* locale/programs/locarchive.c (INITIAL_NUM_NAMES,
[glibc.git] / sysdeps / ieee754 / dbl-64 / mpa.c
blob68647ba335dabfc03c1ca0fe0e92d038a75667da
2 /*
3 * IBM Accurate Mathematical Library
4 * written by International Business Machines Corp.
5 * Copyright (C) 2001 Free Software Foundation
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU Lesser General Public License as published by
9 * the Free Software Foundation; either version 2.1 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 /************************************************************************/
22 /* MODULE_NAME: mpa.c */
23 /* */
24 /* FUNCTIONS: */
25 /* mcr */
26 /* acr */
27 /* cr */
28 /* cpy */
29 /* cpymn */
30 /* norm */
31 /* denorm */
32 /* mp_dbl */
33 /* dbl_mp */
34 /* add_magnitudes */
35 /* sub_magnitudes */
36 /* add */
37 /* sub */
38 /* mul */
39 /* inv */
40 /* dvd */
41 /* */
42 /* Arithmetic functions for multiple precision numbers. */
43 /* Relative errors are bounded */
44 /************************************************************************/
47 #include "endian.h"
48 #include "mpa.h"
49 #include "mpa2.h"
50 #include <sys/param.h> /* For MIN() */
51 /* mcr() compares the sizes of the mantissas of two multiple precision */
52 /* numbers. Mantissas are compared regardless of the signs of the */
53 /* numbers, even if x->d[0] or y->d[0] are zero. Exponents are also */
54 /* disregarded. */
55 static int mcr(const mp_no *x, const mp_no *y, int p) {
56 int i;
57 for (i=1; i<=p; i++) {
58 if (X[i] == Y[i]) continue;
59 else if (X[i] > Y[i]) return 1;
60 else return -1; }
61 return 0;
66 /* acr() compares the absolute values of two multiple precision numbers */
67 int __acr(const mp_no *x, const mp_no *y, int p) {
68 int i;
70 if (X[0] == ZERO) {
71 if (Y[0] == ZERO) i= 0;
72 else i=-1;
74 else if (Y[0] == ZERO) i= 1;
75 else {
76 if (EX > EY) i= 1;
77 else if (EX < EY) i=-1;
78 else i= mcr(x,y,p);
81 return i;
85 /* cr90 compares the values of two multiple precision numbers */
86 int __cr(const mp_no *x, const mp_no *y, int p) {
87 int i;
89 if (X[0] > Y[0]) i= 1;
90 else if (X[0] < Y[0]) i=-1;
91 else if (X[0] < ZERO ) i= __acr(y,x,p);
92 else i= __acr(x,y,p);
94 return i;
98 /* Copy a multiple precision number. Set *y=*x. x=y is permissible. */
99 void __cpy(const mp_no *x, mp_no *y, int p) {
100 int i;
102 EY = EX;
103 for (i=0; i <= p; i++) Y[i] = X[i];
105 return;
109 /* Copy a multiple precision number x of precision m into a */
110 /* multiple precision number y of precision n. In case n>m, */
111 /* the digits of y beyond the m'th are set to zero. In case */
112 /* n<m, the digits of x beyond the n'th are ignored. */
113 /* x=y is permissible. */
115 void __cpymn(const mp_no *x, int m, mp_no *y, int n) {
117 int i,k;
119 EY = EX; k=MIN(m,n);
120 for (i=0; i <= k; i++) Y[i] = X[i];
121 for ( ; i <= n; i++) Y[i] = ZERO;
123 return;
126 /* Convert a multiple precision number *x into a double precision */
127 /* number *y, normalized case (|x| >= 2**(-1022))) */
128 static void norm(const mp_no *x, double *y, int p)
130 #define R radixi.d
131 int i;
132 #if 0
133 int k;
134 #endif
135 double a,c,u,v,z[5];
136 if (p<5) {
137 if (p==1) c = X[1];
138 else if (p==2) c = X[1] + R* X[2];
139 else if (p==3) c = X[1] + R*(X[2] + R* X[3]);
140 else if (p==4) c =(X[1] + R* X[2]) + R*R*(X[3] + R*X[4]);
142 else {
143 for (a=ONE, z[1]=X[1]; z[1] < TWO23; )
144 {a *= TWO; z[1] *= TWO; }
146 for (i=2; i<5; i++) {
147 z[i] = X[i]*a;
148 u = (z[i] + CUTTER)-CUTTER;
149 if (u > z[i]) u -= RADIX;
150 z[i] -= u;
151 z[i-1] += u*RADIXI;
154 u = (z[3] + TWO71) - TWO71;
155 if (u > z[3]) u -= TWO19;
156 v = z[3]-u;
158 if (v == TWO18) {
159 if (z[4] == ZERO) {
160 for (i=5; i <= p; i++) {
161 if (X[i] == ZERO) continue;
162 else {z[3] += ONE; break; }
165 else z[3] += ONE;
168 c = (z[1] + R *(z[2] + R * z[3]))/a;
171 c *= X[0];
173 for (i=1; i<EX; i++) c *= RADIX;
174 for (i=1; i>EX; i--) c *= RADIXI;
176 *y = c;
177 return;
178 #undef R
181 /* Convert a multiple precision number *x into a double precision */
182 /* number *y, denormalized case (|x| < 2**(-1022))) */
183 static void denorm(const mp_no *x, double *y, int p)
185 int i,k;
186 double c,u,z[5];
187 #if 0
188 double a,v;
189 #endif
191 #define R radixi.d
192 if (EX<-44 || (EX==-44 && X[1]<TWO5))
193 { *y=ZERO; return; }
195 if (p==1) {
196 if (EX==-42) {z[1]=X[1]+TWO10; z[2]=ZERO; z[3]=ZERO; k=3;}
197 else if (EX==-43) {z[1]= TWO10; z[2]=X[1]; z[3]=ZERO; k=2;}
198 else {z[1]= TWO10; z[2]=ZERO; z[3]=X[1]; k=1;}
200 else if (p==2) {
201 if (EX==-42) {z[1]=X[1]+TWO10; z[2]=X[2]; z[3]=ZERO; k=3;}
202 else if (EX==-43) {z[1]= TWO10; z[2]=X[1]; z[3]=X[2]; k=2;}
203 else {z[1]= TWO10; z[2]=ZERO; z[3]=X[1]; k=1;}
205 else {
206 if (EX==-42) {z[1]=X[1]+TWO10; z[2]=X[2]; k=3;}
207 else if (EX==-43) {z[1]= TWO10; z[2]=X[1]; k=2;}
208 else {z[1]= TWO10; z[2]=ZERO; k=1;}
209 z[3] = X[k];
212 u = (z[3] + TWO57) - TWO57;
213 if (u > z[3]) u -= TWO5;
215 if (u==z[3]) {
216 for (i=k+1; i <= p; i++) {
217 if (X[i] == ZERO) continue;
218 else {z[3] += ONE; break; }
222 c = X[0]*((z[1] + R*(z[2] + R*z[3])) - TWO10);
224 *y = c*TWOM1032;
225 return;
227 #undef R
230 /* Convert a multiple precision number *x into a double precision number *y. */
231 /* The result is correctly rounded to the nearest/even. *x is left unchanged */
233 void __mp_dbl(const mp_no *x, double *y, int p) {
234 #if 0
235 int i,k;
236 double a,c,u,v,z[5];
237 #endif
239 if (X[0] == ZERO) {*y = ZERO; return; }
241 if (EX> -42) norm(x,y,p);
242 else if (EX==-42 && X[1]>=TWO10) norm(x,y,p);
243 else denorm(x,y,p);
247 /* dbl_mp() converts a double precision number x into a multiple precision */
248 /* number *y. If the precision p is too small the result is truncated. x is */
249 /* left unchanged. */
251 void __dbl_mp(double x, mp_no *y, int p) {
253 int i,n;
254 double u;
256 /* Sign */
257 if (x == ZERO) {Y[0] = ZERO; return; }
258 else if (x > ZERO) Y[0] = ONE;
259 else {Y[0] = MONE; x=-x; }
261 /* Exponent */
262 for (EY=ONE; x >= RADIX; EY += ONE) x *= RADIXI;
263 for ( ; x < ONE; EY -= ONE) x *= RADIX;
265 /* Digits */
266 n=MIN(p,4);
267 for (i=1; i<=n; i++) {
268 u = (x + TWO52) - TWO52;
269 if (u>x) u -= ONE;
270 Y[i] = u; x -= u; x *= RADIX; }
271 for ( ; i<=p; i++) Y[i] = ZERO;
272 return;
276 /* add_magnitudes() adds the magnitudes of *x & *y assuming that */
277 /* abs(*x) >= abs(*y) > 0. */
278 /* The sign of the sum *z is undefined. x&y may overlap but not x&z or y&z. */
279 /* No guard digit is used. The result equals the exact sum, truncated. */
280 /* *x & *y are left unchanged. */
282 static void add_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) {
284 int i,j,k;
286 EZ = EX;
288 i=p; j=p+ EY - EX; k=p+1;
290 if (j<1)
291 {__cpy(x,z,p); return; }
292 else Z[k] = ZERO;
294 for (; j>0; i--,j--) {
295 Z[k] += X[i] + Y[j];
296 if (Z[k] >= RADIX) {
297 Z[k] -= RADIX;
298 Z[--k] = ONE; }
299 else
300 Z[--k] = ZERO;
303 for (; i>0; i--) {
304 Z[k] += X[i];
305 if (Z[k] >= RADIX) {
306 Z[k] -= RADIX;
307 Z[--k] = ONE; }
308 else
309 Z[--k] = ZERO;
312 if (Z[1] == ZERO) {
313 for (i=1; i<=p; i++) Z[i] = Z[i+1]; }
314 else EZ += ONE;
318 /* sub_magnitudes() subtracts the magnitudes of *x & *y assuming that */
319 /* abs(*x) > abs(*y) > 0. */
320 /* The sign of the difference *z is undefined. x&y may overlap but not x&z */
321 /* or y&z. One guard digit is used. The error is less than one ulp. */
322 /* *x & *y are left unchanged. */
324 static void sub_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) {
326 int i,j,k;
328 EZ = EX;
330 if (EX == EY) {
331 i=j=k=p;
332 Z[k] = Z[k+1] = ZERO; }
333 else {
334 j= EX - EY;
335 if (j > p) {__cpy(x,z,p); return; }
336 else {
337 i=p; j=p+1-j; k=p;
338 if (Y[j] > ZERO) {
339 Z[k+1] = RADIX - Y[j--];
340 Z[k] = MONE; }
341 else {
342 Z[k+1] = ZERO;
343 Z[k] = ZERO; j--;}
347 for (; j>0; i--,j--) {
348 Z[k] += (X[i] - Y[j]);
349 if (Z[k] < ZERO) {
350 Z[k] += RADIX;
351 Z[--k] = MONE; }
352 else
353 Z[--k] = ZERO;
356 for (; i>0; i--) {
357 Z[k] += X[i];
358 if (Z[k] < ZERO) {
359 Z[k] += RADIX;
360 Z[--k] = MONE; }
361 else
362 Z[--k] = ZERO;
365 for (i=1; Z[i] == ZERO; i++) ;
366 EZ = EZ - i + 1;
367 for (k=1; i <= p+1; )
368 Z[k++] = Z[i++];
369 for (; k <= p; )
370 Z[k++] = ZERO;
372 return;
376 /* Add two multiple precision numbers. Set *z = *x + *y. x&y may overlap */
377 /* but not x&z or y&z. One guard digit is used. The error is less than */
378 /* one ulp. *x & *y are left unchanged. */
380 void __add(const mp_no *x, const mp_no *y, mp_no *z, int p) {
382 int n;
384 if (X[0] == ZERO) {__cpy(y,z,p); return; }
385 else if (Y[0] == ZERO) {__cpy(x,z,p); return; }
387 if (X[0] == Y[0]) {
388 if (__acr(x,y,p) > 0) {add_magnitudes(x,y,z,p); Z[0] = X[0]; }
389 else {add_magnitudes(y,x,z,p); Z[0] = Y[0]; }
391 else {
392 if ((n=__acr(x,y,p)) == 1) {sub_magnitudes(x,y,z,p); Z[0] = X[0]; }
393 else if (n == -1) {sub_magnitudes(y,x,z,p); Z[0] = Y[0]; }
394 else Z[0] = ZERO;
396 return;
400 /* Subtract two multiple precision numbers. *z is set to *x - *y. x&y may */
401 /* overlap but not x&z or y&z. One guard digit is used. The error is */
402 /* less than one ulp. *x & *y are left unchanged. */
404 void __sub(const mp_no *x, const mp_no *y, mp_no *z, int p) {
406 int n;
408 if (X[0] == ZERO) {__cpy(y,z,p); Z[0] = -Z[0]; return; }
409 else if (Y[0] == ZERO) {__cpy(x,z,p); return; }
411 if (X[0] != Y[0]) {
412 if (__acr(x,y,p) > 0) {add_magnitudes(x,y,z,p); Z[0] = X[0]; }
413 else {add_magnitudes(y,x,z,p); Z[0] = -Y[0]; }
415 else {
416 if ((n=__acr(x,y,p)) == 1) {sub_magnitudes(x,y,z,p); Z[0] = X[0]; }
417 else if (n == -1) {sub_magnitudes(y,x,z,p); Z[0] = -Y[0]; }
418 else Z[0] = ZERO;
420 return;
424 /* Multiply two multiple precision numbers. *z is set to *x * *y. x&y */
425 /* may overlap but not x&z or y&z. In case p=1,2,3 the exact result is */
426 /* truncated to p digits. In case p>3 the error is bounded by 1.001 ulp. */
427 /* *x & *y are left unchanged. */
429 void __mul(const mp_no *x, const mp_no *y, mp_no *z, int p) {
431 int i, i1, i2, j, k, k2;
432 double u;
434 /* Is z=0? */
435 if (X[0]*Y[0]==ZERO)
436 { Z[0]=ZERO; return; }
438 /* Multiply, add and carry */
439 k2 = (p<3) ? p+p : p+3;
440 Z[k2]=ZERO;
441 for (k=k2; k>1; ) {
442 if (k > p) {i1=k-p; i2=p+1; }
443 else {i1=1; i2=k; }
444 for (i=i1,j=i2-1; i<i2; i++,j--) Z[k] += X[i]*Y[j];
446 u = (Z[k] + CUTTER)-CUTTER;
447 if (u > Z[k]) u -= RADIX;
448 Z[k] -= u;
449 Z[--k] = u*RADIXI;
452 /* Is there a carry beyond the most significant digit? */
453 if (Z[1] == ZERO) {
454 for (i=1; i<=p; i++) Z[i]=Z[i+1];
455 EZ = EX + EY - 1; }
456 else
457 EZ = EX + EY;
459 Z[0] = X[0] * Y[0];
460 return;
464 /* Invert a multiple precision number. Set *y = 1 / *x. */
465 /* Relative error bound = 1.001*r**(1-p) for p=2, 1.063*r**(1-p) for p=3, */
466 /* 2.001*r**(1-p) for p>3. */
467 /* *x=0 is not permissible. *x is left unchanged. */
469 void __inv(const mp_no *x, mp_no *y, int p) {
470 int i;
471 #if 0
472 int l;
473 #endif
474 double t;
475 mp_no z,w;
476 static const int np1[] = {0,0,0,0,1,2,2,2,2,3,3,3,3,3,3,3,3,3,
477 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4};
478 const mp_no mptwo = {1,{1.0,2.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
479 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
480 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
481 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}};
483 __cpy(x,&z,p); z.e=0; __mp_dbl(&z,&t,p);
484 t=ONE/t; __dbl_mp(t,y,p); EY -= EX;
486 for (i=0; i<np1[p]; i++) {
487 __cpy(y,&w,p);
488 __mul(x,&w,y,p);
489 __sub(&mptwo,y,&z,p);
490 __mul(&w,&z,y,p);
492 return;
496 /* Divide one multiple precision number by another.Set *z = *x / *y. *x & *y */
497 /* are left unchanged. x&y may overlap but not x&z or y&z. */
498 /* Relative error bound = 2.001*r**(1-p) for p=2, 2.063*r**(1-p) for p=3 */
499 /* and 3.001*r**(1-p) for p>3. *y=0 is not permissible. */
501 void __dvd(const mp_no *x, const mp_no *y, mp_no *z, int p) {
503 mp_no w;
505 if (X[0] == ZERO) Z[0] = ZERO;
506 else {__inv(y,&w,p); __mul(x,&w,z,p);}
507 return;