1 /* Read decimal floating point numbers.
2 This file is part of the GNU C Library.
3 Copyright (C) 1995, 1996, 1997, 1998 Free Software Foundation, Inc.
4 Contributed by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995.
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public License as
8 published by the Free Software Foundation; either version 2 of the
9 License, or (at your option) any later version.
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Library General Public License for more details.
16 You should have received a copy of the GNU Library General Public
17 License along with the GNU C Library; see the file COPYING.LIB. If not,
18 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
21 /* Configuration part. These macros are defined by `strtold.c',
22 `strtof.c', `wcstod.c', `wcstold.c', and `wcstof.c' to produce the
23 `long double' and `float' versions of the reader. */
28 # ifdef USE_IN_EXTENDED_LOCALE_MODEL
29 # define STRTOF __wcstod_l
31 # define STRTOF wcstod
34 # ifdef USE_IN_EXTENDED_LOCALE_MODEL
35 # define STRTOF __strtod_l
37 # define STRTOF strtod
40 # define MPN2FLOAT __mpn_construct_double
41 # define FLOAT_HUGE_VAL HUGE_VAL
42 # define SET_MANTISSA(flt, mant) \
43 do { union ieee754_double u; \
45 if ((mant & 0xfffffffffffffULL) == 0) \
46 mant = 0x8000000000000ULL; \
47 u.ieee.mantissa0 = ((mant) >> 32) & 0xfffff; \
48 u.ieee.mantissa1 = (mant) & 0xffffffff; \
52 /* End of configuration part. */
58 #include "../locale/localeinfo.h"
63 /* The gmp headers need some configuration frobs. */
68 #include <gmp-mparam.h>
70 #include "fpioconst.h"
76 /* We use this code also for the extended locale handling where the
77 function gets as an additional argument the locale which has to be
78 used. To access the values we have to redefine the _NL_CURRENT
80 #ifdef USE_IN_EXTENDED_LOCALE_MODEL
82 # define _NL_CURRENT(category, item) \
83 (current->values[_NL_ITEM_INDEX (item)].string)
84 # define LOCALE_PARAM , loc
85 # define LOCALE_PARAM_DECL __locale_t loc;
88 # define LOCALE_PARAM_DECL
91 #if defined _LIBC || defined HAVE_WCHAR_H
97 # define STRING_TYPE wchar_t
98 # define CHAR_TYPE wint_t
100 # ifdef USE_IN_EXTENDED_LOCALE_MODEL
101 # define ISSPACE(Ch) __iswspace_l ((Ch), loc)
102 # define ISDIGIT(Ch) __iswdigit_l ((Ch), loc)
103 # define ISXDIGIT(Ch) __iswxdigit_l ((Ch), loc)
104 # define TOLOWER(Ch) __towlower_l ((Ch), loc)
105 # define STRNCASECMP(S1, S2, N) __wcsncasecmp_l ((S1), (S2), (N), loc)
106 # define STRTOULL(S, E, B) ____wcstoull_l_internal ((S), (E), (B), 0, loc)
108 # define ISSPACE(Ch) iswspace (Ch)
109 # define ISDIGIT(Ch) iswdigit (Ch)
110 # define ISXDIGIT(Ch) iswxdigit (Ch)
111 # define TOLOWER(Ch) towlower (Ch)
112 # define STRNCASECMP(S1, S2, N) __wcsncasecmp ((S1), (S2), (N))
113 # define STRTOULL(S, E, B) __wcstoull_internal ((S), (E), (B), 0)
116 # define STRING_TYPE char
117 # define CHAR_TYPE char
119 # ifdef USE_IN_EXTENDED_LOCALE_MODEL
120 # define ISSPACE(Ch) __isspace_l ((Ch), loc)
121 # define ISDIGIT(Ch) __isdigit_l ((Ch), loc)
122 # define ISXDIGIT(Ch) __isxdigit_l ((Ch), loc)
123 # define TOLOWER(Ch) __tolower_l ((Ch), loc)
124 # define STRNCASECMP(S1, S2, N) __strncasecmp_l ((S1), (S2), (N), loc)
125 # define STRTOULL(S, E, B) ____strtoull_l_internal ((S), (E), (B), 0, loc)
127 # define ISSPACE(Ch) isspace (Ch)
128 # define ISDIGIT(Ch) isdigit (Ch)
129 # define ISXDIGIT(Ch) isxdigit (Ch)
130 # define TOLOWER(Ch) tolower (Ch)
131 # define STRNCASECMP(S1, S2, N) __strncasecmp ((S1), (S2), (N))
132 # define STRTOULL(S, E, B) __strtoull_internal ((S), (E), 0, (B))
137 /* Constants we need from float.h; select the set for the FLOAT precision. */
138 #define MANT_DIG PASTE(FLT,_MANT_DIG)
139 #define DIG PASTE(FLT,_DIG)
140 #define MAX_EXP PASTE(FLT,_MAX_EXP)
141 #define MIN_EXP PASTE(FLT,_MIN_EXP)
142 #define MAX_10_EXP PASTE(FLT,_MAX_10_EXP)
143 #define MIN_10_EXP PASTE(FLT,_MIN_10_EXP)
145 /* Extra macros required to get FLT expanded before the pasting. */
146 #define PASTE(a,b) PASTE1(a,b)
147 #define PASTE1(a,b) a##b
149 /* Function to construct a floating point number from an MP integer
150 containing the fraction bits, a base 2 exponent, and a sign flag. */
151 extern FLOAT
MPN2FLOAT (mp_srcptr mpn
, int exponent
, int negative
);
153 /* Definitions according to limb size used. */
154 #if BITS_PER_MP_LIMB == 32
155 # define MAX_DIG_PER_LIMB 9
156 # define MAX_FAC_PER_LIMB 1000000000UL
157 #elif BITS_PER_MP_LIMB == 64
158 # define MAX_DIG_PER_LIMB 19
159 # define MAX_FAC_PER_LIMB 10000000000000000000UL
161 # error "mp_limb_t size " BITS_PER_MP_LIMB "not accounted for"
165 /* Local data structure. */
166 static const mp_limb_t _tens_in_limb
[MAX_DIG_PER_LIMB
+ 1] =
169 1000000, 10000000, 100000000,
171 #if BITS_PER_MP_LIMB > 32
172 , 10000000000U, 100000000000U,
173 1000000000000U, 10000000000000U, 100000000000000U,
174 1000000000000000U, 10000000000000000U, 100000000000000000U,
175 1000000000000000000U, 10000000000000000000U
177 #if BITS_PER_MP_LIMB > 64
178 #error "Need to expand tens_in_limb table to" MAX_DIG_PER_LIMB
183 #define howmany(x,y) (((x)+((y)-1))/(y))
185 #define SWAP(x, y) ({ typeof(x) _tmp = x; x = y; y = _tmp; })
187 #define NDIG (MAX_10_EXP - MIN_10_EXP + 2 * MANT_DIG)
188 #define HEXNDIG ((MAX_EXP - MIN_EXP + 7) / 8 + 2 * MANT_DIG)
189 #define RETURN_LIMB_SIZE howmany (MANT_DIG, BITS_PER_MP_LIMB)
191 #define RETURN(val,end) \
192 do { if (endptr != NULL) *endptr = (STRING_TYPE *) (end); \
193 return val; } while (0)
195 /* Maximum size necessary for mpn integers to hold floating point numbers. */
196 #define MPNSIZE (howmany (MAX_EXP + 2 * MANT_DIG, BITS_PER_MP_LIMB) \
198 /* Declare an mpn integer variable that big. */
199 #define MPN_VAR(name) mp_limb_t name[MPNSIZE]; mp_size_t name##size
200 /* Copy an mpn integer value. */
201 #define MPN_ASSIGN(dst, src) \
202 memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t))
205 /* Return a floating point number of the needed type according to the given
206 multi-precision number after possible rounding. */
208 round_and_return (mp_limb_t
*retval
, int exponent
, int negative
,
209 mp_limb_t round_limb
, mp_size_t round_bit
, int more_bits
)
211 if (exponent
< MIN_EXP
- 1)
213 mp_size_t shift
= MIN_EXP
- 1 - exponent
;
215 if (shift
> MANT_DIG
)
221 more_bits
|= (round_limb
& ((((mp_limb_t
) 1) << round_bit
) - 1)) != 0;
222 if (shift
== MANT_DIG
)
223 /* This is a special case to handle the very seldom case where
224 the mantissa will be empty after the shift. */
228 round_limb
= retval
[RETURN_LIMB_SIZE
- 1];
229 round_bit
= BITS_PER_MP_LIMB
- 1;
230 for (i
= 0; i
< RETURN_LIMB_SIZE
; ++i
)
231 more_bits
|= retval
[i
] != 0;
232 MPN_ZERO (retval
, RETURN_LIMB_SIZE
);
234 else if (shift
>= BITS_PER_MP_LIMB
)
238 round_limb
= retval
[(shift
- 1) / BITS_PER_MP_LIMB
];
239 round_bit
= (shift
- 1) % BITS_PER_MP_LIMB
;
240 for (i
= 0; i
< (shift
- 1) / BITS_PER_MP_LIMB
; ++i
)
241 more_bits
|= retval
[i
] != 0;
242 more_bits
|= ((round_limb
& ((((mp_limb_t
) 1) << round_bit
) - 1))
245 (void) __mpn_rshift (retval
, &retval
[shift
/ BITS_PER_MP_LIMB
],
246 RETURN_LIMB_SIZE
- (shift
/ BITS_PER_MP_LIMB
),
247 shift
% BITS_PER_MP_LIMB
);
248 MPN_ZERO (&retval
[RETURN_LIMB_SIZE
- (shift
/ BITS_PER_MP_LIMB
)],
249 shift
/ BITS_PER_MP_LIMB
);
253 round_limb
= retval
[0];
254 round_bit
= shift
- 1;
255 (void) __mpn_rshift (retval
, retval
, RETURN_LIMB_SIZE
, shift
);
257 exponent
= MIN_EXP
- 2;
260 if ((round_limb
& (((mp_limb_t
) 1) << round_bit
)) != 0
261 && (more_bits
|| (retval
[0] & 1) != 0
262 || (round_limb
& ((((mp_limb_t
) 1) << round_bit
) - 1)) != 0))
264 mp_limb_t cy
= __mpn_add_1 (retval
, retval
, RETURN_LIMB_SIZE
, 1);
266 if (((MANT_DIG
% BITS_PER_MP_LIMB
) == 0 && cy
) ||
267 ((MANT_DIG
% BITS_PER_MP_LIMB
) != 0 &&
268 (retval
[RETURN_LIMB_SIZE
- 1]
269 & (((mp_limb_t
) 1) << (MANT_DIG
% BITS_PER_MP_LIMB
))) != 0))
272 (void) __mpn_rshift (retval
, retval
, RETURN_LIMB_SIZE
, 1);
273 retval
[RETURN_LIMB_SIZE
- 1]
274 |= ((mp_limb_t
) 1) << ((MANT_DIG
- 1) % BITS_PER_MP_LIMB
);
276 else if (exponent
== MIN_EXP
- 2
277 && (retval
[RETURN_LIMB_SIZE
- 1]
278 & (((mp_limb_t
) 1) << ((MANT_DIG
- 1) % BITS_PER_MP_LIMB
)))
280 /* The number was denormalized but now normalized. */
281 exponent
= MIN_EXP
- 1;
284 if (exponent
> MAX_EXP
)
285 return negative
? -FLOAT_HUGE_VAL
: FLOAT_HUGE_VAL
;
287 return MPN2FLOAT (retval
, exponent
, negative
);
291 /* Read a multi-precision integer starting at STR with exactly DIGCNT digits
292 into N. Return the size of the number limbs in NSIZE at the first
293 character od the string that is not part of the integer as the function
294 value. If the EXPONENT is small enough to be taken as an additional
295 factor for the resulting number (see code) multiply by it. */
296 static inline const STRING_TYPE
*
297 str_to_mpn (const STRING_TYPE
*str
, int digcnt
, mp_limb_t
*n
, mp_size_t
*nsize
,
300 /* Number of digits for actual limb. */
309 if (cnt
== MAX_DIG_PER_LIMB
)
319 cy
= __mpn_mul_1 (n
, n
, *nsize
, MAX_FAC_PER_LIMB
);
320 cy
+= __mpn_add_1 (n
, n
, *nsize
, low
);
331 /* There might be thousands separators or radix characters in
332 the string. But these all can be ignored because we know the
333 format of the number is correct and we have an exact number
334 of characters to read. */
335 while (*str
< L_('0') || *str
> L_('9'))
337 low
= low
* 10 + *str
++ - L_('0');
340 while (--digcnt
> 0);
342 if (*exponent
> 0 && cnt
+ *exponent
<= MAX_DIG_PER_LIMB
)
344 low
*= _tens_in_limb
[*exponent
];
345 start
= _tens_in_limb
[cnt
+ *exponent
];
349 start
= _tens_in_limb
[cnt
];
359 cy
= __mpn_mul_1 (n
, n
, *nsize
, start
);
360 cy
+= __mpn_add_1 (n
, n
, *nsize
, low
);
369 /* Shift {PTR, SIZE} COUNT bits to the left, and fill the vacated bits
370 with the COUNT most significant bits of LIMB.
372 Tege doesn't like this function so I have to write it here myself. :)
375 __mpn_lshift_1 (mp_limb_t
*ptr
, mp_size_t size
, unsigned int count
,
378 if (count
== BITS_PER_MP_LIMB
)
380 /* Optimize the case of shifting by exactly a word:
381 just copy words, with no actual bit-shifting. */
383 for (i
= size
- 1; i
> 0; --i
)
389 (void) __mpn_lshift (ptr
, ptr
, size
, count
);
390 ptr
[0] |= limb
>> (BITS_PER_MP_LIMB
- count
);
395 #define INTERNAL(x) INTERNAL1(x)
396 #define INTERNAL1(x) __##x##_internal
398 /* This file defines a function to check for correct grouping. */
399 #include "grouping.h"
402 /* Return a floating point number with the value of the given string NPTR.
403 Set *ENDPTR to the character after the last used one. If the number is
404 smaller than the smallest representable number, set `errno' to ERANGE and
405 return 0.0. If the number is too big to be represented, set `errno' to
406 ERANGE and return HUGE_VAL with the appropriate sign. */
408 INTERNAL (STRTOF
) (nptr
, endptr
, group LOCALE_PARAM
)
409 const STRING_TYPE
*nptr
;
410 STRING_TYPE
**endptr
;
414 int negative
; /* The sign of the number. */
415 MPN_VAR (num
); /* MP representation of the number. */
416 int exponent
; /* Exponent of the number. */
418 /* Numbers starting `0X' or `0x' have to be processed with base 16. */
421 /* When we have to compute fractional digits we form a fraction with a
422 second multi-precision number (and we sometimes need a second for
423 temporary results). */
426 /* Representation for the return value. */
427 mp_limb_t retval
[RETURN_LIMB_SIZE
];
428 /* Number of bits currently in result value. */
431 /* Running pointer after the last character processed in the string. */
432 const STRING_TYPE
*cp
, *tp
;
433 /* Start of significant part of the number. */
434 const STRING_TYPE
*startp
, *start_of_digits
;
435 /* Points at the character following the integer and fractional digits. */
436 const STRING_TYPE
*expp
;
437 /* Total number of digit and number of digits in integer part. */
438 int dig_no
, int_no
, lead_zero
;
439 /* Contains the last character read. */
442 /* We should get wint_t from <stddef.h>, but not all GCC versions define it
443 there. So define it ourselves if it remains undefined. */
445 typedef unsigned int wint_t;
447 /* The radix character of the current locale. */
449 /* The thousands character of the current locale. */
450 wchar_t thousands
= L
'\0';
451 /* The numeric grouping specification of the current locale,
452 in the format described in <locale.h>. */
453 const char *grouping
;
455 #ifdef USE_IN_EXTENDED_LOCALE_MODEL
456 struct locale_data
*current
= loc
->__locales
[LC_NUMERIC
];
461 grouping
= _NL_CURRENT (LC_NUMERIC
, GROUPING
);
462 if (*grouping
<= 0 || *grouping
== CHAR_MAX
)
466 /* Figure out the thousands separator character. */
467 thousands
= __btowc (*_NL_CURRENT (LC_NUMERIC
, THOUSANDS_SEP
));
468 if (thousands
== WEOF
)
470 if (thousands
== L
'\0')
477 /* Find the locale's decimal point character. */
478 decimal
= __btowc (*_NL_CURRENT (LC_NUMERIC
, DECIMAL_POINT
));
481 assert (decimal
!= L
'\0');
483 /* Prepare number representation. */
488 /* Parse string to get maximal legal prefix. We need the number of
489 characters of the integer part, the fractional part and the exponent. */
491 /* Ignore leading white space. */
496 /* Get sign of the result. */
502 else if (c
== L_('+'))
505 /* Return 0.0 if no legal string is found.
506 No character is used even if a sign was found. */
507 if ((c
< L_('0') || c
> L_('9'))
508 && ((wchar_t) c
!= decimal
|| cp
[1] < L_('0') || cp
[1] > L_('9')))
511 /* Check for `INF' or `INFINITY'. */
512 if (TOLOWER (c
) == L_('i')
513 && ((STRNCASECMP (cp
, L_("inf"), 3) == 0 && (matched
= 3))
514 || (STRNCASECMP (cp
, L_("infinity"), 8) == 0 && (matched
= 8))))
516 /* Return +/- infinity. */
518 *endptr
= (STRING_TYPE
*) (cp
+ matched
);
520 return negative
? -FLOAT_HUGE_VAL
: FLOAT_HUGE_VAL
;
523 if (TOLOWER (c
) == L_('n') && STRNCASECMP (cp
, L_("nan"), 3) == 0)
530 /* Match `(n-char-sequence-digit)'. */
533 const STRING_TYPE
*startp
= cp
;
536 while ((*cp
>= L_('0') && *cp
<= L_('9'))
537 || (TOLOWER (*cp
) >= L_('a') && TOLOWER (*cp
) <= L_('z'))
541 /* The closing brace is missing. Only match the NAN
546 /* This is a system-dependent way to specify the
547 bitmask used for the NaN. We expect it to be
548 a number which is put in the mantissa of the
551 unsigned long long int mant
;
553 mant
= STRTOULL (startp
+ 1, &endp
, 0);
555 SET_MANTISSA (retval
, mant
);
560 *endptr
= (STRING_TYPE
*) cp
;
565 /* It is really a text we do not recognize. */
569 /* First look whether we are faced with a hexadecimal number. */
570 if (c
== L_('0') && TOLOWER (cp
[1]) == L_('x'))
572 /* Okay, it is a hexa-decimal number. Remember this and skip
573 the characters. BTW: hexadecimal numbers must not be
581 /* Record the start of the digits, in case we will check their grouping. */
582 start_of_digits
= startp
= cp
;
584 /* Ignore leading zeroes. This helps us to avoid useless computations. */
585 while (c
== L_('0') || (thousands
!= L
'\0' && (wchar_t) c
== thousands
))
588 /* If no other digit but a '0' is found the result is 0.0.
589 Return current read pointer. */
590 if ((c
< L_('0') || c
> L_('9')) &&
591 (base
== 16 && (c
< TOLOWER (L_('a')) || c
> TOLOWER (L_('f')))) &&
592 (wchar_t) c
!= decimal
&&
593 (base
== 16 && (cp
== start_of_digits
|| TOLOWER (c
) != L_('p'))) &&
594 (base
!= 16 && TOLOWER (c
) != L_('e')))
596 tp
= correctly_grouped_prefix (start_of_digits
, cp
, thousands
, grouping
);
597 /* If TP is at the start of the digits, there was no correctly
598 grouped prefix of the string; so no number found. */
599 RETURN (0.0, tp
== start_of_digits
? (base
== 16 ? cp
- 1 : nptr
) : tp
);
602 /* Remember first significant digit and read following characters until the
603 decimal point, exponent character or any non-FP number character. */
606 while (dig_no
< (base
== 16 ? HEXNDIG
: NDIG
) ||
607 /* If parsing grouping info, keep going past useful digits
608 so we can check all the grouping separators. */
611 if ((c
>= L_('0') && c
<= L_('9'))
612 || (base
== 16 && TOLOWER (c
) >= L_('a') && TOLOWER (c
) <= L_('f')))
614 else if (thousands
== L
'\0' || (wchar_t) c
!= thousands
)
615 /* Not a digit or separator: end of the integer part. */
620 if (grouping
&& dig_no
> 0)
622 /* Check the grouping of the digits. */
623 tp
= correctly_grouped_prefix (start_of_digits
, cp
, thousands
, grouping
);
626 /* Less than the entire string was correctly grouped. */
628 if (tp
== start_of_digits
)
629 /* No valid group of numbers at all: no valid number. */
633 /* The number is validly grouped, but consists
634 only of zeroes. The whole value is zero. */
637 /* Recompute DIG_NO so we won't read more digits than
638 are properly grouped. */
641 for (tp
= startp
; tp
< cp
; ++tp
)
642 if (*tp
>= L_('0') && *tp
<= L_('9'))
652 if (dig_no
>= (base
== 16 ? HEXNDIG
: NDIG
))
653 /* Too many digits to be representable. Assigning this to EXPONENT
654 allows us to read the full number but return HUGE_VAL after parsing. */
655 exponent
= MAX_10_EXP
;
657 /* We have the number digits in the integer part. Whether these are all or
658 any is really a fractional digit will be decided later. */
660 lead_zero
= int_no
== 0 ? -1 : 0;
662 /* Read the fractional digits. A special case are the 'american style'
663 numbers like `16.' i.e. with decimal but without trailing digits. */
664 if ((wchar_t) c
== decimal
)
667 while (c
>= L_('0') && c
<= L_('9') ||
668 (base
== 16 && TOLOWER (c
) >= L_('a') && TOLOWER (c
) <= L_('f')))
670 if (c
!= L_('0') && lead_zero
== -1)
671 lead_zero
= dig_no
- int_no
;
677 /* Remember start of exponent (if any). */
681 if ((base
== 16 && TOLOWER (c
) == L_('p'))
682 || (base
!= 16 && TOLOWER (c
) == L_('e')))
684 int exp_negative
= 0;
692 else if (c
== L_('+'))
695 if (c
>= L_('0') && c
<= L_('9'))
699 /* Get the exponent limit. */
701 exp_limit
= (exp_negative
?
702 -MIN_EXP
+ MANT_DIG
- 4 * int_no
:
703 MAX_EXP
- 4 * int_no
+ lead_zero
);
705 exp_limit
= (exp_negative
?
706 -MIN_10_EXP
+ MANT_DIG
- int_no
:
707 MAX_10_EXP
- int_no
+ lead_zero
);
713 if (exponent
> exp_limit
)
714 /* The exponent is too large/small to represent a valid
719 /* We have to take care for special situation: a joker
720 might have written "0.0e100000" which is in fact
723 result
= negative
? -0.0 : 0.0;
726 /* Overflow or underflow. */
727 __set_errno (ERANGE
);
728 result
= (exp_negative
? 0.0 :
729 negative
? -FLOAT_HUGE_VAL
: FLOAT_HUGE_VAL
);
732 /* Accept all following digits as part of the exponent. */
735 while (*cp
>= L_('0') && *cp
<= L_('9'));
741 exponent
+= c
- L_('0');
744 while (c
>= L_('0') && c
<= L_('9'));
747 exponent
= -exponent
;
753 /* We don't want to have to work with trailing zeroes after the radix. */
756 while (expp
[-1] == L_('0'))
761 assert (dig_no
>= int_no
);
766 /* The whole string is parsed. Store the address of the next character. */
768 *endptr
= (STRING_TYPE
*) cp
;
771 return negative
? -0.0 : 0.0;
775 /* Find the decimal point */
776 while ((wchar_t) *startp
!= decimal
)
778 startp
+= lead_zero
+ 1;
779 exponent
-= base
== 16 ? 4 * lead_zero
: lead_zero
;
783 /* If the BASE is 16 we can use a simpler algorithm. */
786 static const int nbits
[16] = { 0, 1, 2, 2, 3, 3, 3, 3,
787 4, 4, 4, 4, 4, 4, 4, 4 };
788 int idx
= (MANT_DIG
- 1) / BITS_PER_MP_LIMB
;
789 int pos
= (MANT_DIG
- 1) % BITS_PER_MP_LIMB
;
792 while (!ISXDIGIT (*startp
))
794 if (ISDIGIT (*startp
))
795 val
= *startp
++ - L_('0');
797 val
= 10 + TOLOWER (*startp
++) - L_('a');
800 if (pos
+ 1 >= 4 || pos
+ 1 >= bits
)
802 /* We don't have to care for wrapping. This is the normal
803 case so we add the first clause in the `if' expression as
804 an optimization. It is a compile-time constant and so does
805 not cost anything. */
806 retval
[idx
] = val
<< (pos
- bits
+ 1);
811 retval
[idx
--] = val
>> (bits
- pos
- 1);
812 retval
[idx
] = val
<< (BITS_PER_MP_LIMB
- (bits
- pos
- 1));
813 pos
= BITS_PER_MP_LIMB
- 1 - (bits
- pos
- 1);
816 while (--dig_no
> 0 && idx
>= 0)
818 while (!ISXDIGIT (*startp
))
820 if (ISDIGIT (*startp
))
821 val
= *startp
++ - L_('0');
823 val
= 10 + TOLOWER (*startp
++) - L_('a');
827 retval
[idx
] |= val
<< (pos
- 4 + 1);
832 retval
[idx
--] |= val
>> (4 - pos
- 1);
833 val
<<= BITS_PER_MP_LIMB
- (4 - pos
- 1);
835 return round_and_return (retval
, exponent
, negative
, val
,
836 BITS_PER_MP_LIMB
- 1, dig_no
> 0);
839 pos
= BITS_PER_MP_LIMB
- 1 - (4 - pos
- 1);
843 /* We ran out of digits. */
844 MPN_ZERO (retval
, idx
);
846 return round_and_return (retval
, exponent
, negative
, 0, 0, 0);
849 /* Now we have the number of digits in total and the integer digits as well
850 as the exponent and its sign. We can decide whether the read digits are
851 really integer digits or belong to the fractional part; i.e. we normalize
854 register int incr
= (exponent
< 0 ? MAX (-int_no
, exponent
)
855 : MIN (dig_no
- int_no
, exponent
));
860 if (int_no
+ exponent
> MAX_10_EXP
+ 1)
862 __set_errno (ERANGE
);
863 return negative
? -FLOAT_HUGE_VAL
: FLOAT_HUGE_VAL
;
866 if (exponent
< MIN_10_EXP
- (DIG
+ 1))
868 __set_errno (ERANGE
);
874 /* Read the integer part as a multi-precision number to NUM. */
875 startp
= str_to_mpn (startp
, int_no
, num
, &numsize
, &exponent
);
879 /* We now multiply the gained number by the given power of ten. */
880 mp_limb_t
*psrc
= num
;
881 mp_limb_t
*pdest
= den
;
883 const struct mp_power
*ttab
= &_fpioconst_pow10
[0];
887 if ((exponent
& expbit
) != 0)
892 /* FIXME: not the whole multiplication has to be
893 done. If we have the needed number of bits we
894 only need the information whether more non-zero
896 if (numsize
>= ttab
->arraysize
- _FPIO_CONST_OFFSET
)
897 cy
= __mpn_mul (pdest
, psrc
, numsize
,
898 &ttab
->array
[_FPIO_CONST_OFFSET
],
899 ttab
->arraysize
- _FPIO_CONST_OFFSET
);
901 cy
= __mpn_mul (pdest
, &ttab
->array
[_FPIO_CONST_OFFSET
],
902 ttab
->arraysize
- _FPIO_CONST_OFFSET
,
904 numsize
+= ttab
->arraysize
- _FPIO_CONST_OFFSET
;
912 while (exponent
!= 0);
915 memcpy (num
, den
, numsize
* sizeof (mp_limb_t
));
918 /* Determine how many bits of the result we already have. */
919 count_leading_zeros (bits
, num
[numsize
- 1]);
920 bits
= numsize
* BITS_PER_MP_LIMB
- bits
;
922 /* Now we know the exponent of the number in base two.
923 Check it against the maximum possible exponent. */
926 __set_errno (ERANGE
);
927 return negative
? -FLOAT_HUGE_VAL
: FLOAT_HUGE_VAL
;
930 /* We have already the first BITS bits of the result. Together with
931 the information whether more non-zero bits follow this is enough
932 to determine the result. */
936 const mp_size_t least_idx
= (bits
- MANT_DIG
) / BITS_PER_MP_LIMB
;
937 const mp_size_t least_bit
= (bits
- MANT_DIG
) % BITS_PER_MP_LIMB
;
938 const mp_size_t round_idx
= least_bit
== 0 ? least_idx
- 1
940 const mp_size_t round_bit
= least_bit
== 0 ? BITS_PER_MP_LIMB
- 1
944 memcpy (retval
, &num
[least_idx
],
945 RETURN_LIMB_SIZE
* sizeof (mp_limb_t
));
948 for (i
= least_idx
; i
< numsize
- 1; ++i
)
949 retval
[i
- least_idx
] = (num
[i
] >> least_bit
)
951 << (BITS_PER_MP_LIMB
- least_bit
));
952 if (i
- least_idx
< RETURN_LIMB_SIZE
)
953 retval
[RETURN_LIMB_SIZE
- 1] = num
[i
] >> least_bit
;
956 /* Check whether any limb beside the ones in RETVAL are non-zero. */
957 for (i
= 0; num
[i
] == 0; ++i
)
960 return round_and_return (retval
, bits
- 1, negative
,
961 num
[round_idx
], round_bit
,
962 int_no
< dig_no
|| i
< round_idx
);
965 else if (dig_no
== int_no
)
967 const mp_size_t target_bit
= (MANT_DIG
- 1) % BITS_PER_MP_LIMB
;
968 const mp_size_t is_bit
= (bits
- 1) % BITS_PER_MP_LIMB
;
970 if (target_bit
== is_bit
)
972 memcpy (&retval
[RETURN_LIMB_SIZE
- numsize
], num
,
973 numsize
* sizeof (mp_limb_t
));
974 /* FIXME: the following loop can be avoided if we assume a
975 maximal MANT_DIG value. */
976 MPN_ZERO (retval
, RETURN_LIMB_SIZE
- numsize
);
978 else if (target_bit
> is_bit
)
980 (void) __mpn_lshift (&retval
[RETURN_LIMB_SIZE
- numsize
],
981 num
, numsize
, target_bit
- is_bit
);
982 /* FIXME: the following loop can be avoided if we assume a
983 maximal MANT_DIG value. */
984 MPN_ZERO (retval
, RETURN_LIMB_SIZE
- numsize
);
989 assert (numsize
< RETURN_LIMB_SIZE
);
991 cy
= __mpn_rshift (&retval
[RETURN_LIMB_SIZE
- numsize
],
992 num
, numsize
, is_bit
- target_bit
);
993 retval
[RETURN_LIMB_SIZE
- numsize
- 1] = cy
;
994 /* FIXME: the following loop can be avoided if we assume a
995 maximal MANT_DIG value. */
996 MPN_ZERO (retval
, RETURN_LIMB_SIZE
- numsize
- 1);
999 return round_and_return (retval
, bits
- 1, negative
, 0, 0, 0);
1003 /* Store the bits we already have. */
1004 memcpy (retval
, num
, numsize
* sizeof (mp_limb_t
));
1005 #if RETURN_LIMB_SIZE > 1
1006 if (numsize
< RETURN_LIMB_SIZE
)
1007 retval
[numsize
] = 0;
1011 /* We have to compute at least some of the fractional digits. */
1013 /* We construct a fraction and the result of the division gives us
1014 the needed digits. The denominator is 1.0 multiplied by the
1015 exponent of the lowest digit; i.e. 0.123 gives 123 / 1000 and
1016 123e-6 gives 123 / 1000000. */
1023 mp_limb_t
*psrc
= den
;
1024 mp_limb_t
*pdest
= num
;
1025 const struct mp_power
*ttab
= &_fpioconst_pow10
[0];
1027 assert (dig_no
> int_no
&& exponent
<= 0);
1030 /* For the fractional part we need not process too many digits. One
1031 decimal digits gives us log_2(10) ~ 3.32 bits. If we now compute
1033 digits we should have enough bits for the result. The remaining
1034 decimal digits give us the information that more bits are following.
1035 This can be used while rounding. (One added as a safety margin.) */
1036 if (dig_no
- int_no
> (MANT_DIG
- bits
+ 2) / 3 + 1)
1038 dig_no
= int_no
+ (MANT_DIG
- bits
+ 2) / 3 + 1;
1044 neg_exp
= dig_no
- int_no
- exponent
;
1046 /* Construct the denominator. */
1051 if ((neg_exp
& expbit
) != 0)
1058 densize
= ttab
->arraysize
- _FPIO_CONST_OFFSET
;
1059 memcpy (psrc
, &ttab
->array
[_FPIO_CONST_OFFSET
],
1060 densize
* sizeof (mp_limb_t
));
1064 cy
= __mpn_mul (pdest
, &ttab
->array
[_FPIO_CONST_OFFSET
],
1065 ttab
->arraysize
- _FPIO_CONST_OFFSET
,
1067 densize
+= ttab
->arraysize
- _FPIO_CONST_OFFSET
;
1076 while (neg_exp
!= 0);
1079 memcpy (den
, num
, densize
* sizeof (mp_limb_t
));
1081 /* Read the fractional digits from the string. */
1082 (void) str_to_mpn (startp
, dig_no
- int_no
, num
, &numsize
, &exponent
);
1085 /* We now have to shift both numbers so that the highest bit in the
1086 denominator is set. In the same process we copy the numerator to
1087 a high place in the array so that the division constructs the wanted
1088 digits. This is done by a "quasi fix point" number representation.
1090 num: ddddddddddd . 0000000000000000000000
1092 den: ddddddddddd n >= m
1096 count_leading_zeros (cnt
, den
[densize
- 1]);
1100 /* Don't call `mpn_shift' with a count of zero since the specification
1101 does not allow this. */
1102 (void) __mpn_lshift (den
, den
, densize
, cnt
);
1103 cy
= __mpn_lshift (num
, num
, numsize
, cnt
);
1105 num
[numsize
++] = cy
;
1108 /* Now we are ready for the division. But it is not necessary to
1109 do a full multi-precision division because we only need a small
1110 number of bits for the result. So we do not use __mpn_divmod
1111 here but instead do the division here by hand and stop whenever
1112 the needed number of bits is reached. The code itself comes
1113 from the GNU MP Library by Torbj\"orn Granlund. */
1121 mp_limb_t d
, n
, quot
;
1126 assert (numsize
== 1 && n
< d
);
1130 udiv_qrnnd (quot
, n
, n
, 0, d
);
1137 cnt = BITS_PER_MP_LIMB; \
1139 count_leading_zeros (cnt, quot); \
1141 if (BITS_PER_MP_LIMB - cnt > MANT_DIG) \
1143 used = MANT_DIG + cnt; \
1144 retval[0] = quot >> (BITS_PER_MP_LIMB - used); \
1145 bits = MANT_DIG + 1; \
1149 /* Note that we only clear the second element. */ \
1150 /* The conditional is determined at compile time. */ \
1151 if (RETURN_LIMB_SIZE > 1) \
1157 else if (bits + BITS_PER_MP_LIMB <= MANT_DIG) \
1158 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, BITS_PER_MP_LIMB, \
1162 used = MANT_DIG - bits; \
1164 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, quot); \
1166 bits += BITS_PER_MP_LIMB
1170 while (bits
<= MANT_DIG
);
1172 return round_and_return (retval
, exponent
- 1, negative
,
1173 quot
, BITS_PER_MP_LIMB
- 1 - used
,
1174 more_bits
|| n
!= 0);
1178 mp_limb_t d0
, d1
, n0
, n1
;
1185 if (numsize
< densize
)
1189 /* The numerator of the number occupies fewer bits than
1190 the denominator but the one limb is bigger than the
1191 high limb of the numerator. */
1198 exponent
-= BITS_PER_MP_LIMB
;
1201 if (bits
+ BITS_PER_MP_LIMB
<= MANT_DIG
)
1202 __mpn_lshift_1 (retval
, RETURN_LIMB_SIZE
,
1203 BITS_PER_MP_LIMB
, 0);
1206 used
= MANT_DIG
- bits
;
1208 __mpn_lshift_1 (retval
, RETURN_LIMB_SIZE
, used
, 0);
1210 bits
+= BITS_PER_MP_LIMB
;
1222 while (bits
<= MANT_DIG
)
1228 /* QUOT should be either 111..111 or 111..110. We need
1229 special treatment of this rare case as normal division
1230 would give overflow. */
1231 quot
= ~(mp_limb_t
) 0;
1234 if (r
< d1
) /* Carry in the addition? */
1236 add_ssaaaa (n1
, n0
, r
- d0
, 0, 0, d0
);
1239 n1
= d0
- (d0
!= 0);
1244 udiv_qrnnd (quot
, r
, n1
, n0
, d1
);
1245 umul_ppmm (n1
, n0
, d0
, quot
);
1249 if (n1
> r
|| (n1
== r
&& n0
> 0))
1251 /* The estimated QUOT was too large. */
1254 sub_ddmmss (n1
, n0
, n1
, n0
, 0, d0
);
1256 if (r
>= d1
) /* If not carry, test QUOT again. */
1259 sub_ddmmss (n1
, n0
, r
, 0, n1
, n0
);
1265 return round_and_return (retval
, exponent
- 1, negative
,
1266 quot
, BITS_PER_MP_LIMB
- 1 - used
,
1267 more_bits
|| n1
!= 0 || n0
!= 0);
1272 mp_limb_t cy
, dX
, d1
, n0
, n1
;
1276 dX
= den
[densize
- 1];
1277 d1
= den
[densize
- 2];
1279 /* The division does not work if the upper limb of the two-limb
1280 numerator is greater than the denominator. */
1281 if (__mpn_cmp (num
, &den
[densize
- numsize
], numsize
) > 0)
1284 if (numsize
< densize
)
1286 mp_size_t empty
= densize
- numsize
;
1291 for (i
= numsize
; i
> 0; --i
)
1292 num
[i
+ empty
] = num
[i
- 1];
1293 MPN_ZERO (num
, empty
+ 1);
1294 exponent
-= empty
* BITS_PER_MP_LIMB
;
1298 if (bits
+ empty
* BITS_PER_MP_LIMB
<= MANT_DIG
)
1300 /* We make a difference here because the compiler
1301 cannot optimize the `else' case that good and
1302 this reflects all currently used FLOAT types
1303 and GMP implementations. */
1305 #if RETURN_LIMB_SIZE <= 2
1306 assert (empty
== 1);
1307 __mpn_lshift_1 (retval
, RETURN_LIMB_SIZE
,
1308 BITS_PER_MP_LIMB
, 0);
1310 for (i
= RETURN_LIMB_SIZE
; i
> empty
; --i
)
1311 retval
[i
] = retval
[i
- empty
];
1313 #if RETURN_LIMB_SIZE > 1
1316 for (i
= numsize
; i
> 0; --i
)
1317 num
[i
+ empty
] = num
[i
- 1];
1318 MPN_ZERO (num
, empty
+ 1);
1322 used
= MANT_DIG
- bits
;
1323 if (used
>= BITS_PER_MP_LIMB
)
1326 (void) __mpn_lshift (&retval
[used
1327 / BITS_PER_MP_LIMB
],
1328 retval
, RETURN_LIMB_SIZE
,
1329 used
% BITS_PER_MP_LIMB
);
1330 for (i
= used
/ BITS_PER_MP_LIMB
; i
>= 0; --i
)
1334 __mpn_lshift_1 (retval
, RETURN_LIMB_SIZE
, used
, 0);
1336 bits
+= empty
* BITS_PER_MP_LIMB
;
1342 assert (numsize
== densize
);
1343 for (i
= numsize
; i
> 0; --i
)
1344 num
[i
] = num
[i
- 1];
1350 while (bits
<= MANT_DIG
)
1353 /* This might over-estimate QUOT, but it's probably not
1354 worth the extra code here to find out. */
1355 quot
= ~(mp_limb_t
) 0;
1360 udiv_qrnnd (quot
, r
, n0
, num
[densize
- 1], dX
);
1361 umul_ppmm (n1
, n0
, d1
, quot
);
1363 while (n1
> r
|| (n1
== r
&& n0
> num
[densize
- 2]))
1367 if (r
< dX
) /* I.e. "carry in previous addition?" */
1374 /* Possible optimization: We already have (q * n0) and (1 * n1)
1375 after the calculation of QUOT. Taking advantage of this, we
1376 could make this loop make two iterations less. */
1378 cy
= __mpn_submul_1 (num
, den
, densize
+ 1, quot
);
1380 if (num
[densize
] != cy
)
1382 cy
= __mpn_add_n (num
, num
, den
, densize
);
1386 n0
= num
[densize
] = num
[densize
- 1];
1387 for (i
= densize
- 1; i
> 0; --i
)
1388 num
[i
] = num
[i
- 1];
1393 for (i
= densize
; num
[i
] == 0 && i
>= 0; --i
)
1395 return round_and_return (retval
, exponent
- 1, negative
,
1396 quot
, BITS_PER_MP_LIMB
- 1 - used
,
1397 more_bits
|| i
>= 0);
1405 /* External user entry point. */
1408 #ifdef weak_function
1411 STRTOF (nptr
, endptr LOCALE_PARAM
)
1412 const STRING_TYPE
*nptr
;
1413 STRING_TYPE
**endptr
;
1416 return INTERNAL (STRTOF
) (nptr
, endptr
, 0 LOCALE_PARAM
);