Update.
[glibc.git] / posix / regex.c
blob3868da3eb74c90372b4eeb880d5ef46b9ac04fd0
1 /* Extended regular expression matching and search library,
2 version 0.12.
3 (Implements POSIX draft P1003.2/D11.2, except for some of the
4 internationalization features.)
5 Copyright (C) 1993, 94, 95, 96, 97, 98 Free Software Foundation, Inc.
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Library General Public License as
9 published by the Free Software Foundation; either version 2 of the
10 License, or (at your option) any later version.
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Library General Public License for more details.
17 You should have received a copy of the GNU Library General Public
18 License along with the GNU C Library; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* AIX requires this to be the first thing in the file. */
23 #if defined _AIX && !defined REGEX_MALLOC
24 #pragma alloca
25 #endif
27 #undef _GNU_SOURCE
28 #define _GNU_SOURCE
30 #ifdef HAVE_CONFIG_H
31 # include <config.h>
32 #endif
34 #ifndef PARAMS
35 # if defined __GNUC__ || (defined __STDC__ && __STDC__)
36 # define PARAMS(args) args
37 # else
38 # define PARAMS(args) ()
39 # endif /* GCC. */
40 #endif /* Not PARAMS. */
42 #if defined STDC_HEADERS && !defined emacs
43 # include <stddef.h>
44 #else
45 /* We need this for `regex.h', and perhaps for the Emacs include files. */
46 # include <sys/types.h>
47 #endif
49 /* For platform which support the ISO C amendement 1 functionality we
50 support user defined character classes. */
51 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
52 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
53 # include <wchar.h>
54 # include <wctype.h>
56 /* We have to keep the namespace clean. */
57 # define regfree(preg) __regfree (preg)
58 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
59 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
60 # define regerror(errcode, preg, errbuf, errbuf_size) \
61 __regerror(errcode, preg, errbuf, errbuf_size)
62 # define re_set_registers(bu, re, nu, st, en) \
63 __re_set_registers (bu, re, nu, st, en)
64 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
65 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
66 # define re_match(bufp, string, size, pos, regs) \
67 __re_match (bufp, string, size, pos, regs)
68 # define re_search(bufp, string, size, startpos, range, regs) \
69 __re_search (bufp, string, size, startpos, range, regs)
70 # define re_compile_pattern(pattern, length, bufp) \
71 __re_compile_pattern (pattern, length, bufp)
72 # define re_set_syntax(syntax) __re_set_syntax (syntax)
73 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
74 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
75 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
77 #define btowc __btowc
78 #endif
80 /* This is for other GNU distributions with internationalized messages. */
81 #if HAVE_LIBINTL_H || defined _LIBC
82 # include <libintl.h>
83 #else
84 # define gettext(msgid) (msgid)
85 #endif
87 #ifndef gettext_noop
88 /* This define is so xgettext can find the internationalizable
89 strings. */
90 # define gettext_noop(String) String
91 #endif
93 /* The `emacs' switch turns on certain matching commands
94 that make sense only in Emacs. */
95 #ifdef emacs
97 # include "lisp.h"
98 # include "buffer.h"
99 # include "syntax.h"
101 #else /* not emacs */
103 /* If we are not linking with Emacs proper,
104 we can't use the relocating allocator
105 even if config.h says that we can. */
106 # undef REL_ALLOC
108 # if defined STDC_HEADERS || defined _LIBC
109 # include <stdlib.h>
110 # else
111 char *malloc ();
112 char *realloc ();
113 # endif
115 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
116 If nothing else has been done, use the method below. */
117 # ifdef INHIBIT_STRING_HEADER
118 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
119 # if !defined bzero && !defined bcopy
120 # undef INHIBIT_STRING_HEADER
121 # endif
122 # endif
123 # endif
125 /* This is the normal way of making sure we have a bcopy and a bzero.
126 This is used in most programs--a few other programs avoid this
127 by defining INHIBIT_STRING_HEADER. */
128 # ifndef INHIBIT_STRING_HEADER
129 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
130 # include <string.h>
131 # ifndef bzero
132 # ifndef _LIBC
133 # define bzero(s, n) (memset (s, '\0', n), (s))
134 # else
135 # define bzero(s, n) __bzero (s, n)
136 # endif
137 # endif
138 # else
139 # include <strings.h>
140 # ifndef memcmp
141 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
142 # endif
143 # ifndef memcpy
144 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
145 # endif
146 # endif
147 # endif
149 /* Define the syntax stuff for \<, \>, etc. */
151 /* This must be nonzero for the wordchar and notwordchar pattern
152 commands in re_match_2. */
153 # ifndef Sword
154 # define Sword 1
155 # endif
157 # ifdef SWITCH_ENUM_BUG
158 # define SWITCH_ENUM_CAST(x) ((int)(x))
159 # else
160 # define SWITCH_ENUM_CAST(x) (x)
161 # endif
163 /* How many characters in the character set. */
164 # define CHAR_SET_SIZE 256
166 # ifdef SYNTAX_TABLE
168 extern char *re_syntax_table;
170 # else /* not SYNTAX_TABLE */
172 static char re_syntax_table[CHAR_SET_SIZE];
174 static void
175 init_syntax_once ()
177 register int c;
178 static int done = 0;
180 if (done)
181 return;
183 bzero (re_syntax_table, sizeof re_syntax_table);
185 for (c = 'a'; c <= 'z'; c++)
186 re_syntax_table[c] = Sword;
188 for (c = 'A'; c <= 'Z'; c++)
189 re_syntax_table[c] = Sword;
191 for (c = '0'; c <= '9'; c++)
192 re_syntax_table[c] = Sword;
194 re_syntax_table['_'] = Sword;
196 done = 1;
199 # endif /* not SYNTAX_TABLE */
201 # define SYNTAX(c) re_syntax_table[c]
203 #endif /* not emacs */
205 /* Get the interface, including the syntax bits. */
206 #include "regex.h"
208 /* isalpha etc. are used for the character classes. */
209 #include <ctype.h>
211 /* Jim Meyering writes:
213 "... Some ctype macros are valid only for character codes that
214 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
215 using /bin/cc or gcc but without giving an ansi option). So, all
216 ctype uses should be through macros like ISPRINT... If
217 STDC_HEADERS is defined, then autoconf has verified that the ctype
218 macros don't need to be guarded with references to isascii. ...
219 Defining isascii to 1 should let any compiler worth its salt
220 eliminate the && through constant folding."
221 Solaris defines some of these symbols so we must undefine them first. */
223 #undef ISASCII
224 #if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
225 # define ISASCII(c) 1
226 #else
227 # define ISASCII(c) isascii(c)
228 #endif
230 #ifdef isblank
231 # define ISBLANK(c) (ISASCII (c) && isblank (c))
232 #else
233 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
234 #endif
235 #ifdef isgraph
236 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
237 #else
238 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
239 #endif
241 #undef ISPRINT
242 #define ISPRINT(c) (ISASCII (c) && isprint (c))
243 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
244 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
245 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
246 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
247 #define ISLOWER(c) (ISASCII (c) && islower (c))
248 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
249 #define ISSPACE(c) (ISASCII (c) && isspace (c))
250 #define ISUPPER(c) (ISASCII (c) && isupper (c))
251 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
253 #ifndef NULL
254 # define NULL (void *)0
255 #endif
257 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
258 since ours (we hope) works properly with all combinations of
259 machines, compilers, `char' and `unsigned char' argument types.
260 (Per Bothner suggested the basic approach.) */
261 #undef SIGN_EXTEND_CHAR
262 #if __STDC__
263 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
264 #else /* not __STDC__ */
265 /* As in Harbison and Steele. */
266 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
267 #endif
269 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
270 use `alloca' instead of `malloc'. This is because using malloc in
271 re_search* or re_match* could cause memory leaks when C-g is used in
272 Emacs; also, malloc is slower and causes storage fragmentation. On
273 the other hand, malloc is more portable, and easier to debug.
275 Because we sometimes use alloca, some routines have to be macros,
276 not functions -- `alloca'-allocated space disappears at the end of the
277 function it is called in. */
279 #ifdef REGEX_MALLOC
281 # define REGEX_ALLOCATE malloc
282 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
283 # define REGEX_FREE free
285 #else /* not REGEX_MALLOC */
287 /* Emacs already defines alloca, sometimes. */
288 # ifndef alloca
290 /* Make alloca work the best possible way. */
291 # ifdef __GNUC__
292 # define alloca __builtin_alloca
293 # else /* not __GNUC__ */
294 # if HAVE_ALLOCA_H
295 # include <alloca.h>
296 # endif /* HAVE_ALLOCA_H */
297 # endif /* not __GNUC__ */
299 # endif /* not alloca */
301 # define REGEX_ALLOCATE alloca
303 /* Assumes a `char *destination' variable. */
304 # define REGEX_REALLOCATE(source, osize, nsize) \
305 (destination = (char *) alloca (nsize), \
306 memcpy (destination, source, osize))
308 /* No need to do anything to free, after alloca. */
309 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
311 #endif /* not REGEX_MALLOC */
313 /* Define how to allocate the failure stack. */
315 #if defined REL_ALLOC && defined REGEX_MALLOC
317 # define REGEX_ALLOCATE_STACK(size) \
318 r_alloc (&failure_stack_ptr, (size))
319 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
320 r_re_alloc (&failure_stack_ptr, (nsize))
321 # define REGEX_FREE_STACK(ptr) \
322 r_alloc_free (&failure_stack_ptr)
324 #else /* not using relocating allocator */
326 # ifdef REGEX_MALLOC
328 # define REGEX_ALLOCATE_STACK malloc
329 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
330 # define REGEX_FREE_STACK free
332 # else /* not REGEX_MALLOC */
334 # define REGEX_ALLOCATE_STACK alloca
336 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
337 REGEX_REALLOCATE (source, osize, nsize)
338 /* No need to explicitly free anything. */
339 # define REGEX_FREE_STACK(arg)
341 # endif /* not REGEX_MALLOC */
342 #endif /* not using relocating allocator */
345 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
346 `string1' or just past its end. This works if PTR is NULL, which is
347 a good thing. */
348 #define FIRST_STRING_P(ptr) \
349 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
351 /* (Re)Allocate N items of type T using malloc, or fail. */
352 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
353 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
354 #define RETALLOC_IF(addr, n, t) \
355 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
356 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
358 #define BYTEWIDTH 8 /* In bits. */
360 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
362 #undef MAX
363 #undef MIN
364 #define MAX(a, b) ((a) > (b) ? (a) : (b))
365 #define MIN(a, b) ((a) < (b) ? (a) : (b))
367 typedef char boolean;
368 #define false 0
369 #define true 1
371 static int re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
372 const char *string1, int size1,
373 const char *string2, int size2,
374 int pos,
375 struct re_registers *regs,
376 int stop));
378 /* These are the command codes that appear in compiled regular
379 expressions. Some opcodes are followed by argument bytes. A
380 command code can specify any interpretation whatsoever for its
381 arguments. Zero bytes may appear in the compiled regular expression. */
383 typedef enum
385 no_op = 0,
387 /* Succeed right away--no more backtracking. */
388 succeed,
390 /* Followed by one byte giving n, then by n literal bytes. */
391 exactn,
393 /* Matches any (more or less) character. */
394 anychar,
396 /* Matches any one char belonging to specified set. First
397 following byte is number of bitmap bytes. Then come bytes
398 for a bitmap saying which chars are in. Bits in each byte
399 are ordered low-bit-first. A character is in the set if its
400 bit is 1. A character too large to have a bit in the map is
401 automatically not in the set. */
402 charset,
404 /* Same parameters as charset, but match any character that is
405 not one of those specified. */
406 charset_not,
408 /* Start remembering the text that is matched, for storing in a
409 register. Followed by one byte with the register number, in
410 the range 0 to one less than the pattern buffer's re_nsub
411 field. Then followed by one byte with the number of groups
412 inner to this one. (This last has to be part of the
413 start_memory only because we need it in the on_failure_jump
414 of re_match_2.) */
415 start_memory,
417 /* Stop remembering the text that is matched and store it in a
418 memory register. Followed by one byte with the register
419 number, in the range 0 to one less than `re_nsub' in the
420 pattern buffer, and one byte with the number of inner groups,
421 just like `start_memory'. (We need the number of inner
422 groups here because we don't have any easy way of finding the
423 corresponding start_memory when we're at a stop_memory.) */
424 stop_memory,
426 /* Match a duplicate of something remembered. Followed by one
427 byte containing the register number. */
428 duplicate,
430 /* Fail unless at beginning of line. */
431 begline,
433 /* Fail unless at end of line. */
434 endline,
436 /* Succeeds if at beginning of buffer (if emacs) or at beginning
437 of string to be matched (if not). */
438 begbuf,
440 /* Analogously, for end of buffer/string. */
441 endbuf,
443 /* Followed by two byte relative address to which to jump. */
444 jump,
446 /* Same as jump, but marks the end of an alternative. */
447 jump_past_alt,
449 /* Followed by two-byte relative address of place to resume at
450 in case of failure. */
451 on_failure_jump,
453 /* Like on_failure_jump, but pushes a placeholder instead of the
454 current string position when executed. */
455 on_failure_keep_string_jump,
457 /* Throw away latest failure point and then jump to following
458 two-byte relative address. */
459 pop_failure_jump,
461 /* Change to pop_failure_jump if know won't have to backtrack to
462 match; otherwise change to jump. This is used to jump
463 back to the beginning of a repeat. If what follows this jump
464 clearly won't match what the repeat does, such that we can be
465 sure that there is no use backtracking out of repetitions
466 already matched, then we change it to a pop_failure_jump.
467 Followed by two-byte address. */
468 maybe_pop_jump,
470 /* Jump to following two-byte address, and push a dummy failure
471 point. This failure point will be thrown away if an attempt
472 is made to use it for a failure. A `+' construct makes this
473 before the first repeat. Also used as an intermediary kind
474 of jump when compiling an alternative. */
475 dummy_failure_jump,
477 /* Push a dummy failure point and continue. Used at the end of
478 alternatives. */
479 push_dummy_failure,
481 /* Followed by two-byte relative address and two-byte number n.
482 After matching N times, jump to the address upon failure. */
483 succeed_n,
485 /* Followed by two-byte relative address, and two-byte number n.
486 Jump to the address N times, then fail. */
487 jump_n,
489 /* Set the following two-byte relative address to the
490 subsequent two-byte number. The address *includes* the two
491 bytes of number. */
492 set_number_at,
494 wordchar, /* Matches any word-constituent character. */
495 notwordchar, /* Matches any char that is not a word-constituent. */
497 wordbeg, /* Succeeds if at word beginning. */
498 wordend, /* Succeeds if at word end. */
500 wordbound, /* Succeeds if at a word boundary. */
501 notwordbound /* Succeeds if not at a word boundary. */
503 #ifdef emacs
504 ,before_dot, /* Succeeds if before point. */
505 at_dot, /* Succeeds if at point. */
506 after_dot, /* Succeeds if after point. */
508 /* Matches any character whose syntax is specified. Followed by
509 a byte which contains a syntax code, e.g., Sword. */
510 syntaxspec,
512 /* Matches any character whose syntax is not that specified. */
513 notsyntaxspec
514 #endif /* emacs */
515 } re_opcode_t;
517 /* Common operations on the compiled pattern. */
519 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
521 #define STORE_NUMBER(destination, number) \
522 do { \
523 (destination)[0] = (number) & 0377; \
524 (destination)[1] = (number) >> 8; \
525 } while (0)
527 /* Same as STORE_NUMBER, except increment DESTINATION to
528 the byte after where the number is stored. Therefore, DESTINATION
529 must be an lvalue. */
531 #define STORE_NUMBER_AND_INCR(destination, number) \
532 do { \
533 STORE_NUMBER (destination, number); \
534 (destination) += 2; \
535 } while (0)
537 /* Put into DESTINATION a number stored in two contiguous bytes starting
538 at SOURCE. */
540 #define EXTRACT_NUMBER(destination, source) \
541 do { \
542 (destination) = *(source) & 0377; \
543 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
544 } while (0)
546 #ifdef DEBUG
547 static void extract_number _RE_ARGS ((int *dest, unsigned char *source));
548 static void
549 extract_number (dest, source)
550 int *dest;
551 unsigned char *source;
553 int temp = SIGN_EXTEND_CHAR (*(source + 1));
554 *dest = *source & 0377;
555 *dest += temp << 8;
558 # ifndef EXTRACT_MACROS /* To debug the macros. */
559 # undef EXTRACT_NUMBER
560 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
561 # endif /* not EXTRACT_MACROS */
563 #endif /* DEBUG */
565 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
566 SOURCE must be an lvalue. */
568 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
569 do { \
570 EXTRACT_NUMBER (destination, source); \
571 (source) += 2; \
572 } while (0)
574 #ifdef DEBUG
575 static void extract_number_and_incr _RE_ARGS ((int *destination,
576 unsigned char **source));
577 static void
578 extract_number_and_incr (destination, source)
579 int *destination;
580 unsigned char **source;
582 extract_number (destination, *source);
583 *source += 2;
586 # ifndef EXTRACT_MACROS
587 # undef EXTRACT_NUMBER_AND_INCR
588 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
589 extract_number_and_incr (&dest, &src)
590 # endif /* not EXTRACT_MACROS */
592 #endif /* DEBUG */
594 /* If DEBUG is defined, Regex prints many voluminous messages about what
595 it is doing (if the variable `debug' is nonzero). If linked with the
596 main program in `iregex.c', you can enter patterns and strings
597 interactively. And if linked with the main program in `main.c' and
598 the other test files, you can run the already-written tests. */
600 #ifdef DEBUG
602 /* We use standard I/O for debugging. */
603 # include <stdio.h>
605 /* It is useful to test things that ``must'' be true when debugging. */
606 # include <assert.h>
608 static int debug = 0;
610 # define DEBUG_STATEMENT(e) e
611 # define DEBUG_PRINT1(x) if (debug) printf (x)
612 # define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
613 # define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
614 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
615 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
616 if (debug) print_partial_compiled_pattern (s, e)
617 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
618 if (debug) print_double_string (w, s1, sz1, s2, sz2)
621 /* Print the fastmap in human-readable form. */
623 void
624 print_fastmap (fastmap)
625 char *fastmap;
627 unsigned was_a_range = 0;
628 unsigned i = 0;
630 while (i < (1 << BYTEWIDTH))
632 if (fastmap[i++])
634 was_a_range = 0;
635 putchar (i - 1);
636 while (i < (1 << BYTEWIDTH) && fastmap[i])
638 was_a_range = 1;
639 i++;
641 if (was_a_range)
643 printf ("-");
644 putchar (i - 1);
648 putchar ('\n');
652 /* Print a compiled pattern string in human-readable form, starting at
653 the START pointer into it and ending just before the pointer END. */
655 void
656 print_partial_compiled_pattern (start, end)
657 unsigned char *start;
658 unsigned char *end;
660 int mcnt, mcnt2;
661 unsigned char *p1;
662 unsigned char *p = start;
663 unsigned char *pend = end;
665 if (start == NULL)
667 printf ("(null)\n");
668 return;
671 /* Loop over pattern commands. */
672 while (p < pend)
674 printf ("%d:\t", p - start);
676 switch ((re_opcode_t) *p++)
678 case no_op:
679 printf ("/no_op");
680 break;
682 case exactn:
683 mcnt = *p++;
684 printf ("/exactn/%d", mcnt);
687 putchar ('/');
688 putchar (*p++);
690 while (--mcnt);
691 break;
693 case start_memory:
694 mcnt = *p++;
695 printf ("/start_memory/%d/%d", mcnt, *p++);
696 break;
698 case stop_memory:
699 mcnt = *p++;
700 printf ("/stop_memory/%d/%d", mcnt, *p++);
701 break;
703 case duplicate:
704 printf ("/duplicate/%d", *p++);
705 break;
707 case anychar:
708 printf ("/anychar");
709 break;
711 case charset:
712 case charset_not:
714 register int c, last = -100;
715 register int in_range = 0;
717 printf ("/charset [%s",
718 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
720 assert (p + *p < pend);
722 for (c = 0; c < 256; c++)
723 if (c / 8 < *p
724 && (p[1 + (c/8)] & (1 << (c % 8))))
726 /* Are we starting a range? */
727 if (last + 1 == c && ! in_range)
729 putchar ('-');
730 in_range = 1;
732 /* Have we broken a range? */
733 else if (last + 1 != c && in_range)
735 putchar (last);
736 in_range = 0;
739 if (! in_range)
740 putchar (c);
742 last = c;
745 if (in_range)
746 putchar (last);
748 putchar (']');
750 p += 1 + *p;
752 break;
754 case begline:
755 printf ("/begline");
756 break;
758 case endline:
759 printf ("/endline");
760 break;
762 case on_failure_jump:
763 extract_number_and_incr (&mcnt, &p);
764 printf ("/on_failure_jump to %d", p + mcnt - start);
765 break;
767 case on_failure_keep_string_jump:
768 extract_number_and_incr (&mcnt, &p);
769 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
770 break;
772 case dummy_failure_jump:
773 extract_number_and_incr (&mcnt, &p);
774 printf ("/dummy_failure_jump to %d", p + mcnt - start);
775 break;
777 case push_dummy_failure:
778 printf ("/push_dummy_failure");
779 break;
781 case maybe_pop_jump:
782 extract_number_and_incr (&mcnt, &p);
783 printf ("/maybe_pop_jump to %d", p + mcnt - start);
784 break;
786 case pop_failure_jump:
787 extract_number_and_incr (&mcnt, &p);
788 printf ("/pop_failure_jump to %d", p + mcnt - start);
789 break;
791 case jump_past_alt:
792 extract_number_and_incr (&mcnt, &p);
793 printf ("/jump_past_alt to %d", p + mcnt - start);
794 break;
796 case jump:
797 extract_number_and_incr (&mcnt, &p);
798 printf ("/jump to %d", p + mcnt - start);
799 break;
801 case succeed_n:
802 extract_number_and_incr (&mcnt, &p);
803 p1 = p + mcnt;
804 extract_number_and_incr (&mcnt2, &p);
805 printf ("/succeed_n to %d, %d times", p1 - start, mcnt2);
806 break;
808 case jump_n:
809 extract_number_and_incr (&mcnt, &p);
810 p1 = p + mcnt;
811 extract_number_and_incr (&mcnt2, &p);
812 printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
813 break;
815 case set_number_at:
816 extract_number_and_incr (&mcnt, &p);
817 p1 = p + mcnt;
818 extract_number_and_incr (&mcnt2, &p);
819 printf ("/set_number_at location %d to %d", p1 - start, mcnt2);
820 break;
822 case wordbound:
823 printf ("/wordbound");
824 break;
826 case notwordbound:
827 printf ("/notwordbound");
828 break;
830 case wordbeg:
831 printf ("/wordbeg");
832 break;
834 case wordend:
835 printf ("/wordend");
837 # ifdef emacs
838 case before_dot:
839 printf ("/before_dot");
840 break;
842 case at_dot:
843 printf ("/at_dot");
844 break;
846 case after_dot:
847 printf ("/after_dot");
848 break;
850 case syntaxspec:
851 printf ("/syntaxspec");
852 mcnt = *p++;
853 printf ("/%d", mcnt);
854 break;
856 case notsyntaxspec:
857 printf ("/notsyntaxspec");
858 mcnt = *p++;
859 printf ("/%d", mcnt);
860 break;
861 # endif /* emacs */
863 case wordchar:
864 printf ("/wordchar");
865 break;
867 case notwordchar:
868 printf ("/notwordchar");
869 break;
871 case begbuf:
872 printf ("/begbuf");
873 break;
875 case endbuf:
876 printf ("/endbuf");
877 break;
879 default:
880 printf ("?%d", *(p-1));
883 putchar ('\n');
886 printf ("%d:\tend of pattern.\n", p - start);
890 void
891 print_compiled_pattern (bufp)
892 struct re_pattern_buffer *bufp;
894 unsigned char *buffer = bufp->buffer;
896 print_partial_compiled_pattern (buffer, buffer + bufp->used);
897 printf ("%ld bytes used/%ld bytes allocated.\n",
898 bufp->used, bufp->allocated);
900 if (bufp->fastmap_accurate && bufp->fastmap)
902 printf ("fastmap: ");
903 print_fastmap (bufp->fastmap);
906 printf ("re_nsub: %d\t", bufp->re_nsub);
907 printf ("regs_alloc: %d\t", bufp->regs_allocated);
908 printf ("can_be_null: %d\t", bufp->can_be_null);
909 printf ("newline_anchor: %d\n", bufp->newline_anchor);
910 printf ("no_sub: %d\t", bufp->no_sub);
911 printf ("not_bol: %d\t", bufp->not_bol);
912 printf ("not_eol: %d\t", bufp->not_eol);
913 printf ("syntax: %lx\n", bufp->syntax);
914 /* Perhaps we should print the translate table? */
918 void
919 print_double_string (where, string1, size1, string2, size2)
920 const char *where;
921 const char *string1;
922 const char *string2;
923 int size1;
924 int size2;
926 int this_char;
928 if (where == NULL)
929 printf ("(null)");
930 else
932 if (FIRST_STRING_P (where))
934 for (this_char = where - string1; this_char < size1; this_char++)
935 putchar (string1[this_char]);
937 where = string2;
940 for (this_char = where - string2; this_char < size2; this_char++)
941 putchar (string2[this_char]);
945 void
946 printchar (c)
947 int c;
949 putc (c, stderr);
952 #else /* not DEBUG */
954 # undef assert
955 # define assert(e)
957 # define DEBUG_STATEMENT(e)
958 # define DEBUG_PRINT1(x)
959 # define DEBUG_PRINT2(x1, x2)
960 # define DEBUG_PRINT3(x1, x2, x3)
961 # define DEBUG_PRINT4(x1, x2, x3, x4)
962 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
963 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
965 #endif /* not DEBUG */
967 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
968 also be assigned to arbitrarily: each pattern buffer stores its own
969 syntax, so it can be changed between regex compilations. */
970 /* This has no initializer because initialized variables in Emacs
971 become read-only after dumping. */
972 reg_syntax_t re_syntax_options;
975 /* Specify the precise syntax of regexps for compilation. This provides
976 for compatibility for various utilities which historically have
977 different, incompatible syntaxes.
979 The argument SYNTAX is a bit mask comprised of the various bits
980 defined in regex.h. We return the old syntax. */
982 reg_syntax_t
983 re_set_syntax (syntax)
984 reg_syntax_t syntax;
986 reg_syntax_t ret = re_syntax_options;
988 re_syntax_options = syntax;
989 #ifdef DEBUG
990 if (syntax & RE_DEBUG)
991 debug = 1;
992 else if (debug) /* was on but now is not */
993 debug = 0;
994 #endif /* DEBUG */
995 return ret;
997 #ifdef _LIBC
998 weak_alias (__re_set_syntax, re_set_syntax)
999 #endif
1001 /* This table gives an error message for each of the error codes listed
1002 in regex.h. Obviously the order here has to be same as there.
1003 POSIX doesn't require that we do anything for REG_NOERROR,
1004 but why not be nice? */
1006 static const char *re_error_msgid[] =
1008 gettext_noop ("Success"), /* REG_NOERROR */
1009 gettext_noop ("No match"), /* REG_NOMATCH */
1010 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1011 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1012 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1013 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1014 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1015 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1016 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1017 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1018 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1019 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1020 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1021 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1022 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1023 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1024 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1027 /* Avoiding alloca during matching, to placate r_alloc. */
1029 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1030 searching and matching functions should not call alloca. On some
1031 systems, alloca is implemented in terms of malloc, and if we're
1032 using the relocating allocator routines, then malloc could cause a
1033 relocation, which might (if the strings being searched are in the
1034 ralloc heap) shift the data out from underneath the regexp
1035 routines.
1037 Here's another reason to avoid allocation: Emacs
1038 processes input from X in a signal handler; processing X input may
1039 call malloc; if input arrives while a matching routine is calling
1040 malloc, then we're scrod. But Emacs can't just block input while
1041 calling matching routines; then we don't notice interrupts when
1042 they come in. So, Emacs blocks input around all regexp calls
1043 except the matching calls, which it leaves unprotected, in the
1044 faith that they will not malloc. */
1046 /* Normally, this is fine. */
1047 #define MATCH_MAY_ALLOCATE
1049 /* When using GNU C, we are not REALLY using the C alloca, no matter
1050 what config.h may say. So don't take precautions for it. */
1051 #ifdef __GNUC__
1052 # undef C_ALLOCA
1053 #endif
1055 /* The match routines may not allocate if (1) they would do it with malloc
1056 and (2) it's not safe for them to use malloc.
1057 Note that if REL_ALLOC is defined, matching would not use malloc for the
1058 failure stack, but we would still use it for the register vectors;
1059 so REL_ALLOC should not affect this. */
1060 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1061 # undef MATCH_MAY_ALLOCATE
1062 #endif
1065 /* Failure stack declarations and macros; both re_compile_fastmap and
1066 re_match_2 use a failure stack. These have to be macros because of
1067 REGEX_ALLOCATE_STACK. */
1070 /* Number of failure points for which to initially allocate space
1071 when matching. If this number is exceeded, we allocate more
1072 space, so it is not a hard limit. */
1073 #ifndef INIT_FAILURE_ALLOC
1074 # define INIT_FAILURE_ALLOC 5
1075 #endif
1077 /* Roughly the maximum number of failure points on the stack. Would be
1078 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1079 This is a variable only so users of regex can assign to it; we never
1080 change it ourselves. */
1082 #ifdef INT_IS_16BIT
1084 # if defined MATCH_MAY_ALLOCATE
1085 /* 4400 was enough to cause a crash on Alpha OSF/1,
1086 whose default stack limit is 2mb. */
1087 long int re_max_failures = 4000;
1088 # else
1089 long int re_max_failures = 2000;
1090 # endif
1092 union fail_stack_elt
1094 unsigned char *pointer;
1095 long int integer;
1098 typedef union fail_stack_elt fail_stack_elt_t;
1100 typedef struct
1102 fail_stack_elt_t *stack;
1103 unsigned long int size;
1104 unsigned long int avail; /* Offset of next open position. */
1105 } fail_stack_type;
1107 #else /* not INT_IS_16BIT */
1109 # if defined MATCH_MAY_ALLOCATE
1110 /* 4400 was enough to cause a crash on Alpha OSF/1,
1111 whose default stack limit is 2mb. */
1112 int re_max_failures = 20000;
1113 # else
1114 int re_max_failures = 2000;
1115 # endif
1117 union fail_stack_elt
1119 unsigned char *pointer;
1120 int integer;
1123 typedef union fail_stack_elt fail_stack_elt_t;
1125 typedef struct
1127 fail_stack_elt_t *stack;
1128 unsigned size;
1129 unsigned avail; /* Offset of next open position. */
1130 } fail_stack_type;
1132 #endif /* INT_IS_16BIT */
1134 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1135 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1136 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1139 /* Define macros to initialize and free the failure stack.
1140 Do `return -2' if the alloc fails. */
1142 #ifdef MATCH_MAY_ALLOCATE
1143 # define INIT_FAIL_STACK() \
1144 do { \
1145 fail_stack.stack = (fail_stack_elt_t *) \
1146 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1148 if (fail_stack.stack == NULL) \
1149 return -2; \
1151 fail_stack.size = INIT_FAILURE_ALLOC; \
1152 fail_stack.avail = 0; \
1153 } while (0)
1155 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1156 #else
1157 # define INIT_FAIL_STACK() \
1158 do { \
1159 fail_stack.avail = 0; \
1160 } while (0)
1162 # define RESET_FAIL_STACK()
1163 #endif
1166 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1168 Return 1 if succeeds, and 0 if either ran out of memory
1169 allocating space for it or it was already too large.
1171 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1173 #define DOUBLE_FAIL_STACK(fail_stack) \
1174 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1175 ? 0 \
1176 : ((fail_stack).stack = (fail_stack_elt_t *) \
1177 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1178 (fail_stack).size * sizeof (fail_stack_elt_t), \
1179 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
1181 (fail_stack).stack == NULL \
1182 ? 0 \
1183 : ((fail_stack).size <<= 1, \
1184 1)))
1187 /* Push pointer POINTER on FAIL_STACK.
1188 Return 1 if was able to do so and 0 if ran out of memory allocating
1189 space to do so. */
1190 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1191 ((FAIL_STACK_FULL () \
1192 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1193 ? 0 \
1194 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1197 /* Push a pointer value onto the failure stack.
1198 Assumes the variable `fail_stack'. Probably should only
1199 be called from within `PUSH_FAILURE_POINT'. */
1200 #define PUSH_FAILURE_POINTER(item) \
1201 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1203 /* This pushes an integer-valued item onto the failure stack.
1204 Assumes the variable `fail_stack'. Probably should only
1205 be called from within `PUSH_FAILURE_POINT'. */
1206 #define PUSH_FAILURE_INT(item) \
1207 fail_stack.stack[fail_stack.avail++].integer = (item)
1209 /* Push a fail_stack_elt_t value onto the failure stack.
1210 Assumes the variable `fail_stack'. Probably should only
1211 be called from within `PUSH_FAILURE_POINT'. */
1212 #define PUSH_FAILURE_ELT(item) \
1213 fail_stack.stack[fail_stack.avail++] = (item)
1215 /* These three POP... operations complement the three PUSH... operations.
1216 All assume that `fail_stack' is nonempty. */
1217 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1218 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1219 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1221 /* Used to omit pushing failure point id's when we're not debugging. */
1222 #ifdef DEBUG
1223 # define DEBUG_PUSH PUSH_FAILURE_INT
1224 # define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1225 #else
1226 # define DEBUG_PUSH(item)
1227 # define DEBUG_POP(item_addr)
1228 #endif
1231 /* Push the information about the state we will need
1232 if we ever fail back to it.
1234 Requires variables fail_stack, regstart, regend, reg_info, and
1235 num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination'
1236 be declared.
1238 Does `return FAILURE_CODE' if runs out of memory. */
1240 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1241 do { \
1242 char *destination; \
1243 /* Must be int, so when we don't save any registers, the arithmetic \
1244 of 0 + -1 isn't done as unsigned. */ \
1245 /* Can't be int, since there is not a shred of a guarantee that int \
1246 is wide enough to hold a value of something to which pointer can \
1247 be assigned */ \
1248 active_reg_t this_reg; \
1250 DEBUG_STATEMENT (failure_id++); \
1251 DEBUG_STATEMENT (nfailure_points_pushed++); \
1252 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1253 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1254 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1256 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1257 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1259 /* Ensure we have enough space allocated for what we will push. */ \
1260 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1262 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1263 return failure_code; \
1265 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1266 (fail_stack).size); \
1267 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1270 /* Push the info, starting with the registers. */ \
1271 DEBUG_PRINT1 ("\n"); \
1273 if (1) \
1274 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1275 this_reg++) \
1277 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1278 DEBUG_STATEMENT (num_regs_pushed++); \
1280 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1281 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1283 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1284 PUSH_FAILURE_POINTER (regend[this_reg]); \
1286 DEBUG_PRINT2 (" info: %p\n ", \
1287 reg_info[this_reg].word.pointer); \
1288 DEBUG_PRINT2 (" match_null=%d", \
1289 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1290 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1291 DEBUG_PRINT2 (" matched_something=%d", \
1292 MATCHED_SOMETHING (reg_info[this_reg])); \
1293 DEBUG_PRINT2 (" ever_matched=%d", \
1294 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1295 DEBUG_PRINT1 ("\n"); \
1296 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1299 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1300 PUSH_FAILURE_INT (lowest_active_reg); \
1302 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1303 PUSH_FAILURE_INT (highest_active_reg); \
1305 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1306 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1307 PUSH_FAILURE_POINTER (pattern_place); \
1309 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1310 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1311 size2); \
1312 DEBUG_PRINT1 ("'\n"); \
1313 PUSH_FAILURE_POINTER (string_place); \
1315 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1316 DEBUG_PUSH (failure_id); \
1317 } while (0)
1319 /* This is the number of items that are pushed and popped on the stack
1320 for each register. */
1321 #define NUM_REG_ITEMS 3
1323 /* Individual items aside from the registers. */
1324 #ifdef DEBUG
1325 # define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1326 #else
1327 # define NUM_NONREG_ITEMS 4
1328 #endif
1330 /* We push at most this many items on the stack. */
1331 /* We used to use (num_regs - 1), which is the number of registers
1332 this regexp will save; but that was changed to 5
1333 to avoid stack overflow for a regexp with lots of parens. */
1334 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1336 /* We actually push this many items. */
1337 #define NUM_FAILURE_ITEMS \
1338 (((0 \
1339 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1340 * NUM_REG_ITEMS) \
1341 + NUM_NONREG_ITEMS)
1343 /* How many items can still be added to the stack without overflowing it. */
1344 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1347 /* Pops what PUSH_FAIL_STACK pushes.
1349 We restore into the parameters, all of which should be lvalues:
1350 STR -- the saved data position.
1351 PAT -- the saved pattern position.
1352 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1353 REGSTART, REGEND -- arrays of string positions.
1354 REG_INFO -- array of information about each subexpression.
1356 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1357 `pend', `string1', `size1', `string2', and `size2'. */
1359 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1361 DEBUG_STATEMENT (unsigned failure_id;) \
1362 active_reg_t this_reg; \
1363 const unsigned char *string_temp; \
1365 assert (!FAIL_STACK_EMPTY ()); \
1367 /* Remove failure points and point to how many regs pushed. */ \
1368 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1369 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1370 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1372 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1374 DEBUG_POP (&failure_id); \
1375 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1377 /* If the saved string location is NULL, it came from an \
1378 on_failure_keep_string_jump opcode, and we want to throw away the \
1379 saved NULL, thus retaining our current position in the string. */ \
1380 string_temp = POP_FAILURE_POINTER (); \
1381 if (string_temp != NULL) \
1382 str = (const char *) string_temp; \
1384 DEBUG_PRINT2 (" Popping string %p: `", str); \
1385 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1386 DEBUG_PRINT1 ("'\n"); \
1388 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1389 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1390 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1392 /* Restore register info. */ \
1393 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1394 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1396 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1397 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1399 if (1) \
1400 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1402 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1404 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1405 DEBUG_PRINT2 (" info: %p\n", \
1406 reg_info[this_reg].word.pointer); \
1408 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1409 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1411 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1412 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1414 else \
1416 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1418 reg_info[this_reg].word.integer = 0; \
1419 regend[this_reg] = 0; \
1420 regstart[this_reg] = 0; \
1422 highest_active_reg = high_reg; \
1425 set_regs_matched_done = 0; \
1426 DEBUG_STATEMENT (nfailure_points_popped++); \
1427 } /* POP_FAILURE_POINT */
1431 /* Structure for per-register (a.k.a. per-group) information.
1432 Other register information, such as the
1433 starting and ending positions (which are addresses), and the list of
1434 inner groups (which is a bits list) are maintained in separate
1435 variables.
1437 We are making a (strictly speaking) nonportable assumption here: that
1438 the compiler will pack our bit fields into something that fits into
1439 the type of `word', i.e., is something that fits into one item on the
1440 failure stack. */
1443 /* Declarations and macros for re_match_2. */
1445 typedef union
1447 fail_stack_elt_t word;
1448 struct
1450 /* This field is one if this group can match the empty string,
1451 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1452 #define MATCH_NULL_UNSET_VALUE 3
1453 unsigned match_null_string_p : 2;
1454 unsigned is_active : 1;
1455 unsigned matched_something : 1;
1456 unsigned ever_matched_something : 1;
1457 } bits;
1458 } register_info_type;
1460 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1461 #define IS_ACTIVE(R) ((R).bits.is_active)
1462 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1463 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1466 /* Call this when have matched a real character; it sets `matched' flags
1467 for the subexpressions which we are currently inside. Also records
1468 that those subexprs have matched. */
1469 #define SET_REGS_MATCHED() \
1470 do \
1472 if (!set_regs_matched_done) \
1474 active_reg_t r; \
1475 set_regs_matched_done = 1; \
1476 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1478 MATCHED_SOMETHING (reg_info[r]) \
1479 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1480 = 1; \
1484 while (0)
1486 /* Registers are set to a sentinel when they haven't yet matched. */
1487 static char reg_unset_dummy;
1488 #define REG_UNSET_VALUE (&reg_unset_dummy)
1489 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1491 /* Subroutine declarations and macros for regex_compile. */
1493 static reg_errcode_t regex_compile _RE_ARGS ((const char *pattern, size_t size,
1494 reg_syntax_t syntax,
1495 struct re_pattern_buffer *bufp));
1496 static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1497 static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1498 int arg1, int arg2));
1499 static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1500 int arg, unsigned char *end));
1501 static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1502 int arg1, int arg2, unsigned char *end));
1503 static boolean at_begline_loc_p _RE_ARGS ((const char *pattern, const char *p,
1504 reg_syntax_t syntax));
1505 static boolean at_endline_loc_p _RE_ARGS ((const char *p, const char *pend,
1506 reg_syntax_t syntax));
1507 static reg_errcode_t compile_range _RE_ARGS ((const char **p_ptr,
1508 const char *pend,
1509 char *translate,
1510 reg_syntax_t syntax,
1511 unsigned char *b));
1513 /* Fetch the next character in the uncompiled pattern---translating it
1514 if necessary. Also cast from a signed character in the constant
1515 string passed to us by the user to an unsigned char that we can use
1516 as an array index (in, e.g., `translate'). */
1517 #ifndef PATFETCH
1518 # define PATFETCH(c) \
1519 do {if (p == pend) return REG_EEND; \
1520 c = (unsigned char) *p++; \
1521 if (translate) c = (unsigned char) translate[c]; \
1522 } while (0)
1523 #endif
1525 /* Fetch the next character in the uncompiled pattern, with no
1526 translation. */
1527 #define PATFETCH_RAW(c) \
1528 do {if (p == pend) return REG_EEND; \
1529 c = (unsigned char) *p++; \
1530 } while (0)
1532 /* Go backwards one character in the pattern. */
1533 #define PATUNFETCH p--
1536 /* If `translate' is non-null, return translate[D], else just D. We
1537 cast the subscript to translate because some data is declared as
1538 `char *', to avoid warnings when a string constant is passed. But
1539 when we use a character as a subscript we must make it unsigned. */
1540 #ifndef TRANSLATE
1541 # define TRANSLATE(d) \
1542 (translate ? (char) translate[(unsigned char) (d)] : (d))
1543 #endif
1546 /* Macros for outputting the compiled pattern into `buffer'. */
1548 /* If the buffer isn't allocated when it comes in, use this. */
1549 #define INIT_BUF_SIZE 32
1551 /* Make sure we have at least N more bytes of space in buffer. */
1552 #define GET_BUFFER_SPACE(n) \
1553 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
1554 EXTEND_BUFFER ()
1556 /* Make sure we have one more byte of buffer space and then add C to it. */
1557 #define BUF_PUSH(c) \
1558 do { \
1559 GET_BUFFER_SPACE (1); \
1560 *b++ = (unsigned char) (c); \
1561 } while (0)
1564 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1565 #define BUF_PUSH_2(c1, c2) \
1566 do { \
1567 GET_BUFFER_SPACE (2); \
1568 *b++ = (unsigned char) (c1); \
1569 *b++ = (unsigned char) (c2); \
1570 } while (0)
1573 /* As with BUF_PUSH_2, except for three bytes. */
1574 #define BUF_PUSH_3(c1, c2, c3) \
1575 do { \
1576 GET_BUFFER_SPACE (3); \
1577 *b++ = (unsigned char) (c1); \
1578 *b++ = (unsigned char) (c2); \
1579 *b++ = (unsigned char) (c3); \
1580 } while (0)
1583 /* Store a jump with opcode OP at LOC to location TO. We store a
1584 relative address offset by the three bytes the jump itself occupies. */
1585 #define STORE_JUMP(op, loc, to) \
1586 store_op1 (op, loc, (int) ((to) - (loc) - 3))
1588 /* Likewise, for a two-argument jump. */
1589 #define STORE_JUMP2(op, loc, to, arg) \
1590 store_op2 (op, loc, (int) ((to) - (loc) - 3), arg)
1592 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1593 #define INSERT_JUMP(op, loc, to) \
1594 insert_op1 (op, loc, (int) ((to) - (loc) - 3), b)
1596 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1597 #define INSERT_JUMP2(op, loc, to, arg) \
1598 insert_op2 (op, loc, (int) ((to) - (loc) - 3), arg, b)
1601 /* This is not an arbitrary limit: the arguments which represent offsets
1602 into the pattern are two bytes long. So if 2^16 bytes turns out to
1603 be too small, many things would have to change. */
1604 /* Any other compiler which, like MSC, has allocation limit below 2^16
1605 bytes will have to use approach similar to what was done below for
1606 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1607 reallocating to 0 bytes. Such thing is not going to work too well.
1608 You have been warned!! */
1609 #if defined _MSC_VER && !defined WIN32
1610 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
1611 The REALLOC define eliminates a flurry of conversion warnings,
1612 but is not required. */
1613 # define MAX_BUF_SIZE 65500L
1614 # define REALLOC(p,s) realloc ((p), (size_t) (s))
1615 #else
1616 # define MAX_BUF_SIZE (1L << 16)
1617 # define REALLOC(p,s) realloc ((p), (s))
1618 #endif
1620 /* Extend the buffer by twice its current size via realloc and
1621 reset the pointers that pointed into the old block to point to the
1622 correct places in the new one. If extending the buffer results in it
1623 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1624 #define EXTEND_BUFFER() \
1625 do { \
1626 unsigned char *old_buffer = bufp->buffer; \
1627 if (bufp->allocated == MAX_BUF_SIZE) \
1628 return REG_ESIZE; \
1629 bufp->allocated <<= 1; \
1630 if (bufp->allocated > MAX_BUF_SIZE) \
1631 bufp->allocated = MAX_BUF_SIZE; \
1632 bufp->buffer = (unsigned char *) REALLOC (bufp->buffer, bufp->allocated);\
1633 if (bufp->buffer == NULL) \
1634 return REG_ESPACE; \
1635 /* If the buffer moved, move all the pointers into it. */ \
1636 if (old_buffer != bufp->buffer) \
1638 b = (b - old_buffer) + bufp->buffer; \
1639 begalt = (begalt - old_buffer) + bufp->buffer; \
1640 if (fixup_alt_jump) \
1641 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1642 if (laststart) \
1643 laststart = (laststart - old_buffer) + bufp->buffer; \
1644 if (pending_exact) \
1645 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1647 } while (0)
1650 /* Since we have one byte reserved for the register number argument to
1651 {start,stop}_memory, the maximum number of groups we can report
1652 things about is what fits in that byte. */
1653 #define MAX_REGNUM 255
1655 /* But patterns can have more than `MAX_REGNUM' registers. We just
1656 ignore the excess. */
1657 typedef unsigned regnum_t;
1660 /* Macros for the compile stack. */
1662 /* Since offsets can go either forwards or backwards, this type needs to
1663 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1664 /* int may be not enough when sizeof(int) == 2. */
1665 typedef long pattern_offset_t;
1667 typedef struct
1669 pattern_offset_t begalt_offset;
1670 pattern_offset_t fixup_alt_jump;
1671 pattern_offset_t inner_group_offset;
1672 pattern_offset_t laststart_offset;
1673 regnum_t regnum;
1674 } compile_stack_elt_t;
1677 typedef struct
1679 compile_stack_elt_t *stack;
1680 unsigned size;
1681 unsigned avail; /* Offset of next open position. */
1682 } compile_stack_type;
1685 #define INIT_COMPILE_STACK_SIZE 32
1687 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1688 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1690 /* The next available element. */
1691 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1694 /* Set the bit for character C in a list. */
1695 #define SET_LIST_BIT(c) \
1696 (b[((unsigned char) (c)) / BYTEWIDTH] \
1697 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1700 /* Get the next unsigned number in the uncompiled pattern. */
1701 #define GET_UNSIGNED_NUMBER(num) \
1702 { if (p != pend) \
1704 PATFETCH (c); \
1705 while (ISDIGIT (c)) \
1707 if (num < 0) \
1708 num = 0; \
1709 num = num * 10 + c - '0'; \
1710 if (p == pend) \
1711 break; \
1712 PATFETCH (c); \
1717 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
1718 /* The GNU C library provides support for user-defined character classes
1719 and the functions from ISO C amendement 1. */
1720 # ifdef CHARCLASS_NAME_MAX
1721 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1722 # else
1723 /* This shouldn't happen but some implementation might still have this
1724 problem. Use a reasonable default value. */
1725 # define CHAR_CLASS_MAX_LENGTH 256
1726 # endif
1728 # ifdef _LIBC
1729 # define IS_CHAR_CLASS(string) __wctype (string)
1730 # else
1731 # define IS_CHAR_CLASS(string) wctype (string)
1732 # endif
1733 #else
1734 # define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1736 # define IS_CHAR_CLASS(string) \
1737 (STREQ (string, "alpha") || STREQ (string, "upper") \
1738 || STREQ (string, "lower") || STREQ (string, "digit") \
1739 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1740 || STREQ (string, "space") || STREQ (string, "print") \
1741 || STREQ (string, "punct") || STREQ (string, "graph") \
1742 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1743 #endif
1745 #ifndef MATCH_MAY_ALLOCATE
1747 /* If we cannot allocate large objects within re_match_2_internal,
1748 we make the fail stack and register vectors global.
1749 The fail stack, we grow to the maximum size when a regexp
1750 is compiled.
1751 The register vectors, we adjust in size each time we
1752 compile a regexp, according to the number of registers it needs. */
1754 static fail_stack_type fail_stack;
1756 /* Size with which the following vectors are currently allocated.
1757 That is so we can make them bigger as needed,
1758 but never make them smaller. */
1759 static int regs_allocated_size;
1761 static const char ** regstart, ** regend;
1762 static const char ** old_regstart, ** old_regend;
1763 static const char **best_regstart, **best_regend;
1764 static register_info_type *reg_info;
1765 static const char **reg_dummy;
1766 static register_info_type *reg_info_dummy;
1768 /* Make the register vectors big enough for NUM_REGS registers,
1769 but don't make them smaller. */
1771 static
1772 regex_grow_registers (num_regs)
1773 int num_regs;
1775 if (num_regs > regs_allocated_size)
1777 RETALLOC_IF (regstart, num_regs, const char *);
1778 RETALLOC_IF (regend, num_regs, const char *);
1779 RETALLOC_IF (old_regstart, num_regs, const char *);
1780 RETALLOC_IF (old_regend, num_regs, const char *);
1781 RETALLOC_IF (best_regstart, num_regs, const char *);
1782 RETALLOC_IF (best_regend, num_regs, const char *);
1783 RETALLOC_IF (reg_info, num_regs, register_info_type);
1784 RETALLOC_IF (reg_dummy, num_regs, const char *);
1785 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1787 regs_allocated_size = num_regs;
1791 #endif /* not MATCH_MAY_ALLOCATE */
1793 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
1794 compile_stack,
1795 regnum_t regnum));
1797 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1798 Returns one of error codes defined in `regex.h', or zero for success.
1800 Assumes the `allocated' (and perhaps `buffer') and `translate'
1801 fields are set in BUFP on entry.
1803 If it succeeds, results are put in BUFP (if it returns an error, the
1804 contents of BUFP are undefined):
1805 `buffer' is the compiled pattern;
1806 `syntax' is set to SYNTAX;
1807 `used' is set to the length of the compiled pattern;
1808 `fastmap_accurate' is zero;
1809 `re_nsub' is the number of subexpressions in PATTERN;
1810 `not_bol' and `not_eol' are zero;
1812 The `fastmap' and `newline_anchor' fields are neither
1813 examined nor set. */
1815 /* Return, freeing storage we allocated. */
1816 #define FREE_STACK_RETURN(value) \
1817 return (free (compile_stack.stack), value)
1819 static reg_errcode_t
1820 regex_compile (pattern, size, syntax, bufp)
1821 const char *pattern;
1822 size_t size;
1823 reg_syntax_t syntax;
1824 struct re_pattern_buffer *bufp;
1826 /* We fetch characters from PATTERN here. Even though PATTERN is
1827 `char *' (i.e., signed), we declare these variables as unsigned, so
1828 they can be reliably used as array indices. */
1829 register unsigned char c, c1;
1831 /* A random temporary spot in PATTERN. */
1832 const char *p1;
1834 /* Points to the end of the buffer, where we should append. */
1835 register unsigned char *b;
1837 /* Keeps track of unclosed groups. */
1838 compile_stack_type compile_stack;
1840 /* Points to the current (ending) position in the pattern. */
1841 const char *p = pattern;
1842 const char *pend = pattern + size;
1844 /* How to translate the characters in the pattern. */
1845 RE_TRANSLATE_TYPE translate = bufp->translate;
1847 /* Address of the count-byte of the most recently inserted `exactn'
1848 command. This makes it possible to tell if a new exact-match
1849 character can be added to that command or if the character requires
1850 a new `exactn' command. */
1851 unsigned char *pending_exact = 0;
1853 /* Address of start of the most recently finished expression.
1854 This tells, e.g., postfix * where to find the start of its
1855 operand. Reset at the beginning of groups and alternatives. */
1856 unsigned char *laststart = 0;
1858 /* Address of beginning of regexp, or inside of last group. */
1859 unsigned char *begalt;
1861 /* Place in the uncompiled pattern (i.e., the {) to
1862 which to go back if the interval is invalid. */
1863 const char *beg_interval;
1865 /* Address of the place where a forward jump should go to the end of
1866 the containing expression. Each alternative of an `or' -- except the
1867 last -- ends with a forward jump of this sort. */
1868 unsigned char *fixup_alt_jump = 0;
1870 /* Counts open-groups as they are encountered. Remembered for the
1871 matching close-group on the compile stack, so the same register
1872 number is put in the stop_memory as the start_memory. */
1873 regnum_t regnum = 0;
1875 #ifdef DEBUG
1876 DEBUG_PRINT1 ("\nCompiling pattern: ");
1877 if (debug)
1879 unsigned debug_count;
1881 for (debug_count = 0; debug_count < size; debug_count++)
1882 putchar (pattern[debug_count]);
1883 putchar ('\n');
1885 #endif /* DEBUG */
1887 /* Initialize the compile stack. */
1888 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1889 if (compile_stack.stack == NULL)
1890 return REG_ESPACE;
1892 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1893 compile_stack.avail = 0;
1895 /* Initialize the pattern buffer. */
1896 bufp->syntax = syntax;
1897 bufp->fastmap_accurate = 0;
1898 bufp->not_bol = bufp->not_eol = 0;
1900 /* Set `used' to zero, so that if we return an error, the pattern
1901 printer (for debugging) will think there's no pattern. We reset it
1902 at the end. */
1903 bufp->used = 0;
1905 /* Always count groups, whether or not bufp->no_sub is set. */
1906 bufp->re_nsub = 0;
1908 #if !defined emacs && !defined SYNTAX_TABLE
1909 /* Initialize the syntax table. */
1910 init_syntax_once ();
1911 #endif
1913 if (bufp->allocated == 0)
1915 if (bufp->buffer)
1916 { /* If zero allocated, but buffer is non-null, try to realloc
1917 enough space. This loses if buffer's address is bogus, but
1918 that is the user's responsibility. */
1919 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1921 else
1922 { /* Caller did not allocate a buffer. Do it for them. */
1923 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1925 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1927 bufp->allocated = INIT_BUF_SIZE;
1930 begalt = b = bufp->buffer;
1932 /* Loop through the uncompiled pattern until we're at the end. */
1933 while (p != pend)
1935 PATFETCH (c);
1937 switch (c)
1939 case '^':
1941 if ( /* If at start of pattern, it's an operator. */
1942 p == pattern + 1
1943 /* If context independent, it's an operator. */
1944 || syntax & RE_CONTEXT_INDEP_ANCHORS
1945 /* Otherwise, depends on what's come before. */
1946 || at_begline_loc_p (pattern, p, syntax))
1947 BUF_PUSH (begline);
1948 else
1949 goto normal_char;
1951 break;
1954 case '$':
1956 if ( /* If at end of pattern, it's an operator. */
1957 p == pend
1958 /* If context independent, it's an operator. */
1959 || syntax & RE_CONTEXT_INDEP_ANCHORS
1960 /* Otherwise, depends on what's next. */
1961 || at_endline_loc_p (p, pend, syntax))
1962 BUF_PUSH (endline);
1963 else
1964 goto normal_char;
1966 break;
1969 case '+':
1970 case '?':
1971 if ((syntax & RE_BK_PLUS_QM)
1972 || (syntax & RE_LIMITED_OPS))
1973 goto normal_char;
1974 handle_plus:
1975 case '*':
1976 /* If there is no previous pattern... */
1977 if (!laststart)
1979 if (syntax & RE_CONTEXT_INVALID_OPS)
1980 FREE_STACK_RETURN (REG_BADRPT);
1981 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1982 goto normal_char;
1986 /* Are we optimizing this jump? */
1987 boolean keep_string_p = false;
1989 /* 1 means zero (many) matches is allowed. */
1990 char zero_times_ok = 0, many_times_ok = 0;
1992 /* If there is a sequence of repetition chars, collapse it
1993 down to just one (the right one). We can't combine
1994 interval operators with these because of, e.g., `a{2}*',
1995 which should only match an even number of `a's. */
1997 for (;;)
1999 zero_times_ok |= c != '+';
2000 many_times_ok |= c != '?';
2002 if (p == pend)
2003 break;
2005 PATFETCH (c);
2007 if (c == '*'
2008 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2011 else if (syntax & RE_BK_PLUS_QM && c == '\\')
2013 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2015 PATFETCH (c1);
2016 if (!(c1 == '+' || c1 == '?'))
2018 PATUNFETCH;
2019 PATUNFETCH;
2020 break;
2023 c = c1;
2025 else
2027 PATUNFETCH;
2028 break;
2031 /* If we get here, we found another repeat character. */
2034 /* Star, etc. applied to an empty pattern is equivalent
2035 to an empty pattern. */
2036 if (!laststart)
2037 break;
2039 /* Now we know whether or not zero matches is allowed
2040 and also whether or not two or more matches is allowed. */
2041 if (many_times_ok)
2042 { /* More than one repetition is allowed, so put in at the
2043 end a backward relative jump from `b' to before the next
2044 jump we're going to put in below (which jumps from
2045 laststart to after this jump).
2047 But if we are at the `*' in the exact sequence `.*\n',
2048 insert an unconditional jump backwards to the .,
2049 instead of the beginning of the loop. This way we only
2050 push a failure point once, instead of every time
2051 through the loop. */
2052 assert (p - 1 > pattern);
2054 /* Allocate the space for the jump. */
2055 GET_BUFFER_SPACE (3);
2057 /* We know we are not at the first character of the pattern,
2058 because laststart was nonzero. And we've already
2059 incremented `p', by the way, to be the character after
2060 the `*'. Do we have to do something analogous here
2061 for null bytes, because of RE_DOT_NOT_NULL? */
2062 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2063 && zero_times_ok
2064 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2065 && !(syntax & RE_DOT_NEWLINE))
2066 { /* We have .*\n. */
2067 STORE_JUMP (jump, b, laststart);
2068 keep_string_p = true;
2070 else
2071 /* Anything else. */
2072 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
2074 /* We've added more stuff to the buffer. */
2075 b += 3;
2078 /* On failure, jump from laststart to b + 3, which will be the
2079 end of the buffer after this jump is inserted. */
2080 GET_BUFFER_SPACE (3);
2081 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2082 : on_failure_jump,
2083 laststart, b + 3);
2084 pending_exact = 0;
2085 b += 3;
2087 if (!zero_times_ok)
2089 /* At least one repetition is required, so insert a
2090 `dummy_failure_jump' before the initial
2091 `on_failure_jump' instruction of the loop. This
2092 effects a skip over that instruction the first time
2093 we hit that loop. */
2094 GET_BUFFER_SPACE (3);
2095 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
2096 b += 3;
2099 break;
2102 case '.':
2103 laststart = b;
2104 BUF_PUSH (anychar);
2105 break;
2108 case '[':
2110 boolean had_char_class = false;
2112 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2114 /* Ensure that we have enough space to push a charset: the
2115 opcode, the length count, and the bitset; 34 bytes in all. */
2116 GET_BUFFER_SPACE (34);
2118 laststart = b;
2120 /* We test `*p == '^' twice, instead of using an if
2121 statement, so we only need one BUF_PUSH. */
2122 BUF_PUSH (*p == '^' ? charset_not : charset);
2123 if (*p == '^')
2124 p++;
2126 /* Remember the first position in the bracket expression. */
2127 p1 = p;
2129 /* Push the number of bytes in the bitmap. */
2130 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2132 /* Clear the whole map. */
2133 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2135 /* charset_not matches newline according to a syntax bit. */
2136 if ((re_opcode_t) b[-2] == charset_not
2137 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2138 SET_LIST_BIT ('\n');
2140 /* Read in characters and ranges, setting map bits. */
2141 for (;;)
2143 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2145 PATFETCH (c);
2147 /* \ might escape characters inside [...] and [^...]. */
2148 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2150 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2152 PATFETCH (c1);
2153 SET_LIST_BIT (c1);
2154 continue;
2157 /* Could be the end of the bracket expression. If it's
2158 not (i.e., when the bracket expression is `[]' so
2159 far), the ']' character bit gets set way below. */
2160 if (c == ']' && p != p1 + 1)
2161 break;
2163 /* Look ahead to see if it's a range when the last thing
2164 was a character class. */
2165 if (had_char_class && c == '-' && *p != ']')
2166 FREE_STACK_RETURN (REG_ERANGE);
2168 /* Look ahead to see if it's a range when the last thing
2169 was a character: if this is a hyphen not at the
2170 beginning or the end of a list, then it's the range
2171 operator. */
2172 if (c == '-'
2173 && !(p - 2 >= pattern && p[-2] == '[')
2174 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2175 && *p != ']')
2177 reg_errcode_t ret
2178 = compile_range (&p, pend, translate, syntax, b);
2179 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2182 else if (p[0] == '-' && p[1] != ']')
2183 { /* This handles ranges made up of characters only. */
2184 reg_errcode_t ret;
2186 /* Move past the `-'. */
2187 PATFETCH (c1);
2189 ret = compile_range (&p, pend, translate, syntax, b);
2190 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2193 /* See if we're at the beginning of a possible character
2194 class. */
2196 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2197 { /* Leave room for the null. */
2198 char str[CHAR_CLASS_MAX_LENGTH + 1];
2200 PATFETCH (c);
2201 c1 = 0;
2203 /* If pattern is `[[:'. */
2204 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2206 for (;;)
2208 PATFETCH (c);
2209 if ((c == ':' && *p == ']') || p == pend
2210 || c1 == CHAR_CLASS_MAX_LENGTH)
2211 break;
2212 str[c1++] = c;
2214 str[c1] = '\0';
2216 /* If isn't a word bracketed by `[:' and `:]':
2217 undo the ending character, the letters, and leave
2218 the leading `:' and `[' (but set bits for them). */
2219 if (c == ':' && *p == ']')
2221 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
2222 boolean is_lower = STREQ (str, "lower");
2223 boolean is_upper = STREQ (str, "upper");
2224 wctype_t wt;
2225 int ch;
2227 wt = IS_CHAR_CLASS (str);
2228 if (wt == 0)
2229 FREE_STACK_RETURN (REG_ECTYPE);
2231 /* Throw away the ] at the end of the character
2232 class. */
2233 PATFETCH (c);
2235 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2237 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
2239 # ifdef _LIBC
2240 if (__iswctype (__btowc (ch), wt))
2241 SET_LIST_BIT (ch);
2242 #else
2243 if (iswctype (btowc (ch), wt))
2244 SET_LIST_BIT (ch);
2245 #endif
2247 if (translate && (is_upper || is_lower)
2248 && (ISUPPER (ch) || ISLOWER (ch)))
2249 SET_LIST_BIT (ch);
2252 had_char_class = true;
2253 #else
2254 int ch;
2255 boolean is_alnum = STREQ (str, "alnum");
2256 boolean is_alpha = STREQ (str, "alpha");
2257 boolean is_blank = STREQ (str, "blank");
2258 boolean is_cntrl = STREQ (str, "cntrl");
2259 boolean is_digit = STREQ (str, "digit");
2260 boolean is_graph = STREQ (str, "graph");
2261 boolean is_lower = STREQ (str, "lower");
2262 boolean is_print = STREQ (str, "print");
2263 boolean is_punct = STREQ (str, "punct");
2264 boolean is_space = STREQ (str, "space");
2265 boolean is_upper = STREQ (str, "upper");
2266 boolean is_xdigit = STREQ (str, "xdigit");
2268 if (!IS_CHAR_CLASS (str))
2269 FREE_STACK_RETURN (REG_ECTYPE);
2271 /* Throw away the ] at the end of the character
2272 class. */
2273 PATFETCH (c);
2275 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2277 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2279 /* This was split into 3 if's to
2280 avoid an arbitrary limit in some compiler. */
2281 if ( (is_alnum && ISALNUM (ch))
2282 || (is_alpha && ISALPHA (ch))
2283 || (is_blank && ISBLANK (ch))
2284 || (is_cntrl && ISCNTRL (ch)))
2285 SET_LIST_BIT (ch);
2286 if ( (is_digit && ISDIGIT (ch))
2287 || (is_graph && ISGRAPH (ch))
2288 || (is_lower && ISLOWER (ch))
2289 || (is_print && ISPRINT (ch)))
2290 SET_LIST_BIT (ch);
2291 if ( (is_punct && ISPUNCT (ch))
2292 || (is_space && ISSPACE (ch))
2293 || (is_upper && ISUPPER (ch))
2294 || (is_xdigit && ISXDIGIT (ch)))
2295 SET_LIST_BIT (ch);
2296 if ( translate && (is_upper || is_lower)
2297 && (ISUPPER (ch) || ISLOWER (ch)))
2298 SET_LIST_BIT (ch);
2300 had_char_class = true;
2301 #endif /* libc || wctype.h */
2303 else
2305 c1++;
2306 while (c1--)
2307 PATUNFETCH;
2308 SET_LIST_BIT ('[');
2309 SET_LIST_BIT (':');
2310 had_char_class = false;
2313 else
2315 had_char_class = false;
2316 SET_LIST_BIT (c);
2320 /* Discard any (non)matching list bytes that are all 0 at the
2321 end of the map. Decrease the map-length byte too. */
2322 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2323 b[-1]--;
2324 b += b[-1];
2326 break;
2329 case '(':
2330 if (syntax & RE_NO_BK_PARENS)
2331 goto handle_open;
2332 else
2333 goto normal_char;
2336 case ')':
2337 if (syntax & RE_NO_BK_PARENS)
2338 goto handle_close;
2339 else
2340 goto normal_char;
2343 case '\n':
2344 if (syntax & RE_NEWLINE_ALT)
2345 goto handle_alt;
2346 else
2347 goto normal_char;
2350 case '|':
2351 if (syntax & RE_NO_BK_VBAR)
2352 goto handle_alt;
2353 else
2354 goto normal_char;
2357 case '{':
2358 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2359 goto handle_interval;
2360 else
2361 goto normal_char;
2364 case '\\':
2365 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2367 /* Do not translate the character after the \, so that we can
2368 distinguish, e.g., \B from \b, even if we normally would
2369 translate, e.g., B to b. */
2370 PATFETCH_RAW (c);
2372 switch (c)
2374 case '(':
2375 if (syntax & RE_NO_BK_PARENS)
2376 goto normal_backslash;
2378 handle_open:
2379 bufp->re_nsub++;
2380 regnum++;
2382 if (COMPILE_STACK_FULL)
2384 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2385 compile_stack_elt_t);
2386 if (compile_stack.stack == NULL) return REG_ESPACE;
2388 compile_stack.size <<= 1;
2391 /* These are the values to restore when we hit end of this
2392 group. They are all relative offsets, so that if the
2393 whole pattern moves because of realloc, they will still
2394 be valid. */
2395 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2396 COMPILE_STACK_TOP.fixup_alt_jump
2397 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2398 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2399 COMPILE_STACK_TOP.regnum = regnum;
2401 /* We will eventually replace the 0 with the number of
2402 groups inner to this one. But do not push a
2403 start_memory for groups beyond the last one we can
2404 represent in the compiled pattern. */
2405 if (regnum <= MAX_REGNUM)
2407 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2408 BUF_PUSH_3 (start_memory, regnum, 0);
2411 compile_stack.avail++;
2413 fixup_alt_jump = 0;
2414 laststart = 0;
2415 begalt = b;
2416 /* If we've reached MAX_REGNUM groups, then this open
2417 won't actually generate any code, so we'll have to
2418 clear pending_exact explicitly. */
2419 pending_exact = 0;
2420 break;
2423 case ')':
2424 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2426 if (COMPILE_STACK_EMPTY)
2428 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2429 goto normal_backslash;
2430 else
2431 FREE_STACK_RETURN (REG_ERPAREN);
2434 handle_close:
2435 if (fixup_alt_jump)
2436 { /* Push a dummy failure point at the end of the
2437 alternative for a possible future
2438 `pop_failure_jump' to pop. See comments at
2439 `push_dummy_failure' in `re_match_2'. */
2440 BUF_PUSH (push_dummy_failure);
2442 /* We allocated space for this jump when we assigned
2443 to `fixup_alt_jump', in the `handle_alt' case below. */
2444 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2447 /* See similar code for backslashed left paren above. */
2448 if (COMPILE_STACK_EMPTY)
2450 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2451 goto normal_char;
2452 else
2453 FREE_STACK_RETURN (REG_ERPAREN);
2456 /* Since we just checked for an empty stack above, this
2457 ``can't happen''. */
2458 assert (compile_stack.avail != 0);
2460 /* We don't just want to restore into `regnum', because
2461 later groups should continue to be numbered higher,
2462 as in `(ab)c(de)' -- the second group is #2. */
2463 regnum_t this_group_regnum;
2465 compile_stack.avail--;
2466 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2467 fixup_alt_jump
2468 = COMPILE_STACK_TOP.fixup_alt_jump
2469 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2470 : 0;
2471 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2472 this_group_regnum = COMPILE_STACK_TOP.regnum;
2473 /* If we've reached MAX_REGNUM groups, then this open
2474 won't actually generate any code, so we'll have to
2475 clear pending_exact explicitly. */
2476 pending_exact = 0;
2478 /* We're at the end of the group, so now we know how many
2479 groups were inside this one. */
2480 if (this_group_regnum <= MAX_REGNUM)
2482 unsigned char *inner_group_loc
2483 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2485 *inner_group_loc = regnum - this_group_regnum;
2486 BUF_PUSH_3 (stop_memory, this_group_regnum,
2487 regnum - this_group_regnum);
2490 break;
2493 case '|': /* `\|'. */
2494 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2495 goto normal_backslash;
2496 handle_alt:
2497 if (syntax & RE_LIMITED_OPS)
2498 goto normal_char;
2500 /* Insert before the previous alternative a jump which
2501 jumps to this alternative if the former fails. */
2502 GET_BUFFER_SPACE (3);
2503 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2504 pending_exact = 0;
2505 b += 3;
2507 /* The alternative before this one has a jump after it
2508 which gets executed if it gets matched. Adjust that
2509 jump so it will jump to this alternative's analogous
2510 jump (put in below, which in turn will jump to the next
2511 (if any) alternative's such jump, etc.). The last such
2512 jump jumps to the correct final destination. A picture:
2513 _____ _____
2514 | | | |
2515 | v | v
2516 a | b | c
2518 If we are at `b', then fixup_alt_jump right now points to a
2519 three-byte space after `a'. We'll put in the jump, set
2520 fixup_alt_jump to right after `b', and leave behind three
2521 bytes which we'll fill in when we get to after `c'. */
2523 if (fixup_alt_jump)
2524 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2526 /* Mark and leave space for a jump after this alternative,
2527 to be filled in later either by next alternative or
2528 when know we're at the end of a series of alternatives. */
2529 fixup_alt_jump = b;
2530 GET_BUFFER_SPACE (3);
2531 b += 3;
2533 laststart = 0;
2534 begalt = b;
2535 break;
2538 case '{':
2539 /* If \{ is a literal. */
2540 if (!(syntax & RE_INTERVALS)
2541 /* If we're at `\{' and it's not the open-interval
2542 operator. */
2543 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2544 || (p - 2 == pattern && p == pend))
2545 goto normal_backslash;
2547 handle_interval:
2549 /* If got here, then the syntax allows intervals. */
2551 /* At least (most) this many matches must be made. */
2552 int lower_bound = -1, upper_bound = -1;
2554 beg_interval = p - 1;
2556 if (p == pend)
2558 if (syntax & RE_NO_BK_BRACES)
2559 goto unfetch_interval;
2560 else
2561 FREE_STACK_RETURN (REG_EBRACE);
2564 GET_UNSIGNED_NUMBER (lower_bound);
2566 if (c == ',')
2568 GET_UNSIGNED_NUMBER (upper_bound);
2569 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2571 else
2572 /* Interval such as `{1}' => match exactly once. */
2573 upper_bound = lower_bound;
2575 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2576 || lower_bound > upper_bound)
2578 if (syntax & RE_NO_BK_BRACES)
2579 goto unfetch_interval;
2580 else
2581 FREE_STACK_RETURN (REG_BADBR);
2584 if (!(syntax & RE_NO_BK_BRACES))
2586 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2588 PATFETCH (c);
2591 if (c != '}')
2593 if (syntax & RE_NO_BK_BRACES)
2594 goto unfetch_interval;
2595 else
2596 FREE_STACK_RETURN (REG_BADBR);
2599 /* We just parsed a valid interval. */
2601 /* If it's invalid to have no preceding re. */
2602 if (!laststart)
2604 if (syntax & RE_CONTEXT_INVALID_OPS)
2605 FREE_STACK_RETURN (REG_BADRPT);
2606 else if (syntax & RE_CONTEXT_INDEP_OPS)
2607 laststart = b;
2608 else
2609 goto unfetch_interval;
2612 /* If the upper bound is zero, don't want to succeed at
2613 all; jump from `laststart' to `b + 3', which will be
2614 the end of the buffer after we insert the jump. */
2615 if (upper_bound == 0)
2617 GET_BUFFER_SPACE (3);
2618 INSERT_JUMP (jump, laststart, b + 3);
2619 b += 3;
2622 /* Otherwise, we have a nontrivial interval. When
2623 we're all done, the pattern will look like:
2624 set_number_at <jump count> <upper bound>
2625 set_number_at <succeed_n count> <lower bound>
2626 succeed_n <after jump addr> <succeed_n count>
2627 <body of loop>
2628 jump_n <succeed_n addr> <jump count>
2629 (The upper bound and `jump_n' are omitted if
2630 `upper_bound' is 1, though.) */
2631 else
2632 { /* If the upper bound is > 1, we need to insert
2633 more at the end of the loop. */
2634 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2636 GET_BUFFER_SPACE (nbytes);
2638 /* Initialize lower bound of the `succeed_n', even
2639 though it will be set during matching by its
2640 attendant `set_number_at' (inserted next),
2641 because `re_compile_fastmap' needs to know.
2642 Jump to the `jump_n' we might insert below. */
2643 INSERT_JUMP2 (succeed_n, laststart,
2644 b + 5 + (upper_bound > 1) * 5,
2645 lower_bound);
2646 b += 5;
2648 /* Code to initialize the lower bound. Insert
2649 before the `succeed_n'. The `5' is the last two
2650 bytes of this `set_number_at', plus 3 bytes of
2651 the following `succeed_n'. */
2652 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2653 b += 5;
2655 if (upper_bound > 1)
2656 { /* More than one repetition is allowed, so
2657 append a backward jump to the `succeed_n'
2658 that starts this interval.
2660 When we've reached this during matching,
2661 we'll have matched the interval once, so
2662 jump back only `upper_bound - 1' times. */
2663 STORE_JUMP2 (jump_n, b, laststart + 5,
2664 upper_bound - 1);
2665 b += 5;
2667 /* The location we want to set is the second
2668 parameter of the `jump_n'; that is `b-2' as
2669 an absolute address. `laststart' will be
2670 the `set_number_at' we're about to insert;
2671 `laststart+3' the number to set, the source
2672 for the relative address. But we are
2673 inserting into the middle of the pattern --
2674 so everything is getting moved up by 5.
2675 Conclusion: (b - 2) - (laststart + 3) + 5,
2676 i.e., b - laststart.
2678 We insert this at the beginning of the loop
2679 so that if we fail during matching, we'll
2680 reinitialize the bounds. */
2681 insert_op2 (set_number_at, laststart, b - laststart,
2682 upper_bound - 1, b);
2683 b += 5;
2686 pending_exact = 0;
2687 beg_interval = NULL;
2689 break;
2691 unfetch_interval:
2692 /* If an invalid interval, match the characters as literals. */
2693 assert (beg_interval);
2694 p = beg_interval;
2695 beg_interval = NULL;
2697 /* normal_char and normal_backslash need `c'. */
2698 PATFETCH (c);
2700 if (!(syntax & RE_NO_BK_BRACES))
2702 if (p > pattern && p[-1] == '\\')
2703 goto normal_backslash;
2705 goto normal_char;
2707 #ifdef emacs
2708 /* There is no way to specify the before_dot and after_dot
2709 operators. rms says this is ok. --karl */
2710 case '=':
2711 BUF_PUSH (at_dot);
2712 break;
2714 case 's':
2715 laststart = b;
2716 PATFETCH (c);
2717 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2718 break;
2720 case 'S':
2721 laststart = b;
2722 PATFETCH (c);
2723 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2724 break;
2725 #endif /* emacs */
2728 case 'w':
2729 if (syntax & RE_NO_GNU_OPS)
2730 goto normal_char;
2731 laststart = b;
2732 BUF_PUSH (wordchar);
2733 break;
2736 case 'W':
2737 if (syntax & RE_NO_GNU_OPS)
2738 goto normal_char;
2739 laststart = b;
2740 BUF_PUSH (notwordchar);
2741 break;
2744 case '<':
2745 if (syntax & RE_NO_GNU_OPS)
2746 goto normal_char;
2747 BUF_PUSH (wordbeg);
2748 break;
2750 case '>':
2751 if (syntax & RE_NO_GNU_OPS)
2752 goto normal_char;
2753 BUF_PUSH (wordend);
2754 break;
2756 case 'b':
2757 if (syntax & RE_NO_GNU_OPS)
2758 goto normal_char;
2759 BUF_PUSH (wordbound);
2760 break;
2762 case 'B':
2763 if (syntax & RE_NO_GNU_OPS)
2764 goto normal_char;
2765 BUF_PUSH (notwordbound);
2766 break;
2768 case '`':
2769 if (syntax & RE_NO_GNU_OPS)
2770 goto normal_char;
2771 BUF_PUSH (begbuf);
2772 break;
2774 case '\'':
2775 if (syntax & RE_NO_GNU_OPS)
2776 goto normal_char;
2777 BUF_PUSH (endbuf);
2778 break;
2780 case '1': case '2': case '3': case '4': case '5':
2781 case '6': case '7': case '8': case '9':
2782 if (syntax & RE_NO_BK_REFS)
2783 goto normal_char;
2785 c1 = c - '0';
2787 if (c1 > regnum)
2788 FREE_STACK_RETURN (REG_ESUBREG);
2790 /* Can't back reference to a subexpression if inside of it. */
2791 if (group_in_compile_stack (compile_stack, (regnum_t) c1))
2792 goto normal_char;
2794 laststart = b;
2795 BUF_PUSH_2 (duplicate, c1);
2796 break;
2799 case '+':
2800 case '?':
2801 if (syntax & RE_BK_PLUS_QM)
2802 goto handle_plus;
2803 else
2804 goto normal_backslash;
2806 default:
2807 normal_backslash:
2808 /* You might think it would be useful for \ to mean
2809 not to translate; but if we don't translate it
2810 it will never match anything. */
2811 c = TRANSLATE (c);
2812 goto normal_char;
2814 break;
2817 default:
2818 /* Expects the character in `c'. */
2819 normal_char:
2820 /* If no exactn currently being built. */
2821 if (!pending_exact
2823 /* If last exactn not at current position. */
2824 || pending_exact + *pending_exact + 1 != b
2826 /* We have only one byte following the exactn for the count. */
2827 || *pending_exact == (1 << BYTEWIDTH) - 1
2829 /* If followed by a repetition operator. */
2830 || *p == '*' || *p == '^'
2831 || ((syntax & RE_BK_PLUS_QM)
2832 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2833 : (*p == '+' || *p == '?'))
2834 || ((syntax & RE_INTERVALS)
2835 && ((syntax & RE_NO_BK_BRACES)
2836 ? *p == '{'
2837 : (p[0] == '\\' && p[1] == '{'))))
2839 /* Start building a new exactn. */
2841 laststart = b;
2843 BUF_PUSH_2 (exactn, 0);
2844 pending_exact = b - 1;
2847 BUF_PUSH (c);
2848 (*pending_exact)++;
2849 break;
2850 } /* switch (c) */
2851 } /* while p != pend */
2854 /* Through the pattern now. */
2856 if (fixup_alt_jump)
2857 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2859 if (!COMPILE_STACK_EMPTY)
2860 FREE_STACK_RETURN (REG_EPAREN);
2862 /* If we don't want backtracking, force success
2863 the first time we reach the end of the compiled pattern. */
2864 if (syntax & RE_NO_POSIX_BACKTRACKING)
2865 BUF_PUSH (succeed);
2867 free (compile_stack.stack);
2869 /* We have succeeded; set the length of the buffer. */
2870 bufp->used = b - bufp->buffer;
2872 #ifdef DEBUG
2873 if (debug)
2875 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2876 print_compiled_pattern (bufp);
2878 #endif /* DEBUG */
2880 #ifndef MATCH_MAY_ALLOCATE
2881 /* Initialize the failure stack to the largest possible stack. This
2882 isn't necessary unless we're trying to avoid calling alloca in
2883 the search and match routines. */
2885 int num_regs = bufp->re_nsub + 1;
2887 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2888 is strictly greater than re_max_failures, the largest possible stack
2889 is 2 * re_max_failures failure points. */
2890 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
2892 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2894 # ifdef emacs
2895 if (! fail_stack.stack)
2896 fail_stack.stack
2897 = (fail_stack_elt_t *) xmalloc (fail_stack.size
2898 * sizeof (fail_stack_elt_t));
2899 else
2900 fail_stack.stack
2901 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2902 (fail_stack.size
2903 * sizeof (fail_stack_elt_t)));
2904 # else /* not emacs */
2905 if (! fail_stack.stack)
2906 fail_stack.stack
2907 = (fail_stack_elt_t *) malloc (fail_stack.size
2908 * sizeof (fail_stack_elt_t));
2909 else
2910 fail_stack.stack
2911 = (fail_stack_elt_t *) realloc (fail_stack.stack,
2912 (fail_stack.size
2913 * sizeof (fail_stack_elt_t)));
2914 # endif /* not emacs */
2917 regex_grow_registers (num_regs);
2919 #endif /* not MATCH_MAY_ALLOCATE */
2921 return REG_NOERROR;
2922 } /* regex_compile */
2924 /* Subroutines for `regex_compile'. */
2926 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2928 static void
2929 store_op1 (op, loc, arg)
2930 re_opcode_t op;
2931 unsigned char *loc;
2932 int arg;
2934 *loc = (unsigned char) op;
2935 STORE_NUMBER (loc + 1, arg);
2939 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2941 static void
2942 store_op2 (op, loc, arg1, arg2)
2943 re_opcode_t op;
2944 unsigned char *loc;
2945 int arg1, arg2;
2947 *loc = (unsigned char) op;
2948 STORE_NUMBER (loc + 1, arg1);
2949 STORE_NUMBER (loc + 3, arg2);
2953 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2954 for OP followed by two-byte integer parameter ARG. */
2956 static void
2957 insert_op1 (op, loc, arg, end)
2958 re_opcode_t op;
2959 unsigned char *loc;
2960 int arg;
2961 unsigned char *end;
2963 register unsigned char *pfrom = end;
2964 register unsigned char *pto = end + 3;
2966 while (pfrom != loc)
2967 *--pto = *--pfrom;
2969 store_op1 (op, loc, arg);
2973 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2975 static void
2976 insert_op2 (op, loc, arg1, arg2, end)
2977 re_opcode_t op;
2978 unsigned char *loc;
2979 int arg1, arg2;
2980 unsigned char *end;
2982 register unsigned char *pfrom = end;
2983 register unsigned char *pto = end + 5;
2985 while (pfrom != loc)
2986 *--pto = *--pfrom;
2988 store_op2 (op, loc, arg1, arg2);
2992 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
2993 after an alternative or a begin-subexpression. We assume there is at
2994 least one character before the ^. */
2996 static boolean
2997 at_begline_loc_p (pattern, p, syntax)
2998 const char *pattern, *p;
2999 reg_syntax_t syntax;
3001 const char *prev = p - 2;
3002 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
3004 return
3005 /* After a subexpression? */
3006 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
3007 /* After an alternative? */
3008 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
3012 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3013 at least one character after the $, i.e., `P < PEND'. */
3015 static boolean
3016 at_endline_loc_p (p, pend, syntax)
3017 const char *p, *pend;
3018 reg_syntax_t syntax;
3020 const char *next = p;
3021 boolean next_backslash = *next == '\\';
3022 const char *next_next = p + 1 < pend ? p + 1 : 0;
3024 return
3025 /* Before a subexpression? */
3026 (syntax & RE_NO_BK_PARENS ? *next == ')'
3027 : next_backslash && next_next && *next_next == ')')
3028 /* Before an alternative? */
3029 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3030 : next_backslash && next_next && *next_next == '|');
3034 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3035 false if it's not. */
3037 static boolean
3038 group_in_compile_stack (compile_stack, regnum)
3039 compile_stack_type compile_stack;
3040 regnum_t regnum;
3042 int this_element;
3044 for (this_element = compile_stack.avail - 1;
3045 this_element >= 0;
3046 this_element--)
3047 if (compile_stack.stack[this_element].regnum == regnum)
3048 return true;
3050 return false;
3054 /* Read the ending character of a range (in a bracket expression) from the
3055 uncompiled pattern *P_PTR (which ends at PEND). We assume the
3056 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
3057 Then we set the translation of all bits between the starting and
3058 ending characters (inclusive) in the compiled pattern B.
3060 Return an error code.
3062 We use these short variable names so we can use the same macros as
3063 `regex_compile' itself. */
3065 static reg_errcode_t
3066 compile_range (p_ptr, pend, translate, syntax, b)
3067 const char **p_ptr, *pend;
3068 RE_TRANSLATE_TYPE translate;
3069 reg_syntax_t syntax;
3070 unsigned char *b;
3072 unsigned this_char;
3074 const char *p = *p_ptr;
3075 unsigned int range_start, range_end;
3077 if (p == pend)
3078 return REG_ERANGE;
3080 /* Even though the pattern is a signed `char *', we need to fetch
3081 with unsigned char *'s; if the high bit of the pattern character
3082 is set, the range endpoints will be negative if we fetch using a
3083 signed char *.
3085 We also want to fetch the endpoints without translating them; the
3086 appropriate translation is done in the bit-setting loop below. */
3087 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
3088 range_start = ((const unsigned char *) p)[-2];
3089 range_end = ((const unsigned char *) p)[0];
3091 /* Have to increment the pointer into the pattern string, so the
3092 caller isn't still at the ending character. */
3093 (*p_ptr)++;
3095 /* If the start is after the end, the range is empty. */
3096 if (range_start > range_end)
3097 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
3099 /* Here we see why `this_char' has to be larger than an `unsigned
3100 char' -- the range is inclusive, so if `range_end' == 0xff
3101 (assuming 8-bit characters), we would otherwise go into an infinite
3102 loop, since all characters <= 0xff. */
3103 for (this_char = range_start; this_char <= range_end; this_char++)
3105 SET_LIST_BIT (TRANSLATE (this_char));
3108 return REG_NOERROR;
3111 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3112 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3113 characters can start a string that matches the pattern. This fastmap
3114 is used by re_search to skip quickly over impossible starting points.
3116 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3117 area as BUFP->fastmap.
3119 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3120 the pattern buffer.
3122 Returns 0 if we succeed, -2 if an internal error. */
3125 re_compile_fastmap (bufp)
3126 struct re_pattern_buffer *bufp;
3128 int j, k;
3129 #ifdef MATCH_MAY_ALLOCATE
3130 fail_stack_type fail_stack;
3131 #endif
3132 #ifndef REGEX_MALLOC
3133 char *destination;
3134 #endif
3136 register char *fastmap = bufp->fastmap;
3137 unsigned char *pattern = bufp->buffer;
3138 unsigned char *p = pattern;
3139 register unsigned char *pend = pattern + bufp->used;
3141 #ifdef REL_ALLOC
3142 /* This holds the pointer to the failure stack, when
3143 it is allocated relocatably. */
3144 fail_stack_elt_t *failure_stack_ptr;
3145 #endif
3147 /* Assume that each path through the pattern can be null until
3148 proven otherwise. We set this false at the bottom of switch
3149 statement, to which we get only if a particular path doesn't
3150 match the empty string. */
3151 boolean path_can_be_null = true;
3153 /* We aren't doing a `succeed_n' to begin with. */
3154 boolean succeed_n_p = false;
3156 assert (fastmap != NULL && p != NULL);
3158 INIT_FAIL_STACK ();
3159 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
3160 bufp->fastmap_accurate = 1; /* It will be when we're done. */
3161 bufp->can_be_null = 0;
3163 while (1)
3165 if (p == pend || *p == succeed)
3167 /* We have reached the (effective) end of pattern. */
3168 if (!FAIL_STACK_EMPTY ())
3170 bufp->can_be_null |= path_can_be_null;
3172 /* Reset for next path. */
3173 path_can_be_null = true;
3175 p = fail_stack.stack[--fail_stack.avail].pointer;
3177 continue;
3179 else
3180 break;
3183 /* We should never be about to go beyond the end of the pattern. */
3184 assert (p < pend);
3186 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3189 /* I guess the idea here is to simply not bother with a fastmap
3190 if a backreference is used, since it's too hard to figure out
3191 the fastmap for the corresponding group. Setting
3192 `can_be_null' stops `re_search_2' from using the fastmap, so
3193 that is all we do. */
3194 case duplicate:
3195 bufp->can_be_null = 1;
3196 goto done;
3199 /* Following are the cases which match a character. These end
3200 with `break'. */
3202 case exactn:
3203 fastmap[p[1]] = 1;
3204 break;
3207 case charset:
3208 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3209 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3210 fastmap[j] = 1;
3211 break;
3214 case charset_not:
3215 /* Chars beyond end of map must be allowed. */
3216 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
3217 fastmap[j] = 1;
3219 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3220 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3221 fastmap[j] = 1;
3222 break;
3225 case wordchar:
3226 for (j = 0; j < (1 << BYTEWIDTH); j++)
3227 if (SYNTAX (j) == Sword)
3228 fastmap[j] = 1;
3229 break;
3232 case notwordchar:
3233 for (j = 0; j < (1 << BYTEWIDTH); j++)
3234 if (SYNTAX (j) != Sword)
3235 fastmap[j] = 1;
3236 break;
3239 case anychar:
3241 int fastmap_newline = fastmap['\n'];
3243 /* `.' matches anything ... */
3244 for (j = 0; j < (1 << BYTEWIDTH); j++)
3245 fastmap[j] = 1;
3247 /* ... except perhaps newline. */
3248 if (!(bufp->syntax & RE_DOT_NEWLINE))
3249 fastmap['\n'] = fastmap_newline;
3251 /* Return if we have already set `can_be_null'; if we have,
3252 then the fastmap is irrelevant. Something's wrong here. */
3253 else if (bufp->can_be_null)
3254 goto done;
3256 /* Otherwise, have to check alternative paths. */
3257 break;
3260 #ifdef emacs
3261 case syntaxspec:
3262 k = *p++;
3263 for (j = 0; j < (1 << BYTEWIDTH); j++)
3264 if (SYNTAX (j) == (enum syntaxcode) k)
3265 fastmap[j] = 1;
3266 break;
3269 case notsyntaxspec:
3270 k = *p++;
3271 for (j = 0; j < (1 << BYTEWIDTH); j++)
3272 if (SYNTAX (j) != (enum syntaxcode) k)
3273 fastmap[j] = 1;
3274 break;
3277 /* All cases after this match the empty string. These end with
3278 `continue'. */
3281 case before_dot:
3282 case at_dot:
3283 case after_dot:
3284 continue;
3285 #endif /* emacs */
3288 case no_op:
3289 case begline:
3290 case endline:
3291 case begbuf:
3292 case endbuf:
3293 case wordbound:
3294 case notwordbound:
3295 case wordbeg:
3296 case wordend:
3297 case push_dummy_failure:
3298 continue;
3301 case jump_n:
3302 case pop_failure_jump:
3303 case maybe_pop_jump:
3304 case jump:
3305 case jump_past_alt:
3306 case dummy_failure_jump:
3307 EXTRACT_NUMBER_AND_INCR (j, p);
3308 p += j;
3309 if (j > 0)
3310 continue;
3312 /* Jump backward implies we just went through the body of a
3313 loop and matched nothing. Opcode jumped to should be
3314 `on_failure_jump' or `succeed_n'. Just treat it like an
3315 ordinary jump. For a * loop, it has pushed its failure
3316 point already; if so, discard that as redundant. */
3317 if ((re_opcode_t) *p != on_failure_jump
3318 && (re_opcode_t) *p != succeed_n)
3319 continue;
3321 p++;
3322 EXTRACT_NUMBER_AND_INCR (j, p);
3323 p += j;
3325 /* If what's on the stack is where we are now, pop it. */
3326 if (!FAIL_STACK_EMPTY ()
3327 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
3328 fail_stack.avail--;
3330 continue;
3333 case on_failure_jump:
3334 case on_failure_keep_string_jump:
3335 handle_on_failure_jump:
3336 EXTRACT_NUMBER_AND_INCR (j, p);
3338 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3339 end of the pattern. We don't want to push such a point,
3340 since when we restore it above, entering the switch will
3341 increment `p' past the end of the pattern. We don't need
3342 to push such a point since we obviously won't find any more
3343 fastmap entries beyond `pend'. Such a pattern can match
3344 the null string, though. */
3345 if (p + j < pend)
3347 if (!PUSH_PATTERN_OP (p + j, fail_stack))
3349 RESET_FAIL_STACK ();
3350 return -2;
3353 else
3354 bufp->can_be_null = 1;
3356 if (succeed_n_p)
3358 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
3359 succeed_n_p = false;
3362 continue;
3365 case succeed_n:
3366 /* Get to the number of times to succeed. */
3367 p += 2;
3369 /* Increment p past the n for when k != 0. */
3370 EXTRACT_NUMBER_AND_INCR (k, p);
3371 if (k == 0)
3373 p -= 4;
3374 succeed_n_p = true; /* Spaghetti code alert. */
3375 goto handle_on_failure_jump;
3377 continue;
3380 case set_number_at:
3381 p += 4;
3382 continue;
3385 case start_memory:
3386 case stop_memory:
3387 p += 2;
3388 continue;
3391 default:
3392 abort (); /* We have listed all the cases. */
3393 } /* switch *p++ */
3395 /* Getting here means we have found the possible starting
3396 characters for one path of the pattern -- and that the empty
3397 string does not match. We need not follow this path further.
3398 Instead, look at the next alternative (remembered on the
3399 stack), or quit if no more. The test at the top of the loop
3400 does these things. */
3401 path_can_be_null = false;
3402 p = pend;
3403 } /* while p */
3405 /* Set `can_be_null' for the last path (also the first path, if the
3406 pattern is empty). */
3407 bufp->can_be_null |= path_can_be_null;
3409 done:
3410 RESET_FAIL_STACK ();
3411 return 0;
3412 } /* re_compile_fastmap */
3413 #ifdef _LIBC
3414 weak_alias (__re_compile_fastmap, re_compile_fastmap)
3415 #endif
3417 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3418 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3419 this memory for recording register information. STARTS and ENDS
3420 must be allocated using the malloc library routine, and must each
3421 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3423 If NUM_REGS == 0, then subsequent matches should allocate their own
3424 register data.
3426 Unless this function is called, the first search or match using
3427 PATTERN_BUFFER will allocate its own register data, without
3428 freeing the old data. */
3430 void
3431 re_set_registers (bufp, regs, num_regs, starts, ends)
3432 struct re_pattern_buffer *bufp;
3433 struct re_registers *regs;
3434 unsigned num_regs;
3435 regoff_t *starts, *ends;
3437 if (num_regs)
3439 bufp->regs_allocated = REGS_REALLOCATE;
3440 regs->num_regs = num_regs;
3441 regs->start = starts;
3442 regs->end = ends;
3444 else
3446 bufp->regs_allocated = REGS_UNALLOCATED;
3447 regs->num_regs = 0;
3448 regs->start = regs->end = (regoff_t *) 0;
3451 #ifdef _LIBC
3452 weak_alias (__re_set_registers, re_set_registers)
3453 #endif
3455 /* Searching routines. */
3457 /* Like re_search_2, below, but only one string is specified, and
3458 doesn't let you say where to stop matching. */
3461 re_search (bufp, string, size, startpos, range, regs)
3462 struct re_pattern_buffer *bufp;
3463 const char *string;
3464 int size, startpos, range;
3465 struct re_registers *regs;
3467 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3468 regs, size);
3470 #ifdef _LIBC
3471 weak_alias (__re_search, re_search)
3472 #endif
3475 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3476 virtual concatenation of STRING1 and STRING2, starting first at index
3477 STARTPOS, then at STARTPOS + 1, and so on.
3479 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3481 RANGE is how far to scan while trying to match. RANGE = 0 means try
3482 only at STARTPOS; in general, the last start tried is STARTPOS +
3483 RANGE.
3485 In REGS, return the indices of the virtual concatenation of STRING1
3486 and STRING2 that matched the entire BUFP->buffer and its contained
3487 subexpressions.
3489 Do not consider matching one past the index STOP in the virtual
3490 concatenation of STRING1 and STRING2.
3492 We return either the position in the strings at which the match was
3493 found, -1 if no match, or -2 if error (such as failure
3494 stack overflow). */
3497 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3498 struct re_pattern_buffer *bufp;
3499 const char *string1, *string2;
3500 int size1, size2;
3501 int startpos;
3502 int range;
3503 struct re_registers *regs;
3504 int stop;
3506 int val;
3507 register char *fastmap = bufp->fastmap;
3508 register RE_TRANSLATE_TYPE translate = bufp->translate;
3509 int total_size = size1 + size2;
3510 int endpos = startpos + range;
3512 /* Check for out-of-range STARTPOS. */
3513 if (startpos < 0 || startpos > total_size)
3514 return -1;
3516 /* Fix up RANGE if it might eventually take us outside
3517 the virtual concatenation of STRING1 and STRING2.
3518 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3519 if (endpos < 0)
3520 range = 0 - startpos;
3521 else if (endpos > total_size)
3522 range = total_size - startpos;
3524 /* If the search isn't to be a backwards one, don't waste time in a
3525 search for a pattern that must be anchored. */
3526 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3528 if (startpos > 0)
3529 return -1;
3530 else
3531 range = 1;
3534 #ifdef emacs
3535 /* In a forward search for something that starts with \=.
3536 don't keep searching past point. */
3537 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3539 range = PT - startpos;
3540 if (range <= 0)
3541 return -1;
3543 #endif /* emacs */
3545 /* Update the fastmap now if not correct already. */
3546 if (fastmap && !bufp->fastmap_accurate)
3547 if (re_compile_fastmap (bufp) == -2)
3548 return -2;
3550 /* Loop through the string, looking for a place to start matching. */
3551 for (;;)
3553 /* If a fastmap is supplied, skip quickly over characters that
3554 cannot be the start of a match. If the pattern can match the
3555 null string, however, we don't need to skip characters; we want
3556 the first null string. */
3557 if (fastmap && startpos < total_size && !bufp->can_be_null)
3559 if (range > 0) /* Searching forwards. */
3561 register const char *d;
3562 register int lim = 0;
3563 int irange = range;
3565 if (startpos < size1 && startpos + range >= size1)
3566 lim = range - (size1 - startpos);
3568 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
3570 /* Written out as an if-else to avoid testing `translate'
3571 inside the loop. */
3572 if (translate)
3573 while (range > lim
3574 && !fastmap[(unsigned char)
3575 translate[(unsigned char) *d++]])
3576 range--;
3577 else
3578 while (range > lim && !fastmap[(unsigned char) *d++])
3579 range--;
3581 startpos += irange - range;
3583 else /* Searching backwards. */
3585 register char c = (size1 == 0 || startpos >= size1
3586 ? string2[startpos - size1]
3587 : string1[startpos]);
3589 if (!fastmap[(unsigned char) TRANSLATE (c)])
3590 goto advance;
3594 /* If can't match the null string, and that's all we have left, fail. */
3595 if (range >= 0 && startpos == total_size && fastmap
3596 && !bufp->can_be_null)
3597 return -1;
3599 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3600 startpos, regs, stop);
3601 #ifndef REGEX_MALLOC
3602 # ifdef C_ALLOCA
3603 alloca (0);
3604 # endif
3605 #endif
3607 if (val >= 0)
3608 return startpos;
3610 if (val == -2)
3611 return -2;
3613 advance:
3614 if (!range)
3615 break;
3616 else if (range > 0)
3618 range--;
3619 startpos++;
3621 else
3623 range++;
3624 startpos--;
3627 return -1;
3628 } /* re_search_2 */
3629 #ifdef _LIBC
3630 weak_alias (__re_search_2, re_search_2)
3631 #endif
3633 /* This converts PTR, a pointer into one of the search strings `string1'
3634 and `string2' into an offset from the beginning of that string. */
3635 #define POINTER_TO_OFFSET(ptr) \
3636 (FIRST_STRING_P (ptr) \
3637 ? ((regoff_t) ((ptr) - string1)) \
3638 : ((regoff_t) ((ptr) - string2 + size1)))
3640 /* Macros for dealing with the split strings in re_match_2. */
3642 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3644 /* Call before fetching a character with *d. This switches over to
3645 string2 if necessary. */
3646 #define PREFETCH() \
3647 while (d == dend) \
3649 /* End of string2 => fail. */ \
3650 if (dend == end_match_2) \
3651 goto fail; \
3652 /* End of string1 => advance to string2. */ \
3653 d = string2; \
3654 dend = end_match_2; \
3658 /* Test if at very beginning or at very end of the virtual concatenation
3659 of `string1' and `string2'. If only one string, it's `string2'. */
3660 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3661 #define AT_STRINGS_END(d) ((d) == end2)
3664 /* Test if D points to a character which is word-constituent. We have
3665 two special cases to check for: if past the end of string1, look at
3666 the first character in string2; and if before the beginning of
3667 string2, look at the last character in string1. */
3668 #define WORDCHAR_P(d) \
3669 (SYNTAX ((d) == end1 ? *string2 \
3670 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3671 == Sword)
3673 /* Disabled due to a compiler bug -- see comment at case wordbound */
3674 #if 0
3675 /* Test if the character before D and the one at D differ with respect
3676 to being word-constituent. */
3677 #define AT_WORD_BOUNDARY(d) \
3678 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3679 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3680 #endif
3682 /* Free everything we malloc. */
3683 #ifdef MATCH_MAY_ALLOCATE
3684 # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
3685 # define FREE_VARIABLES() \
3686 do { \
3687 REGEX_FREE_STACK (fail_stack.stack); \
3688 FREE_VAR (regstart); \
3689 FREE_VAR (regend); \
3690 FREE_VAR (old_regstart); \
3691 FREE_VAR (old_regend); \
3692 FREE_VAR (best_regstart); \
3693 FREE_VAR (best_regend); \
3694 FREE_VAR (reg_info); \
3695 FREE_VAR (reg_dummy); \
3696 FREE_VAR (reg_info_dummy); \
3697 } while (0)
3698 #else
3699 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3700 #endif /* not MATCH_MAY_ALLOCATE */
3702 /* These values must meet several constraints. They must not be valid
3703 register values; since we have a limit of 255 registers (because
3704 we use only one byte in the pattern for the register number), we can
3705 use numbers larger than 255. They must differ by 1, because of
3706 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3707 be larger than the value for the highest register, so we do not try
3708 to actually save any registers when none are active. */
3709 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3710 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3712 /* Matching routines. */
3714 #ifndef emacs /* Emacs never uses this. */
3715 /* re_match is like re_match_2 except it takes only a single string. */
3718 re_match (bufp, string, size, pos, regs)
3719 struct re_pattern_buffer *bufp;
3720 const char *string;
3721 int size, pos;
3722 struct re_registers *regs;
3724 int result = re_match_2_internal (bufp, NULL, 0, string, size,
3725 pos, regs, size);
3726 # ifndef REGEX_MALLOC
3727 # ifdef C_ALLOCA
3728 alloca (0);
3729 # endif
3730 # endif
3731 return result;
3733 # ifdef _LIBC
3734 weak_alias (__re_match, re_match)
3735 # endif
3736 #endif /* not emacs */
3738 static boolean group_match_null_string_p _RE_ARGS ((unsigned char **p,
3739 unsigned char *end,
3740 register_info_type *reg_info));
3741 static boolean alt_match_null_string_p _RE_ARGS ((unsigned char *p,
3742 unsigned char *end,
3743 register_info_type *reg_info));
3744 static boolean common_op_match_null_string_p _RE_ARGS ((unsigned char **p,
3745 unsigned char *end,
3746 register_info_type *reg_info));
3747 static int bcmp_translate _RE_ARGS ((const char *s1, const char *s2,
3748 int len, char *translate));
3750 /* re_match_2 matches the compiled pattern in BUFP against the
3751 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3752 and SIZE2, respectively). We start matching at POS, and stop
3753 matching at STOP.
3755 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3756 store offsets for the substring each group matched in REGS. See the
3757 documentation for exactly how many groups we fill.
3759 We return -1 if no match, -2 if an internal error (such as the
3760 failure stack overflowing). Otherwise, we return the length of the
3761 matched substring. */
3764 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3765 struct re_pattern_buffer *bufp;
3766 const char *string1, *string2;
3767 int size1, size2;
3768 int pos;
3769 struct re_registers *regs;
3770 int stop;
3772 int result = re_match_2_internal (bufp, string1, size1, string2, size2,
3773 pos, regs, stop);
3774 #ifndef REGEX_MALLOC
3775 # ifdef C_ALLOCA
3776 alloca (0);
3777 # endif
3778 #endif
3779 return result;
3781 #ifdef _LIBC
3782 weak_alias (__re_match_2, re_match_2)
3783 #endif
3785 /* This is a separate function so that we can force an alloca cleanup
3786 afterwards. */
3787 static int
3788 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
3789 struct re_pattern_buffer *bufp;
3790 const char *string1, *string2;
3791 int size1, size2;
3792 int pos;
3793 struct re_registers *regs;
3794 int stop;
3796 /* General temporaries. */
3797 int mcnt;
3798 unsigned char *p1;
3800 /* Just past the end of the corresponding string. */
3801 const char *end1, *end2;
3803 /* Pointers into string1 and string2, just past the last characters in
3804 each to consider matching. */
3805 const char *end_match_1, *end_match_2;
3807 /* Where we are in the data, and the end of the current string. */
3808 const char *d, *dend;
3810 /* Where we are in the pattern, and the end of the pattern. */
3811 unsigned char *p = bufp->buffer;
3812 register unsigned char *pend = p + bufp->used;
3814 /* Mark the opcode just after a start_memory, so we can test for an
3815 empty subpattern when we get to the stop_memory. */
3816 unsigned char *just_past_start_mem = 0;
3818 /* We use this to map every character in the string. */
3819 RE_TRANSLATE_TYPE translate = bufp->translate;
3821 /* Failure point stack. Each place that can handle a failure further
3822 down the line pushes a failure point on this stack. It consists of
3823 restart, regend, and reg_info for all registers corresponding to
3824 the subexpressions we're currently inside, plus the number of such
3825 registers, and, finally, two char *'s. The first char * is where
3826 to resume scanning the pattern; the second one is where to resume
3827 scanning the strings. If the latter is zero, the failure point is
3828 a ``dummy''; if a failure happens and the failure point is a dummy,
3829 it gets discarded and the next next one is tried. */
3830 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3831 fail_stack_type fail_stack;
3832 #endif
3833 #ifdef DEBUG
3834 static unsigned failure_id = 0;
3835 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3836 #endif
3838 #ifdef REL_ALLOC
3839 /* This holds the pointer to the failure stack, when
3840 it is allocated relocatably. */
3841 fail_stack_elt_t *failure_stack_ptr;
3842 #endif
3844 /* We fill all the registers internally, independent of what we
3845 return, for use in backreferences. The number here includes
3846 an element for register zero. */
3847 size_t num_regs = bufp->re_nsub + 1;
3849 /* The currently active registers. */
3850 active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3851 active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3853 /* Information on the contents of registers. These are pointers into
3854 the input strings; they record just what was matched (on this
3855 attempt) by a subexpression part of the pattern, that is, the
3856 regnum-th regstart pointer points to where in the pattern we began
3857 matching and the regnum-th regend points to right after where we
3858 stopped matching the regnum-th subexpression. (The zeroth register
3859 keeps track of what the whole pattern matches.) */
3860 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3861 const char **regstart, **regend;
3862 #endif
3864 /* If a group that's operated upon by a repetition operator fails to
3865 match anything, then the register for its start will need to be
3866 restored because it will have been set to wherever in the string we
3867 are when we last see its open-group operator. Similarly for a
3868 register's end. */
3869 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3870 const char **old_regstart, **old_regend;
3871 #endif
3873 /* The is_active field of reg_info helps us keep track of which (possibly
3874 nested) subexpressions we are currently in. The matched_something
3875 field of reg_info[reg_num] helps us tell whether or not we have
3876 matched any of the pattern so far this time through the reg_num-th
3877 subexpression. These two fields get reset each time through any
3878 loop their register is in. */
3879 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3880 register_info_type *reg_info;
3881 #endif
3883 /* The following record the register info as found in the above
3884 variables when we find a match better than any we've seen before.
3885 This happens as we backtrack through the failure points, which in
3886 turn happens only if we have not yet matched the entire string. */
3887 unsigned best_regs_set = false;
3888 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3889 const char **best_regstart, **best_regend;
3890 #endif
3892 /* Logically, this is `best_regend[0]'. But we don't want to have to
3893 allocate space for that if we're not allocating space for anything
3894 else (see below). Also, we never need info about register 0 for
3895 any of the other register vectors, and it seems rather a kludge to
3896 treat `best_regend' differently than the rest. So we keep track of
3897 the end of the best match so far in a separate variable. We
3898 initialize this to NULL so that when we backtrack the first time
3899 and need to test it, it's not garbage. */
3900 const char *match_end = NULL;
3902 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
3903 int set_regs_matched_done = 0;
3905 /* Used when we pop values we don't care about. */
3906 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3907 const char **reg_dummy;
3908 register_info_type *reg_info_dummy;
3909 #endif
3911 #ifdef DEBUG
3912 /* Counts the total number of registers pushed. */
3913 unsigned num_regs_pushed = 0;
3914 #endif
3916 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3918 INIT_FAIL_STACK ();
3920 #ifdef MATCH_MAY_ALLOCATE
3921 /* Do not bother to initialize all the register variables if there are
3922 no groups in the pattern, as it takes a fair amount of time. If
3923 there are groups, we include space for register 0 (the whole
3924 pattern), even though we never use it, since it simplifies the
3925 array indexing. We should fix this. */
3926 if (bufp->re_nsub)
3928 regstart = REGEX_TALLOC (num_regs, const char *);
3929 regend = REGEX_TALLOC (num_regs, const char *);
3930 old_regstart = REGEX_TALLOC (num_regs, const char *);
3931 old_regend = REGEX_TALLOC (num_regs, const char *);
3932 best_regstart = REGEX_TALLOC (num_regs, const char *);
3933 best_regend = REGEX_TALLOC (num_regs, const char *);
3934 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3935 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3936 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3938 if (!(regstart && regend && old_regstart && old_regend && reg_info
3939 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3941 FREE_VARIABLES ();
3942 return -2;
3945 else
3947 /* We must initialize all our variables to NULL, so that
3948 `FREE_VARIABLES' doesn't try to free them. */
3949 regstart = regend = old_regstart = old_regend = best_regstart
3950 = best_regend = reg_dummy = NULL;
3951 reg_info = reg_info_dummy = (register_info_type *) NULL;
3953 #endif /* MATCH_MAY_ALLOCATE */
3955 /* The starting position is bogus. */
3956 if (pos < 0 || pos > size1 + size2)
3958 FREE_VARIABLES ();
3959 return -1;
3962 /* Initialize subexpression text positions to -1 to mark ones that no
3963 start_memory/stop_memory has been seen for. Also initialize the
3964 register information struct. */
3965 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
3967 regstart[mcnt] = regend[mcnt]
3968 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3970 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3971 IS_ACTIVE (reg_info[mcnt]) = 0;
3972 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3973 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3976 /* We move `string1' into `string2' if the latter's empty -- but not if
3977 `string1' is null. */
3978 if (size2 == 0 && string1 != NULL)
3980 string2 = string1;
3981 size2 = size1;
3982 string1 = 0;
3983 size1 = 0;
3985 end1 = string1 + size1;
3986 end2 = string2 + size2;
3988 /* Compute where to stop matching, within the two strings. */
3989 if (stop <= size1)
3991 end_match_1 = string1 + stop;
3992 end_match_2 = string2;
3994 else
3996 end_match_1 = end1;
3997 end_match_2 = string2 + stop - size1;
4000 /* `p' scans through the pattern as `d' scans through the data.
4001 `dend' is the end of the input string that `d' points within. `d'
4002 is advanced into the following input string whenever necessary, but
4003 this happens before fetching; therefore, at the beginning of the
4004 loop, `d' can be pointing at the end of a string, but it cannot
4005 equal `string2'. */
4006 if (size1 > 0 && pos <= size1)
4008 d = string1 + pos;
4009 dend = end_match_1;
4011 else
4013 d = string2 + pos - size1;
4014 dend = end_match_2;
4017 DEBUG_PRINT1 ("The compiled pattern is:\n");
4018 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4019 DEBUG_PRINT1 ("The string to match is: `");
4020 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4021 DEBUG_PRINT1 ("'\n");
4023 /* This loops over pattern commands. It exits by returning from the
4024 function if the match is complete, or it drops through if the match
4025 fails at this starting point in the input data. */
4026 for (;;)
4028 #ifdef _LIBC
4029 DEBUG_PRINT2 ("\n%p: ", p);
4030 #else
4031 DEBUG_PRINT2 ("\n0x%x: ", p);
4032 #endif
4034 if (p == pend)
4035 { /* End of pattern means we might have succeeded. */
4036 DEBUG_PRINT1 ("end of pattern ... ");
4038 /* If we haven't matched the entire string, and we want the
4039 longest match, try backtracking. */
4040 if (d != end_match_2)
4042 /* 1 if this match ends in the same string (string1 or string2)
4043 as the best previous match. */
4044 boolean same_str_p = (FIRST_STRING_P (match_end)
4045 == MATCHING_IN_FIRST_STRING);
4046 /* 1 if this match is the best seen so far. */
4047 boolean best_match_p;
4049 /* AIX compiler got confused when this was combined
4050 with the previous declaration. */
4051 if (same_str_p)
4052 best_match_p = d > match_end;
4053 else
4054 best_match_p = !MATCHING_IN_FIRST_STRING;
4056 DEBUG_PRINT1 ("backtracking.\n");
4058 if (!FAIL_STACK_EMPTY ())
4059 { /* More failure points to try. */
4061 /* If exceeds best match so far, save it. */
4062 if (!best_regs_set || best_match_p)
4064 best_regs_set = true;
4065 match_end = d;
4067 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4069 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4071 best_regstart[mcnt] = regstart[mcnt];
4072 best_regend[mcnt] = regend[mcnt];
4075 goto fail;
4078 /* If no failure points, don't restore garbage. And if
4079 last match is real best match, don't restore second
4080 best one. */
4081 else if (best_regs_set && !best_match_p)
4083 restore_best_regs:
4084 /* Restore best match. It may happen that `dend ==
4085 end_match_1' while the restored d is in string2.
4086 For example, the pattern `x.*y.*z' against the
4087 strings `x-' and `y-z-', if the two strings are
4088 not consecutive in memory. */
4089 DEBUG_PRINT1 ("Restoring best registers.\n");
4091 d = match_end;
4092 dend = ((d >= string1 && d <= end1)
4093 ? end_match_1 : end_match_2);
4095 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4097 regstart[mcnt] = best_regstart[mcnt];
4098 regend[mcnt] = best_regend[mcnt];
4101 } /* d != end_match_2 */
4103 succeed_label:
4104 DEBUG_PRINT1 ("Accepting match.\n");
4106 /* If caller wants register contents data back, do it. */
4107 if (regs && !bufp->no_sub)
4109 /* Have the register data arrays been allocated? */
4110 if (bufp->regs_allocated == REGS_UNALLOCATED)
4111 { /* No. So allocate them with malloc. We need one
4112 extra element beyond `num_regs' for the `-1' marker
4113 GNU code uses. */
4114 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4115 regs->start = TALLOC (regs->num_regs, regoff_t);
4116 regs->end = TALLOC (regs->num_regs, regoff_t);
4117 if (regs->start == NULL || regs->end == NULL)
4119 FREE_VARIABLES ();
4120 return -2;
4122 bufp->regs_allocated = REGS_REALLOCATE;
4124 else if (bufp->regs_allocated == REGS_REALLOCATE)
4125 { /* Yes. If we need more elements than were already
4126 allocated, reallocate them. If we need fewer, just
4127 leave it alone. */
4128 if (regs->num_regs < num_regs + 1)
4130 regs->num_regs = num_regs + 1;
4131 RETALLOC (regs->start, regs->num_regs, regoff_t);
4132 RETALLOC (regs->end, regs->num_regs, regoff_t);
4133 if (regs->start == NULL || regs->end == NULL)
4135 FREE_VARIABLES ();
4136 return -2;
4140 else
4142 /* These braces fend off a "empty body in an else-statement"
4143 warning under GCC when assert expands to nothing. */
4144 assert (bufp->regs_allocated == REGS_FIXED);
4147 /* Convert the pointer data in `regstart' and `regend' to
4148 indices. Register zero has to be set differently,
4149 since we haven't kept track of any info for it. */
4150 if (regs->num_regs > 0)
4152 regs->start[0] = pos;
4153 regs->end[0] = (MATCHING_IN_FIRST_STRING
4154 ? ((regoff_t) (d - string1))
4155 : ((regoff_t) (d - string2 + size1)));
4158 /* Go through the first `min (num_regs, regs->num_regs)'
4159 registers, since that is all we initialized. */
4160 for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
4161 mcnt++)
4163 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
4164 regs->start[mcnt] = regs->end[mcnt] = -1;
4165 else
4167 regs->start[mcnt]
4168 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
4169 regs->end[mcnt]
4170 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
4174 /* If the regs structure we return has more elements than
4175 were in the pattern, set the extra elements to -1. If
4176 we (re)allocated the registers, this is the case,
4177 because we always allocate enough to have at least one
4178 -1 at the end. */
4179 for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
4180 regs->start[mcnt] = regs->end[mcnt] = -1;
4181 } /* regs && !bufp->no_sub */
4183 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4184 nfailure_points_pushed, nfailure_points_popped,
4185 nfailure_points_pushed - nfailure_points_popped);
4186 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
4188 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
4189 ? string1
4190 : string2 - size1);
4192 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
4194 FREE_VARIABLES ();
4195 return mcnt;
4198 /* Otherwise match next pattern command. */
4199 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4201 /* Ignore these. Used to ignore the n of succeed_n's which
4202 currently have n == 0. */
4203 case no_op:
4204 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4205 break;
4207 case succeed:
4208 DEBUG_PRINT1 ("EXECUTING succeed.\n");
4209 goto succeed_label;
4211 /* Match the next n pattern characters exactly. The following
4212 byte in the pattern defines n, and the n bytes after that
4213 are the characters to match. */
4214 case exactn:
4215 mcnt = *p++;
4216 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
4218 /* This is written out as an if-else so we don't waste time
4219 testing `translate' inside the loop. */
4220 if (translate)
4224 PREFETCH ();
4225 if ((unsigned char) translate[(unsigned char) *d++]
4226 != (unsigned char) *p++)
4227 goto fail;
4229 while (--mcnt);
4231 else
4235 PREFETCH ();
4236 if (*d++ != (char) *p++) goto fail;
4238 while (--mcnt);
4240 SET_REGS_MATCHED ();
4241 break;
4244 /* Match any character except possibly a newline or a null. */
4245 case anychar:
4246 DEBUG_PRINT1 ("EXECUTING anychar.\n");
4248 PREFETCH ();
4250 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
4251 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
4252 goto fail;
4254 SET_REGS_MATCHED ();
4255 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
4256 d++;
4257 break;
4260 case charset:
4261 case charset_not:
4263 register unsigned char c;
4264 boolean not = (re_opcode_t) *(p - 1) == charset_not;
4266 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4268 PREFETCH ();
4269 c = TRANSLATE (*d); /* The character to match. */
4271 /* Cast to `unsigned' instead of `unsigned char' in case the
4272 bit list is a full 32 bytes long. */
4273 if (c < (unsigned) (*p * BYTEWIDTH)
4274 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4275 not = !not;
4277 p += 1 + *p;
4279 if (!not) goto fail;
4281 SET_REGS_MATCHED ();
4282 d++;
4283 break;
4287 /* The beginning of a group is represented by start_memory.
4288 The arguments are the register number in the next byte, and the
4289 number of groups inner to this one in the next. The text
4290 matched within the group is recorded (in the internal
4291 registers data structure) under the register number. */
4292 case start_memory:
4293 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4295 /* Find out if this group can match the empty string. */
4296 p1 = p; /* To send to group_match_null_string_p. */
4298 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4299 REG_MATCH_NULL_STRING_P (reg_info[*p])
4300 = group_match_null_string_p (&p1, pend, reg_info);
4302 /* Save the position in the string where we were the last time
4303 we were at this open-group operator in case the group is
4304 operated upon by a repetition operator, e.g., with `(a*)*b'
4305 against `ab'; then we want to ignore where we are now in
4306 the string in case this attempt to match fails. */
4307 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4308 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4309 : regstart[*p];
4310 DEBUG_PRINT2 (" old_regstart: %d\n",
4311 POINTER_TO_OFFSET (old_regstart[*p]));
4313 regstart[*p] = d;
4314 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4316 IS_ACTIVE (reg_info[*p]) = 1;
4317 MATCHED_SOMETHING (reg_info[*p]) = 0;
4319 /* Clear this whenever we change the register activity status. */
4320 set_regs_matched_done = 0;
4322 /* This is the new highest active register. */
4323 highest_active_reg = *p;
4325 /* If nothing was active before, this is the new lowest active
4326 register. */
4327 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4328 lowest_active_reg = *p;
4330 /* Move past the register number and inner group count. */
4331 p += 2;
4332 just_past_start_mem = p;
4334 break;
4337 /* The stop_memory opcode represents the end of a group. Its
4338 arguments are the same as start_memory's: the register
4339 number, and the number of inner groups. */
4340 case stop_memory:
4341 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
4343 /* We need to save the string position the last time we were at
4344 this close-group operator in case the group is operated
4345 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4346 against `aba'; then we want to ignore where we are now in
4347 the string in case this attempt to match fails. */
4348 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4349 ? REG_UNSET (regend[*p]) ? d : regend[*p]
4350 : regend[*p];
4351 DEBUG_PRINT2 (" old_regend: %d\n",
4352 POINTER_TO_OFFSET (old_regend[*p]));
4354 regend[*p] = d;
4355 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4357 /* This register isn't active anymore. */
4358 IS_ACTIVE (reg_info[*p]) = 0;
4360 /* Clear this whenever we change the register activity status. */
4361 set_regs_matched_done = 0;
4363 /* If this was the only register active, nothing is active
4364 anymore. */
4365 if (lowest_active_reg == highest_active_reg)
4367 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4368 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4370 else
4371 { /* We must scan for the new highest active register, since
4372 it isn't necessarily one less than now: consider
4373 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4374 new highest active register is 1. */
4375 unsigned char r = *p - 1;
4376 while (r > 0 && !IS_ACTIVE (reg_info[r]))
4377 r--;
4379 /* If we end up at register zero, that means that we saved
4380 the registers as the result of an `on_failure_jump', not
4381 a `start_memory', and we jumped to past the innermost
4382 `stop_memory'. For example, in ((.)*) we save
4383 registers 1 and 2 as a result of the *, but when we pop
4384 back to the second ), we are at the stop_memory 1.
4385 Thus, nothing is active. */
4386 if (r == 0)
4388 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4389 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4391 else
4392 highest_active_reg = r;
4395 /* If just failed to match something this time around with a
4396 group that's operated on by a repetition operator, try to
4397 force exit from the ``loop'', and restore the register
4398 information for this group that we had before trying this
4399 last match. */
4400 if ((!MATCHED_SOMETHING (reg_info[*p])
4401 || just_past_start_mem == p - 1)
4402 && (p + 2) < pend)
4404 boolean is_a_jump_n = false;
4406 p1 = p + 2;
4407 mcnt = 0;
4408 switch ((re_opcode_t) *p1++)
4410 case jump_n:
4411 is_a_jump_n = true;
4412 case pop_failure_jump:
4413 case maybe_pop_jump:
4414 case jump:
4415 case dummy_failure_jump:
4416 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4417 if (is_a_jump_n)
4418 p1 += 2;
4419 break;
4421 default:
4422 /* do nothing */ ;
4424 p1 += mcnt;
4426 /* If the next operation is a jump backwards in the pattern
4427 to an on_failure_jump right before the start_memory
4428 corresponding to this stop_memory, exit from the loop
4429 by forcing a failure after pushing on the stack the
4430 on_failure_jump's jump in the pattern, and d. */
4431 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4432 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
4434 /* If this group ever matched anything, then restore
4435 what its registers were before trying this last
4436 failed match, e.g., with `(a*)*b' against `ab' for
4437 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4438 against `aba' for regend[3].
4440 Also restore the registers for inner groups for,
4441 e.g., `((a*)(b*))*' against `aba' (register 3 would
4442 otherwise get trashed). */
4444 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
4446 unsigned r;
4448 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
4450 /* Restore this and inner groups' (if any) registers. */
4451 for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
4452 r++)
4454 regstart[r] = old_regstart[r];
4456 /* xx why this test? */
4457 if (old_regend[r] >= regstart[r])
4458 regend[r] = old_regend[r];
4461 p1++;
4462 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4463 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4465 goto fail;
4469 /* Move past the register number and the inner group count. */
4470 p += 2;
4471 break;
4474 /* \<digit> has been turned into a `duplicate' command which is
4475 followed by the numeric value of <digit> as the register number. */
4476 case duplicate:
4478 register const char *d2, *dend2;
4479 int regno = *p++; /* Get which register to match against. */
4480 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4482 /* Can't back reference a group which we've never matched. */
4483 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4484 goto fail;
4486 /* Where in input to try to start matching. */
4487 d2 = regstart[regno];
4489 /* Where to stop matching; if both the place to start and
4490 the place to stop matching are in the same string, then
4491 set to the place to stop, otherwise, for now have to use
4492 the end of the first string. */
4494 dend2 = ((FIRST_STRING_P (regstart[regno])
4495 == FIRST_STRING_P (regend[regno]))
4496 ? regend[regno] : end_match_1);
4497 for (;;)
4499 /* If necessary, advance to next segment in register
4500 contents. */
4501 while (d2 == dend2)
4503 if (dend2 == end_match_2) break;
4504 if (dend2 == regend[regno]) break;
4506 /* End of string1 => advance to string2. */
4507 d2 = string2;
4508 dend2 = regend[regno];
4510 /* At end of register contents => success */
4511 if (d2 == dend2) break;
4513 /* If necessary, advance to next segment in data. */
4514 PREFETCH ();
4516 /* How many characters left in this segment to match. */
4517 mcnt = dend - d;
4519 /* Want how many consecutive characters we can match in
4520 one shot, so, if necessary, adjust the count. */
4521 if (mcnt > dend2 - d2)
4522 mcnt = dend2 - d2;
4524 /* Compare that many; failure if mismatch, else move
4525 past them. */
4526 if (translate
4527 ? bcmp_translate (d, d2, mcnt, translate)
4528 : memcmp (d, d2, mcnt))
4529 goto fail;
4530 d += mcnt, d2 += mcnt;
4532 /* Do this because we've match some characters. */
4533 SET_REGS_MATCHED ();
4536 break;
4539 /* begline matches the empty string at the beginning of the string
4540 (unless `not_bol' is set in `bufp'), and, if
4541 `newline_anchor' is set, after newlines. */
4542 case begline:
4543 DEBUG_PRINT1 ("EXECUTING begline.\n");
4545 if (AT_STRINGS_BEG (d))
4547 if (!bufp->not_bol) break;
4549 else if (d[-1] == '\n' && bufp->newline_anchor)
4551 break;
4553 /* In all other cases, we fail. */
4554 goto fail;
4557 /* endline is the dual of begline. */
4558 case endline:
4559 DEBUG_PRINT1 ("EXECUTING endline.\n");
4561 if (AT_STRINGS_END (d))
4563 if (!bufp->not_eol) break;
4566 /* We have to ``prefetch'' the next character. */
4567 else if ((d == end1 ? *string2 : *d) == '\n'
4568 && bufp->newline_anchor)
4570 break;
4572 goto fail;
4575 /* Match at the very beginning of the data. */
4576 case begbuf:
4577 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4578 if (AT_STRINGS_BEG (d))
4579 break;
4580 goto fail;
4583 /* Match at the very end of the data. */
4584 case endbuf:
4585 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4586 if (AT_STRINGS_END (d))
4587 break;
4588 goto fail;
4591 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4592 pushes NULL as the value for the string on the stack. Then
4593 `pop_failure_point' will keep the current value for the
4594 string, instead of restoring it. To see why, consider
4595 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4596 then the . fails against the \n. But the next thing we want
4597 to do is match the \n against the \n; if we restored the
4598 string value, we would be back at the foo.
4600 Because this is used only in specific cases, we don't need to
4601 check all the things that `on_failure_jump' does, to make
4602 sure the right things get saved on the stack. Hence we don't
4603 share its code. The only reason to push anything on the
4604 stack at all is that otherwise we would have to change
4605 `anychar's code to do something besides goto fail in this
4606 case; that seems worse than this. */
4607 case on_failure_keep_string_jump:
4608 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4610 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4611 #ifdef _LIBC
4612 DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
4613 #else
4614 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4615 #endif
4617 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4618 break;
4621 /* Uses of on_failure_jump:
4623 Each alternative starts with an on_failure_jump that points
4624 to the beginning of the next alternative. Each alternative
4625 except the last ends with a jump that in effect jumps past
4626 the rest of the alternatives. (They really jump to the
4627 ending jump of the following alternative, because tensioning
4628 these jumps is a hassle.)
4630 Repeats start with an on_failure_jump that points past both
4631 the repetition text and either the following jump or
4632 pop_failure_jump back to this on_failure_jump. */
4633 case on_failure_jump:
4634 on_failure:
4635 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4637 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4638 #ifdef _LIBC
4639 DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
4640 #else
4641 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4642 #endif
4644 /* If this on_failure_jump comes right before a group (i.e.,
4645 the original * applied to a group), save the information
4646 for that group and all inner ones, so that if we fail back
4647 to this point, the group's information will be correct.
4648 For example, in \(a*\)*\1, we need the preceding group,
4649 and in \(zz\(a*\)b*\)\2, we need the inner group. */
4651 /* We can't use `p' to check ahead because we push
4652 a failure point to `p + mcnt' after we do this. */
4653 p1 = p;
4655 /* We need to skip no_op's before we look for the
4656 start_memory in case this on_failure_jump is happening as
4657 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4658 against aba. */
4659 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4660 p1++;
4662 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4664 /* We have a new highest active register now. This will
4665 get reset at the start_memory we are about to get to,
4666 but we will have saved all the registers relevant to
4667 this repetition op, as described above. */
4668 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4669 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4670 lowest_active_reg = *(p1 + 1);
4673 DEBUG_PRINT1 (":\n");
4674 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4675 break;
4678 /* A smart repeat ends with `maybe_pop_jump'.
4679 We change it to either `pop_failure_jump' or `jump'. */
4680 case maybe_pop_jump:
4681 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4682 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4684 register unsigned char *p2 = p;
4686 /* Compare the beginning of the repeat with what in the
4687 pattern follows its end. If we can establish that there
4688 is nothing that they would both match, i.e., that we
4689 would have to backtrack because of (as in, e.g., `a*a')
4690 then we can change to pop_failure_jump, because we'll
4691 never have to backtrack.
4693 This is not true in the case of alternatives: in
4694 `(a|ab)*' we do need to backtrack to the `ab' alternative
4695 (e.g., if the string was `ab'). But instead of trying to
4696 detect that here, the alternative has put on a dummy
4697 failure point which is what we will end up popping. */
4699 /* Skip over open/close-group commands.
4700 If what follows this loop is a ...+ construct,
4701 look at what begins its body, since we will have to
4702 match at least one of that. */
4703 while (1)
4705 if (p2 + 2 < pend
4706 && ((re_opcode_t) *p2 == stop_memory
4707 || (re_opcode_t) *p2 == start_memory))
4708 p2 += 3;
4709 else if (p2 + 6 < pend
4710 && (re_opcode_t) *p2 == dummy_failure_jump)
4711 p2 += 6;
4712 else
4713 break;
4716 p1 = p + mcnt;
4717 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4718 to the `maybe_finalize_jump' of this case. Examine what
4719 follows. */
4721 /* If we're at the end of the pattern, we can change. */
4722 if (p2 == pend)
4724 /* Consider what happens when matching ":\(.*\)"
4725 against ":/". I don't really understand this code
4726 yet. */
4727 p[-3] = (unsigned char) pop_failure_jump;
4728 DEBUG_PRINT1
4729 (" End of pattern: change to `pop_failure_jump'.\n");
4732 else if ((re_opcode_t) *p2 == exactn
4733 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4735 register unsigned char c
4736 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4738 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4740 p[-3] = (unsigned char) pop_failure_jump;
4741 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4742 c, p1[5]);
4745 else if ((re_opcode_t) p1[3] == charset
4746 || (re_opcode_t) p1[3] == charset_not)
4748 int not = (re_opcode_t) p1[3] == charset_not;
4750 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4751 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4752 not = !not;
4754 /* `not' is equal to 1 if c would match, which means
4755 that we can't change to pop_failure_jump. */
4756 if (!not)
4758 p[-3] = (unsigned char) pop_failure_jump;
4759 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4763 else if ((re_opcode_t) *p2 == charset)
4765 #ifdef DEBUG
4766 register unsigned char c
4767 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4768 #endif
4770 #if 0
4771 if ((re_opcode_t) p1[3] == exactn
4772 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
4773 && (p2[2 + p1[5] / BYTEWIDTH]
4774 & (1 << (p1[5] % BYTEWIDTH)))))
4775 #else
4776 if ((re_opcode_t) p1[3] == exactn
4777 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[4]
4778 && (p2[2 + p1[4] / BYTEWIDTH]
4779 & (1 << (p1[4] % BYTEWIDTH)))))
4780 #endif
4782 p[-3] = (unsigned char) pop_failure_jump;
4783 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4784 c, p1[5]);
4787 else if ((re_opcode_t) p1[3] == charset_not)
4789 int idx;
4790 /* We win if the charset_not inside the loop
4791 lists every character listed in the charset after. */
4792 for (idx = 0; idx < (int) p2[1]; idx++)
4793 if (! (p2[2 + idx] == 0
4794 || (idx < (int) p1[4]
4795 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4796 break;
4798 if (idx == p2[1])
4800 p[-3] = (unsigned char) pop_failure_jump;
4801 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4804 else if ((re_opcode_t) p1[3] == charset)
4806 int idx;
4807 /* We win if the charset inside the loop
4808 has no overlap with the one after the loop. */
4809 for (idx = 0;
4810 idx < (int) p2[1] && idx < (int) p1[4];
4811 idx++)
4812 if ((p2[2 + idx] & p1[5 + idx]) != 0)
4813 break;
4815 if (idx == p2[1] || idx == p1[4])
4817 p[-3] = (unsigned char) pop_failure_jump;
4818 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4823 p -= 2; /* Point at relative address again. */
4824 if ((re_opcode_t) p[-1] != pop_failure_jump)
4826 p[-1] = (unsigned char) jump;
4827 DEBUG_PRINT1 (" Match => jump.\n");
4828 goto unconditional_jump;
4830 /* Note fall through. */
4833 /* The end of a simple repeat has a pop_failure_jump back to
4834 its matching on_failure_jump, where the latter will push a
4835 failure point. The pop_failure_jump takes off failure
4836 points put on by this pop_failure_jump's matching
4837 on_failure_jump; we got through the pattern to here from the
4838 matching on_failure_jump, so didn't fail. */
4839 case pop_failure_jump:
4841 /* We need to pass separate storage for the lowest and
4842 highest registers, even though we don't care about the
4843 actual values. Otherwise, we will restore only one
4844 register from the stack, since lowest will == highest in
4845 `pop_failure_point'. */
4846 active_reg_t dummy_low_reg, dummy_high_reg;
4847 unsigned char *pdummy;
4848 const char *sdummy;
4850 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4851 POP_FAILURE_POINT (sdummy, pdummy,
4852 dummy_low_reg, dummy_high_reg,
4853 reg_dummy, reg_dummy, reg_info_dummy);
4855 /* Note fall through. */
4857 unconditional_jump:
4858 #ifdef _LIBC
4859 DEBUG_PRINT2 ("\n%p: ", p);
4860 #else
4861 DEBUG_PRINT2 ("\n0x%x: ", p);
4862 #endif
4863 /* Note fall through. */
4865 /* Unconditionally jump (without popping any failure points). */
4866 case jump:
4867 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4868 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4869 p += mcnt; /* Do the jump. */
4870 #ifdef _LIBC
4871 DEBUG_PRINT2 ("(to %p).\n", p);
4872 #else
4873 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4874 #endif
4875 break;
4878 /* We need this opcode so we can detect where alternatives end
4879 in `group_match_null_string_p' et al. */
4880 case jump_past_alt:
4881 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4882 goto unconditional_jump;
4885 /* Normally, the on_failure_jump pushes a failure point, which
4886 then gets popped at pop_failure_jump. We will end up at
4887 pop_failure_jump, also, and with a pattern of, say, `a+', we
4888 are skipping over the on_failure_jump, so we have to push
4889 something meaningless for pop_failure_jump to pop. */
4890 case dummy_failure_jump:
4891 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4892 /* It doesn't matter what we push for the string here. What
4893 the code at `fail' tests is the value for the pattern. */
4894 PUSH_FAILURE_POINT (NULL, NULL, -2);
4895 goto unconditional_jump;
4898 /* At the end of an alternative, we need to push a dummy failure
4899 point in case we are followed by a `pop_failure_jump', because
4900 we don't want the failure point for the alternative to be
4901 popped. For example, matching `(a|ab)*' against `aab'
4902 requires that we match the `ab' alternative. */
4903 case push_dummy_failure:
4904 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4905 /* See comments just above at `dummy_failure_jump' about the
4906 two zeroes. */
4907 PUSH_FAILURE_POINT (NULL, NULL, -2);
4908 break;
4910 /* Have to succeed matching what follows at least n times.
4911 After that, handle like `on_failure_jump'. */
4912 case succeed_n:
4913 EXTRACT_NUMBER (mcnt, p + 2);
4914 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4916 assert (mcnt >= 0);
4917 /* Originally, this is how many times we HAVE to succeed. */
4918 if (mcnt > 0)
4920 mcnt--;
4921 p += 2;
4922 STORE_NUMBER_AND_INCR (p, mcnt);
4923 #ifdef _LIBC
4924 DEBUG_PRINT3 (" Setting %p to %d.\n", p - 2, mcnt);
4925 #else
4926 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p - 2, mcnt);
4927 #endif
4929 else if (mcnt == 0)
4931 #ifdef _LIBC
4932 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n", p+2);
4933 #else
4934 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4935 #endif
4936 p[2] = (unsigned char) no_op;
4937 p[3] = (unsigned char) no_op;
4938 goto on_failure;
4940 break;
4942 case jump_n:
4943 EXTRACT_NUMBER (mcnt, p + 2);
4944 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4946 /* Originally, this is how many times we CAN jump. */
4947 if (mcnt)
4949 mcnt--;
4950 STORE_NUMBER (p + 2, mcnt);
4951 #ifdef _LIBC
4952 DEBUG_PRINT3 (" Setting %p to %d.\n", p + 2, mcnt);
4953 #else
4954 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p + 2, mcnt);
4955 #endif
4956 goto unconditional_jump;
4958 /* If don't have to jump any more, skip over the rest of command. */
4959 else
4960 p += 4;
4961 break;
4963 case set_number_at:
4965 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4967 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4968 p1 = p + mcnt;
4969 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4970 #ifdef _LIBC
4971 DEBUG_PRINT3 (" Setting %p to %d.\n", p1, mcnt);
4972 #else
4973 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4974 #endif
4975 STORE_NUMBER (p1, mcnt);
4976 break;
4979 #if 0
4980 /* The DEC Alpha C compiler 3.x generates incorrect code for the
4981 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4982 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4983 macro and introducing temporary variables works around the bug. */
4985 case wordbound:
4986 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4987 if (AT_WORD_BOUNDARY (d))
4988 break;
4989 goto fail;
4991 case notwordbound:
4992 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4993 if (AT_WORD_BOUNDARY (d))
4994 goto fail;
4995 break;
4996 #else
4997 case wordbound:
4999 boolean prevchar, thischar;
5001 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
5002 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5003 break;
5005 prevchar = WORDCHAR_P (d - 1);
5006 thischar = WORDCHAR_P (d);
5007 if (prevchar != thischar)
5008 break;
5009 goto fail;
5012 case notwordbound:
5014 boolean prevchar, thischar;
5016 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
5017 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5018 goto fail;
5020 prevchar = WORDCHAR_P (d - 1);
5021 thischar = WORDCHAR_P (d);
5022 if (prevchar != thischar)
5023 goto fail;
5024 break;
5026 #endif
5028 case wordbeg:
5029 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5030 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
5031 break;
5032 goto fail;
5034 case wordend:
5035 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5036 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
5037 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
5038 break;
5039 goto fail;
5041 #ifdef emacs
5042 case before_dot:
5043 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5044 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
5045 goto fail;
5046 break;
5048 case at_dot:
5049 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5050 if (PTR_CHAR_POS ((unsigned char *) d) != point)
5051 goto fail;
5052 break;
5054 case after_dot:
5055 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5056 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
5057 goto fail;
5058 break;
5060 case syntaxspec:
5061 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
5062 mcnt = *p++;
5063 goto matchsyntax;
5065 case wordchar:
5066 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
5067 mcnt = (int) Sword;
5068 matchsyntax:
5069 PREFETCH ();
5070 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5071 d++;
5072 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
5073 goto fail;
5074 SET_REGS_MATCHED ();
5075 break;
5077 case notsyntaxspec:
5078 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
5079 mcnt = *p++;
5080 goto matchnotsyntax;
5082 case notwordchar:
5083 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
5084 mcnt = (int) Sword;
5085 matchnotsyntax:
5086 PREFETCH ();
5087 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5088 d++;
5089 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
5090 goto fail;
5091 SET_REGS_MATCHED ();
5092 break;
5094 #else /* not emacs */
5095 case wordchar:
5096 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
5097 PREFETCH ();
5098 if (!WORDCHAR_P (d))
5099 goto fail;
5100 SET_REGS_MATCHED ();
5101 d++;
5102 break;
5104 case notwordchar:
5105 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
5106 PREFETCH ();
5107 if (WORDCHAR_P (d))
5108 goto fail;
5109 SET_REGS_MATCHED ();
5110 d++;
5111 break;
5112 #endif /* not emacs */
5114 default:
5115 abort ();
5117 continue; /* Successfully executed one pattern command; keep going. */
5120 /* We goto here if a matching operation fails. */
5121 fail:
5122 if (!FAIL_STACK_EMPTY ())
5123 { /* A restart point is known. Restore to that state. */
5124 DEBUG_PRINT1 ("\nFAIL:\n");
5125 POP_FAILURE_POINT (d, p,
5126 lowest_active_reg, highest_active_reg,
5127 regstart, regend, reg_info);
5129 /* If this failure point is a dummy, try the next one. */
5130 if (!p)
5131 goto fail;
5133 /* If we failed to the end of the pattern, don't examine *p. */
5134 assert (p <= pend);
5135 if (p < pend)
5137 boolean is_a_jump_n = false;
5139 /* If failed to a backwards jump that's part of a repetition
5140 loop, need to pop this failure point and use the next one. */
5141 switch ((re_opcode_t) *p)
5143 case jump_n:
5144 is_a_jump_n = true;
5145 case maybe_pop_jump:
5146 case pop_failure_jump:
5147 case jump:
5148 p1 = p + 1;
5149 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5150 p1 += mcnt;
5152 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
5153 || (!is_a_jump_n
5154 && (re_opcode_t) *p1 == on_failure_jump))
5155 goto fail;
5156 break;
5157 default:
5158 /* do nothing */ ;
5162 if (d >= string1 && d <= end1)
5163 dend = end_match_1;
5165 else
5166 break; /* Matching at this starting point really fails. */
5167 } /* for (;;) */
5169 if (best_regs_set)
5170 goto restore_best_regs;
5172 FREE_VARIABLES ();
5174 return -1; /* Failure to match. */
5175 } /* re_match_2 */
5177 /* Subroutine definitions for re_match_2. */
5180 /* We are passed P pointing to a register number after a start_memory.
5182 Return true if the pattern up to the corresponding stop_memory can
5183 match the empty string, and false otherwise.
5185 If we find the matching stop_memory, sets P to point to one past its number.
5186 Otherwise, sets P to an undefined byte less than or equal to END.
5188 We don't handle duplicates properly (yet). */
5190 static boolean
5191 group_match_null_string_p (p, end, reg_info)
5192 unsigned char **p, *end;
5193 register_info_type *reg_info;
5195 int mcnt;
5196 /* Point to after the args to the start_memory. */
5197 unsigned char *p1 = *p + 2;
5199 while (p1 < end)
5201 /* Skip over opcodes that can match nothing, and return true or
5202 false, as appropriate, when we get to one that can't, or to the
5203 matching stop_memory. */
5205 switch ((re_opcode_t) *p1)
5207 /* Could be either a loop or a series of alternatives. */
5208 case on_failure_jump:
5209 p1++;
5210 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5212 /* If the next operation is not a jump backwards in the
5213 pattern. */
5215 if (mcnt >= 0)
5217 /* Go through the on_failure_jumps of the alternatives,
5218 seeing if any of the alternatives cannot match nothing.
5219 The last alternative starts with only a jump,
5220 whereas the rest start with on_failure_jump and end
5221 with a jump, e.g., here is the pattern for `a|b|c':
5223 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5224 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5225 /exactn/1/c
5227 So, we have to first go through the first (n-1)
5228 alternatives and then deal with the last one separately. */
5231 /* Deal with the first (n-1) alternatives, which start
5232 with an on_failure_jump (see above) that jumps to right
5233 past a jump_past_alt. */
5235 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
5237 /* `mcnt' holds how many bytes long the alternative
5238 is, including the ending `jump_past_alt' and
5239 its number. */
5241 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
5242 reg_info))
5243 return false;
5245 /* Move to right after this alternative, including the
5246 jump_past_alt. */
5247 p1 += mcnt;
5249 /* Break if it's the beginning of an n-th alternative
5250 that doesn't begin with an on_failure_jump. */
5251 if ((re_opcode_t) *p1 != on_failure_jump)
5252 break;
5254 /* Still have to check that it's not an n-th
5255 alternative that starts with an on_failure_jump. */
5256 p1++;
5257 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5258 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
5260 /* Get to the beginning of the n-th alternative. */
5261 p1 -= 3;
5262 break;
5266 /* Deal with the last alternative: go back and get number
5267 of the `jump_past_alt' just before it. `mcnt' contains
5268 the length of the alternative. */
5269 EXTRACT_NUMBER (mcnt, p1 - 2);
5271 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
5272 return false;
5274 p1 += mcnt; /* Get past the n-th alternative. */
5275 } /* if mcnt > 0 */
5276 break;
5279 case stop_memory:
5280 assert (p1[1] == **p);
5281 *p = p1 + 2;
5282 return true;
5285 default:
5286 if (!common_op_match_null_string_p (&p1, end, reg_info))
5287 return false;
5289 } /* while p1 < end */
5291 return false;
5292 } /* group_match_null_string_p */
5295 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5296 It expects P to be the first byte of a single alternative and END one
5297 byte past the last. The alternative can contain groups. */
5299 static boolean
5300 alt_match_null_string_p (p, end, reg_info)
5301 unsigned char *p, *end;
5302 register_info_type *reg_info;
5304 int mcnt;
5305 unsigned char *p1 = p;
5307 while (p1 < end)
5309 /* Skip over opcodes that can match nothing, and break when we get
5310 to one that can't. */
5312 switch ((re_opcode_t) *p1)
5314 /* It's a loop. */
5315 case on_failure_jump:
5316 p1++;
5317 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5318 p1 += mcnt;
5319 break;
5321 default:
5322 if (!common_op_match_null_string_p (&p1, end, reg_info))
5323 return false;
5325 } /* while p1 < end */
5327 return true;
5328 } /* alt_match_null_string_p */
5331 /* Deals with the ops common to group_match_null_string_p and
5332 alt_match_null_string_p.
5334 Sets P to one after the op and its arguments, if any. */
5336 static boolean
5337 common_op_match_null_string_p (p, end, reg_info)
5338 unsigned char **p, *end;
5339 register_info_type *reg_info;
5341 int mcnt;
5342 boolean ret;
5343 int reg_no;
5344 unsigned char *p1 = *p;
5346 switch ((re_opcode_t) *p1++)
5348 case no_op:
5349 case begline:
5350 case endline:
5351 case begbuf:
5352 case endbuf:
5353 case wordbeg:
5354 case wordend:
5355 case wordbound:
5356 case notwordbound:
5357 #ifdef emacs
5358 case before_dot:
5359 case at_dot:
5360 case after_dot:
5361 #endif
5362 break;
5364 case start_memory:
5365 reg_no = *p1;
5366 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5367 ret = group_match_null_string_p (&p1, end, reg_info);
5369 /* Have to set this here in case we're checking a group which
5370 contains a group and a back reference to it. */
5372 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
5373 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
5375 if (!ret)
5376 return false;
5377 break;
5379 /* If this is an optimized succeed_n for zero times, make the jump. */
5380 case jump:
5381 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5382 if (mcnt >= 0)
5383 p1 += mcnt;
5384 else
5385 return false;
5386 break;
5388 case succeed_n:
5389 /* Get to the number of times to succeed. */
5390 p1 += 2;
5391 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5393 if (mcnt == 0)
5395 p1 -= 4;
5396 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5397 p1 += mcnt;
5399 else
5400 return false;
5401 break;
5403 case duplicate:
5404 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
5405 return false;
5406 break;
5408 case set_number_at:
5409 p1 += 4;
5411 default:
5412 /* All other opcodes mean we cannot match the empty string. */
5413 return false;
5416 *p = p1;
5417 return true;
5418 } /* common_op_match_null_string_p */
5421 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5422 bytes; nonzero otherwise. */
5424 static int
5425 bcmp_translate (s1, s2, len, translate)
5426 const char *s1, *s2;
5427 register int len;
5428 RE_TRANSLATE_TYPE translate;
5430 register const unsigned char *p1 = (const unsigned char *) s1;
5431 register const unsigned char *p2 = (const unsigned char *) s2;
5432 while (len)
5434 if (translate[*p1++] != translate[*p2++]) return 1;
5435 len--;
5437 return 0;
5440 /* Entry points for GNU code. */
5442 /* re_compile_pattern is the GNU regular expression compiler: it
5443 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5444 Returns 0 if the pattern was valid, otherwise an error string.
5446 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5447 are set in BUFP on entry.
5449 We call regex_compile to do the actual compilation. */
5451 const char *
5452 re_compile_pattern (pattern, length, bufp)
5453 const char *pattern;
5454 size_t length;
5455 struct re_pattern_buffer *bufp;
5457 reg_errcode_t ret;
5459 /* GNU code is written to assume at least RE_NREGS registers will be set
5460 (and at least one extra will be -1). */
5461 bufp->regs_allocated = REGS_UNALLOCATED;
5463 /* And GNU code determines whether or not to get register information
5464 by passing null for the REGS argument to re_match, etc., not by
5465 setting no_sub. */
5466 bufp->no_sub = 0;
5468 /* Match anchors at newline. */
5469 bufp->newline_anchor = 1;
5471 ret = regex_compile (pattern, length, re_syntax_options, bufp);
5473 if (!ret)
5474 return NULL;
5475 return gettext (re_error_msgid[(int) ret]);
5477 #ifdef _LIBC
5478 weak_alias (__re_compile_pattern, re_compile_pattern)
5479 #endif
5481 /* Entry points compatible with 4.2 BSD regex library. We don't define
5482 them unless specifically requested. */
5484 #if defined _REGEX_RE_COMP || defined _LIBC
5486 /* BSD has one and only one pattern buffer. */
5487 static struct re_pattern_buffer re_comp_buf;
5489 char *
5490 #ifdef _LIBC
5491 /* Make these definitions weak in libc, so POSIX programs can redefine
5492 these names if they don't use our functions, and still use
5493 regcomp/regexec below without link errors. */
5494 weak_function
5495 #endif
5496 re_comp (s)
5497 const char *s;
5499 reg_errcode_t ret;
5501 if (!s)
5503 if (!re_comp_buf.buffer)
5504 return gettext ("No previous regular expression");
5505 return 0;
5508 if (!re_comp_buf.buffer)
5510 re_comp_buf.buffer = (unsigned char *) malloc (200);
5511 if (re_comp_buf.buffer == NULL)
5512 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
5513 re_comp_buf.allocated = 200;
5515 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5516 if (re_comp_buf.fastmap == NULL)
5517 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
5520 /* Since `re_exec' always passes NULL for the `regs' argument, we
5521 don't need to initialize the pattern buffer fields which affect it. */
5523 /* Match anchors at newlines. */
5524 re_comp_buf.newline_anchor = 1;
5526 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5528 if (!ret)
5529 return NULL;
5531 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5532 return (char *) gettext (re_error_msgid[(int) ret]);
5537 #ifdef _LIBC
5538 weak_function
5539 #endif
5540 re_exec (s)
5541 const char *s;
5543 const int len = strlen (s);
5544 return
5545 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
5548 #endif /* _REGEX_RE_COMP */
5550 /* POSIX.2 functions. Don't define these for Emacs. */
5552 #ifndef emacs
5554 /* regcomp takes a regular expression as a string and compiles it.
5556 PREG is a regex_t *. We do not expect any fields to be initialized,
5557 since POSIX says we shouldn't. Thus, we set
5559 `buffer' to the compiled pattern;
5560 `used' to the length of the compiled pattern;
5561 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5562 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5563 RE_SYNTAX_POSIX_BASIC;
5564 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5565 `fastmap' and `fastmap_accurate' to zero;
5566 `re_nsub' to the number of subexpressions in PATTERN.
5568 PATTERN is the address of the pattern string.
5570 CFLAGS is a series of bits which affect compilation.
5572 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5573 use POSIX basic syntax.
5575 If REG_NEWLINE is set, then . and [^...] don't match newline.
5576 Also, regexec will try a match beginning after every newline.
5578 If REG_ICASE is set, then we considers upper- and lowercase
5579 versions of letters to be equivalent when matching.
5581 If REG_NOSUB is set, then when PREG is passed to regexec, that
5582 routine will report only success or failure, and nothing about the
5583 registers.
5585 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
5586 the return codes and their meanings.) */
5589 regcomp (preg, pattern, cflags)
5590 regex_t *preg;
5591 const char *pattern;
5592 int cflags;
5594 reg_errcode_t ret;
5595 reg_syntax_t syntax
5596 = (cflags & REG_EXTENDED) ?
5597 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5599 /* regex_compile will allocate the space for the compiled pattern. */
5600 preg->buffer = 0;
5601 preg->allocated = 0;
5602 preg->used = 0;
5604 /* Don't bother to use a fastmap when searching. This simplifies the
5605 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5606 characters after newlines into the fastmap. This way, we just try
5607 every character. */
5608 preg->fastmap = 0;
5610 if (cflags & REG_ICASE)
5612 unsigned i;
5614 preg->translate
5615 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
5616 * sizeof (*(RE_TRANSLATE_TYPE)0));
5617 if (preg->translate == NULL)
5618 return (int) REG_ESPACE;
5620 /* Map uppercase characters to corresponding lowercase ones. */
5621 for (i = 0; i < CHAR_SET_SIZE; i++)
5622 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
5624 else
5625 preg->translate = NULL;
5627 /* If REG_NEWLINE is set, newlines are treated differently. */
5628 if (cflags & REG_NEWLINE)
5629 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5630 syntax &= ~RE_DOT_NEWLINE;
5631 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5632 /* It also changes the matching behavior. */
5633 preg->newline_anchor = 1;
5635 else
5636 preg->newline_anchor = 0;
5638 preg->no_sub = !!(cflags & REG_NOSUB);
5640 /* POSIX says a null character in the pattern terminates it, so we
5641 can use strlen here in compiling the pattern. */
5642 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5644 /* POSIX doesn't distinguish between an unmatched open-group and an
5645 unmatched close-group: both are REG_EPAREN. */
5646 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5648 return (int) ret;
5650 #ifdef _LIBC
5651 weak_alias (__regcomp, regcomp)
5652 #endif
5655 /* regexec searches for a given pattern, specified by PREG, in the
5656 string STRING.
5658 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5659 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5660 least NMATCH elements, and we set them to the offsets of the
5661 corresponding matched substrings.
5663 EFLAGS specifies `execution flags' which affect matching: if
5664 REG_NOTBOL is set, then ^ does not match at the beginning of the
5665 string; if REG_NOTEOL is set, then $ does not match at the end.
5667 We return 0 if we find a match and REG_NOMATCH if not. */
5670 regexec (preg, string, nmatch, pmatch, eflags)
5671 const regex_t *preg;
5672 const char *string;
5673 size_t nmatch;
5674 regmatch_t pmatch[];
5675 int eflags;
5677 int ret;
5678 struct re_registers regs;
5679 regex_t private_preg;
5680 int len = strlen (string);
5681 boolean want_reg_info = !preg->no_sub && nmatch > 0;
5683 private_preg = *preg;
5685 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5686 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5688 /* The user has told us exactly how many registers to return
5689 information about, via `nmatch'. We have to pass that on to the
5690 matching routines. */
5691 private_preg.regs_allocated = REGS_FIXED;
5693 if (want_reg_info)
5695 regs.num_regs = nmatch;
5696 regs.start = TALLOC (nmatch, regoff_t);
5697 regs.end = TALLOC (nmatch, regoff_t);
5698 if (regs.start == NULL || regs.end == NULL)
5699 return (int) REG_NOMATCH;
5702 /* Perform the searching operation. */
5703 ret = re_search (&private_preg, string, len,
5704 /* start: */ 0, /* range: */ len,
5705 want_reg_info ? &regs : (struct re_registers *) 0);
5707 /* Copy the register information to the POSIX structure. */
5708 if (want_reg_info)
5710 if (ret >= 0)
5712 unsigned r;
5714 for (r = 0; r < nmatch; r++)
5716 pmatch[r].rm_so = regs.start[r];
5717 pmatch[r].rm_eo = regs.end[r];
5721 /* If we needed the temporary register info, free the space now. */
5722 free (regs.start);
5723 free (regs.end);
5726 /* We want zero return to mean success, unlike `re_search'. */
5727 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5729 #ifdef _LIBC
5730 weak_alias (__regexec, regexec)
5731 #endif
5734 /* Returns a message corresponding to an error code, ERRCODE, returned
5735 from either regcomp or regexec. We don't use PREG here. */
5737 size_t
5738 __regerror (errcode, preg, errbuf, errbuf_size)
5739 int errcode;
5740 const regex_t *preg;
5741 char *errbuf;
5742 size_t errbuf_size;
5744 const char *msg;
5745 size_t msg_size;
5747 if (errcode < 0
5748 || errcode >= (int) (sizeof (re_error_msgid)
5749 / sizeof (re_error_msgid[0])))
5750 /* Only error codes returned by the rest of the code should be passed
5751 to this routine. If we are given anything else, or if other regex
5752 code generates an invalid error code, then the program has a bug.
5753 Dump core so we can fix it. */
5754 abort ();
5756 msg = gettext (re_error_msgid[errcode]);
5758 msg_size = strlen (msg) + 1; /* Includes the null. */
5760 if (errbuf_size != 0)
5762 if (msg_size > errbuf_size)
5764 #if defined HAVE_MEMPCPY || defined _LIBC
5765 *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
5766 #else
5767 memcpy (errbuf, msg, errbuf_size - 1);
5768 errbuf[errbuf_size - 1] = 0;
5769 #endif
5771 else
5772 memcpy (errbuf, msg, msg_size);
5775 return msg_size;
5777 #ifdef _LIBC
5778 weak_alias (__regerror, regerror)
5779 #endif
5782 /* Free dynamically allocated space used by PREG. */
5784 void
5785 regfree (preg)
5786 regex_t *preg;
5788 if (preg->buffer != NULL)
5789 free (preg->buffer);
5790 preg->buffer = NULL;
5792 preg->allocated = 0;
5793 preg->used = 0;
5795 if (preg->fastmap != NULL)
5796 free (preg->fastmap);
5797 preg->fastmap = NULL;
5798 preg->fastmap_accurate = 0;
5800 if (preg->translate != NULL)
5801 free (preg->translate);
5802 preg->translate = NULL;
5804 #ifdef _LIBC
5805 weak_alias (__regfree, regfree)
5806 #endif
5808 #endif /* not emacs */