1 /* Malloc implementation for multiple threads without lock contention.
2 Copyright (C) 1996, 1997 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Wolfram Gloger <wmglo@dent.med.uni-muenchen.de>
5 and Doug Lea <dl@cs.oswego.edu>, 1996.
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Library General Public License as
9 published by the Free Software Foundation; either version 2 of the
10 License, or (at your option) any later version.
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Library General Public License for more details.
17 You should have received a copy of the GNU Library General Public
18 License along with the GNU C Library; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* V2.6.4-pt3 Thu Feb 20 1997
24 This work is mainly derived from malloc-2.6.4 by Doug Lea
25 <dl@cs.oswego.edu>, which is available from:
27 ftp://g.oswego.edu/pub/misc/malloc.c
29 Most of the original comments are reproduced in the code below.
31 * Why use this malloc?
33 This is not the fastest, most space-conserving, most portable, or
34 most tunable malloc ever written. However it is among the fastest
35 while also being among the most space-conserving, portable and tunable.
36 Consistent balance across these factors results in a good general-purpose
37 allocator. For a high-level description, see
38 http://g.oswego.edu/dl/html/malloc.html
40 On many systems, the standard malloc implementation is by itself not
41 thread-safe, and therefore wrapped with a single global lock around
42 all malloc-related functions. In some applications, especially with
43 multiple available processors, this can lead to contention problems
44 and bad performance. This malloc version was designed with the goal
45 to avoid waiting for locks as much as possible. Statistics indicate
46 that this goal is achieved in many cases.
48 * Synopsis of public routines
50 (Much fuller descriptions are contained in the program documentation below.)
53 Initialize global configuration. When compiled for multiple threads,
54 this function must be called once before any other function in the
55 package. It is not required otherwise. It is called automatically
56 in the Linux/GNU C libray or when compiling with MALLOC_HOOKS.
58 Return a pointer to a newly allocated chunk of at least n bytes, or null
59 if no space is available.
61 Release the chunk of memory pointed to by p, or no effect if p is null.
62 realloc(Void_t* p, size_t n);
63 Return a pointer to a chunk of size n that contains the same data
64 as does chunk p up to the minimum of (n, p's size) bytes, or null
65 if no space is available. The returned pointer may or may not be
66 the same as p. If p is null, equivalent to malloc. Unless the
67 #define REALLOC_ZERO_BYTES_FREES below is set, realloc with a
68 size argument of zero (re)allocates a minimum-sized chunk.
69 memalign(size_t alignment, size_t n);
70 Return a pointer to a newly allocated chunk of n bytes, aligned
71 in accord with the alignment argument, which must be a power of
74 Equivalent to memalign(pagesize, n), where pagesize is the page
75 size of the system (or as near to this as can be figured out from
76 all the includes/defines below.)
78 Equivalent to valloc(minimum-page-that-holds(n)), that is,
79 round up n to nearest pagesize.
80 calloc(size_t unit, size_t quantity);
81 Returns a pointer to quantity * unit bytes, with all locations
84 Equivalent to free(p).
85 malloc_trim(size_t pad);
86 Release all but pad bytes of freed top-most memory back
87 to the system. Return 1 if successful, else 0.
88 malloc_usable_size(Void_t* p);
89 Report the number usable allocated bytes associated with allocated
90 chunk p. This may or may not report more bytes than were requested,
91 due to alignment and minimum size constraints.
93 Prints brief summary statistics on stderr.
95 Returns (by copy) a struct containing various summary statistics.
96 mallopt(int parameter_number, int parameter_value)
97 Changes one of the tunable parameters described below. Returns
98 1 if successful in changing the parameter, else 0.
103 8 byte alignment is currently hardwired into the design. This
104 seems to suffice for all current machines and C compilers.
106 Assumed pointer representation: 4 or 8 bytes
107 Code for 8-byte pointers is untested by me but has worked
108 reliably by Wolfram Gloger, who contributed most of the
109 changes supporting this.
111 Assumed size_t representation: 4 or 8 bytes
112 Note that size_t is allowed to be 4 bytes even if pointers are 8.
114 Minimum overhead per allocated chunk: 4 or 8 bytes
115 Each malloced chunk has a hidden overhead of 4 bytes holding size
116 and status information.
118 Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead)
119 8-byte ptrs: 24/32 bytes (including, 4/8 overhead)
121 When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
122 ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
123 needed; 4 (8) for a trailing size field
124 and 8 (16) bytes for free list pointers. Thus, the minimum
125 allocatable size is 16/24/32 bytes.
127 Even a request for zero bytes (i.e., malloc(0)) returns a
128 pointer to something of the minimum allocatable size.
130 Maximum allocated size: 4-byte size_t: 2^31 - 8 bytes
131 8-byte size_t: 2^63 - 16 bytes
133 It is assumed that (possibly signed) size_t bit values suffice to
134 represent chunk sizes. `Possibly signed' is due to the fact
135 that `size_t' may be defined on a system as either a signed or
136 an unsigned type. To be conservative, values that would appear
137 as negative numbers are avoided.
138 Requests for sizes with a negative sign bit will return a
141 Maximum overhead wastage per allocated chunk: normally 15 bytes
143 Alignment demands, plus the minimum allocatable size restriction
144 make the normal worst-case wastage 15 bytes (i.e., up to 15
145 more bytes will be allocated than were requested in malloc), with
147 1. Because requests for zero bytes allocate non-zero space,
148 the worst case wastage for a request of zero bytes is 24 bytes.
149 2. For requests >= mmap_threshold that are serviced via
150 mmap(), the worst case wastage is 8 bytes plus the remainder
151 from a system page (the minimal mmap unit); typically 4096 bytes.
155 Here are some features that are NOT currently supported
157 * No automated mechanism for fully checking that all accesses
158 to malloced memory stay within their bounds.
159 * No support for compaction.
161 * Synopsis of compile-time options:
163 People have reported using previous versions of this malloc on all
164 versions of Unix, sometimes by tweaking some of the defines
165 below. It has been tested most extensively on Solaris and
166 Linux. People have also reported adapting this malloc for use in
167 stand-alone embedded systems.
169 The implementation is in straight, hand-tuned ANSI C. Among other
170 consequences, it uses a lot of macros. Because of this, to be at
171 all usable, this code should be compiled using an optimizing compiler
172 (for example gcc -O2) that can simplify expressions and control
175 __STD_C (default: derived from C compiler defines)
176 Nonzero if using ANSI-standard C compiler, a C++ compiler, or
177 a C compiler sufficiently close to ANSI to get away with it.
178 MALLOC_DEBUG (default: NOT defined)
179 Define to enable debugging. Adds fairly extensive assertion-based
180 checking to help track down memory errors, but noticeably slows down
182 MALLOC_HOOKS (default: NOT defined)
183 Define to enable support run-time replacement of the allocation
184 functions through user-defined `hooks'.
185 REALLOC_ZERO_BYTES_FREES (default: NOT defined)
186 Define this if you think that realloc(p, 0) should be equivalent
187 to free(p). Otherwise, since malloc returns a unique pointer for
188 malloc(0), so does realloc(p, 0).
189 HAVE_MEMCPY (default: defined)
190 Define if you are not otherwise using ANSI STD C, but still
191 have memcpy and memset in your C library and want to use them.
192 Otherwise, simple internal versions are supplied.
193 USE_MEMCPY (default: 1 if HAVE_MEMCPY is defined, 0 otherwise)
194 Define as 1 if you want the C library versions of memset and
195 memcpy called in realloc and calloc (otherwise macro versions are used).
196 At least on some platforms, the simple macro versions usually
197 outperform libc versions.
198 HAVE_MMAP (default: defined as 1)
199 Define to non-zero to optionally make malloc() use mmap() to
200 allocate very large blocks.
201 HAVE_MREMAP (default: defined as 0 unless Linux libc set)
202 Define to non-zero to optionally make realloc() use mremap() to
203 reallocate very large blocks.
204 malloc_getpagesize (default: derived from system #includes)
205 Either a constant or routine call returning the system page size.
206 HAVE_USR_INCLUDE_MALLOC_H (default: NOT defined)
207 Optionally define if you are on a system with a /usr/include/malloc.h
208 that declares struct mallinfo. It is not at all necessary to
209 define this even if you do, but will ensure consistency.
210 INTERNAL_SIZE_T (default: size_t)
211 Define to a 32-bit type (probably `unsigned int') if you are on a
212 64-bit machine, yet do not want or need to allow malloc requests of
213 greater than 2^31 to be handled. This saves space, especially for
215 _LIBC (default: NOT defined)
216 Defined only when compiled as part of the Linux libc/glibc.
217 Also note that there is some odd internal name-mangling via defines
218 (for example, internally, `malloc' is named `mALLOc') needed
219 when compiling in this case. These look funny but don't otherwise
221 LACKS_UNISTD_H (default: undefined)
222 Define this if your system does not have a <unistd.h>.
223 MORECORE (default: sbrk)
224 The name of the routine to call to obtain more memory from the system.
225 MORECORE_FAILURE (default: -1)
226 The value returned upon failure of MORECORE.
227 MORECORE_CLEARS (default 1)
228 True (1) if the routine mapped to MORECORE zeroes out memory (which
230 DEFAULT_TRIM_THRESHOLD
232 DEFAULT_MMAP_THRESHOLD
234 Default values of tunable parameters (described in detail below)
235 controlling interaction with host system routines (sbrk, mmap, etc).
236 These values may also be changed dynamically via mallopt(). The
237 preset defaults are those that give best performance for typical
240 When the standard debugging hooks are in place, and a pointer is
241 detected as corrupt, do nothing (0), print an error message (1),
249 * Compile-time options for multiple threads:
251 USE_PTHREADS, USE_THR, USE_SPROC
252 Define one of these as 1 to select the thread interface:
253 POSIX threads, Solaris threads or SGI sproc's, respectively.
254 If none of these is defined as non-zero, you get a `normal'
255 malloc implementation which is not thread-safe. Support for
256 multiple threads requires HAVE_MMAP=1. As an exception, when
257 compiling for GNU libc, i.e. when _LIBC is defined, then none of
258 the USE_... symbols have to be defined.
262 When thread support is enabled, additional `heap's are created
263 with mmap calls. These are limited in size; HEAP_MIN_SIZE should
264 be a multiple of the page size, while HEAP_MAX_SIZE must be a power
265 of two for alignment reasons. HEAP_MAX_SIZE should be at least
266 twice as large as the mmap threshold.
268 When this is defined as non-zero, some statistics on mutex locking
279 #if defined (__STDC__)
286 #endif /*__cplusplus*/
299 # include <stddef.h> /* for size_t */
300 # if defined(_LIBC) || defined(MALLOC_HOOKS)
301 # include <stdlib.h> /* for getenv(), abort() */
304 # include <sys/types.h>
307 /* Macros for handling mutexes and thread-specific data. This is
308 included early, because some thread-related header files (such as
309 pthread.h) should be included before any others. */
310 #include "thread-m.h"
316 #include <stdio.h> /* needed for malloc_stats */
327 Because freed chunks may be overwritten with link fields, this
328 malloc will often die when freed memory is overwritten by user
329 programs. This can be very effective (albeit in an annoying way)
330 in helping track down dangling pointers.
332 If you compile with -DMALLOC_DEBUG, a number of assertion checks are
333 enabled that will catch more memory errors. You probably won't be
334 able to make much sense of the actual assertion errors, but they
335 should help you locate incorrectly overwritten memory. The
336 checking is fairly extensive, and will slow down execution
337 noticeably. Calling malloc_stats or mallinfo with MALLOC_DEBUG set will
338 attempt to check every non-mmapped allocated and free chunk in the
339 course of computing the summaries. (By nature, mmapped regions
340 cannot be checked very much automatically.)
342 Setting MALLOC_DEBUG may also be helpful if you are trying to modify
343 this code. The assertions in the check routines spell out in more
344 detail the assumptions and invariants underlying the algorithms.
351 #define assert(x) ((void)0)
356 INTERNAL_SIZE_T is the word-size used for internal bookkeeping
357 of chunk sizes. On a 64-bit machine, you can reduce malloc
358 overhead by defining INTERNAL_SIZE_T to be a 32 bit `unsigned int'
359 at the expense of not being able to handle requests greater than
360 2^31. This limitation is hardly ever a concern; you are encouraged
361 to set this. However, the default version is the same as size_t.
364 #ifndef INTERNAL_SIZE_T
365 #define INTERNAL_SIZE_T size_t
369 REALLOC_ZERO_BYTES_FREES should be set if a call to
370 realloc with zero bytes should be the same as a call to free.
371 Some people think it should. Otherwise, since this malloc
372 returns a unique pointer for malloc(0), so does realloc(p, 0).
376 /* #define REALLOC_ZERO_BYTES_FREES */
380 HAVE_MEMCPY should be defined if you are not otherwise using
381 ANSI STD C, but still have memcpy and memset in your C library
382 and want to use them in calloc and realloc. Otherwise simple
383 macro versions are defined here.
385 USE_MEMCPY should be defined as 1 if you actually want to
386 have memset and memcpy called. People report that the macro
387 versions are often enough faster than libc versions on many
388 systems that it is better to use them.
392 #define HAVE_MEMCPY 1
402 #if (__STD_C || defined(HAVE_MEMCPY))
405 void* memset(void*, int, size_t);
406 void* memcpy(void*, const void*, size_t);
415 /* The following macros are only invoked with (2n+1)-multiples of
416 INTERNAL_SIZE_T units, with a positive integer n. This is exploited
417 for fast inline execution when n is small. */
419 #define MALLOC_ZERO(charp, nbytes) \
421 INTERNAL_SIZE_T mzsz = (nbytes); \
422 if(mzsz <= 9*sizeof(mzsz)) { \
423 INTERNAL_SIZE_T* mz = (INTERNAL_SIZE_T*) (charp); \
424 if(mzsz >= 5*sizeof(mzsz)) { *mz++ = 0; \
426 if(mzsz >= 7*sizeof(mzsz)) { *mz++ = 0; \
428 if(mzsz >= 9*sizeof(mzsz)) { *mz++ = 0; \
433 } else memset((charp), 0, mzsz); \
436 #define MALLOC_COPY(dest,src,nbytes) \
438 INTERNAL_SIZE_T mcsz = (nbytes); \
439 if(mcsz <= 9*sizeof(mcsz)) { \
440 INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) (src); \
441 INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) (dest); \
442 if(mcsz >= 5*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \
443 *mcdst++ = *mcsrc++; \
444 if(mcsz >= 7*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \
445 *mcdst++ = *mcsrc++; \
446 if(mcsz >= 9*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \
447 *mcdst++ = *mcsrc++; }}} \
448 *mcdst++ = *mcsrc++; \
449 *mcdst++ = *mcsrc++; \
451 } else memcpy(dest, src, mcsz); \
454 #else /* !USE_MEMCPY */
456 /* Use Duff's device for good zeroing/copying performance. */
458 #define MALLOC_ZERO(charp, nbytes) \
460 INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp); \
461 long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn; \
462 if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \
464 case 0: for(;;) { *mzp++ = 0; \
465 case 7: *mzp++ = 0; \
466 case 6: *mzp++ = 0; \
467 case 5: *mzp++ = 0; \
468 case 4: *mzp++ = 0; \
469 case 3: *mzp++ = 0; \
470 case 2: *mzp++ = 0; \
471 case 1: *mzp++ = 0; if(mcn <= 0) break; mcn--; } \
475 #define MALLOC_COPY(dest,src,nbytes) \
477 INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src; \
478 INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest; \
479 long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn; \
480 if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \
482 case 0: for(;;) { *mcdst++ = *mcsrc++; \
483 case 7: *mcdst++ = *mcsrc++; \
484 case 6: *mcdst++ = *mcsrc++; \
485 case 5: *mcdst++ = *mcsrc++; \
486 case 4: *mcdst++ = *mcsrc++; \
487 case 3: *mcdst++ = *mcsrc++; \
488 case 2: *mcdst++ = *mcsrc++; \
489 case 1: *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; } \
497 Define HAVE_MMAP to optionally make malloc() use mmap() to
498 allocate very large blocks. These will be returned to the
499 operating system immediately after a free().
507 Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
508 large blocks. This is currently only possible on Linux with
509 kernel versions newer than 1.3.77.
513 #define HAVE_MREMAP defined(__linux__)
520 #include <sys/mman.h>
522 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
523 #define MAP_ANONYMOUS MAP_ANON
526 #endif /* HAVE_MMAP */
529 Access to system page size. To the extent possible, this malloc
530 manages memory from the system in page-size units.
532 The following mechanics for getpagesize were adapted from
533 bsd/gnu getpagesize.h
536 #ifndef LACKS_UNISTD_H
540 #ifndef malloc_getpagesize
541 # ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
542 # ifndef _SC_PAGE_SIZE
543 # define _SC_PAGE_SIZE _SC_PAGESIZE
546 # ifdef _SC_PAGE_SIZE
547 # define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
549 # if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
550 extern size_t getpagesize();
551 # define malloc_getpagesize getpagesize()
553 # include <sys/param.h>
554 # ifdef EXEC_PAGESIZE
555 # define malloc_getpagesize EXEC_PAGESIZE
559 # define malloc_getpagesize NBPG
561 # define malloc_getpagesize (NBPG * CLSIZE)
565 # define malloc_getpagesize NBPC
568 # define malloc_getpagesize PAGESIZE
570 # define malloc_getpagesize (4096) /* just guess */
583 This version of malloc supports the standard SVID/XPG mallinfo
584 routine that returns a struct containing the same kind of
585 information you can get from malloc_stats. It should work on
586 any SVID/XPG compliant system that has a /usr/include/malloc.h
587 defining struct mallinfo. (If you'd like to install such a thing
588 yourself, cut out the preliminary declarations as described above
589 and below and save them in a malloc.h file. But there's no
590 compelling reason to bother to do this.)
592 The main declaration needed is the mallinfo struct that is returned
593 (by-copy) by mallinfo(). The SVID/XPG malloinfo struct contains a
594 bunch of fields, most of which are not even meaningful in this
595 version of malloc. Some of these fields are are instead filled by
596 mallinfo() with other numbers that might possibly be of interest.
598 HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
599 /usr/include/malloc.h file that includes a declaration of struct
600 mallinfo. If so, it is included; else an SVID2/XPG2 compliant
601 version is declared below. These must be precisely the same for
606 /* #define HAVE_USR_INCLUDE_MALLOC_H */
608 #if HAVE_USR_INCLUDE_MALLOC_H
609 # include "/usr/include/malloc.h"
614 # include "ptmalloc.h"
620 #ifndef DEFAULT_TRIM_THRESHOLD
621 #define DEFAULT_TRIM_THRESHOLD (128 * 1024)
625 M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
626 to keep before releasing via malloc_trim in free().
628 Automatic trimming is mainly useful in long-lived programs.
629 Because trimming via sbrk can be slow on some systems, and can
630 sometimes be wasteful (in cases where programs immediately
631 afterward allocate more large chunks) the value should be high
632 enough so that your overall system performance would improve by
635 The trim threshold and the mmap control parameters (see below)
636 can be traded off with one another. Trimming and mmapping are
637 two different ways of releasing unused memory back to the
638 system. Between these two, it is often possible to keep
639 system-level demands of a long-lived program down to a bare
640 minimum. For example, in one test suite of sessions measuring
641 the XF86 X server on Linux, using a trim threshold of 128K and a
642 mmap threshold of 192K led to near-minimal long term resource
645 If you are using this malloc in a long-lived program, it should
646 pay to experiment with these values. As a rough guide, you
647 might set to a value close to the average size of a process
648 (program) running on your system. Releasing this much memory
649 would allow such a process to run in memory. Generally, it's
650 worth it to tune for trimming rather than memory mapping when a
651 program undergoes phases where several large chunks are
652 allocated and released in ways that can reuse each other's
653 storage, perhaps mixed with phases where there are no such
654 chunks at all. And in well-behaved long-lived programs,
655 controlling release of large blocks via trimming versus mapping
658 However, in most programs, these parameters serve mainly as
659 protection against the system-level effects of carrying around
660 massive amounts of unneeded memory. Since frequent calls to
661 sbrk, mmap, and munmap otherwise degrade performance, the default
662 parameters are set to relatively high values that serve only as
665 The default trim value is high enough to cause trimming only in
666 fairly extreme (by current memory consumption standards) cases.
667 It must be greater than page size to have any useful effect. To
668 disable trimming completely, you can set to (unsigned long)(-1);
674 #ifndef DEFAULT_TOP_PAD
675 #define DEFAULT_TOP_PAD (0)
679 M_TOP_PAD is the amount of extra `padding' space to allocate or
680 retain whenever sbrk is called. It is used in two ways internally:
682 * When sbrk is called to extend the top of the arena to satisfy
683 a new malloc request, this much padding is added to the sbrk
686 * When malloc_trim is called automatically from free(),
687 it is used as the `pad' argument.
689 In both cases, the actual amount of padding is rounded
690 so that the end of the arena is always a system page boundary.
692 The main reason for using padding is to avoid calling sbrk so
693 often. Having even a small pad greatly reduces the likelihood
694 that nearly every malloc request during program start-up (or
695 after trimming) will invoke sbrk, which needlessly wastes
698 Automatic rounding-up to page-size units is normally sufficient
699 to avoid measurable overhead, so the default is 0. However, in
700 systems where sbrk is relatively slow, it can pay to increase
701 this value, at the expense of carrying around more memory than
707 #ifndef DEFAULT_MMAP_THRESHOLD
708 #define DEFAULT_MMAP_THRESHOLD (128 * 1024)
713 M_MMAP_THRESHOLD is the request size threshold for using mmap()
714 to service a request. Requests of at least this size that cannot
715 be allocated using already-existing space will be serviced via mmap.
716 (If enough normal freed space already exists it is used instead.)
718 Using mmap segregates relatively large chunks of memory so that
719 they can be individually obtained and released from the host
720 system. A request serviced through mmap is never reused by any
721 other request (at least not directly; the system may just so
722 happen to remap successive requests to the same locations).
724 Segregating space in this way has the benefit that mmapped space
725 can ALWAYS be individually released back to the system, which
726 helps keep the system level memory demands of a long-lived
727 program low. Mapped memory can never become `locked' between
728 other chunks, as can happen with normally allocated chunks, which
729 menas that even trimming via malloc_trim would not release them.
731 However, it has the disadvantages that:
733 1. The space cannot be reclaimed, consolidated, and then
734 used to service later requests, as happens with normal chunks.
735 2. It can lead to more wastage because of mmap page alignment
737 3. It causes malloc performance to be more dependent on host
738 system memory management support routines which may vary in
739 implementation quality and may impose arbitrary
740 limitations. Generally, servicing a request via normal
741 malloc steps is faster than going through a system's mmap.
743 All together, these considerations should lead you to use mmap
744 only for relatively large requests.
751 #ifndef DEFAULT_MMAP_MAX
753 #define DEFAULT_MMAP_MAX (1024)
755 #define DEFAULT_MMAP_MAX (0)
760 M_MMAP_MAX is the maximum number of requests to simultaneously
761 service using mmap. This parameter exists because:
763 1. Some systems have a limited number of internal tables for
765 2. In most systems, overreliance on mmap can degrade overall
767 3. If a program allocates many large regions, it is probably
768 better off using normal sbrk-based allocation routines that
769 can reclaim and reallocate normal heap memory. Using a
770 small value allows transition into this mode after the
771 first few allocations.
773 Setting to 0 disables all use of mmap. If HAVE_MMAP is not set,
774 the default value is 0, and attempts to set it to non-zero values
775 in mallopt will fail.
780 #ifndef DEFAULT_CHECK_ACTION
781 #define DEFAULT_CHECK_ACTION 1
784 /* What to do if the standard debugging hooks are in place and a
785 corrupt pointer is detected: do nothing (0), print an error message
786 (1), or call abort() (2). */
790 #define HEAP_MIN_SIZE (32*1024)
791 #define HEAP_MAX_SIZE (1024*1024) /* must be a power of two */
793 /* HEAP_MIN_SIZE and HEAP_MAX_SIZE limit the size of mmap()ed heaps
794 that are dynamically created for multi-threaded programs. The
795 maximum size must be a power of two, for fast determination of
796 which heap belongs to a chunk. It should be much larger than
797 the mmap threshold, so that requests with a size just below that
798 threshold can be fulfilled without creating too many heaps.
804 #define THREAD_STATS 0
807 /* If THREAD_STATS is non-zero, some statistics on mutex locking are
813 Special defines for the Linux/GNU C library.
822 Void_t
* __default_morecore (ptrdiff_t);
823 Void_t
*(*__morecore
)(ptrdiff_t) = __default_morecore
;
827 Void_t
* __default_morecore ();
828 Void_t
*(*__morecore
)() = __default_morecore
;
832 #define MORECORE (*__morecore)
833 #define MORECORE_FAILURE 0
834 #define MORECORE_CLEARS 1
836 #define munmap __munmap
837 #define mremap __mremap
838 #define mprotect __mprotect
839 #undef malloc_getpagesize
840 #define malloc_getpagesize __getpagesize()
845 extern Void_t
* sbrk(ptrdiff_t);
847 extern Void_t
* sbrk();
851 #define MORECORE sbrk
854 #ifndef MORECORE_FAILURE
855 #define MORECORE_FAILURE -1
858 #ifndef MORECORE_CLEARS
859 #define MORECORE_CLEARS 1
866 #define cALLOc __libc_calloc
867 #define fREe __libc_free
868 #define mALLOc __libc_malloc
869 #define mEMALIGn __libc_memalign
870 #define rEALLOc __libc_realloc
871 #define vALLOc __libc_valloc
872 #define pvALLOc __libc_pvalloc
873 #define mALLINFo __libc_mallinfo
874 #define mALLOPt __libc_mallopt
875 #define mALLOC_STATs __malloc_stats
876 #define mALLOC_USABLE_SIZe __malloc_usable_size
877 #define mALLOC_TRIm __malloc_trim
878 #define mALLOC_GET_STATe __malloc_get_state
879 #define mALLOC_SET_STATe __malloc_set_state
883 #define cALLOc calloc
885 #define mALLOc malloc
886 #define mEMALIGn memalign
887 #define rEALLOc realloc
888 #define vALLOc valloc
889 #define pvALLOc pvalloc
890 #define mALLINFo mallinfo
891 #define mALLOPt mallopt
892 #define mALLOC_STATs malloc_stats
893 #define mALLOC_USABLE_SIZe malloc_usable_size
894 #define mALLOC_TRIm malloc_trim
895 #define mALLOC_GET_STATe malloc_get_state
896 #define mALLOC_SET_STATe malloc_set_state
900 /* Public routines */
905 void ptmalloc_init(void);
907 Void_t
* mALLOc(size_t);
909 Void_t
* rEALLOc(Void_t
*, size_t);
910 Void_t
* mEMALIGn(size_t, size_t);
911 Void_t
* vALLOc(size_t);
912 Void_t
* pvALLOc(size_t);
913 Void_t
* cALLOc(size_t, size_t);
915 int mALLOC_TRIm(size_t);
916 size_t mALLOC_USABLE_SIZe(Void_t
*);
917 void mALLOC_STATs(void);
918 int mALLOPt(int, int);
919 struct mallinfo
mALLINFo(void);
920 Void_t
* mALLOC_GET_STATe(void);
921 int mALLOC_SET_STATe(Void_t
*);
926 void ptmalloc_init();
937 size_t mALLOC_USABLE_SIZe();
940 struct mallinfo
mALLINFo();
941 Void_t
* mALLOC_GET_STATe();
942 int mALLOC_SET_STATe();
948 }; /* end of extern "C" */
951 #if !defined(NO_THREADS) && !HAVE_MMAP
952 "Can't have threads support without mmap"
963 INTERNAL_SIZE_T prev_size
; /* Size of previous chunk (if free). */
964 INTERNAL_SIZE_T size
; /* Size in bytes, including overhead. */
965 struct malloc_chunk
* fd
; /* double links -- used only if free. */
966 struct malloc_chunk
* bk
;
969 typedef struct malloc_chunk
* mchunkptr
;
973 malloc_chunk details:
975 (The following includes lightly edited explanations by Colin Plumb.)
977 Chunks of memory are maintained using a `boundary tag' method as
978 described in e.g., Knuth or Standish. (See the paper by Paul
979 Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
980 survey of such techniques.) Sizes of free chunks are stored both
981 in the front of each chunk and at the end. This makes
982 consolidating fragmented chunks into bigger chunks very fast. The
983 size fields also hold bits representing whether chunks are free or
986 An allocated chunk looks like this:
989 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
990 | Size of previous chunk, if allocated | |
991 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
992 | Size of chunk, in bytes |P|
993 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
994 | User data starts here... .
996 . (malloc_usable_space() bytes) .
998 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1000 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1003 Where "chunk" is the front of the chunk for the purpose of most of
1004 the malloc code, but "mem" is the pointer that is returned to the
1005 user. "Nextchunk" is the beginning of the next contiguous chunk.
1007 Chunks always begin on even word boundaries, so the mem portion
1008 (which is returned to the user) is also on an even word boundary, and
1009 thus double-word aligned.
1011 Free chunks are stored in circular doubly-linked lists, and look like this:
1013 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1014 | Size of previous chunk |
1015 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1016 `head:' | Size of chunk, in bytes |P|
1017 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1018 | Forward pointer to next chunk in list |
1019 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1020 | Back pointer to previous chunk in list |
1021 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1022 | Unused space (may be 0 bytes long) .
1025 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1026 `foot:' | Size of chunk, in bytes |
1027 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1029 The P (PREV_INUSE) bit, stored in the unused low-order bit of the
1030 chunk size (which is always a multiple of two words), is an in-use
1031 bit for the *previous* chunk. If that bit is *clear*, then the
1032 word before the current chunk size contains the previous chunk
1033 size, and can be used to find the front of the previous chunk.
1034 (The very first chunk allocated always has this bit set,
1035 preventing access to non-existent (or non-owned) memory.)
1037 Note that the `foot' of the current chunk is actually represented
1038 as the prev_size of the NEXT chunk. (This makes it easier to
1039 deal with alignments etc).
1041 The two exceptions to all this are
1043 1. The special chunk `top', which doesn't bother using the
1044 trailing size field since there is no
1045 next contiguous chunk that would have to index off it. (After
1046 initialization, `top' is forced to always exist. If it would
1047 become less than MINSIZE bytes long, it is replenished via
1050 2. Chunks allocated via mmap, which have the second-lowest-order
1051 bit (IS_MMAPPED) set in their size fields. Because they are
1052 never merged or traversed from any other chunk, they have no
1053 foot size or inuse information.
1055 Available chunks are kept in any of several places (all declared below):
1057 * `av': An array of chunks serving as bin headers for consolidated
1058 chunks. Each bin is doubly linked. The bins are approximately
1059 proportionally (log) spaced. There are a lot of these bins
1060 (128). This may look excessive, but works very well in
1061 practice. All procedures maintain the invariant that no
1062 consolidated chunk physically borders another one. Chunks in
1063 bins are kept in size order, with ties going to the
1064 approximately least recently used chunk.
1066 The chunks in each bin are maintained in decreasing sorted order by
1067 size. This is irrelevant for the small bins, which all contain
1068 the same-sized chunks, but facilitates best-fit allocation for
1069 larger chunks. (These lists are just sequential. Keeping them in
1070 order almost never requires enough traversal to warrant using
1071 fancier ordered data structures.) Chunks of the same size are
1072 linked with the most recently freed at the front, and allocations
1073 are taken from the back. This results in LRU or FIFO allocation
1074 order, which tends to give each chunk an equal opportunity to be
1075 consolidated with adjacent freed chunks, resulting in larger free
1076 chunks and less fragmentation.
1078 * `top': The top-most available chunk (i.e., the one bordering the
1079 end of available memory) is treated specially. It is never
1080 included in any bin, is used only if no other chunk is
1081 available, and is released back to the system if it is very
1082 large (see M_TRIM_THRESHOLD).
1084 * `last_remainder': A bin holding only the remainder of the
1085 most recently split (non-top) chunk. This bin is checked
1086 before other non-fitting chunks, so as to provide better
1087 locality for runs of sequentially allocated chunks.
1089 * Implicitly, through the host system's memory mapping tables.
1090 If supported, requests greater than a threshold are usually
1091 serviced via calls to mmap, and then later released via munmap.
1098 The bins are an array of pairs of pointers serving as the
1099 heads of (initially empty) doubly-linked lists of chunks, laid out
1100 in a way so that each pair can be treated as if it were in a
1101 malloc_chunk. (This way, the fd/bk offsets for linking bin heads
1102 and chunks are the same).
1104 Bins for sizes < 512 bytes contain chunks of all the same size, spaced
1105 8 bytes apart. Larger bins are approximately logarithmically
1106 spaced. (See the table below.)
1114 4 bins of size 32768
1115 2 bins of size 262144
1116 1 bin of size what's left
1118 There is actually a little bit of slop in the numbers in bin_index
1119 for the sake of speed. This makes no difference elsewhere.
1121 The special chunks `top' and `last_remainder' get their own bins,
1122 (this is implemented via yet more trickery with the av array),
1123 although `top' is never properly linked to its bin since it is
1124 always handled specially.
1128 #define NAV 128 /* number of bins */
1130 typedef struct malloc_chunk
* mbinptr
;
1132 /* An arena is a configuration of malloc_chunks together with an array
1133 of bins. With multiple threads, it must be locked via a mutex
1134 before changing its data structures. One or more `heaps' are
1135 associated with each arena, except for the main_arena, which is
1136 associated only with the `main heap', i.e. the conventional free
1137 store obtained with calls to MORECORE() (usually sbrk). The `av'
1138 array is never mentioned directly in the code, but instead used via
1139 bin access macros. */
1141 typedef struct _arena
{
1142 mbinptr av
[2*NAV
+ 2];
1143 struct _arena
*next
;
1146 long stat_lock_direct
, stat_lock_loop
, stat_lock_wait
;
1152 /* A heap is a single contiguous memory region holding (coalesceable)
1153 malloc_chunks. It is allocated with mmap() and always starts at an
1154 address aligned to HEAP_MAX_SIZE. Not used unless compiling for
1155 multiple threads. */
1157 typedef struct _heap_info
{
1158 arena
*ar_ptr
; /* Arena for this heap. */
1159 struct _heap_info
*prev
; /* Previous heap. */
1160 size_t size
; /* Current size in bytes. */
1161 size_t pad
; /* Make sure the following data is properly aligned. */
1166 Static functions (forward declarations)
1171 static void chunk_free(arena
*ar_ptr
, mchunkptr p
);
1172 static mchunkptr
chunk_alloc(arena
*ar_ptr
, INTERNAL_SIZE_T size
);
1173 static mchunkptr
chunk_realloc(arena
*ar_ptr
, mchunkptr oldp
,
1174 INTERNAL_SIZE_T oldsize
, INTERNAL_SIZE_T nb
);
1175 static mchunkptr
chunk_align(arena
*ar_ptr
, INTERNAL_SIZE_T nb
,
1177 static int main_trim(size_t pad
);
1179 static int heap_trim(heap_info
*heap
, size_t pad
);
1181 #if defined(_LIBC) || defined(MALLOC_HOOKS)
1182 static Void_t
* malloc_check(size_t sz
);
1183 static void free_check(Void_t
* mem
);
1184 static Void_t
* realloc_check(Void_t
* oldmem
, size_t bytes
);
1185 static Void_t
* memalign_check(size_t alignment
, size_t bytes
);
1186 static Void_t
* malloc_starter(size_t sz
);
1187 static void free_starter(Void_t
* mem
);
1192 static void chunk_free();
1193 static mchunkptr
chunk_alloc();
1194 static mchunkptr
chunk_realloc();
1195 static mchunkptr
chunk_align();
1196 static int main_trim();
1198 static int heap_trim();
1200 #if defined(_LIBC) || defined(MALLOC_HOOKS)
1201 static Void_t
* malloc_check();
1202 static void free_check();
1203 static Void_t
* realloc_check();
1204 static Void_t
* memalign_check();
1205 static Void_t
* malloc_starter();
1206 static void free_starter();
1213 /* sizes, alignments */
1215 #define SIZE_SZ (sizeof(INTERNAL_SIZE_T))
1216 #define MALLOC_ALIGNMENT (SIZE_SZ + SIZE_SZ)
1217 #define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1)
1218 #define MINSIZE (sizeof(struct malloc_chunk))
1220 /* conversion from malloc headers to user pointers, and back */
1222 #define chunk2mem(p) ((Void_t*)((char*)(p) + 2*SIZE_SZ))
1223 #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
1225 /* pad request bytes into a usable size */
1227 #define request2size(req) \
1228 (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \
1229 (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \
1230 (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK)))
1232 /* Check if m has acceptable alignment */
1234 #define aligned_OK(m) (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
1240 Physical chunk operations
1244 /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
1246 #define PREV_INUSE 0x1
1248 /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
1250 #define IS_MMAPPED 0x2
1252 /* Bits to mask off when extracting size */
1254 #define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
1257 /* Ptr to next physical malloc_chunk. */
1259 #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
1261 /* Ptr to previous physical malloc_chunk */
1263 #define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
1266 /* Treat space at ptr + offset as a chunk */
1268 #define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
1274 Dealing with use bits
1277 /* extract p's inuse bit */
1280 ((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
1282 /* extract inuse bit of previous chunk */
1284 #define prev_inuse(p) ((p)->size & PREV_INUSE)
1286 /* check for mmap()'ed chunk */
1288 #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
1290 /* set/clear chunk as in use without otherwise disturbing */
1292 #define set_inuse(p) \
1293 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
1295 #define clear_inuse(p) \
1296 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
1298 /* check/set/clear inuse bits in known places */
1300 #define inuse_bit_at_offset(p, s)\
1301 (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
1303 #define set_inuse_bit_at_offset(p, s)\
1304 (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
1306 #define clear_inuse_bit_at_offset(p, s)\
1307 (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
1313 Dealing with size fields
1316 /* Get size, ignoring use bits */
1318 #define chunksize(p) ((p)->size & ~(SIZE_BITS))
1320 /* Set size at head, without disturbing its use bit */
1322 #define set_head_size(p, s) ((p)->size = (((p)->size & PREV_INUSE) | (s)))
1324 /* Set size/use ignoring previous bits in header */
1326 #define set_head(p, s) ((p)->size = (s))
1328 /* Set size at footer (only when chunk is not in use) */
1330 #define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
1338 #define bin_at(a, i) ((mbinptr)((char*)&(((a)->av)[2*(i) + 2]) - 2*SIZE_SZ))
1339 #define init_bin(a, i) ((a)->av[2*i+2] = (a)->av[2*i+3] = bin_at((a), i))
1340 #define next_bin(b) ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr)))
1341 #define prev_bin(b) ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr)))
1344 The first 2 bins are never indexed. The corresponding av cells are instead
1345 used for bookkeeping. This is not to save space, but to simplify
1346 indexing, maintain locality, and avoid some initialization tests.
1349 #define binblocks(a) (bin_at(a,0)->size)/* bitvector of nonempty blocks */
1350 #define top(a) (bin_at(a,0)->fd) /* The topmost chunk */
1351 #define last_remainder(a) (bin_at(a,1)) /* remainder from last split */
1354 Because top initially points to its own bin with initial
1355 zero size, thus forcing extension on the first malloc request,
1356 we avoid having any special code in malloc to check whether
1357 it even exists yet. But we still need to in malloc_extend_top.
1360 #define initial_top(a) ((mchunkptr)bin_at(a, 0))
1364 /* field-extraction macros */
1366 #define first(b) ((b)->fd)
1367 #define last(b) ((b)->bk)
1373 #define bin_index(sz) \
1374 (((((unsigned long)(sz)) >> 9) == 0) ? (((unsigned long)(sz)) >> 3): \
1375 ((((unsigned long)(sz)) >> 9) <= 4) ? 56 + (((unsigned long)(sz)) >> 6): \
1376 ((((unsigned long)(sz)) >> 9) <= 20) ? 91 + (((unsigned long)(sz)) >> 9): \
1377 ((((unsigned long)(sz)) >> 9) <= 84) ? 110 + (((unsigned long)(sz)) >> 12): \
1378 ((((unsigned long)(sz)) >> 9) <= 340) ? 119 + (((unsigned long)(sz)) >> 15): \
1379 ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \
1382 bins for chunks < 512 are all spaced 8 bytes apart, and hold
1383 identically sized chunks. This is exploited in malloc.
1386 #define MAX_SMALLBIN 63
1387 #define MAX_SMALLBIN_SIZE 512
1388 #define SMALLBIN_WIDTH 8
1390 #define smallbin_index(sz) (((unsigned long)(sz)) >> 3)
1393 Requests are `small' if both the corresponding and the next bin are small
1396 #define is_small_request(nb) ((nb) < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH)
1401 To help compensate for the large number of bins, a one-level index
1402 structure is used for bin-by-bin searching. `binblocks' is a
1403 one-word bitvector recording whether groups of BINBLOCKWIDTH bins
1404 have any (possibly) non-empty bins, so they can be skipped over
1405 all at once during during traversals. The bits are NOT always
1406 cleared as soon as all bins in a block are empty, but instead only
1407 when all are noticed to be empty during traversal in malloc.
1410 #define BINBLOCKWIDTH 4 /* bins per block */
1412 /* bin<->block macros */
1414 #define idx2binblock(ix) ((unsigned)1 << ((ix) / BINBLOCKWIDTH))
1415 #define mark_binblock(a, ii) (binblocks(a) |= idx2binblock(ii))
1416 #define clear_binblock(a, ii) (binblocks(a) &= ~(idx2binblock(ii)))
1421 /* Static bookkeeping data */
1423 /* Helper macro to initialize bins */
1424 #define IAV(i) bin_at(&main_arena, i), bin_at(&main_arena, i)
1426 static arena main_arena
= {
1429 IAV(0), IAV(1), IAV(2), IAV(3), IAV(4), IAV(5), IAV(6), IAV(7),
1430 IAV(8), IAV(9), IAV(10), IAV(11), IAV(12), IAV(13), IAV(14), IAV(15),
1431 IAV(16), IAV(17), IAV(18), IAV(19), IAV(20), IAV(21), IAV(22), IAV(23),
1432 IAV(24), IAV(25), IAV(26), IAV(27), IAV(28), IAV(29), IAV(30), IAV(31),
1433 IAV(32), IAV(33), IAV(34), IAV(35), IAV(36), IAV(37), IAV(38), IAV(39),
1434 IAV(40), IAV(41), IAV(42), IAV(43), IAV(44), IAV(45), IAV(46), IAV(47),
1435 IAV(48), IAV(49), IAV(50), IAV(51), IAV(52), IAV(53), IAV(54), IAV(55),
1436 IAV(56), IAV(57), IAV(58), IAV(59), IAV(60), IAV(61), IAV(62), IAV(63),
1437 IAV(64), IAV(65), IAV(66), IAV(67), IAV(68), IAV(69), IAV(70), IAV(71),
1438 IAV(72), IAV(73), IAV(74), IAV(75), IAV(76), IAV(77), IAV(78), IAV(79),
1439 IAV(80), IAV(81), IAV(82), IAV(83), IAV(84), IAV(85), IAV(86), IAV(87),
1440 IAV(88), IAV(89), IAV(90), IAV(91), IAV(92), IAV(93), IAV(94), IAV(95),
1441 IAV(96), IAV(97), IAV(98), IAV(99), IAV(100), IAV(101), IAV(102), IAV(103),
1442 IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111),
1443 IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119),
1444 IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127)
1446 &main_arena
, /* next */
1449 0, 0, 0, /* stat_lock_direct, stat_lock_loop, stat_lock_wait */
1451 MUTEX_INITIALIZER
/* mutex */
1456 /* Thread specific data */
1459 static tsd_key_t arena_key
;
1460 static mutex_t list_lock
= MUTEX_INITIALIZER
;
1464 static int stat_n_heaps
= 0;
1465 #define THREAD_STAT(x) x
1467 #define THREAD_STAT(x) do ; while(0)
1470 /* variables holding tunable values */
1472 static unsigned long trim_threshold
= DEFAULT_TRIM_THRESHOLD
;
1473 static unsigned long top_pad
= DEFAULT_TOP_PAD
;
1474 static unsigned int n_mmaps_max
= DEFAULT_MMAP_MAX
;
1475 static unsigned long mmap_threshold
= DEFAULT_MMAP_THRESHOLD
;
1476 static int check_action
= DEFAULT_CHECK_ACTION
;
1478 /* The first value returned from sbrk */
1479 static char* sbrk_base
= (char*)(-1);
1481 /* The maximum memory obtained from system via sbrk */
1482 static unsigned long max_sbrked_mem
= 0;
1484 /* The maximum via either sbrk or mmap (too difficult to track with threads) */
1486 static unsigned long max_total_mem
= 0;
1489 /* The total memory obtained from system via sbrk */
1490 #define sbrked_mem (main_arena.size)
1492 /* Tracking mmaps */
1494 static unsigned int n_mmaps
= 0;
1495 static unsigned int max_n_mmaps
= 0;
1496 static unsigned long mmapped_mem
= 0;
1497 static unsigned long max_mmapped_mem
= 0;
1502 #define weak_variable
1504 /* In GNU libc we want the hook variables to be weak definitions to
1505 avoid a problem with Emacs. */
1506 #define weak_variable weak_function
1509 /* Already initialized? */
1510 int __malloc_initialized
= 0;
1513 /* Initialization routine. */
1516 static void ptmalloc_init
__MALLOC_P ((void)) __attribute__ ((constructor
));
1520 ptmalloc_init
__MALLOC_P((void))
1523 ptmalloc_init
__MALLOC_P((void))
1526 #if defined(_LIBC) || defined(MALLOC_HOOKS)
1527 __malloc_ptr_t (*save_malloc_hook
) __MALLOC_P ((size_t __size
));
1528 void (*save_free_hook
) __MALLOC_P ((__malloc_ptr_t __ptr
));
1532 if(__malloc_initialized
) return;
1533 __malloc_initialized
= 1;
1534 #if defined(_LIBC) || defined(MALLOC_HOOKS)
1535 /* With some threads implementations, creating thread-specific data
1536 or initializing a mutex may call malloc() itself. Provide a
1537 simple starter version (realloc() won't work). */
1538 save_malloc_hook
= __malloc_hook
;
1539 save_free_hook
= __free_hook
;
1540 __malloc_hook
= malloc_starter
;
1541 __free_hook
= free_starter
;
1543 #if defined(_LIBC) && !defined (NO_THREADS)
1544 /* Initialize the pthreads interface. */
1545 if (__pthread_initialize
!= NULL
)
1546 __pthread_initialize();
1549 mutex_init(&main_arena
.mutex
);
1550 mutex_init(&list_lock
);
1551 tsd_key_create(&arena_key
, NULL
);
1552 tsd_setspecific(arena_key
, (Void_t
*)&main_arena
);
1554 #if defined(_LIBC) || defined(MALLOC_HOOKS)
1555 if((s
= getenv("MALLOC_TRIM_THRESHOLD_")))
1556 mALLOPt(M_TRIM_THRESHOLD
, atoi(s
));
1557 if((s
= getenv("MALLOC_TOP_PAD_")))
1558 mALLOPt(M_TOP_PAD
, atoi(s
));
1559 if((s
= getenv("MALLOC_MMAP_THRESHOLD_")))
1560 mALLOPt(M_MMAP_THRESHOLD
, atoi(s
));
1561 if((s
= getenv("MALLOC_MMAP_MAX_")))
1562 mALLOPt(M_MMAP_MAX
, atoi(s
));
1563 s
= getenv("MALLOC_CHECK_");
1564 __malloc_hook
= save_malloc_hook
;
1565 __free_hook
= save_free_hook
;
1567 if(s
[0]) mALLOPt(M_CHECK_ACTION
, (int)(s
[0] - '0'));
1568 __malloc_check_init();
1570 if(__malloc_initialize_hook
!= NULL
)
1571 (*__malloc_initialize_hook
)();
1575 #if defined(_LIBC) || defined(MALLOC_HOOKS)
1577 /* Hooks for debugging versions. The initial hooks just call the
1578 initialization routine, then do the normal work. */
1582 malloc_hook_ini(size_t sz
)
1584 malloc_hook_ini(sz
) size_t sz
;
1587 __malloc_hook
= NULL
;
1588 __realloc_hook
= NULL
;
1589 __memalign_hook
= NULL
;
1596 realloc_hook_ini(Void_t
* ptr
, size_t sz
)
1598 realloc_hook_ini(ptr
, sz
) Void_t
* ptr
; size_t sz
;
1601 __malloc_hook
= NULL
;
1602 __realloc_hook
= NULL
;
1603 __memalign_hook
= NULL
;
1605 return rEALLOc(ptr
, sz
);
1610 memalign_hook_ini(size_t sz
, size_t alignment
)
1612 memalign_hook_ini(sz
, alignment
) size_t sz
; size_t alignment
;
1615 __malloc_hook
= NULL
;
1616 __realloc_hook
= NULL
;
1617 __memalign_hook
= NULL
;
1619 return mEMALIGn(sz
, alignment
);
1622 void weak_variable (*__malloc_initialize_hook
) __MALLOC_P ((void)) = NULL
;
1623 void weak_variable (*__free_hook
) __MALLOC_P ((__malloc_ptr_t __ptr
)) = NULL
;
1624 __malloc_ptr_t
weak_variable (*__malloc_hook
)
1625 __MALLOC_P ((size_t __size
)) = malloc_hook_ini
;
1626 __malloc_ptr_t
weak_variable (*__realloc_hook
)
1627 __MALLOC_P ((__malloc_ptr_t __ptr
, size_t __size
)) = realloc_hook_ini
;
1628 __malloc_ptr_t
weak_variable (*__memalign_hook
)
1629 __MALLOC_P ((size_t __size
, size_t __alignment
)) = memalign_hook_ini
;
1630 void weak_variable (*__after_morecore_hook
) __MALLOC_P ((void)) = NULL
;
1632 /* Activate a standard set of debugging hooks. */
1634 __malloc_check_init()
1636 __malloc_hook
= malloc_check
;
1637 __free_hook
= free_check
;
1638 __realloc_hook
= realloc_check
;
1639 __memalign_hook
= memalign_check
;
1640 if(check_action
== 1)
1641 fprintf(stderr
, "malloc: using debugging hooks\n");
1650 /* Routines dealing with mmap(). */
1654 #ifndef MAP_ANONYMOUS
1656 static int dev_zero_fd
= -1; /* Cached file descriptor for /dev/zero. */
1658 #define MMAP(size, prot) ((dev_zero_fd < 0) ? \
1659 (dev_zero_fd = open("/dev/zero", O_RDWR), \
1660 mmap(0, (size), (prot), MAP_PRIVATE, dev_zero_fd, 0)) : \
1661 mmap(0, (size), (prot), MAP_PRIVATE, dev_zero_fd, 0))
1665 #define MMAP(size, prot) \
1666 (mmap(0, (size), (prot), MAP_PRIVATE|MAP_ANONYMOUS, -1, 0))
1671 static mchunkptr
mmap_chunk(size_t size
)
1673 static mchunkptr
mmap_chunk(size
) size_t size
;
1676 size_t page_mask
= malloc_getpagesize
- 1;
1679 if(n_mmaps
>= n_mmaps_max
) return 0; /* too many regions */
1681 /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because
1682 * there is no following chunk whose prev_size field could be used.
1684 size
= (size
+ SIZE_SZ
+ page_mask
) & ~page_mask
;
1686 p
= (mchunkptr
)MMAP(size
, PROT_READ
|PROT_WRITE
);
1687 if(p
== (mchunkptr
)-1) return 0;
1690 if (n_mmaps
> max_n_mmaps
) max_n_mmaps
= n_mmaps
;
1692 /* We demand that eight bytes into a page must be 8-byte aligned. */
1693 assert(aligned_OK(chunk2mem(p
)));
1695 /* The offset to the start of the mmapped region is stored
1696 * in the prev_size field of the chunk; normally it is zero,
1697 * but that can be changed in memalign().
1700 set_head(p
, size
|IS_MMAPPED
);
1702 mmapped_mem
+= size
;
1703 if ((unsigned long)mmapped_mem
> (unsigned long)max_mmapped_mem
)
1704 max_mmapped_mem
= mmapped_mem
;
1706 if ((unsigned long)(mmapped_mem
+ sbrked_mem
) > (unsigned long)max_total_mem
)
1707 max_total_mem
= mmapped_mem
+ sbrked_mem
;
1713 static void munmap_chunk(mchunkptr p
)
1715 static void munmap_chunk(p
) mchunkptr p
;
1718 INTERNAL_SIZE_T size
= chunksize(p
);
1721 assert (chunk_is_mmapped(p
));
1722 assert(! ((char*)p
>= sbrk_base
&& (char*)p
< sbrk_base
+ sbrked_mem
));
1723 assert((n_mmaps
> 0));
1724 assert(((p
->prev_size
+ size
) & (malloc_getpagesize
-1)) == 0);
1727 mmapped_mem
-= (size
+ p
->prev_size
);
1729 ret
= munmap((char *)p
- p
->prev_size
, size
+ p
->prev_size
);
1731 /* munmap returns non-zero on failure */
1738 static mchunkptr
mremap_chunk(mchunkptr p
, size_t new_size
)
1740 static mchunkptr
mremap_chunk(p
, new_size
) mchunkptr p
; size_t new_size
;
1743 size_t page_mask
= malloc_getpagesize
- 1;
1744 INTERNAL_SIZE_T offset
= p
->prev_size
;
1745 INTERNAL_SIZE_T size
= chunksize(p
);
1748 assert (chunk_is_mmapped(p
));
1749 assert(! ((char*)p
>= sbrk_base
&& (char*)p
< sbrk_base
+ sbrked_mem
));
1750 assert((n_mmaps
> 0));
1751 assert(((size
+ offset
) & (malloc_getpagesize
-1)) == 0);
1753 /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
1754 new_size
= (new_size
+ offset
+ SIZE_SZ
+ page_mask
) & ~page_mask
;
1756 cp
= (char *)mremap((char *)p
- offset
, size
+ offset
, new_size
,
1759 if (cp
== (char *)-1) return 0;
1761 p
= (mchunkptr
)(cp
+ offset
);
1763 assert(aligned_OK(chunk2mem(p
)));
1765 assert((p
->prev_size
== offset
));
1766 set_head(p
, (new_size
- offset
)|IS_MMAPPED
);
1768 mmapped_mem
-= size
+ offset
;
1769 mmapped_mem
+= new_size
;
1770 if ((unsigned long)mmapped_mem
> (unsigned long)max_mmapped_mem
)
1771 max_mmapped_mem
= mmapped_mem
;
1773 if ((unsigned long)(mmapped_mem
+ sbrked_mem
) > (unsigned long)max_total_mem
)
1774 max_total_mem
= mmapped_mem
+ sbrked_mem
;
1779 #endif /* HAVE_MREMAP */
1781 #endif /* HAVE_MMAP */
1785 /* Managing heaps and arenas (for concurrent threads) */
1789 /* Create a new heap. size is automatically rounded up to a multiple
1790 of the page size. */
1794 new_heap(size_t size
)
1796 new_heap(size
) size_t size
;
1799 size_t page_mask
= malloc_getpagesize
- 1;
1804 if(size
+top_pad
< HEAP_MIN_SIZE
)
1805 size
= HEAP_MIN_SIZE
;
1806 else if(size
+top_pad
<= HEAP_MAX_SIZE
)
1808 else if(size
> HEAP_MAX_SIZE
)
1811 size
= HEAP_MAX_SIZE
;
1812 size
= (size
+ page_mask
) & ~page_mask
;
1814 p1
= (char *)MMAP(HEAP_MAX_SIZE
<<1, PROT_NONE
);
1815 if(p1
== (char *)-1)
1817 p2
= (char *)(((unsigned long)p1
+ HEAP_MAX_SIZE
) & ~(HEAP_MAX_SIZE
-1));
1820 munmap(p2
+ HEAP_MAX_SIZE
, HEAP_MAX_SIZE
- ul
);
1821 if(mprotect(p2
, size
, PROT_READ
|PROT_WRITE
) != 0) {
1822 munmap(p2
, HEAP_MAX_SIZE
);
1825 h
= (heap_info
*)p2
;
1827 THREAD_STAT(stat_n_heaps
++);
1831 /* Grow or shrink a heap. size is automatically rounded up to a
1832 multiple of the page size if it is positive. */
1836 grow_heap(heap_info
*h
, long diff
)
1838 grow_heap(h
, diff
) heap_info
*h
; long diff
;
1841 size_t page_mask
= malloc_getpagesize
- 1;
1845 diff
= (diff
+ page_mask
) & ~page_mask
;
1846 new_size
= (long)h
->size
+ diff
;
1847 if(new_size
> HEAP_MAX_SIZE
)
1849 if(mprotect((char *)h
+ h
->size
, diff
, PROT_READ
|PROT_WRITE
) != 0)
1852 new_size
= (long)h
->size
+ diff
;
1853 if(new_size
< (long)sizeof(*h
))
1855 if(mprotect((char *)h
+ new_size
, -diff
, PROT_NONE
) != 0)
1862 /* Delete a heap. */
1864 #define delete_heap(heap) munmap((char*)(heap), HEAP_MAX_SIZE)
1866 /* arena_get() acquires an arena and locks the corresponding mutex.
1867 First, try the one last locked successfully by this thread. (This
1868 is the common case and handled with a macro for speed.) Then, loop
1869 once over the circularly linked list of arenas. If no arena is
1870 readily available, create a new one. */
1872 #define arena_get(ptr, size) do { \
1873 Void_t *vptr = NULL; \
1874 ptr = (arena *)tsd_getspecific(arena_key, vptr); \
1875 if(ptr && !mutex_trylock(&ptr->mutex)) { \
1876 THREAD_STAT(++(ptr->stat_lock_direct)); \
1878 ptr = arena_get2(ptr, (size)); \
1883 arena_get2(arena
*a_tsd
, size_t size
)
1885 arena_get2(a_tsd
, size
) arena
*a_tsd
; size_t size
;
1892 unsigned long misalign
;
1895 a
= a_tsd
= &main_arena
;
1899 /* This can only happen while initializing the new arena. */
1900 (void)mutex_lock(&main_arena
.mutex
);
1901 THREAD_STAT(++(main_arena
.stat_lock_wait
));
1906 /* Check the global, circularly linked list for available arenas. */
1908 if(!mutex_trylock(&a
->mutex
)) {
1909 THREAD_STAT(++(a
->stat_lock_loop
));
1910 tsd_setspecific(arena_key
, (Void_t
*)a
);
1914 } while(a
!= a_tsd
);
1916 /* Nothing immediately available, so generate a new arena. */
1917 h
= new_heap(size
+ (sizeof(*h
) + sizeof(*a
) + MALLOC_ALIGNMENT
));
1920 a
= h
->ar_ptr
= (arena
*)(h
+1);
1921 for(i
=0; i
<NAV
; i
++)
1925 tsd_setspecific(arena_key
, (Void_t
*)a
);
1926 mutex_init(&a
->mutex
);
1927 i
= mutex_lock(&a
->mutex
); /* remember result */
1929 /* Set up the top chunk, with proper alignment. */
1930 ptr
= (char *)(a
+ 1);
1931 misalign
= (unsigned long)chunk2mem(ptr
) & MALLOC_ALIGN_MASK
;
1933 ptr
+= MALLOC_ALIGNMENT
- misalign
;
1934 top(a
) = (mchunkptr
)ptr
;
1935 set_head(top(a
), (((char*)h
+ h
->size
) - ptr
) | PREV_INUSE
);
1937 /* Add the new arena to the list. */
1938 (void)mutex_lock(&list_lock
);
1939 a
->next
= main_arena
.next
;
1940 main_arena
.next
= a
;
1941 (void)mutex_unlock(&list_lock
);
1943 if(i
) /* locking failed; keep arena for further attempts later */
1946 THREAD_STAT(++(a
->stat_lock_loop
));
1950 /* find the heap and corresponding arena for a given ptr */
1952 #define heap_for_ptr(ptr) \
1953 ((heap_info *)((unsigned long)(ptr) & ~(HEAP_MAX_SIZE-1)))
1954 #define arena_for_ptr(ptr) \
1955 (((mchunkptr)(ptr) < top(&main_arena) && (char *)(ptr) >= sbrk_base) ? \
1956 &main_arena : heap_for_ptr(ptr)->ar_ptr)
1958 #else /* defined(NO_THREADS) */
1960 /* Without concurrent threads, there is only one arena. */
1962 #define arena_get(ptr, sz) (ptr = &main_arena)
1963 #define arena_for_ptr(ptr) (&main_arena)
1965 #endif /* !defined(NO_THREADS) */
1977 These routines make a number of assertions about the states
1978 of data structures that should be true at all times. If any
1979 are not true, it's very likely that a user program has somehow
1980 trashed memory. (It's also possible that there is a coding error
1981 in malloc. In which case, please report it!)
1985 static void do_check_chunk(arena
*ar_ptr
, mchunkptr p
)
1987 static void do_check_chunk(ar_ptr
, p
) arena
*ar_ptr
; mchunkptr p
;
1990 INTERNAL_SIZE_T sz
= p
->size
& ~PREV_INUSE
;
1992 /* No checkable chunk is mmapped */
1993 assert(!chunk_is_mmapped(p
));
1996 if(ar_ptr
!= &main_arena
) {
1997 heap_info
*heap
= heap_for_ptr(p
);
1998 assert(heap
->ar_ptr
== ar_ptr
);
1999 assert((char *)p
+ sz
<= (char *)heap
+ heap
->size
);
2004 /* Check for legal address ... */
2005 assert((char*)p
>= sbrk_base
);
2006 if (p
!= top(ar_ptr
))
2007 assert((char*)p
+ sz
<= (char*)top(ar_ptr
));
2009 assert((char*)p
+ sz
<= sbrk_base
+ sbrked_mem
);
2015 static void do_check_free_chunk(arena
*ar_ptr
, mchunkptr p
)
2017 static void do_check_free_chunk(ar_ptr
, p
) arena
*ar_ptr
; mchunkptr p
;
2020 INTERNAL_SIZE_T sz
= p
->size
& ~PREV_INUSE
;
2021 mchunkptr next
= chunk_at_offset(p
, sz
);
2023 do_check_chunk(ar_ptr
, p
);
2025 /* Check whether it claims to be free ... */
2028 /* Must have OK size and fields */
2029 assert((long)sz
>= (long)MINSIZE
);
2030 assert((sz
& MALLOC_ALIGN_MASK
) == 0);
2031 assert(aligned_OK(chunk2mem(p
)));
2032 /* ... matching footer field */
2033 assert(next
->prev_size
== sz
);
2034 /* ... and is fully consolidated */
2035 assert(prev_inuse(p
));
2036 assert (next
== top(ar_ptr
) || inuse(next
));
2038 /* ... and has minimally sane links */
2039 assert(p
->fd
->bk
== p
);
2040 assert(p
->bk
->fd
== p
);
2044 static void do_check_inuse_chunk(arena
*ar_ptr
, mchunkptr p
)
2046 static void do_check_inuse_chunk(ar_ptr
, p
) arena
*ar_ptr
; mchunkptr p
;
2049 mchunkptr next
= next_chunk(p
);
2050 do_check_chunk(ar_ptr
, p
);
2052 /* Check whether it claims to be in use ... */
2055 /* ... whether its size is OK (it might be a fencepost) ... */
2056 assert(chunksize(p
) >= MINSIZE
|| next
->size
== (0|PREV_INUSE
));
2058 /* ... and is surrounded by OK chunks.
2059 Since more things can be checked with free chunks than inuse ones,
2060 if an inuse chunk borders them and debug is on, it's worth doing them.
2064 mchunkptr prv
= prev_chunk(p
);
2065 assert(next_chunk(prv
) == p
);
2066 do_check_free_chunk(ar_ptr
, prv
);
2068 if (next
== top(ar_ptr
))
2070 assert(prev_inuse(next
));
2071 assert(chunksize(next
) >= MINSIZE
);
2073 else if (!inuse(next
))
2074 do_check_free_chunk(ar_ptr
, next
);
2079 static void do_check_malloced_chunk(arena
*ar_ptr
,
2080 mchunkptr p
, INTERNAL_SIZE_T s
)
2082 static void do_check_malloced_chunk(ar_ptr
, p
, s
)
2083 arena
*ar_ptr
; mchunkptr p
; INTERNAL_SIZE_T s
;
2086 INTERNAL_SIZE_T sz
= p
->size
& ~PREV_INUSE
;
2089 do_check_inuse_chunk(ar_ptr
, p
);
2091 /* Legal size ... */
2092 assert((long)sz
>= (long)MINSIZE
);
2093 assert((sz
& MALLOC_ALIGN_MASK
) == 0);
2095 assert(room
< (long)MINSIZE
);
2097 /* ... and alignment */
2098 assert(aligned_OK(chunk2mem(p
)));
2101 /* ... and was allocated at front of an available chunk */
2102 assert(prev_inuse(p
));
2107 #define check_free_chunk(A,P) do_check_free_chunk(A,P)
2108 #define check_inuse_chunk(A,P) do_check_inuse_chunk(A,P)
2109 #define check_chunk(A,P) do_check_chunk(A,P)
2110 #define check_malloced_chunk(A,P,N) do_check_malloced_chunk(A,P,N)
2112 #define check_free_chunk(A,P)
2113 #define check_inuse_chunk(A,P)
2114 #define check_chunk(A,P)
2115 #define check_malloced_chunk(A,P,N)
2121 Macro-based internal utilities
2126 Linking chunks in bin lists.
2127 Call these only with variables, not arbitrary expressions, as arguments.
2131 Place chunk p of size s in its bin, in size order,
2132 putting it ahead of others of same size.
2136 #define frontlink(A, P, S, IDX, BK, FD) \
2138 if (S < MAX_SMALLBIN_SIZE) \
2140 IDX = smallbin_index(S); \
2141 mark_binblock(A, IDX); \
2142 BK = bin_at(A, IDX); \
2146 FD->bk = BK->fd = P; \
2150 IDX = bin_index(S); \
2151 BK = bin_at(A, IDX); \
2153 if (FD == BK) mark_binblock(A, IDX); \
2156 while (FD != BK && S < chunksize(FD)) FD = FD->fd; \
2161 FD->bk = BK->fd = P; \
2166 /* take a chunk off a list */
2168 #define unlink(P, BK, FD) \
2176 /* Place p as the last remainder */
2178 #define link_last_remainder(A, P) \
2180 last_remainder(A)->fd = last_remainder(A)->bk = P; \
2181 P->fd = P->bk = last_remainder(A); \
2184 /* Clear the last_remainder bin */
2186 #define clear_last_remainder(A) \
2187 (last_remainder(A)->fd = last_remainder(A)->bk = last_remainder(A))
2194 Extend the top-most chunk by obtaining memory from system.
2195 Main interface to sbrk (but see also malloc_trim).
2199 static void malloc_extend_top(arena
*ar_ptr
, INTERNAL_SIZE_T nb
)
2201 static void malloc_extend_top(ar_ptr
, nb
) arena
*ar_ptr
; INTERNAL_SIZE_T nb
;
2204 unsigned long pagesz
= malloc_getpagesize
;
2205 mchunkptr old_top
= top(ar_ptr
); /* Record state of old top */
2206 INTERNAL_SIZE_T old_top_size
= chunksize(old_top
);
2207 INTERNAL_SIZE_T top_size
; /* new size of top chunk */
2210 if(ar_ptr
== &main_arena
) {
2213 char* brk
; /* return value from sbrk */
2214 INTERNAL_SIZE_T front_misalign
; /* unusable bytes at front of sbrked space */
2215 INTERNAL_SIZE_T correction
; /* bytes for 2nd sbrk call */
2216 char* new_brk
; /* return of 2nd sbrk call */
2217 char* old_end
= (char*)(chunk_at_offset(old_top
, old_top_size
));
2219 /* Pad request with top_pad plus minimal overhead */
2220 INTERNAL_SIZE_T sbrk_size
= nb
+ top_pad
+ MINSIZE
;
2222 /* If not the first time through, round to preserve page boundary */
2223 /* Otherwise, we need to correct to a page size below anyway. */
2224 /* (We also correct below if an intervening foreign sbrk call.) */
2226 if (sbrk_base
!= (char*)(-1))
2227 sbrk_size
= (sbrk_size
+ (pagesz
- 1)) & ~(pagesz
- 1);
2229 brk
= (char*)(MORECORE (sbrk_size
));
2231 /* Fail if sbrk failed or if a foreign sbrk call killed our space */
2232 if (brk
== (char*)(MORECORE_FAILURE
) ||
2233 (brk
< old_end
&& old_top
!= initial_top(&main_arena
)))
2236 #if defined(_LIBC) || defined(MALLOC_HOOKS)
2237 /* Call the `morecore' hook if necessary. */
2238 if (__after_morecore_hook
)
2239 (*__after_morecore_hook
) ();
2242 sbrked_mem
+= sbrk_size
;
2244 if (brk
== old_end
) { /* can just add bytes to current top */
2245 top_size
= sbrk_size
+ old_top_size
;
2246 set_head(old_top
, top_size
| PREV_INUSE
);
2247 old_top
= 0; /* don't free below */
2249 if (sbrk_base
== (char*)(-1)) /* First time through. Record base */
2252 /* Someone else called sbrk(). Count those bytes as sbrked_mem. */
2253 sbrked_mem
+= brk
- (char*)old_end
;
2255 /* Guarantee alignment of first new chunk made from this space */
2256 front_misalign
= (unsigned long)chunk2mem(brk
) & MALLOC_ALIGN_MASK
;
2257 if (front_misalign
> 0) {
2258 correction
= (MALLOC_ALIGNMENT
) - front_misalign
;
2263 /* Guarantee the next brk will be at a page boundary */
2264 correction
+= pagesz
- ((unsigned long)(brk
+ sbrk_size
) & (pagesz
- 1));
2266 /* Allocate correction */
2267 new_brk
= (char*)(MORECORE (correction
));
2268 if (new_brk
== (char*)(MORECORE_FAILURE
)) return;
2270 #if defined(_LIBC) || defined(MALLOC_HOOKS)
2271 /* Call the `morecore' hook if necessary. */
2272 if (__after_morecore_hook
)
2273 (*__after_morecore_hook
) ();
2276 sbrked_mem
+= correction
;
2278 top(&main_arena
) = (mchunkptr
)brk
;
2279 top_size
= new_brk
- brk
+ correction
;
2280 set_head(top(&main_arena
), top_size
| PREV_INUSE
);
2282 if (old_top
== initial_top(&main_arena
))
2283 old_top
= 0; /* don't free below */
2286 if ((unsigned long)sbrked_mem
> (unsigned long)max_sbrked_mem
)
2287 max_sbrked_mem
= sbrked_mem
;
2289 if ((unsigned long)(mmapped_mem
+ sbrked_mem
) >
2290 (unsigned long)max_total_mem
)
2291 max_total_mem
= mmapped_mem
+ sbrked_mem
;
2295 } else { /* ar_ptr != &main_arena */
2296 heap_info
*old_heap
, *heap
;
2297 size_t old_heap_size
;
2299 if(old_top_size
< MINSIZE
) /* this should never happen */
2302 /* First try to extend the current heap. */
2303 if(MINSIZE
+ nb
<= old_top_size
)
2305 old_heap
= heap_for_ptr(old_top
);
2306 old_heap_size
= old_heap
->size
;
2307 if(grow_heap(old_heap
, MINSIZE
+ nb
- old_top_size
) == 0) {
2308 ar_ptr
->size
+= old_heap
->size
- old_heap_size
;
2309 top_size
= ((char *)old_heap
+ old_heap
->size
) - (char *)old_top
;
2310 set_head(old_top
, top_size
| PREV_INUSE
);
2314 /* A new heap must be created. */
2315 heap
= new_heap(nb
+ (MINSIZE
+ sizeof(*heap
)));
2318 heap
->ar_ptr
= ar_ptr
;
2319 heap
->prev
= old_heap
;
2320 ar_ptr
->size
+= heap
->size
;
2322 /* Set up the new top, so we can safely use chunk_free() below. */
2323 top(ar_ptr
) = chunk_at_offset(heap
, sizeof(*heap
));
2324 top_size
= heap
->size
- sizeof(*heap
);
2325 set_head(top(ar_ptr
), top_size
| PREV_INUSE
);
2327 #endif /* !defined(NO_THREADS) */
2329 /* We always land on a page boundary */
2330 assert(((unsigned long)((char*)top(ar_ptr
) + top_size
) & (pagesz
-1)) == 0);
2332 /* Setup fencepost and free the old top chunk. */
2334 /* The fencepost takes at least MINSIZE bytes, because it might
2335 become the top chunk again later. Note that a footer is set
2336 up, too, although the chunk is marked in use. */
2337 old_top_size
-= MINSIZE
;
2338 set_head(chunk_at_offset(old_top
, old_top_size
+ 2*SIZE_SZ
), 0|PREV_INUSE
);
2339 if(old_top_size
>= MINSIZE
) {
2340 set_head(chunk_at_offset(old_top
, old_top_size
), (2*SIZE_SZ
)|PREV_INUSE
);
2341 set_foot(chunk_at_offset(old_top
, old_top_size
), (2*SIZE_SZ
));
2342 set_head_size(old_top
, old_top_size
);
2343 chunk_free(ar_ptr
, old_top
);
2345 set_head(old_top
, (old_top_size
+ 2*SIZE_SZ
)|PREV_INUSE
);
2346 set_foot(old_top
, (old_top_size
+ 2*SIZE_SZ
));
2354 /* Main public routines */
2360 The requested size is first converted into a usable form, `nb'.
2361 This currently means to add 4 bytes overhead plus possibly more to
2362 obtain 8-byte alignment and/or to obtain a size of at least
2363 MINSIZE (currently 16, 24, or 32 bytes), the smallest allocatable
2364 size. (All fits are considered `exact' if they are within MINSIZE
2367 From there, the first successful of the following steps is taken:
2369 1. The bin corresponding to the request size is scanned, and if
2370 a chunk of exactly the right size is found, it is taken.
2372 2. The most recently remaindered chunk is used if it is big
2373 enough. This is a form of (roving) first fit, used only in
2374 the absence of exact fits. Runs of consecutive requests use
2375 the remainder of the chunk used for the previous such request
2376 whenever possible. This limited use of a first-fit style
2377 allocation strategy tends to give contiguous chunks
2378 coextensive lifetimes, which improves locality and can reduce
2379 fragmentation in the long run.
2381 3. Other bins are scanned in increasing size order, using a
2382 chunk big enough to fulfill the request, and splitting off
2383 any remainder. This search is strictly by best-fit; i.e.,
2384 the smallest (with ties going to approximately the least
2385 recently used) chunk that fits is selected.
2387 4. If large enough, the chunk bordering the end of memory
2388 (`top') is split off. (This use of `top' is in accord with
2389 the best-fit search rule. In effect, `top' is treated as
2390 larger (and thus less well fitting) than any other available
2391 chunk since it can be extended to be as large as necessary
2392 (up to system limitations).
2394 5. If the request size meets the mmap threshold and the
2395 system supports mmap, and there are few enough currently
2396 allocated mmapped regions, and a call to mmap succeeds,
2397 the request is allocated via direct memory mapping.
2399 6. Otherwise, the top of memory is extended by
2400 obtaining more space from the system (normally using sbrk,
2401 but definable to anything else via the MORECORE macro).
2402 Memory is gathered from the system (in system page-sized
2403 units) in a way that allows chunks obtained across different
2404 sbrk calls to be consolidated, but does not require
2405 contiguous memory. Thus, it should be safe to intersperse
2406 mallocs with other sbrk calls.
2409 All allocations are made from the the `lowest' part of any found
2410 chunk. (The implementation invariant is that prev_inuse is
2411 always true of any allocated chunk; i.e., that each allocated
2412 chunk borders either a previously allocated and still in-use chunk,
2413 or the base of its memory arena.)
2418 Void_t
* mALLOc(size_t bytes
)
2420 Void_t
* mALLOc(bytes
) size_t bytes
;
2424 INTERNAL_SIZE_T nb
; /* padded request size */
2427 #if defined(_LIBC) || defined(MALLOC_HOOKS)
2428 if (__malloc_hook
!= NULL
) {
2431 result
= (*__malloc_hook
)(bytes
);
2436 nb
= request2size(bytes
);
2437 arena_get(ar_ptr
, nb
);
2440 victim
= chunk_alloc(ar_ptr
, nb
);
2441 (void)mutex_unlock(&ar_ptr
->mutex
);
2443 /* Maybe the failure is due to running out of mmapped areas. */
2444 if(ar_ptr
!= &main_arena
) {
2445 (void)mutex_lock(&main_arena
.mutex
);
2446 victim
= chunk_alloc(&main_arena
, nb
);
2447 (void)mutex_unlock(&main_arena
.mutex
);
2449 if(!victim
) return 0;
2451 return chunk2mem(victim
);
2456 chunk_alloc(arena
*ar_ptr
, INTERNAL_SIZE_T nb
)
2458 chunk_alloc(ar_ptr
, nb
) arena
*ar_ptr
; INTERNAL_SIZE_T nb
;
2461 mchunkptr victim
; /* inspected/selected chunk */
2462 INTERNAL_SIZE_T victim_size
; /* its size */
2463 int idx
; /* index for bin traversal */
2464 mbinptr bin
; /* associated bin */
2465 mchunkptr remainder
; /* remainder from a split */
2466 long remainder_size
; /* its size */
2467 int remainder_index
; /* its bin index */
2468 unsigned long block
; /* block traverser bit */
2469 int startidx
; /* first bin of a traversed block */
2470 mchunkptr fwd
; /* misc temp for linking */
2471 mchunkptr bck
; /* misc temp for linking */
2472 mbinptr q
; /* misc temp */
2475 /* Check for exact match in a bin */
2477 if (is_small_request(nb
)) /* Faster version for small requests */
2479 idx
= smallbin_index(nb
);
2481 /* No traversal or size check necessary for small bins. */
2483 q
= bin_at(ar_ptr
, idx
);
2486 /* Also scan the next one, since it would have a remainder < MINSIZE */
2494 victim_size
= chunksize(victim
);
2495 unlink(victim
, bck
, fwd
);
2496 set_inuse_bit_at_offset(victim
, victim_size
);
2497 check_malloced_chunk(ar_ptr
, victim
, nb
);
2501 idx
+= 2; /* Set for bin scan below. We've already scanned 2 bins. */
2506 idx
= bin_index(nb
);
2507 bin
= bin_at(ar_ptr
, idx
);
2509 for (victim
= last(bin
); victim
!= bin
; victim
= victim
->bk
)
2511 victim_size
= chunksize(victim
);
2512 remainder_size
= victim_size
- nb
;
2514 if (remainder_size
>= (long)MINSIZE
) /* too big */
2516 --idx
; /* adjust to rescan below after checking last remainder */
2520 else if (remainder_size
>= 0) /* exact fit */
2522 unlink(victim
, bck
, fwd
);
2523 set_inuse_bit_at_offset(victim
, victim_size
);
2524 check_malloced_chunk(ar_ptr
, victim
, nb
);
2533 /* Try to use the last split-off remainder */
2535 if ( (victim
= last_remainder(ar_ptr
)->fd
) != last_remainder(ar_ptr
))
2537 victim_size
= chunksize(victim
);
2538 remainder_size
= victim_size
- nb
;
2540 if (remainder_size
>= (long)MINSIZE
) /* re-split */
2542 remainder
= chunk_at_offset(victim
, nb
);
2543 set_head(victim
, nb
| PREV_INUSE
);
2544 link_last_remainder(ar_ptr
, remainder
);
2545 set_head(remainder
, remainder_size
| PREV_INUSE
);
2546 set_foot(remainder
, remainder_size
);
2547 check_malloced_chunk(ar_ptr
, victim
, nb
);
2551 clear_last_remainder(ar_ptr
);
2553 if (remainder_size
>= 0) /* exhaust */
2555 set_inuse_bit_at_offset(victim
, victim_size
);
2556 check_malloced_chunk(ar_ptr
, victim
, nb
);
2560 /* Else place in bin */
2562 frontlink(ar_ptr
, victim
, victim_size
, remainder_index
, bck
, fwd
);
2566 If there are any possibly nonempty big-enough blocks,
2567 search for best fitting chunk by scanning bins in blockwidth units.
2570 if ( (block
= idx2binblock(idx
)) <= binblocks(ar_ptr
))
2573 /* Get to the first marked block */
2575 if ( (block
& binblocks(ar_ptr
)) == 0)
2577 /* force to an even block boundary */
2578 idx
= (idx
& ~(BINBLOCKWIDTH
- 1)) + BINBLOCKWIDTH
;
2580 while ((block
& binblocks(ar_ptr
)) == 0)
2582 idx
+= BINBLOCKWIDTH
;
2587 /* For each possibly nonempty block ... */
2590 startidx
= idx
; /* (track incomplete blocks) */
2591 q
= bin
= bin_at(ar_ptr
, idx
);
2593 /* For each bin in this block ... */
2596 /* Find and use first big enough chunk ... */
2598 for (victim
= last(bin
); victim
!= bin
; victim
= victim
->bk
)
2600 victim_size
= chunksize(victim
);
2601 remainder_size
= victim_size
- nb
;
2603 if (remainder_size
>= (long)MINSIZE
) /* split */
2605 remainder
= chunk_at_offset(victim
, nb
);
2606 set_head(victim
, nb
| PREV_INUSE
);
2607 unlink(victim
, bck
, fwd
);
2608 link_last_remainder(ar_ptr
, remainder
);
2609 set_head(remainder
, remainder_size
| PREV_INUSE
);
2610 set_foot(remainder
, remainder_size
);
2611 check_malloced_chunk(ar_ptr
, victim
, nb
);
2615 else if (remainder_size
>= 0) /* take */
2617 set_inuse_bit_at_offset(victim
, victim_size
);
2618 unlink(victim
, bck
, fwd
);
2619 check_malloced_chunk(ar_ptr
, victim
, nb
);
2625 bin
= next_bin(bin
);
2627 } while ((++idx
& (BINBLOCKWIDTH
- 1)) != 0);
2629 /* Clear out the block bit. */
2631 do /* Possibly backtrack to try to clear a partial block */
2633 if ((startidx
& (BINBLOCKWIDTH
- 1)) == 0)
2635 binblocks(ar_ptr
) &= ~block
;
2640 } while (first(q
) == q
);
2642 /* Get to the next possibly nonempty block */
2644 if ( (block
<<= 1) <= binblocks(ar_ptr
) && (block
!= 0) )
2646 while ((block
& binblocks(ar_ptr
)) == 0)
2648 idx
+= BINBLOCKWIDTH
;
2658 /* Try to use top chunk */
2660 /* Require that there be a remainder, ensuring top always exists */
2661 if ( (remainder_size
= chunksize(top(ar_ptr
)) - nb
) < (long)MINSIZE
)
2665 /* If big and would otherwise need to extend, try to use mmap instead */
2666 if ((unsigned long)nb
>= (unsigned long)mmap_threshold
&&
2667 (victim
= mmap_chunk(nb
)) != 0)
2672 malloc_extend_top(ar_ptr
, nb
);
2673 if ((remainder_size
= chunksize(top(ar_ptr
)) - nb
) < (long)MINSIZE
)
2674 return 0; /* propagate failure */
2677 victim
= top(ar_ptr
);
2678 set_head(victim
, nb
| PREV_INUSE
);
2679 top(ar_ptr
) = chunk_at_offset(victim
, nb
);
2680 set_head(top(ar_ptr
), remainder_size
| PREV_INUSE
);
2681 check_malloced_chunk(ar_ptr
, victim
, nb
);
2695 1. free(0) has no effect.
2697 2. If the chunk was allocated via mmap, it is released via munmap().
2699 3. If a returned chunk borders the current high end of memory,
2700 it is consolidated into the top, and if the total unused
2701 topmost memory exceeds the trim threshold, malloc_trim is
2704 4. Other chunks are consolidated as they arrive, and
2705 placed in corresponding bins. (This includes the case of
2706 consolidating with the current `last_remainder').
2712 void fREe(Void_t
* mem
)
2714 void fREe(mem
) Void_t
* mem
;
2718 mchunkptr p
; /* chunk corresponding to mem */
2720 #if defined(_LIBC) || defined(MALLOC_HOOKS)
2721 if (__free_hook
!= NULL
) {
2722 (*__free_hook
)(mem
);
2727 if (mem
== 0) /* free(0) has no effect */
2733 if (chunk_is_mmapped(p
)) /* release mmapped memory. */
2740 ar_ptr
= arena_for_ptr(p
);
2742 if(!mutex_trylock(&ar_ptr
->mutex
))
2743 ++(ar_ptr
->stat_lock_direct
);
2745 (void)mutex_lock(&ar_ptr
->mutex
);
2746 ++(ar_ptr
->stat_lock_wait
);
2749 (void)mutex_lock(&ar_ptr
->mutex
);
2751 chunk_free(ar_ptr
, p
);
2752 (void)mutex_unlock(&ar_ptr
->mutex
);
2757 chunk_free(arena
*ar_ptr
, mchunkptr p
)
2759 chunk_free(ar_ptr
, p
) arena
*ar_ptr
; mchunkptr p
;
2762 INTERNAL_SIZE_T hd
= p
->size
; /* its head field */
2763 INTERNAL_SIZE_T sz
; /* its size */
2764 int idx
; /* its bin index */
2765 mchunkptr next
; /* next contiguous chunk */
2766 INTERNAL_SIZE_T nextsz
; /* its size */
2767 INTERNAL_SIZE_T prevsz
; /* size of previous contiguous chunk */
2768 mchunkptr bck
; /* misc temp for linking */
2769 mchunkptr fwd
; /* misc temp for linking */
2770 int islr
; /* track whether merging with last_remainder */
2772 check_inuse_chunk(ar_ptr
, p
);
2774 sz
= hd
& ~PREV_INUSE
;
2775 next
= chunk_at_offset(p
, sz
);
2776 nextsz
= chunksize(next
);
2778 if (next
== top(ar_ptr
)) /* merge with top */
2782 if (!(hd
& PREV_INUSE
)) /* consolidate backward */
2784 prevsz
= p
->prev_size
;
2785 p
= chunk_at_offset(p
, -prevsz
);
2787 unlink(p
, bck
, fwd
);
2790 set_head(p
, sz
| PREV_INUSE
);
2794 if(ar_ptr
== &main_arena
) {
2796 if ((unsigned long)(sz
) >= (unsigned long)trim_threshold
)
2800 heap_info
*heap
= heap_for_ptr(p
);
2802 assert(heap
->ar_ptr
== ar_ptr
);
2804 /* Try to get rid of completely empty heaps, if possible. */
2805 if((unsigned long)(sz
) >= (unsigned long)trim_threshold
||
2806 p
== chunk_at_offset(heap
, sizeof(*heap
)))
2807 heap_trim(heap
, top_pad
);
2815 if (!(hd
& PREV_INUSE
)) /* consolidate backward */
2817 prevsz
= p
->prev_size
;
2818 p
= chunk_at_offset(p
, -prevsz
);
2821 if (p
->fd
== last_remainder(ar_ptr
)) /* keep as last_remainder */
2824 unlink(p
, bck
, fwd
);
2827 if (!(inuse_bit_at_offset(next
, nextsz
))) /* consolidate forward */
2831 if (!islr
&& next
->fd
== last_remainder(ar_ptr
))
2832 /* re-insert last_remainder */
2835 link_last_remainder(ar_ptr
, p
);
2838 unlink(next
, bck
, fwd
);
2840 next
= chunk_at_offset(p
, sz
);
2843 set_head(next
, nextsz
); /* clear inuse bit */
2845 set_head(p
, sz
| PREV_INUSE
);
2846 next
->prev_size
= sz
;
2848 frontlink(ar_ptr
, p
, sz
, idx
, bck
, fwd
);
2851 /* Check whether the heap containing top can go away now. */
2852 if(next
->size
< MINSIZE
&&
2853 (unsigned long)sz
> trim_threshold
&&
2854 ar_ptr
!= &main_arena
) { /* fencepost */
2855 heap_info
* heap
= heap_for_ptr(top(ar_ptr
));
2857 if(top(ar_ptr
) == chunk_at_offset(heap
, sizeof(*heap
)) &&
2858 heap
->prev
== heap_for_ptr(p
))
2859 heap_trim(heap
, top_pad
);
2872 Chunks that were obtained via mmap cannot be extended or shrunk
2873 unless HAVE_MREMAP is defined, in which case mremap is used.
2874 Otherwise, if their reallocation is for additional space, they are
2875 copied. If for less, they are just left alone.
2877 Otherwise, if the reallocation is for additional space, and the
2878 chunk can be extended, it is, else a malloc-copy-free sequence is
2879 taken. There are several different ways that a chunk could be
2880 extended. All are tried:
2882 * Extending forward into following adjacent free chunk.
2883 * Shifting backwards, joining preceding adjacent space
2884 * Both shifting backwards and extending forward.
2885 * Extending into newly sbrked space
2887 Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a
2888 size argument of zero (re)allocates a minimum-sized chunk.
2890 If the reallocation is for less space, and the new request is for
2891 a `small' (<512 bytes) size, then the newly unused space is lopped
2894 The old unix realloc convention of allowing the last-free'd chunk
2895 to be used as an argument to realloc is no longer supported.
2896 I don't know of any programs still relying on this feature,
2897 and allowing it would also allow too many other incorrect
2898 usages of realloc to be sensible.
2905 Void_t
* rEALLOc(Void_t
* oldmem
, size_t bytes
)
2907 Void_t
* rEALLOc(oldmem
, bytes
) Void_t
* oldmem
; size_t bytes
;
2911 INTERNAL_SIZE_T nb
; /* padded request size */
2913 mchunkptr oldp
; /* chunk corresponding to oldmem */
2914 INTERNAL_SIZE_T oldsize
; /* its size */
2916 mchunkptr newp
; /* chunk to return */
2918 #if defined(_LIBC) || defined(MALLOC_HOOKS)
2919 if (__realloc_hook
!= NULL
) {
2922 result
= (*__realloc_hook
)(oldmem
, bytes
);
2927 #ifdef REALLOC_ZERO_BYTES_FREES
2928 if (bytes
== 0) { fREe(oldmem
); return 0; }
2931 /* realloc of null is supposed to be same as malloc */
2932 if (oldmem
== 0) return mALLOc(bytes
);
2934 oldp
= mem2chunk(oldmem
);
2935 oldsize
= chunksize(oldp
);
2937 nb
= request2size(bytes
);
2940 if (chunk_is_mmapped(oldp
))
2945 newp
= mremap_chunk(oldp
, nb
);
2946 if(newp
) return chunk2mem(newp
);
2948 /* Note the extra SIZE_SZ overhead. */
2949 if(oldsize
- SIZE_SZ
>= nb
) return oldmem
; /* do nothing */
2950 /* Must alloc, copy, free. */
2951 newmem
= mALLOc(bytes
);
2952 if (newmem
== 0) return 0; /* propagate failure */
2953 MALLOC_COPY(newmem
, oldmem
, oldsize
- 2*SIZE_SZ
);
2959 ar_ptr
= arena_for_ptr(oldp
);
2961 if(!mutex_trylock(&ar_ptr
->mutex
))
2962 ++(ar_ptr
->stat_lock_direct
);
2964 (void)mutex_lock(&ar_ptr
->mutex
);
2965 ++(ar_ptr
->stat_lock_wait
);
2968 (void)mutex_lock(&ar_ptr
->mutex
);
2972 /* As in malloc(), remember this arena for the next allocation. */
2973 tsd_setspecific(arena_key
, (Void_t
*)ar_ptr
);
2976 newp
= chunk_realloc(ar_ptr
, oldp
, oldsize
, nb
);
2978 (void)mutex_unlock(&ar_ptr
->mutex
);
2979 return newp
? chunk2mem(newp
) : NULL
;
2984 chunk_realloc(arena
* ar_ptr
, mchunkptr oldp
, INTERNAL_SIZE_T oldsize
,
2987 chunk_realloc(ar_ptr
, oldp
, oldsize
, nb
)
2988 arena
* ar_ptr
; mchunkptr oldp
; INTERNAL_SIZE_T oldsize
, nb
;
2991 mchunkptr newp
= oldp
; /* chunk to return */
2992 INTERNAL_SIZE_T newsize
= oldsize
; /* its size */
2994 mchunkptr next
; /* next contiguous chunk after oldp */
2995 INTERNAL_SIZE_T nextsize
; /* its size */
2997 mchunkptr prev
; /* previous contiguous chunk before oldp */
2998 INTERNAL_SIZE_T prevsize
; /* its size */
3000 mchunkptr remainder
; /* holds split off extra space from newp */
3001 INTERNAL_SIZE_T remainder_size
; /* its size */
3003 mchunkptr bck
; /* misc temp for linking */
3004 mchunkptr fwd
; /* misc temp for linking */
3006 check_inuse_chunk(ar_ptr
, oldp
);
3008 if ((long)(oldsize
) < (long)(nb
))
3011 /* Try expanding forward */
3013 next
= chunk_at_offset(oldp
, oldsize
);
3014 if (next
== top(ar_ptr
) || !inuse(next
))
3016 nextsize
= chunksize(next
);
3018 /* Forward into top only if a remainder */
3019 if (next
== top(ar_ptr
))
3021 if ((long)(nextsize
+ newsize
) >= (long)(nb
+ MINSIZE
))
3023 newsize
+= nextsize
;
3024 top(ar_ptr
) = chunk_at_offset(oldp
, nb
);
3025 set_head(top(ar_ptr
), (newsize
- nb
) | PREV_INUSE
);
3026 set_head_size(oldp
, nb
);
3031 /* Forward into next chunk */
3032 else if (((long)(nextsize
+ newsize
) >= (long)(nb
)))
3034 unlink(next
, bck
, fwd
);
3035 newsize
+= nextsize
;
3045 /* Try shifting backwards. */
3047 if (!prev_inuse(oldp
))
3049 prev
= prev_chunk(oldp
);
3050 prevsize
= chunksize(prev
);
3052 /* try forward + backward first to save a later consolidation */
3057 if (next
== top(ar_ptr
))
3059 if ((long)(nextsize
+ prevsize
+ newsize
) >= (long)(nb
+ MINSIZE
))
3061 unlink(prev
, bck
, fwd
);
3063 newsize
+= prevsize
+ nextsize
;
3064 MALLOC_COPY(chunk2mem(newp
), chunk2mem(oldp
), oldsize
- SIZE_SZ
);
3065 top(ar_ptr
) = chunk_at_offset(newp
, nb
);
3066 set_head(top(ar_ptr
), (newsize
- nb
) | PREV_INUSE
);
3067 set_head_size(newp
, nb
);
3072 /* into next chunk */
3073 else if (((long)(nextsize
+ prevsize
+ newsize
) >= (long)(nb
)))
3075 unlink(next
, bck
, fwd
);
3076 unlink(prev
, bck
, fwd
);
3078 newsize
+= nextsize
+ prevsize
;
3079 MALLOC_COPY(chunk2mem(newp
), chunk2mem(oldp
), oldsize
- SIZE_SZ
);
3085 if (prev
!= 0 && (long)(prevsize
+ newsize
) >= (long)nb
)
3087 unlink(prev
, bck
, fwd
);
3089 newsize
+= prevsize
;
3090 MALLOC_COPY(chunk2mem(newp
), chunk2mem(oldp
), oldsize
- SIZE_SZ
);
3097 newp
= chunk_alloc (ar_ptr
, nb
);
3100 /* Maybe the failure is due to running out of mmapped areas. */
3101 if (ar_ptr
!= &main_arena
) {
3102 (void)mutex_lock(&main_arena
.mutex
);
3103 newp
= chunk_alloc(&main_arena
, nb
);
3104 (void)mutex_unlock(&main_arena
.mutex
);
3106 if (newp
== 0) /* propagate failure */
3110 /* Avoid copy if newp is next chunk after oldp. */
3111 /* (This can only happen when new chunk is sbrk'ed.) */
3113 if ( newp
== next_chunk(oldp
))
3115 newsize
+= chunksize(newp
);
3120 /* Otherwise copy, free, and exit */
3121 MALLOC_COPY(chunk2mem(newp
), chunk2mem(oldp
), oldsize
- SIZE_SZ
);
3122 chunk_free(ar_ptr
, oldp
);
3127 split
: /* split off extra room in old or expanded chunk */
3129 if (newsize
- nb
>= MINSIZE
) /* split off remainder */
3131 remainder
= chunk_at_offset(newp
, nb
);
3132 remainder_size
= newsize
- nb
;
3133 set_head_size(newp
, nb
);
3134 set_head(remainder
, remainder_size
| PREV_INUSE
);
3135 set_inuse_bit_at_offset(remainder
, remainder_size
);
3136 chunk_free(ar_ptr
, remainder
);
3140 set_head_size(newp
, newsize
);
3141 set_inuse_bit_at_offset(newp
, newsize
);
3144 check_inuse_chunk(ar_ptr
, newp
);
3155 memalign requests more than enough space from malloc, finds a spot
3156 within that chunk that meets the alignment request, and then
3157 possibly frees the leading and trailing space.
3159 The alignment argument must be a power of two. This property is not
3160 checked by memalign, so misuse may result in random runtime errors.
3162 8-byte alignment is guaranteed by normal malloc calls, so don't
3163 bother calling memalign with an argument of 8 or less.
3165 Overreliance on memalign is a sure way to fragment space.
3171 Void_t
* mEMALIGn(size_t alignment
, size_t bytes
)
3173 Void_t
* mEMALIGn(alignment
, bytes
) size_t alignment
; size_t bytes
;
3177 INTERNAL_SIZE_T nb
; /* padded request size */
3180 #if defined(_LIBC) || defined(MALLOC_HOOKS)
3181 if (__memalign_hook
!= NULL
) {
3184 result
= (*__memalign_hook
)(alignment
, bytes
);
3189 /* If need less alignment than we give anyway, just relay to malloc */
3191 if (alignment
<= MALLOC_ALIGNMENT
) return mALLOc(bytes
);
3193 /* Otherwise, ensure that it is at least a minimum chunk size */
3195 if (alignment
< MINSIZE
) alignment
= MINSIZE
;
3197 nb
= request2size(bytes
);
3198 arena_get(ar_ptr
, nb
+ alignment
+ MINSIZE
);
3201 p
= chunk_align(ar_ptr
, nb
, alignment
);
3202 (void)mutex_unlock(&ar_ptr
->mutex
);
3204 /* Maybe the failure is due to running out of mmapped areas. */
3205 if(ar_ptr
!= &main_arena
) {
3206 (void)mutex_lock(&main_arena
.mutex
);
3207 p
= chunk_align(&main_arena
, nb
, alignment
);
3208 (void)mutex_unlock(&main_arena
.mutex
);
3212 return chunk2mem(p
);
3217 chunk_align(arena
* ar_ptr
, INTERNAL_SIZE_T nb
, size_t alignment
)
3219 chunk_align(ar_ptr
, nb
, alignment
)
3220 arena
* ar_ptr
; INTERNAL_SIZE_T nb
; size_t alignment
;
3223 char* m
; /* memory returned by malloc call */
3224 mchunkptr p
; /* corresponding chunk */
3225 char* brk
; /* alignment point within p */
3226 mchunkptr newp
; /* chunk to return */
3227 INTERNAL_SIZE_T newsize
; /* its size */
3228 INTERNAL_SIZE_T leadsize
; /* leading space befor alignment point */
3229 mchunkptr remainder
; /* spare room at end to split off */
3230 long remainder_size
; /* its size */
3232 /* Call chunk_alloc with worst case padding to hit alignment. */
3233 p
= chunk_alloc(ar_ptr
, nb
+ alignment
+ MINSIZE
);
3235 return 0; /* propagate failure */
3239 if ((((unsigned long)(m
)) % alignment
) == 0) /* aligned */
3242 if(chunk_is_mmapped(p
)) {
3243 return p
; /* nothing more to do */
3247 else /* misaligned */
3250 Find an aligned spot inside chunk.
3251 Since we need to give back leading space in a chunk of at
3252 least MINSIZE, if the first calculation places us at
3253 a spot with less than MINSIZE leader, we can move to the
3254 next aligned spot -- we've allocated enough total room so that
3255 this is always possible.
3258 brk
= (char*)mem2chunk(((unsigned long)(m
+ alignment
- 1)) & -alignment
);
3259 if ((long)(brk
- (char*)(p
)) < (long)MINSIZE
) brk
+= alignment
;
3261 newp
= (mchunkptr
)brk
;
3262 leadsize
= brk
- (char*)(p
);
3263 newsize
= chunksize(p
) - leadsize
;
3266 if(chunk_is_mmapped(p
))
3268 newp
->prev_size
= p
->prev_size
+ leadsize
;
3269 set_head(newp
, newsize
|IS_MMAPPED
);
3274 /* give back leader, use the rest */
3276 set_head(newp
, newsize
| PREV_INUSE
);
3277 set_inuse_bit_at_offset(newp
, newsize
);
3278 set_head_size(p
, leadsize
);
3279 chunk_free(ar_ptr
, p
);
3282 assert (newsize
>=nb
&& (((unsigned long)(chunk2mem(p
))) % alignment
) == 0);
3285 /* Also give back spare room at the end */
3287 remainder_size
= chunksize(p
) - nb
;
3289 if (remainder_size
>= (long)MINSIZE
)
3291 remainder
= chunk_at_offset(p
, nb
);
3292 set_head(remainder
, remainder_size
| PREV_INUSE
);
3293 set_head_size(p
, nb
);
3294 chunk_free(ar_ptr
, remainder
);
3297 check_inuse_chunk(ar_ptr
, p
);
3305 valloc just invokes memalign with alignment argument equal
3306 to the page size of the system (or as near to this as can
3307 be figured out from all the includes/defines above.)
3311 Void_t
* vALLOc(size_t bytes
)
3313 Void_t
* vALLOc(bytes
) size_t bytes
;
3316 return mEMALIGn (malloc_getpagesize
, bytes
);
3320 pvalloc just invokes valloc for the nearest pagesize
3321 that will accommodate request
3326 Void_t
* pvALLOc(size_t bytes
)
3328 Void_t
* pvALLOc(bytes
) size_t bytes
;
3331 size_t pagesize
= malloc_getpagesize
;
3332 return mEMALIGn (pagesize
, (bytes
+ pagesize
- 1) & ~(pagesize
- 1));
3337 calloc calls chunk_alloc, then zeroes out the allocated chunk.
3342 Void_t
* cALLOc(size_t n
, size_t elem_size
)
3344 Void_t
* cALLOc(n
, elem_size
) size_t n
; size_t elem_size
;
3348 mchunkptr p
, oldtop
;
3349 INTERNAL_SIZE_T sz
, csz
, oldtopsize
;
3352 #if defined(_LIBC) || defined(MALLOC_HOOKS)
3353 if (__malloc_hook
!= NULL
) {
3355 mem
= (*__malloc_hook
)(sz
);
3361 while(sz
> 0) ((char*)mem
)[--sz
] = 0; /* rather inefficient */
3367 sz
= request2size(n
* elem_size
);
3368 arena_get(ar_ptr
, sz
);
3372 /* check if expand_top called, in which case don't need to clear */
3374 oldtop
= top(ar_ptr
);
3375 oldtopsize
= chunksize(top(ar_ptr
));
3377 p
= chunk_alloc (ar_ptr
, sz
);
3379 /* Only clearing follows, so we can unlock early. */
3380 (void)mutex_unlock(&ar_ptr
->mutex
);
3383 /* Maybe the failure is due to running out of mmapped areas. */
3384 if(ar_ptr
!= &main_arena
) {
3385 (void)mutex_lock(&main_arena
.mutex
);
3386 p
= chunk_alloc(&main_arena
, sz
);
3387 (void)mutex_unlock(&main_arena
.mutex
);
3389 if (p
== 0) return 0;
3393 /* Two optional cases in which clearing not necessary */
3396 if (chunk_is_mmapped(p
)) return mem
;
3402 if (p
== oldtop
&& csz
> oldtopsize
) {
3403 /* clear only the bytes from non-freshly-sbrked memory */
3408 MALLOC_ZERO(mem
, csz
- SIZE_SZ
);
3414 cfree just calls free. It is needed/defined on some systems
3415 that pair it with calloc, presumably for odd historical reasons.
3421 void cfree(Void_t
*mem
)
3423 void cfree(mem
) Void_t
*mem
;
3434 Malloc_trim gives memory back to the system (via negative
3435 arguments to sbrk) if there is unused memory at the `high' end of
3436 the malloc pool. You can call this after freeing large blocks of
3437 memory to potentially reduce the system-level memory requirements
3438 of a program. However, it cannot guarantee to reduce memory. Under
3439 some allocation patterns, some large free blocks of memory will be
3440 locked between two used chunks, so they cannot be given back to
3443 The `pad' argument to malloc_trim represents the amount of free
3444 trailing space to leave untrimmed. If this argument is zero,
3445 only the minimum amount of memory to maintain internal data
3446 structures will be left (one page or less). Non-zero arguments
3447 can be supplied to maintain enough trailing space to service
3448 future expected allocations without having to re-obtain memory
3451 Malloc_trim returns 1 if it actually released any memory, else 0.
3456 int mALLOC_TRIm(size_t pad
)
3458 int mALLOC_TRIm(pad
) size_t pad
;
3463 (void)mutex_lock(&main_arena
.mutex
);
3464 res
= main_trim(pad
);
3465 (void)mutex_unlock(&main_arena
.mutex
);
3469 /* Trim the main arena. */
3473 main_trim(size_t pad
)
3475 main_trim(pad
) size_t pad
;
3478 mchunkptr top_chunk
; /* The current top chunk */
3479 long top_size
; /* Amount of top-most memory */
3480 long extra
; /* Amount to release */
3481 char* current_brk
; /* address returned by pre-check sbrk call */
3482 char* new_brk
; /* address returned by negative sbrk call */
3484 unsigned long pagesz
= malloc_getpagesize
;
3486 top_chunk
= top(&main_arena
);
3487 top_size
= chunksize(top_chunk
);
3488 extra
= ((top_size
- pad
- MINSIZE
+ (pagesz
-1)) / pagesz
- 1) * pagesz
;
3490 if (extra
< (long)pagesz
) /* Not enough memory to release */
3493 /* Test to make sure no one else called sbrk */
3494 current_brk
= (char*)(MORECORE (0));
3495 if (current_brk
!= (char*)(top_chunk
) + top_size
)
3496 return 0; /* Apparently we don't own memory; must fail */
3498 new_brk
= (char*)(MORECORE (-extra
));
3500 #if defined(_LIBC) || defined(MALLOC_HOOKS)
3501 /* Call the `morecore' hook if necessary. */
3502 if (__after_morecore_hook
)
3503 (*__after_morecore_hook
) ();
3506 if (new_brk
== (char*)(MORECORE_FAILURE
)) { /* sbrk failed? */
3507 /* Try to figure out what we have */
3508 current_brk
= (char*)(MORECORE (0));
3509 top_size
= current_brk
- (char*)top_chunk
;
3510 if (top_size
>= (long)MINSIZE
) /* if not, we are very very dead! */
3512 sbrked_mem
= current_brk
- sbrk_base
;
3513 set_head(top_chunk
, top_size
| PREV_INUSE
);
3515 check_chunk(&main_arena
, top_chunk
);
3518 sbrked_mem
-= extra
;
3520 /* Success. Adjust top accordingly. */
3521 set_head(top_chunk
, (top_size
- extra
) | PREV_INUSE
);
3522 check_chunk(&main_arena
, top_chunk
);
3530 heap_trim(heap_info
*heap
, size_t pad
)
3532 heap_trim(heap
, pad
) heap_info
*heap
; size_t pad
;
3535 unsigned long pagesz
= malloc_getpagesize
;
3536 arena
*ar_ptr
= heap
->ar_ptr
;
3537 mchunkptr top_chunk
= top(ar_ptr
), p
, bck
, fwd
;
3538 heap_info
*prev_heap
;
3539 long new_size
, top_size
, extra
;
3541 /* Can this heap go away completely ? */
3542 while(top_chunk
== chunk_at_offset(heap
, sizeof(*heap
))) {
3543 prev_heap
= heap
->prev
;
3544 p
= chunk_at_offset(prev_heap
, prev_heap
->size
- (MINSIZE
-2*SIZE_SZ
));
3545 assert(p
->size
== (0|PREV_INUSE
)); /* must be fencepost */
3547 new_size
= chunksize(p
) + (MINSIZE
-2*SIZE_SZ
);
3548 assert(new_size
>0 && new_size
<(long)(2*MINSIZE
));
3550 new_size
+= p
->prev_size
;
3551 assert(new_size
>0 && new_size
<HEAP_MAX_SIZE
);
3552 if(new_size
+ (HEAP_MAX_SIZE
- prev_heap
->size
) < pad
+ MINSIZE
+ pagesz
)
3554 ar_ptr
->size
-= heap
->size
;
3557 if(!prev_inuse(p
)) { /* consolidate backward */
3559 unlink(p
, bck
, fwd
);
3561 assert(((unsigned long)((char*)p
+ new_size
) & (pagesz
-1)) == 0);
3562 assert( ((char*)p
+ new_size
) == ((char*)heap
+ heap
->size
) );
3563 top(ar_ptr
) = top_chunk
= p
;
3564 set_head(top_chunk
, new_size
| PREV_INUSE
);
3565 check_chunk(ar_ptr
, top_chunk
);
3567 top_size
= chunksize(top_chunk
);
3568 extra
= ((top_size
- pad
- MINSIZE
+ (pagesz
-1))/pagesz
- 1) * pagesz
;
3569 if(extra
< (long)pagesz
)
3571 /* Try to shrink. */
3572 if(grow_heap(heap
, -extra
) != 0)
3574 ar_ptr
->size
-= extra
;
3576 /* Success. Adjust top accordingly. */
3577 set_head(top_chunk
, (top_size
- extra
) | PREV_INUSE
);
3578 check_chunk(ar_ptr
, top_chunk
);
3589 This routine tells you how many bytes you can actually use in an
3590 allocated chunk, which may be more than you requested (although
3591 often not). You can use this many bytes without worrying about
3592 overwriting other allocated objects. Not a particularly great
3593 programming practice, but still sometimes useful.
3598 size_t mALLOC_USABLE_SIZe(Void_t
* mem
)
3600 size_t mALLOC_USABLE_SIZe(mem
) Void_t
* mem
;
3610 if(!chunk_is_mmapped(p
))
3612 if (!inuse(p
)) return 0;
3613 check_inuse_chunk(arena_for_ptr(mem
), p
);
3614 return chunksize(p
) - SIZE_SZ
;
3616 return chunksize(p
) - 2*SIZE_SZ
;
3623 /* Utility to update mallinfo for malloc_stats() and mallinfo() */
3627 malloc_update_mallinfo(arena
*ar_ptr
, struct mallinfo
*mi
)
3629 malloc_update_mallinfo(ar_ptr
, mi
) arena
*ar_ptr
; struct mallinfo
*mi
;
3638 INTERNAL_SIZE_T avail
;
3640 /* Initialize the memory. */
3641 memset (mi
, '\0', sizeof (struct mallinfo
));
3643 (void)mutex_lock(&ar_ptr
->mutex
);
3644 avail
= chunksize(top(ar_ptr
));
3645 navail
= ((long)(avail
) >= (long)MINSIZE
)? 1 : 0;
3647 for (i
= 1; i
< NAV
; ++i
)
3649 b
= bin_at(ar_ptr
, i
);
3650 for (p
= last(b
); p
!= b
; p
= p
->bk
)
3653 check_free_chunk(ar_ptr
, p
);
3654 for (q
= next_chunk(p
);
3655 q
!= top(ar_ptr
) && inuse(q
) && (long)chunksize(q
) > 0;
3657 check_inuse_chunk(ar_ptr
, q
);
3659 avail
+= chunksize(p
);
3664 mi
->arena
= ar_ptr
->size
;
3665 mi
->ordblks
= navail
;
3666 mi
->uordblks
= ar_ptr
->size
- avail
;
3667 mi
->fordblks
= avail
;
3668 mi
->hblks
= n_mmaps
;
3669 mi
->hblkhd
= mmapped_mem
;
3670 mi
->keepcost
= chunksize(top(ar_ptr
));
3672 (void)mutex_unlock(&ar_ptr
->mutex
);
3675 #if !defined(NO_THREADS) && MALLOC_DEBUG > 1
3677 /* Print the complete contents of a single heap to stderr. */
3681 dump_heap(heap_info
*heap
)
3683 dump_heap(heap
) heap_info
*heap
;
3689 fprintf(stderr
, "Heap %p, size %10lx:\n", heap
, (long)heap
->size
);
3690 ptr
= (heap
->ar_ptr
!= (arena
*)(heap
+1)) ?
3691 (char*)(heap
+ 1) : (char*)(heap
+ 1) + sizeof(arena
);
3692 p
= (mchunkptr
)(((unsigned long)ptr
+ MALLOC_ALIGN_MASK
) &
3693 ~MALLOC_ALIGN_MASK
);
3695 fprintf(stderr
, "chunk %p size %10lx", p
, (long)p
->size
);
3696 if(p
== top(heap
->ar_ptr
)) {
3697 fprintf(stderr
, " (top)\n");
3699 } else if(p
->size
== (0|PREV_INUSE
)) {
3700 fprintf(stderr
, " (fence)\n");
3703 fprintf(stderr
, "\n");
3716 For all arenas separately and in total, prints on stderr the
3717 amount of space obtained from the system, and the current number
3718 of bytes allocated via malloc (or realloc, etc) but not yet
3719 freed. (Note that this is the number of bytes allocated, not the
3720 number requested. It will be larger than the number requested
3721 because of alignment and bookkeeping overhead.) When not compiled
3722 for multiple threads, the maximum amount of allocated memory
3723 (which may be more than current if malloc_trim and/or munmap got
3724 called) is also reported. When using mmap(), prints the maximum
3725 number of simultaneous mmap regions used, too.
3734 unsigned int in_use_b
= mmapped_mem
, system_b
= in_use_b
;
3736 long stat_lock_direct
= 0, stat_lock_loop
= 0, stat_lock_wait
= 0;
3739 for(i
=0, ar_ptr
= &main_arena
;; i
++) {
3740 malloc_update_mallinfo(ar_ptr
, &mi
);
3741 fprintf(stderr
, "Arena %d:\n", i
);
3742 fprintf(stderr
, "system bytes = %10u\n", (unsigned int)mi
.arena
);
3743 fprintf(stderr
, "in use bytes = %10u\n", (unsigned int)mi
.uordblks
);
3744 system_b
+= mi
.arena
;
3745 in_use_b
+= mi
.uordblks
;
3747 stat_lock_direct
+= ar_ptr
->stat_lock_direct
;
3748 stat_lock_loop
+= ar_ptr
->stat_lock_loop
;
3749 stat_lock_wait
+= ar_ptr
->stat_lock_wait
;
3751 #if !defined(NO_THREADS) && MALLOC_DEBUG > 1
3752 if(ar_ptr
!= &main_arena
) {
3754 (void)mutex_lock(&ar_ptr
->mutex
);
3755 heap
= heap_for_ptr(top(ar_ptr
));
3756 while(heap
) { dump_heap(heap
); heap
= heap
->prev
; }
3757 (void)mutex_unlock(&ar_ptr
->mutex
);
3760 ar_ptr
= ar_ptr
->next
;
3761 if(ar_ptr
== &main_arena
) break;
3763 fprintf(stderr
, "Total (incl. mmap):\n");
3764 fprintf(stderr
, "system bytes = %10u\n", system_b
);
3765 fprintf(stderr
, "in use bytes = %10u\n", in_use_b
);
3767 fprintf(stderr
, "max system bytes = %10u\n", (unsigned int)max_total_mem
);
3770 fprintf(stderr
, "max mmap regions = %10u\n", (unsigned int)max_n_mmaps
);
3771 fprintf(stderr
, "max mmap bytes = %10lu\n", max_mmapped_mem
);
3774 fprintf(stderr
, "heaps created = %10d\n", stat_n_heaps
);
3775 fprintf(stderr
, "locked directly = %10ld\n", stat_lock_direct
);
3776 fprintf(stderr
, "locked in loop = %10ld\n", stat_lock_loop
);
3777 fprintf(stderr
, "locked waiting = %10ld\n", stat_lock_wait
);
3778 fprintf(stderr
, "locked total = %10ld\n",
3779 stat_lock_direct
+ stat_lock_loop
+ stat_lock_wait
);
3784 mallinfo returns a copy of updated current mallinfo.
3785 The information reported is for the arena last used by the thread.
3788 struct mallinfo
mALLINFo()
3791 Void_t
*vptr
= NULL
;
3794 tsd_getspecific(arena_key
, vptr
);
3796 malloc_update_mallinfo((vptr
? (arena
*)vptr
: &main_arena
), &mi
);
3806 mallopt is the general SVID/XPG interface to tunable parameters.
3807 The format is to provide a (parameter-number, parameter-value) pair.
3808 mallopt then sets the corresponding parameter to the argument
3809 value if it can (i.e., so long as the value is meaningful),
3810 and returns 1 if successful else 0.
3812 See descriptions of tunable parameters above.
3817 int mALLOPt(int param_number
, int value
)
3819 int mALLOPt(param_number
, value
) int param_number
; int value
;
3822 switch(param_number
)
3824 case M_TRIM_THRESHOLD
:
3825 trim_threshold
= value
; return 1;
3827 top_pad
= value
; return 1;
3828 case M_MMAP_THRESHOLD
:
3830 /* Forbid setting the threshold too high. */
3831 if((unsigned long)value
> HEAP_MAX_SIZE
/2) return 0;
3833 mmap_threshold
= value
; return 1;
3836 n_mmaps_max
= value
; return 1;
3838 if (value
!= 0) return 0; else n_mmaps_max
= value
; return 1;
3840 case M_CHECK_ACTION
:
3841 check_action
= value
; return 1;
3850 /* Get/set state: malloc_get_state() records the current state of all
3851 malloc variables (_except_ for the actual heap contents and `hook'
3852 function pointers) in a system dependent, opaque data structure.
3853 This data structure is dynamically allocated and can be free()d
3854 after use. malloc_set_state() restores the state of all malloc
3855 variables to the previously obtained state. This is especially
3856 useful when using this malloc as part of a shared library, and when
3857 the heap contents are saved/restored via some other method. The
3858 primary example for this is GNU Emacs with its `dumping' procedure.
3859 `Hook' function pointers are never saved or restored by these
3862 #define MALLOC_STATE_MAGIC 0x444c4541l
3863 #define MALLOC_STATE_VERSION (0*0x100l + 0l) /* major*0x100 + minor */
3865 struct malloc_state
{
3868 mbinptr av
[NAV
* 2 + 2];
3870 int sbrked_mem_bytes
;
3871 unsigned long trim_threshold
;
3872 unsigned long top_pad
;
3873 unsigned int n_mmaps_max
;
3874 unsigned long mmap_threshold
;
3876 unsigned long max_sbrked_mem
;
3877 unsigned long max_total_mem
;
3878 unsigned int n_mmaps
;
3879 unsigned int max_n_mmaps
;
3880 unsigned long mmapped_mem
;
3881 unsigned long max_mmapped_mem
;
3888 struct malloc_state
* ms
;
3893 (void)mutex_lock(&main_arena
.mutex
);
3894 victim
= chunk_alloc(&main_arena
, request2size(sizeof(*ms
)));
3896 (void)mutex_unlock(&main_arena
.mutex
);
3899 ms
= (struct malloc_state
*)chunk2mem(victim
);
3900 ms
->magic
= MALLOC_STATE_MAGIC
;
3901 ms
->version
= MALLOC_STATE_VERSION
;
3902 ms
->av
[0] = main_arena
.av
[0];
3903 ms
->av
[1] = main_arena
.av
[1];
3904 for(i
=0; i
<NAV
; i
++) {
3905 b
= bin_at(&main_arena
, i
);
3907 ms
->av
[2*i
+2] = ms
->av
[2*i
+3] = 0; /* empty bin (or initial top) */
3909 ms
->av
[2*i
+2] = first(b
);
3910 ms
->av
[2*i
+3] = last(b
);
3913 ms
->sbrk_base
= sbrk_base
;
3914 ms
->sbrked_mem_bytes
= sbrked_mem
;
3915 ms
->trim_threshold
= trim_threshold
;
3916 ms
->top_pad
= top_pad
;
3917 ms
->n_mmaps_max
= n_mmaps_max
;
3918 ms
->mmap_threshold
= mmap_threshold
;
3919 ms
->check_action
= check_action
;
3920 ms
->max_sbrked_mem
= max_sbrked_mem
;
3922 ms
->max_total_mem
= max_total_mem
;
3924 ms
->max_total_mem
= 0;
3926 ms
->n_mmaps
= n_mmaps
;
3927 ms
->max_n_mmaps
= max_n_mmaps
;
3928 ms
->mmapped_mem
= mmapped_mem
;
3929 ms
->max_mmapped_mem
= max_mmapped_mem
;
3930 (void)mutex_unlock(&main_arena
.mutex
);
3936 mALLOC_SET_STATe(Void_t
* msptr
)
3938 mALLOC_SET_STATe(msptr
) Void_t
* msptr
;
3941 struct malloc_state
* ms
= (struct malloc_state
*)msptr
;
3946 if(ms
->magic
!= MALLOC_STATE_MAGIC
) return -1;
3947 /* Must fail if the major version is too high. */
3948 if((ms
->version
& ~0xffl
) > (MALLOC_STATE_VERSION
& ~0xffl
)) return -2;
3949 (void)mutex_lock(&main_arena
.mutex
);
3950 main_arena
.av
[0] = ms
->av
[0];
3951 main_arena
.av
[1] = ms
->av
[1];
3952 for(i
=0; i
<NAV
; i
++) {
3953 b
= bin_at(&main_arena
, i
);
3954 if(ms
->av
[2*i
+2] == 0)
3955 first(b
) = last(b
) = b
;
3957 first(b
) = ms
->av
[2*i
+2];
3958 last(b
) = ms
->av
[2*i
+3];
3960 /* Make sure the links to the `av'-bins in the heap are correct. */
3966 sbrk_base
= ms
->sbrk_base
;
3967 sbrked_mem
= ms
->sbrked_mem_bytes
;
3968 trim_threshold
= ms
->trim_threshold
;
3969 top_pad
= ms
->top_pad
;
3970 n_mmaps_max
= ms
->n_mmaps_max
;
3971 mmap_threshold
= ms
->mmap_threshold
;
3972 check_action
= ms
->check_action
;
3973 max_sbrked_mem
= ms
->max_sbrked_mem
;
3975 max_total_mem
= ms
->max_total_mem
;
3977 n_mmaps
= ms
->n_mmaps
;
3978 max_n_mmaps
= ms
->max_n_mmaps
;
3979 mmapped_mem
= ms
->mmapped_mem
;
3980 max_mmapped_mem
= ms
->max_mmapped_mem
;
3981 /* add version-dependent code here */
3982 (void)mutex_unlock(&main_arena
.mutex
);
3988 #if defined(_LIBC) || defined(MALLOC_HOOKS)
3990 /* A simple, standard set of debugging hooks. Overhead is `only' one
3991 byte per chunk; still this will catch most cases of double frees or
3994 #define MAGICBYTE(p) ( ( ((size_t)p >> 3) ^ ((size_t)p >> 11)) & 0xFF )
3996 /* Convert a pointer to be free()d or realloc()ed to a valid chunk
3997 pointer. If the provided pointer is not valid, return NULL. The
3998 goal here is to avoid crashes, unlike in the MALLOC_DEBUG code. */
4002 mem2chunk_check(Void_t
* mem
)
4004 mem2chunk_check(mem
) Void_t
* mem
;
4011 if(!aligned_OK(p
)) return NULL
;
4012 if( (char*)p
>=sbrk_base
&& (char*)p
<(sbrk_base
+sbrked_mem
) ) {
4013 /* Must be a chunk in conventional heap memory. */
4014 if(chunk_is_mmapped(p
) ||
4015 ( (sz
= chunksize(p
)), ((char*)p
+ sz
)>=(sbrk_base
+sbrked_mem
) ) ||
4016 sz
<MINSIZE
|| sz
&MALLOC_ALIGN_MASK
|| !inuse(p
) ||
4017 ( !prev_inuse(p
) && (p
->prev_size
&MALLOC_ALIGN_MASK
||
4018 (long)prev_chunk(p
)<(long)sbrk_base
||
4019 next_chunk(prev_chunk(p
))!=p
) ))
4021 if(*((unsigned char*)p
+ sz
+ (SIZE_SZ
-1)) != MAGICBYTE(p
))
4023 *((unsigned char*)p
+ sz
+ (SIZE_SZ
-1)) ^= 0xFF;
4025 unsigned long offset
, page_mask
= malloc_getpagesize
-1;
4027 /* mmap()ed chunks have MALLOC_ALIGNMENT or higher power-of-two
4028 alignment relative to the beginning of a page. Check this
4030 offset
= (unsigned long)mem
& page_mask
;
4031 if((offset
!=MALLOC_ALIGNMENT
&& offset
!=0 && offset
!=0x10 &&
4032 offset
!=0x20 && offset
!=0x40 && offset
!=0x80 && offset
!=0x100 &&
4033 offset
!=0x200 && offset
!=0x400 && offset
!=0x800 && offset
!=0x1000 &&
4035 !chunk_is_mmapped(p
) || (p
->size
& PREV_INUSE
) ||
4036 ( (((unsigned long)p
- p
->prev_size
) & page_mask
) != 0 ) ||
4037 ( (sz
= chunksize(p
)), ((p
->prev_size
+ sz
) & page_mask
) != 0 ) )
4039 if(*((unsigned char*)p
+ sz
- 1) != MAGICBYTE(p
))
4041 *((unsigned char*)p
+ sz
- 1) ^= 0xFF;
4048 malloc_check(size_t sz
)
4050 malloc_check(sz
) size_t sz
;
4054 INTERNAL_SIZE_T nb
= request2size(sz
+ 1);
4056 (void)mutex_lock(&main_arena
.mutex
);
4057 victim
= chunk_alloc(&main_arena
, nb
);
4058 (void)mutex_unlock(&main_arena
.mutex
);
4059 if(!victim
) return NULL
;
4060 nb
= chunksize(victim
);
4061 if(chunk_is_mmapped(victim
))
4065 *((unsigned char*)victim
+ nb
) = MAGICBYTE(victim
);
4066 return chunk2mem(victim
);
4071 free_check(Void_t
* mem
)
4073 free_check(mem
) Void_t
* mem
;
4079 (void)mutex_lock(&main_arena
.mutex
);
4080 p
= mem2chunk_check(mem
);
4082 (void)mutex_unlock(&main_arena
.mutex
);
4083 switch(check_action
) {
4085 fprintf(stderr
, "free(): invalid pointer %lx!\n", (long)(mem
));
4093 if (chunk_is_mmapped(p
)) {
4094 (void)mutex_unlock(&main_arena
.mutex
);
4099 #if 0 /* Erase freed memory. */
4100 memset(mem
, 0, chunksize(p
) - (SIZE_SZ
+1));
4102 chunk_free(&main_arena
, p
);
4103 (void)mutex_unlock(&main_arena
.mutex
);
4108 realloc_check(Void_t
* oldmem
, size_t bytes
)
4110 realloc_check(oldmem
, bytes
) Void_t
* oldmem
; size_t bytes
;
4113 mchunkptr oldp
, newp
;
4114 INTERNAL_SIZE_T nb
, oldsize
;
4116 if (oldmem
== 0) return malloc_check(bytes
);
4117 (void)mutex_lock(&main_arena
.mutex
);
4118 oldp
= mem2chunk_check(oldmem
);
4120 (void)mutex_unlock(&main_arena
.mutex
);
4121 switch(check_action
) {
4123 fprintf(stderr
, "realloc(): invalid pointer %lx!\n", (long)(oldmem
));
4128 return malloc_check(bytes
);
4130 oldsize
= chunksize(oldp
);
4132 nb
= request2size(bytes
+1);
4135 if (chunk_is_mmapped(oldp
)) {
4137 newp
= mremap_chunk(oldp
, nb
);
4140 /* Note the extra SIZE_SZ overhead. */
4141 if(oldsize
- SIZE_SZ
>= nb
) newp
= oldp
; /* do nothing */
4143 /* Must alloc, copy, free. */
4144 newp
= chunk_alloc(&main_arena
, nb
);
4146 MALLOC_COPY(chunk2mem(newp
), oldmem
, oldsize
- 2*SIZE_SZ
);
4154 #endif /* HAVE_MMAP */
4155 newp
= chunk_realloc(&main_arena
, oldp
, oldsize
, nb
);
4156 #if 0 /* Erase freed memory. */
4157 nb
= chunksize(newp
);
4158 if(oldp
<newp
|| oldp
>=chunk_at_offset(newp
, nb
)) {
4159 memset((char*)oldmem
+ 2*sizeof(mbinptr
), 0,
4160 oldsize
- (2*sizeof(mbinptr
)+2*SIZE_SZ
+1));
4161 } else if(nb
> oldsize
+SIZE_SZ
) {
4162 memset((char*)chunk2mem(newp
) + oldsize
, 0, nb
- (oldsize
+SIZE_SZ
));
4168 (void)mutex_unlock(&main_arena
.mutex
);
4170 if(!newp
) return NULL
;
4171 nb
= chunksize(newp
);
4172 if(chunk_is_mmapped(newp
))
4176 *((unsigned char*)newp
+ nb
) = MAGICBYTE(newp
);
4177 return chunk2mem(newp
);
4182 memalign_check(size_t alignment
, size_t bytes
)
4184 memalign_check(alignment
, bytes
) size_t alignment
; size_t bytes
;
4190 if (alignment
<= MALLOC_ALIGNMENT
) return malloc_check(bytes
);
4191 if (alignment
< MINSIZE
) alignment
= MINSIZE
;
4193 nb
= request2size(bytes
+1);
4194 (void)mutex_lock(&main_arena
.mutex
);
4195 p
= chunk_align(&main_arena
, nb
, alignment
);
4196 (void)mutex_unlock(&main_arena
.mutex
);
4199 if(chunk_is_mmapped(p
))
4203 *((unsigned char*)p
+ nb
) = MAGICBYTE(p
);
4204 return chunk2mem(p
);
4207 /* The following hooks are used when the global initialization in
4208 ptmalloc_init() hasn't completed yet. */
4212 malloc_starter(size_t sz
)
4214 malloc_starter(sz
) size_t sz
;
4217 mchunkptr victim
= chunk_alloc(&main_arena
, request2size(sz
));
4219 return victim
? chunk2mem(victim
) : 0;
4224 free_starter(Void_t
* mem
)
4226 free_starter(mem
) Void_t
* mem
;
4234 if (chunk_is_mmapped(p
)) {
4239 chunk_free(&main_arena
, p
);
4242 #endif /* defined(_LIBC) || defined(MALLOC_HOOKS) */
4247 weak_alias (__libc_calloc
, __calloc
) weak_alias (__libc_calloc
, calloc
)
4248 weak_alias (__libc_free
, __cfree
) weak_alias (__libc_free
, cfree
)
4249 weak_alias (__libc_free
, __free
) weak_alias (__libc_free
, free
)
4250 weak_alias (__libc_malloc
, __malloc
) weak_alias (__libc_malloc
, malloc
)
4251 weak_alias (__libc_memalign
, __memalign
) weak_alias (__libc_memalign
, memalign
)
4252 weak_alias (__libc_realloc
, __realloc
) weak_alias (__libc_realloc
, realloc
)
4253 weak_alias (__libc_valloc
, __valloc
) weak_alias (__libc_valloc
, valloc
)
4254 weak_alias (__libc_pvalloc
, __pvalloc
) weak_alias (__libc_pvalloc
, pvalloc
)
4255 weak_alias (__libc_mallinfo
, __mallinfo
) weak_alias (__libc_mallinfo
, mallinfo
)
4256 weak_alias (__libc_mallopt
, __mallopt
) weak_alias (__libc_mallopt
, mallopt
)
4258 weak_alias (__malloc_stats
, malloc_stats
)
4259 weak_alias (__malloc_usable_size
, malloc_usable_size
)
4260 weak_alias (__malloc_trim
, malloc_trim
)
4261 weak_alias (__malloc_get_state
, malloc_get_state
)
4262 weak_alias (__malloc_set_state
, malloc_set_state
)
4269 V2.6.4-pt3 Thu Feb 20 1997 Wolfram Gloger (wmglo@dent.med.uni-muenchen.de)
4270 * Added malloc_get/set_state() (mainly for use in GNU emacs),
4271 using interface from Marcus Daniels
4272 * All parameters are now adjustable via environment variables
4274 V2.6.4-pt2 Sat Dec 14 1996 Wolfram Gloger (wmglo@dent.med.uni-muenchen.de)
4275 * Added debugging hooks
4276 * Fixed possible deadlock in realloc() when out of memory
4277 * Don't pollute namespace in glibc: use __getpagesize, __mmap, etc.
4279 V2.6.4-pt Wed Dec 4 1996 Wolfram Gloger (wmglo@dent.med.uni-muenchen.de)
4280 * Very minor updates from the released 2.6.4 version.
4281 * Trimmed include file down to exported data structures.
4282 * Changes from H.J. Lu for glibc-2.0.
4284 V2.6.3i-pt Sep 16 1996 Wolfram Gloger (wmglo@dent.med.uni-muenchen.de)
4285 * Many changes for multiple threads
4286 * Introduced arenas and heaps
4288 V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee)
4289 * Added pvalloc, as recommended by H.J. Liu
4290 * Added 64bit pointer support mainly from Wolfram Gloger
4291 * Added anonymously donated WIN32 sbrk emulation
4292 * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
4293 * malloc_extend_top: fix mask error that caused wastage after
4295 * Add linux mremap support code from HJ Liu
4297 V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee)
4298 * Integrated most documentation with the code.
4299 * Add support for mmap, with help from
4300 Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
4301 * Use last_remainder in more cases.
4302 * Pack bins using idea from colin@nyx10.cs.du.edu
4303 * Use ordered bins instead of best-fit threshold
4304 * Eliminate block-local decls to simplify tracing and debugging.
4305 * Support another case of realloc via move into top
4306 * Fix error occurring when initial sbrk_base not word-aligned.
4307 * Rely on page size for units instead of SBRK_UNIT to
4308 avoid surprises about sbrk alignment conventions.
4309 * Add mallinfo, mallopt. Thanks to Raymond Nijssen
4310 (raymond@es.ele.tue.nl) for the suggestion.
4311 * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
4312 * More precautions for cases where other routines call sbrk,
4313 courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
4314 * Added macros etc., allowing use in linux libc from
4315 H.J. Lu (hjl@gnu.ai.mit.edu)
4316 * Inverted this history list
4318 V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee)
4319 * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
4320 * Removed all preallocation code since under current scheme
4321 the work required to undo bad preallocations exceeds
4322 the work saved in good cases for most test programs.
4323 * No longer use return list or unconsolidated bins since
4324 no scheme using them consistently outperforms those that don't
4325 given above changes.
4326 * Use best fit for very large chunks to prevent some worst-cases.
4327 * Added some support for debugging
4329 V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee)
4330 * Removed footers when chunks are in use. Thanks to
4331 Paul Wilson (wilson@cs.texas.edu) for the suggestion.
4333 V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee)
4334 * Added malloc_trim, with help from Wolfram Gloger
4335 (wmglo@Dent.MED.Uni-Muenchen.DE).
4337 V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g)
4339 V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g)
4340 * realloc: try to expand in both directions
4341 * malloc: swap order of clean-bin strategy;
4342 * realloc: only conditionally expand backwards
4343 * Try not to scavenge used bins
4344 * Use bin counts as a guide to preallocation
4345 * Occasionally bin return list chunks in first scan
4346 * Add a few optimizations from colin@nyx10.cs.du.edu
4348 V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g)
4349 * faster bin computation & slightly different binning
4350 * merged all consolidations to one part of malloc proper
4351 (eliminating old malloc_find_space & malloc_clean_bin)
4352 * Scan 2 returns chunks (not just 1)
4353 * Propagate failure in realloc if malloc returns 0
4354 * Add stuff to allow compilation on non-ANSI compilers
4355 from kpv@research.att.com
4357 V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu)
4358 * removed potential for odd address access in prev_chunk
4359 * removed dependency on getpagesize.h
4360 * misc cosmetics and a bit more internal documentation
4361 * anticosmetics: mangled names in macros to evade debugger strangeness
4362 * tested on sparc, hp-700, dec-mips, rs6000
4363 with gcc & native cc (hp, dec only) allowing
4364 Detlefs & Zorn comparison study (in SIGPLAN Notices.)
4366 Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu)
4367 * Based loosely on libg++-1.2X malloc. (It retains some of the overall
4368 structure of old version, but most details differ.)