qS0;
236 if (flag) /* 2^-57 < |x| < 0.5 */
238 w = p / q;
239 return x + x * w;
242 s = __ieee754_sqrtl (t);
243 if (ix >= 0x3ffef333) /* |x| > 0.975 */
245 w = p / q;
246 t = pio2_hi - (2.0 * (s + s * w) - pio2_lo);
248 else
250 u.value = s;
251 u.parts32.w3 = 0;
252 u.parts32.w2 = 0;
253 w = u.value;
254 c = (t - w * w) / (s + w);
255 r = p / q;
256 p = 2.0 * s * r - (pio2_lo - 2.0 * c);
257 q = pio4_hi - 2.0 * w;
258 t = pio4_hi - (p - q);
261 if ((sign & 0x80000000) == 0)
262 return t;
263 else
264 return -t;