1 /* getifaddrs -- get names and addresses of all network interfaces
2 Copyright (C) 2003-2024 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
15 You should have received a copy of the GNU Lesser General Public
16 License along with the GNU C Library; if not, see
17 <https://www.gnu.org/licenses/>. */
23 #include <netinet/in.h>
24 #include <netpacket/packet.h>
25 #include <scratch_buffer.h>
30 #include <sys/ioctl.h>
31 #include <sys/socket.h>
36 #include "netlinkaccess.h"
39 /* There is a problem with this type. The address length for
40 Infiniband sockets is much longer than the 8 bytes allocated in the
41 sockaddr_ll definition. Hence we use here a special
43 struct sockaddr_ll_max
45 unsigned short int sll_family
;
46 unsigned short int sll_protocol
;
48 unsigned short int sll_hatype
;
49 unsigned char sll_pkttype
;
50 unsigned char sll_halen
;
51 unsigned char sll_addr
[24];
55 /* struct to hold the data for one ifaddrs entry, so we can allocate
56 everything at once. */
57 struct ifaddrs_storage
62 /* Save space for the biggest of the four used sockaddr types and
63 avoid a lot of casts. */
65 struct sockaddr_ll_max sl
;
66 struct sockaddr_in s4
;
67 struct sockaddr_in6 s6
;
68 } addr
, netmask
, broadaddr
;
69 char name
[IF_NAMESIZE
+ 1];
74 __netlink_free_handle (struct netlink_handle
*h
)
76 struct netlink_res
*ptr
;
77 int saved_errno
= errno
;
82 struct netlink_res
*tmpptr
;
89 __set_errno (saved_errno
);
94 __netlink_sendreq (struct netlink_handle
*h
, int type
)
102 struct sockaddr_nl nladdr
;
105 h
->seq
= time_now ();
107 req
.nlh
.nlmsg_len
= sizeof (req
);
108 req
.nlh
.nlmsg_type
= type
;
109 req
.nlh
.nlmsg_flags
= NLM_F_ROOT
| NLM_F_MATCH
| NLM_F_REQUEST
;
110 req
.nlh
.nlmsg_pid
= 0;
111 req
.nlh
.nlmsg_seq
= h
->seq
;
112 req
.g
.rtgen_family
= AF_UNSPEC
;
113 if (sizeof (req
) != offsetof (struct req
, pad
))
114 memset (req
.pad
, '\0', sizeof (req
) - offsetof (struct req
, pad
));
116 memset (&nladdr
, '\0', sizeof (nladdr
));
117 nladdr
.nl_family
= AF_NETLINK
;
119 return TEMP_FAILURE_RETRY (__sendto (h
->fd
, (void *) &req
, sizeof (req
), 0,
120 (struct sockaddr
*) &nladdr
,
126 __netlink_request (struct netlink_handle
*h
, int type
)
128 struct netlink_res
*nlm_next
;
129 struct sockaddr_nl nladdr
;
130 struct nlmsghdr
*nlmh
;
134 /* Netlink requires that user buffer needs to be either 8kb or page size
135 (whichever is bigger), however this has been changed over time and now
136 8Kb is sufficient (check NLMSG_DEFAULT_SIZE on Linux
137 linux/include/linux/netlink.h). */
138 const size_t buf_size
= 8192;
139 char *buf
= malloc (buf_size
);
143 struct iovec iov
= { buf
, buf_size
};
145 if (__netlink_sendreq (h
, type
) < 0)
152 .msg_name
= (void *) &nladdr
,
153 .msg_namelen
= sizeof (nladdr
),
161 read_len
= TEMP_FAILURE_RETRY (__recvmsg (h
->fd
, &msg
, 0));
162 __netlink_assert_response (h
->fd
, read_len
);
166 if (nladdr
.nl_pid
!= 0)
169 if (__glibc_unlikely (msg
.msg_flags
& MSG_TRUNC
))
173 size_t remaining_len
= read_len
;
174 for (nlmh
= (struct nlmsghdr
*) buf
;
175 NLMSG_OK (nlmh
, remaining_len
);
176 nlmh
= (struct nlmsghdr
*) NLMSG_NEXT (nlmh
, remaining_len
))
178 if ((pid_t
) nlmh
->nlmsg_pid
!= h
->pid
179 || nlmh
->nlmsg_seq
!= h
->seq
)
183 if (nlmh
->nlmsg_type
== NLMSG_DONE
)
185 /* We found the end, leave the loop. */
189 if (nlmh
->nlmsg_type
== NLMSG_ERROR
)
191 struct nlmsgerr
*nlerr
= (struct nlmsgerr
*) NLMSG_DATA (nlmh
);
192 if (nlmh
->nlmsg_len
< NLMSG_LENGTH (sizeof (struct nlmsgerr
)))
195 errno
= -nlerr
->error
;
200 /* If there was nothing with the expected nlmsg_pid and nlmsg_seq,
201 there is no point to record it. */
205 nlm_next
= (struct netlink_res
*) malloc (sizeof (struct netlink_res
)
207 if (nlm_next
== NULL
)
209 nlm_next
->next
= NULL
;
210 nlm_next
->nlh
= memcpy (nlm_next
+ 1, buf
, read_len
);
211 nlm_next
->size
= read_len
;
212 nlm_next
->seq
= h
->seq
;
213 if (h
->nlm_list
== NULL
)
214 h
->nlm_list
= nlm_next
;
216 h
->end_ptr
->next
= nlm_next
;
217 h
->end_ptr
= nlm_next
;
230 __netlink_close (struct netlink_handle
*h
)
232 /* Don't modify errno. */
233 INTERNAL_SYSCALL_CALL (close
, h
->fd
);
237 /* Open a NETLINK socket. */
239 __netlink_open (struct netlink_handle
*h
)
241 struct sockaddr_nl nladdr
;
243 h
->fd
= __socket (PF_NETLINK
, SOCK_RAW
| SOCK_CLOEXEC
, NETLINK_ROUTE
);
247 memset (&nladdr
, '\0', sizeof (nladdr
));
248 nladdr
.nl_family
= AF_NETLINK
;
249 if (__bind (h
->fd
, (struct sockaddr
*) &nladdr
, sizeof (nladdr
)) < 0)
256 /* Determine the ID the kernel assigned for this netlink connection.
257 It is not necessarily the PID if there is more than one socket
259 socklen_t addr_len
= sizeof (nladdr
);
260 if (__getsockname (h
->fd
, (struct sockaddr
*) &nladdr
, &addr_len
) < 0)
262 h
->pid
= nladdr
.nl_pid
;
267 /* We know the number of RTM_NEWLINK entries, so we reserve the first
268 # of entries for this type. All RTM_NEWADDR entries have an index
269 pointer to the RTM_NEWLINK entry. To find the entry, create
270 a table to map kernel index entries to our index numbers.
271 Since we get at first all RTM_NEWLINK entries, it can never happen
272 that a RTM_NEWADDR index is not known to this map. */
274 map_newlink (int index
, struct ifaddrs_storage
*ifas
, int *map
, int max
)
278 for (i
= 0; i
< max
; i
++)
284 ifas
[i
- 1].ifa
.ifa_next
= &ifas
[i
].ifa
;
287 else if (map
[i
] == index
)
291 /* This means interfaces changed between the reading of the
292 RTM_GETLINK and RTM_GETADDR information. We have to repeat
298 /* Create a linked list of `struct ifaddrs' structures, one for each
299 network interface on the host machine. If successful, store the
300 list in *IFAP and return 0. On errors, return -1 and set `errno'. */
302 getifaddrs_internal (struct ifaddrs
**ifap
)
304 struct netlink_handle nh
= { 0, 0, 0, NULL
, NULL
};
305 struct netlink_res
*nlp
;
306 struct ifaddrs_storage
*ifas
;
307 unsigned int i
, newlink
, newaddr
, newaddr_idx
;
308 int *map_newlink_data
;
309 size_t ifa_data_size
= 0; /* Size to allocate for all ifa_data. */
310 char *ifa_data_ptr
; /* Pointer to the unused part of memory for
313 struct scratch_buffer buf
;
314 scratch_buffer_init (&buf
);
318 if (__netlink_open (&nh
) < 0)
321 /* Tell the kernel that we wish to get a list of all
322 active interfaces, collect all data for every interface. */
323 if (__netlink_request (&nh
, RTM_GETLINK
) < 0)
329 /* Now ask the kernel for all addresses which are assigned
330 to an interface and collect all data for every interface.
331 Since we store the addresses after the interfaces in the
332 list, we will later always find the interface before the
333 corresponding addresses. */
335 if (__netlink_request (&nh
, RTM_GETADDR
) < 0)
341 /* Count all RTM_NEWLINK and RTM_NEWADDR entries to allocate
343 newlink
= newaddr
= 0;
344 for (nlp
= nh
.nlm_list
; nlp
; nlp
= nlp
->next
)
346 struct nlmsghdr
*nlh
;
347 size_t size
= nlp
->size
;
349 if (nlp
->nlh
== NULL
)
352 /* Walk through all entries we got from the kernel and look, which
353 message type they contain. */
354 for (nlh
= nlp
->nlh
; NLMSG_OK (nlh
, size
); nlh
= NLMSG_NEXT (nlh
, size
))
356 /* Check if the message is what we want. */
357 if ((pid_t
) nlh
->nlmsg_pid
!= nh
.pid
|| nlh
->nlmsg_seq
!= nlp
->seq
)
360 /* If the dump got interrupted, we can't rely on the results
362 if (nlh
->nlmsg_flags
& NLM_F_DUMP_INTR
)
368 if (nlh
->nlmsg_type
== NLMSG_DONE
)
371 if (nlh
->nlmsg_type
== RTM_NEWLINK
)
373 /* A RTM_NEWLINK message can have IFLA_STATS data. We need to
374 know the size before creating the list to allocate enough
376 struct ifinfomsg
*ifim
= (struct ifinfomsg
*) NLMSG_DATA (nlh
);
377 struct rtattr
*rta
= IFLA_RTA (ifim
);
378 size_t rtasize
= IFLA_PAYLOAD (nlh
);
380 while (RTA_OK (rta
, rtasize
))
382 size_t rta_payload
= RTA_PAYLOAD (rta
);
384 if (rta
->rta_type
== IFLA_STATS
)
386 ifa_data_size
+= rta_payload
;
390 rta
= RTA_NEXT (rta
, rtasize
);
394 else if (nlh
->nlmsg_type
== RTM_NEWADDR
)
399 /* Return if no interface is up. */
400 if ((newlink
+ newaddr
) == 0)
403 /* Allocate memory for all entries we have and initialize next
405 ifas
= (struct ifaddrs_storage
*) calloc (1,
407 * sizeof (struct ifaddrs_storage
)
415 /* Table for mapping kernel index to entry in our list. */
416 if (!scratch_buffer_set_array_size (&buf
, newlink
, sizeof (int)))
421 map_newlink_data
= buf
.data
;
422 memset (map_newlink_data
, '\xff', newlink
* sizeof (int));
424 ifa_data_ptr
= (char *) &ifas
[newlink
+ newaddr
];
425 newaddr_idx
= 0; /* Counter for newaddr index. */
427 /* Walk through the list of data we got from the kernel. */
428 for (nlp
= nh
.nlm_list
; nlp
; nlp
= nlp
->next
)
430 struct nlmsghdr
*nlh
;
431 size_t size
= nlp
->size
;
433 if (nlp
->nlh
== NULL
)
436 /* Walk through one message and look at the type: If it is our
437 message, we need RTM_NEWLINK/RTM_NEWADDR and stop if we reach
438 the end or we find the end marker (in this case we ignore the
440 for (nlh
= nlp
->nlh
; NLMSG_OK (nlh
, size
); nlh
= NLMSG_NEXT (nlh
, size
))
444 /* Check if the message is the one we want */
445 if ((pid_t
) nlh
->nlmsg_pid
!= nh
.pid
|| nlh
->nlmsg_seq
!= nlp
->seq
)
448 if (nlh
->nlmsg_type
== NLMSG_DONE
)
451 if (nlh
->nlmsg_type
== RTM_NEWLINK
)
453 /* We found a new interface. Now extract everything from the
454 interface data we got and need. */
455 struct ifinfomsg
*ifim
= (struct ifinfomsg
*) NLMSG_DATA (nlh
);
456 struct rtattr
*rta
= IFLA_RTA (ifim
);
457 size_t rtasize
= IFLA_PAYLOAD (nlh
);
459 /* Interfaces are stored in the first "newlink" entries
460 of our list, starting in the order as we got from the
462 ifa_index
= map_newlink (ifim
->ifi_index
- 1, ifas
,
463 map_newlink_data
, newlink
);
464 if (__glibc_unlikely (ifa_index
== -1))
471 ifas
[ifa_index
].ifa
.ifa_flags
= ifim
->ifi_flags
;
473 while (RTA_OK (rta
, rtasize
))
475 char *rta_data
= RTA_DATA (rta
);
476 size_t rta_payload
= RTA_PAYLOAD (rta
);
478 switch (rta
->rta_type
)
481 if (rta_payload
<= sizeof (ifas
[ifa_index
].addr
))
483 ifas
[ifa_index
].addr
.sl
.sll_family
= AF_PACKET
;
484 memcpy (ifas
[ifa_index
].addr
.sl
.sll_addr
,
485 (char *) rta_data
, rta_payload
);
486 ifas
[ifa_index
].addr
.sl
.sll_halen
= rta_payload
;
487 ifas
[ifa_index
].addr
.sl
.sll_ifindex
489 ifas
[ifa_index
].addr
.sl
.sll_hatype
= ifim
->ifi_type
;
491 ifas
[ifa_index
].ifa
.ifa_addr
492 = &ifas
[ifa_index
].addr
.sa
;
497 if (rta_payload
<= sizeof (ifas
[ifa_index
].broadaddr
))
499 ifas
[ifa_index
].broadaddr
.sl
.sll_family
= AF_PACKET
;
500 memcpy (ifas
[ifa_index
].broadaddr
.sl
.sll_addr
,
501 (char *) rta_data
, rta_payload
);
502 ifas
[ifa_index
].broadaddr
.sl
.sll_halen
= rta_payload
;
503 ifas
[ifa_index
].broadaddr
.sl
.sll_ifindex
505 ifas
[ifa_index
].broadaddr
.sl
.sll_hatype
508 ifas
[ifa_index
].ifa
.ifa_broadaddr
509 = &ifas
[ifa_index
].broadaddr
.sa
;
513 case IFLA_IFNAME
: /* Name of Interface */
514 if ((rta_payload
+ 1) <= sizeof (ifas
[ifa_index
].name
))
516 ifas
[ifa_index
].ifa
.ifa_name
= ifas
[ifa_index
].name
;
517 *(char *) __mempcpy (ifas
[ifa_index
].name
, rta_data
,
522 case IFLA_STATS
: /* Statistics of Interface */
523 ifas
[ifa_index
].ifa
.ifa_data
= ifa_data_ptr
;
524 ifa_data_ptr
+= rta_payload
;
525 memcpy (ifas
[ifa_index
].ifa
.ifa_data
, rta_data
,
541 rta
= RTA_NEXT (rta
, rtasize
);
544 else if (nlh
->nlmsg_type
== RTM_NEWADDR
)
546 struct ifaddrmsg
*ifam
= (struct ifaddrmsg
*) NLMSG_DATA (nlh
);
547 struct rtattr
*rta
= IFA_RTA (ifam
);
548 size_t rtasize
= IFA_PAYLOAD (nlh
);
550 /* New Addresses are stored in the order we got them from
551 the kernel after the interfaces. Theoretically it is possible
552 that we have holes in the interface part of the list,
553 but we always have already the interface for this address. */
554 ifa_index
= newlink
+ newaddr_idx
;
555 int idx
= map_newlink (ifam
->ifa_index
- 1, ifas
,
556 map_newlink_data
, newlink
);
557 if (__glibc_unlikely (idx
== -1))
559 ifas
[ifa_index
].ifa
.ifa_flags
= ifas
[idx
].ifa
.ifa_flags
;
561 ifas
[ifa_index
- 1].ifa
.ifa_next
= &ifas
[ifa_index
].ifa
;
564 while (RTA_OK (rta
, rtasize
))
566 char *rta_data
= RTA_DATA (rta
);
567 size_t rta_payload
= RTA_PAYLOAD (rta
);
569 switch (rta
->rta_type
)
575 if (ifas
[ifa_index
].ifa
.ifa_addr
!= NULL
)
577 /* In a point-to-poing network IFA_ADDRESS
578 contains the destination address, local
579 address is supplied in IFA_LOCAL attribute.
580 destination address and broadcast address
581 are stored in an union, so it doesn't matter
582 which name we use. */
583 ifas
[ifa_index
].ifa
.ifa_broadaddr
584 = &ifas
[ifa_index
].broadaddr
.sa
;
585 sa
= &ifas
[ifa_index
].broadaddr
.sa
;
589 ifas
[ifa_index
].ifa
.ifa_addr
590 = &ifas
[ifa_index
].addr
.sa
;
591 sa
= &ifas
[ifa_index
].addr
.sa
;
594 sa
->sa_family
= ifam
->ifa_family
;
596 switch (ifam
->ifa_family
)
599 /* Size must match that of an address for IPv4. */
600 if (rta_payload
== 4)
601 memcpy (&((struct sockaddr_in
*) sa
)->sin_addr
,
602 rta_data
, rta_payload
);
606 /* Size must match that of an address for IPv6. */
607 if (rta_payload
== 16)
609 memcpy (&((struct sockaddr_in6
*) sa
)->sin6_addr
,
610 rta_data
, rta_payload
);
611 if (IN6_IS_ADDR_LINKLOCAL (rta_data
)
612 || IN6_IS_ADDR_MC_LINKLOCAL (rta_data
))
613 ((struct sockaddr_in6
*) sa
)->sin6_scope_id
619 if (rta_payload
<= sizeof (ifas
[ifa_index
].addr
))
620 memcpy (sa
->sa_data
, rta_data
, rta_payload
);
627 if (ifas
[ifa_index
].ifa
.ifa_addr
!= NULL
)
629 /* If ifa_addr is set and we get IFA_LOCAL,
630 assume we have a point-to-point network.
631 Move address to correct field. */
632 ifas
[ifa_index
].broadaddr
= ifas
[ifa_index
].addr
;
633 ifas
[ifa_index
].ifa
.ifa_broadaddr
634 = &ifas
[ifa_index
].broadaddr
.sa
;
635 memset (&ifas
[ifa_index
].addr
, '\0',
636 sizeof (ifas
[ifa_index
].addr
));
639 ifas
[ifa_index
].ifa
.ifa_addr
= &ifas
[ifa_index
].addr
.sa
;
640 ifas
[ifa_index
].ifa
.ifa_addr
->sa_family
643 switch (ifam
->ifa_family
)
646 /* Size must match that of an address for IPv4. */
647 if (rta_payload
== 4)
648 memcpy (&ifas
[ifa_index
].addr
.s4
.sin_addr
,
649 rta_data
, rta_payload
);
653 /* Size must match that of an address for IPv6. */
654 if (rta_payload
== 16)
656 memcpy (&ifas
[ifa_index
].addr
.s6
.sin6_addr
,
657 rta_data
, rta_payload
);
658 if (IN6_IS_ADDR_LINKLOCAL (rta_data
)
659 || IN6_IS_ADDR_MC_LINKLOCAL (rta_data
))
660 ifas
[ifa_index
].addr
.s6
.sin6_scope_id
=
666 if (rta_payload
<= sizeof (ifas
[ifa_index
].addr
))
667 memcpy (ifas
[ifa_index
].addr
.sa
.sa_data
,
668 rta_data
, rta_payload
);
674 /* We get IFA_BROADCAST, so IFA_LOCAL was too much. */
675 if (ifas
[ifa_index
].ifa
.ifa_broadaddr
!= NULL
)
676 memset (&ifas
[ifa_index
].broadaddr
, '\0',
677 sizeof (ifas
[ifa_index
].broadaddr
));
679 ifas
[ifa_index
].ifa
.ifa_broadaddr
680 = &ifas
[ifa_index
].broadaddr
.sa
;
681 ifas
[ifa_index
].ifa
.ifa_broadaddr
->sa_family
684 switch (ifam
->ifa_family
)
687 /* Size must match that of an address for IPv4. */
688 if (rta_payload
== 4)
689 memcpy (&ifas
[ifa_index
].broadaddr
.s4
.sin_addr
,
690 rta_data
, rta_payload
);
694 /* Size must match that of an address for IPv6. */
695 if (rta_payload
== 16)
697 memcpy (&ifas
[ifa_index
].broadaddr
.s6
.sin6_addr
,
698 rta_data
, rta_payload
);
699 if (IN6_IS_ADDR_LINKLOCAL (rta_data
)
700 || IN6_IS_ADDR_MC_LINKLOCAL (rta_data
))
701 ifas
[ifa_index
].broadaddr
.s6
.sin6_scope_id
707 if (rta_payload
<= sizeof (ifas
[ifa_index
].addr
))
708 memcpy (&ifas
[ifa_index
].broadaddr
.sa
.sa_data
,
709 rta_data
, rta_payload
);
715 if (rta_payload
+ 1 <= sizeof (ifas
[ifa_index
].name
))
717 ifas
[ifa_index
].ifa
.ifa_name
= ifas
[ifa_index
].name
;
718 *(char *) __mempcpy (ifas
[ifa_index
].name
, rta_data
,
733 rta
= RTA_NEXT (rta
, rtasize
);
736 /* If we didn't get the interface name with the
737 address, use the name from the interface entry. */
738 if (ifas
[ifa_index
].ifa
.ifa_name
== NULL
)
740 int idx
= map_newlink (ifam
->ifa_index
- 1, ifas
,
741 map_newlink_data
, newlink
);
742 if (__glibc_unlikely (idx
== -1))
744 ifas
[ifa_index
].ifa
.ifa_name
= ifas
[idx
].ifa
.ifa_name
;
747 /* Calculate the netmask. */
748 if (ifas
[ifa_index
].ifa
.ifa_addr
749 && ifas
[ifa_index
].ifa
.ifa_addr
->sa_family
!= AF_UNSPEC
750 && ifas
[ifa_index
].ifa
.ifa_addr
->sa_family
!= AF_PACKET
)
752 uint32_t max_prefixlen
= 0;
755 ifas
[ifa_index
].ifa
.ifa_netmask
756 = &ifas
[ifa_index
].netmask
.sa
;
758 switch (ifas
[ifa_index
].ifa
.ifa_addr
->sa_family
)
761 cp
= (char *) &ifas
[ifa_index
].netmask
.s4
.sin_addr
;
766 cp
= (char *) &ifas
[ifa_index
].netmask
.s6
.sin6_addr
;
771 ifas
[ifa_index
].ifa
.ifa_netmask
->sa_family
772 = ifas
[ifa_index
].ifa
.ifa_addr
->sa_family
;
776 unsigned int preflen
;
778 if (ifam
->ifa_prefixlen
> max_prefixlen
)
779 preflen
= max_prefixlen
;
781 preflen
= ifam
->ifa_prefixlen
;
783 for (i
= 0; i
< preflen
/ 8; i
++)
786 *cp
= 0xff << (8 - preflen
% 8);
793 assert (ifa_data_ptr
<= (char *) &ifas
[newlink
+ newaddr
] + ifa_data_size
);
797 for (i
= 0; i
< newlink
; ++i
)
798 if (map_newlink_data
[i
] == -1)
800 /* We have fewer links then we anticipated. Adjust the
801 forward pointer to the first address entry. */
802 ifas
[i
- 1].ifa
.ifa_next
= &ifas
[newlink
].ifa
;
805 if (i
== 0 && newlink
> 0)
806 /* No valid link, but we allocated memory. We have to
807 populate the first entry. */
808 memmove (ifas
, &ifas
[newlink
], sizeof (struct ifaddrs_storage
));
811 *ifap
= &ifas
[0].ifa
;
814 __netlink_free_handle (&nh
);
815 __netlink_close (&nh
);
816 scratch_buffer_free (&buf
);
822 /* Create a linked list of `struct ifaddrs' structures, one for each
823 network interface on the host machine. If successful, store the
824 list in *IFAP and return 0. On errors, return -1 and set `errno'. */
826 __getifaddrs (struct ifaddrs
**ifap
)
831 res
= getifaddrs_internal (ifap
);
832 while (res
== -EAGAIN
);
836 weak_alias (__getifaddrs
, getifaddrs
)
837 libc_hidden_def (__getifaddrs
)
838 libc_hidden_weak (getifaddrs
)
842 __freeifaddrs (struct ifaddrs
*ifa
)
846 weak_alias (__freeifaddrs
, freeifaddrs
)
847 libc_hidden_def (__freeifaddrs
)
848 libc_hidden_weak (freeifaddrs
)