4 // Copyright (c) 2000 - 2003, Intel Corporation
5 // All rights reserved.
7 // Contributed 2000 by the Intel Numerics Group, Intel Corporation
9 // Redistribution and use in source and binary forms, with or without
10 // modification, are permitted provided that the following conditions are
13 // * Redistributions of source code must retain the above copyright
14 // notice, this list of conditions and the following disclaimer.
16 // * Redistributions in binary form must reproduce the above copyright
17 // notice, this list of conditions and the following disclaimer in the
18 // documentation and/or other materials provided with the distribution.
20 // * The name of Intel Corporation may not be used to endorse or promote
21 // products derived from this software without specific prior written
24 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
27 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
28 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
32 // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
33 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 // Intel Corporation is the author of this code, and requests that all
37 // problem reports or change requests be submitted to it directly at
38 // http://www.intel.com/software/products/opensource/libraries/num.htm.
41 //==============================================================
42 // 02/02/00 Initial version
43 // 02/08/01 Corrected behavior for all rounding modes.
44 // 05/20/02 Cleaned up namespace and sf0 syntax
45 // 01/20/03 Improved performance
46 //==============================================================
49 //==============================================================
50 // double rint(double x)
51 //==============================================================
53 // general input registers:
65 // floating-point registers:
72 // predicate registers used:
75 // Overview of operation
76 //==============================================================
77 // double rint(double x)
78 // Return an integer value (represented as a double) that is x
79 // rounded to integer in current rounding mode
80 // Inexact is set if x != rint(x)
81 //==============================================================
84 // if the exponent is > 1003e => 3F(true) = 63(decimal)
85 // we have a significand of 64 bits 1.63-bits.
86 // If we multiply by 2^63, we no longer have a fractional part
87 // So input is an integer value already.
90 // if the exponent is >= 10033 => 34(true) = 52(decimal)
92 // we have a significand of 53 bits 1.52-bits. (implicit 1)
93 // If we multiply by 2^52, we no longer have a fractional part
94 // So input is an integer value already.
97 // if the exponent is > 10016 => 17(true) = 23(decimal)
98 // we have a significand of 24 bits 1.23-bits. (implicit 1)
99 // If we multiply by 2^23, we no longer have a fractional part
100 // So input is an integer value already.
103 GLOBAL_IEEE754_ENTRY(rint)
106 getf.exp rSignexp = f8 // Get signexp, recompute if unorm
107 fclass.m p7,p0 = f8, 0x0b // Test x unorm
108 addl rBigexp = 0x10033, r0 // Set exponent at which is integer
111 mov rM1 = -1 // Set all ones
112 fcvt.fx.s1 fXInt = f8 // Convert to int in significand
113 mov rExpMask = 0x1FFFF // Form exponent mask
118 mov rFpsr = ar40 // Read fpsr -- check rc.s0
119 fclass.m p6,p0 = f8, 0x1e3 // Test x natval, nan, inf
123 setf.sig fTmp = rM1 // Make const for setting inexact
124 fnorm.s1 fNormX = f8 // Normalize input
125 (p7) br.cond.spnt RINT_UNORM // Branch if x unorm
131 // Return here from RINT_UNORM
133 and rExp = rSignexp, rExpMask // Get biased exponent
134 (p6) fma.d.s0 f8 = f8, f1, f0 // Result if x natval, nan, inf
135 (p6) br.ret.spnt b0 // Exit if x natval, nan, inf
140 mov rRcs0Mask = 0x0c00 // Mask for rc.s0
141 fcvt.xf f8 = fXInt // Result assume |x| < 2^52
142 cmp.ge p7,p8 = rExp, rBigexp // Is |x| >= 2^52?
146 // We must correct result if |x| >= 2^52
149 (p7) fma.d.s0 f8 = fNormX, f1, f0 // If |x| >= 2^52, result x
156 fcmp.eq.unc.s1 p0, p9 = f8, fNormX // Is result = x ?
161 (p8) fmerge.s f8 = fNormX, f8 // Make sure sign rint(x) = sign x
167 (p8) and rRcs0 = rFpsr, rRcs0Mask // Get rounding mode for sf0
173 // If |x| < 2^52 we must test for other rounding modes
175 (p8) cmp.ne.unc p10,p0 = rRcs0, r0 // Test for other rounding modes
176 (p9) fmpy.s0 fTmp = fTmp, fTmp // Dummy to set inexact
181 (p10) br.cond.spnt RINT_NOT_ROUND_NEAREST // Branch if not round nearest
182 br.ret.sptk b0 // Exit main path if round nearest
191 getf.exp rSignexp = fNormX // Get signexp, recompute if unorm
192 fcmp.eq.s0 p7,p0 = f8, f0 // Dummy op to set denormal flag
193 br.cond.sptk RINT_COMMON // Return to main path
197 RINT_NOT_ROUND_NEAREST:
198 // Here if not round to nearest, and |x| < 2^52
199 // Set rounding mode of s2 to that of s0, and repeat the conversion using s2
209 fcvt.fx.s2 fXInt = fNormX // Convert to int in significand
216 fcvt.xf f8 = fXInt // Expected result
221 // Be sure sign of result = sign of input. Fixes cases where result is 0.
224 fmerge.s f8 = fNormX, f8
225 br.ret.sptk b0 // Exit main path
229 GLOBAL_IEEE754_END(rint)