Avoid "anonymous" code in pthread_spin_lock.
[glibc.git] / crypt / crypt_util.c
bloba1ff88b0daaec6535b8189fe5e8b4d0e9fd4df21
1 /*
2 * UFC-crypt: ultra fast crypt(3) implementation
4 * Copyright (C) 1991-1993,1996-1998,2000,2010,2011,2012
5 * Free Software Foundation, Inc.
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; see the file COPYING.LIB. If not,
19 * see <http://www.gnu.org/licenses/>.
21 * @(#)crypt_util.c 2.56 12/20/96
23 * Support routines
27 #ifdef DEBUG
28 #include <stdio.h>
29 #endif
30 #include <atomic.h>
31 #include <string.h>
33 #ifndef STATIC
34 #define STATIC static
35 #endif
37 #ifndef DOS
38 #include "ufc-crypt.h"
39 #else
41 * Thanks to greg%wind@plains.NoDak.edu (Greg W. Wettstein)
42 * for DOS patches
44 #include "pl.h"
45 #include "ufc.h"
46 #endif
47 #include "crypt.h"
48 #include "crypt-private.h"
50 /* Prototypes for local functions. */
51 #ifndef __GNU_LIBRARY__
52 void _ufc_clearmem (char *start, int cnt);
53 void _ufc_copymem (char *from, char *to, int cnt);
54 #endif
55 #ifdef _UFC_32_
56 STATIC void shuffle_sb (long32 *k, ufc_long saltbits);
57 #else
58 STATIC void shuffle_sb (long64 *k, ufc_long saltbits);
59 #endif
63 * Permutation done once on the 56 bit
64 * key derived from the original 8 byte ASCII key.
66 static const int pc1[56] = {
67 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
68 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
69 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
70 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
74 * How much to rotate each 28 bit half of the pc1 permutated
75 * 56 bit key before using pc2 to give the i' key
77 static const int rots[16] = {
78 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
82 * Permutation giving the key
83 * of the i' DES round
85 static const int pc2[48] = {
86 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
87 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
88 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
89 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
93 * The E expansion table which selects
94 * bits from the 32 bit intermediate result.
96 static const int esel[48] = {
97 32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9,
98 8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17,
99 16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25,
100 24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1
104 * Permutation done on the
105 * result of sbox lookups
107 static const int perm32[32] = {
108 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
109 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
113 * The sboxes
115 static const int sbox[8][4][16]= {
116 { { 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7 },
117 { 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8 },
118 { 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0 },
119 { 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 }
122 { { 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10 },
123 { 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5 },
124 { 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15 },
125 { 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 }
128 { { 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8 },
129 { 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1 },
130 { 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7 },
131 { 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 }
134 { { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15 },
135 { 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9 },
136 { 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4 },
137 { 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 }
140 { { 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9 },
141 { 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6 },
142 { 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14 },
143 { 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 }
146 { { 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11 },
147 { 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8 },
148 { 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6 },
149 { 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 }
152 { { 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1 },
153 { 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6 },
154 { 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2 },
155 { 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 }
158 { { 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7 },
159 { 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2 },
160 { 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8 },
161 { 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 }
166 * This is the initial
167 * permutation matrix
169 static const int initial_perm[64] = {
170 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
171 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
172 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
173 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
177 * This is the final
178 * permutation matrix
180 static const int final_perm[64] = {
181 40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31,
182 38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29,
183 36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27,
184 34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25
187 #define ascii_to_bin(c) ((c)>='a'?(c-59):(c)>='A'?((c)-53):(c)-'.')
188 #define bin_to_ascii(c) ((c)>=38?((c)-38+'a'):(c)>=12?((c)-12+'A'):(c)+'.')
190 static const ufc_long BITMASK[24] = {
191 0x40000000, 0x20000000, 0x10000000, 0x08000000, 0x04000000, 0x02000000,
192 0x01000000, 0x00800000, 0x00400000, 0x00200000, 0x00100000, 0x00080000,
193 0x00004000, 0x00002000, 0x00001000, 0x00000800, 0x00000400, 0x00000200,
194 0x00000100, 0x00000080, 0x00000040, 0x00000020, 0x00000010, 0x00000008
197 static const unsigned char bytemask[8] = {
198 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01
201 static const ufc_long longmask[32] = {
202 0x80000000, 0x40000000, 0x20000000, 0x10000000,
203 0x08000000, 0x04000000, 0x02000000, 0x01000000,
204 0x00800000, 0x00400000, 0x00200000, 0x00100000,
205 0x00080000, 0x00040000, 0x00020000, 0x00010000,
206 0x00008000, 0x00004000, 0x00002000, 0x00001000,
207 0x00000800, 0x00000400, 0x00000200, 0x00000100,
208 0x00000080, 0x00000040, 0x00000020, 0x00000010,
209 0x00000008, 0x00000004, 0x00000002, 0x00000001
213 * do_pc1: permform pc1 permutation in the key schedule generation.
215 * The first index is the byte number in the 8 byte ASCII key
216 * - second - - the two 28 bits halfs of the result
217 * - third - selects the 7 bits actually used of each byte
219 * The result is kept with 28 bit per 32 bit with the 4 most significant
220 * bits zero.
222 static ufc_long do_pc1[8][2][128];
225 * do_pc2: permform pc2 permutation in the key schedule generation.
227 * The first index is the septet number in the two 28 bit intermediate values
228 * - second - - - septet values
230 * Knowledge of the structure of the pc2 permutation is used.
232 * The result is kept with 28 bit per 32 bit with the 4 most significant
233 * bits zero.
235 static ufc_long do_pc2[8][128];
238 * eperm32tab: do 32 bit permutation and E selection
240 * The first index is the byte number in the 32 bit value to be permuted
241 * - second - is the value of this byte
242 * - third - selects the two 32 bit values
244 * The table is used and generated internally in init_des to speed it up
246 static ufc_long eperm32tab[4][256][2];
249 * efp: undo an extra e selection and do final
250 * permutation giving the DES result.
252 * Invoked 6 bit a time on two 48 bit values
253 * giving two 32 bit longs.
255 static ufc_long efp[16][64][2];
258 * For use by the old, non-reentrant routines
259 * (crypt/encrypt/setkey)
261 struct crypt_data _ufc_foobar;
263 #ifdef __GNU_LIBRARY__
264 #include <bits/libc-lock.h>
266 __libc_lock_define_initialized (static, _ufc_tables_lock)
267 #endif
269 #ifdef DEBUG
271 void
272 _ufc_prbits(a, n)
273 ufc_long *a;
274 int n;
276 ufc_long i, j, t, tmp;
277 n /= 8;
278 for(i = 0; i < n; i++) {
279 tmp=0;
280 for(j = 0; j < 8; j++) {
281 t=8*i+j;
282 tmp|=(a[t/24] & BITMASK[t % 24])?bytemask[j]:0;
284 (void)printf("%02x ",tmp);
286 printf(" ");
289 static void
290 _ufc_set_bits(v, b)
291 ufc_long v;
292 ufc_long *b;
294 ufc_long i;
295 *b = 0;
296 for(i = 0; i < 24; i++) {
297 if(v & longmask[8 + i])
298 *b |= BITMASK[i];
302 #endif
304 #ifndef __GNU_LIBRARY__
306 * Silly rewrites of 'bzero'/'memset'. I do so
307 * because some machines don't have
308 * bzero and some don't have memset.
311 void
312 _ufc_clearmem(start, cnt)
313 char *start;
314 int cnt;
316 while(cnt--)
317 *start++ = '\0';
320 void
321 _ufc_copymem(from, to, cnt)
322 char *from, *to;
323 int cnt;
325 while(cnt--)
326 *to++ = *from++;
328 #else
329 #define _ufc_clearmem(start, cnt) memset(start, 0, cnt)
330 #define _ufc_copymem(from, to, cnt) memcpy(to, from, cnt)
331 #endif
333 /* lookup a 6 bit value in sbox */
335 #define s_lookup(i,s) sbox[(i)][(((s)>>4) & 0x2)|((s) & 0x1)][((s)>>1) & 0xf];
338 * Initialize unit - may be invoked directly
339 * by fcrypt users.
342 void
343 __init_des_r(__data)
344 struct crypt_data * __restrict __data;
346 int comes_from_bit;
347 int bit, sg;
348 ufc_long j;
349 ufc_long mask1, mask2;
350 int e_inverse[64];
351 static volatile int small_tables_initialized = 0;
353 #ifdef _UFC_32_
354 long32 *sb[4];
355 sb[0] = (long32*)__data->sb0; sb[1] = (long32*)__data->sb1;
356 sb[2] = (long32*)__data->sb2; sb[3] = (long32*)__data->sb3;
357 #endif
358 #ifdef _UFC_64_
359 long64 *sb[4];
360 sb[0] = (long64*)__data->sb0; sb[1] = (long64*)__data->sb1;
361 sb[2] = (long64*)__data->sb2; sb[3] = (long64*)__data->sb3;
362 #endif
364 if(small_tables_initialized == 0) {
365 #ifdef __GNU_LIBRARY__
366 __libc_lock_lock (_ufc_tables_lock);
367 if(small_tables_initialized)
368 goto small_tables_done;
369 #endif
372 * Create the do_pc1 table used
373 * to affect pc1 permutation
374 * when generating keys
376 _ufc_clearmem((char*)do_pc1, (int)sizeof(do_pc1));
377 for(bit = 0; bit < 56; bit++) {
378 comes_from_bit = pc1[bit] - 1;
379 mask1 = bytemask[comes_from_bit % 8 + 1];
380 mask2 = longmask[bit % 28 + 4];
381 for(j = 0; j < 128; j++) {
382 if(j & mask1)
383 do_pc1[comes_from_bit / 8][bit / 28][j] |= mask2;
388 * Create the do_pc2 table used
389 * to affect pc2 permutation when
390 * generating keys
392 _ufc_clearmem((char*)do_pc2, (int)sizeof(do_pc2));
393 for(bit = 0; bit < 48; bit++) {
394 comes_from_bit = pc2[bit] - 1;
395 mask1 = bytemask[comes_from_bit % 7 + 1];
396 mask2 = BITMASK[bit % 24];
397 for(j = 0; j < 128; j++) {
398 if(j & mask1)
399 do_pc2[comes_from_bit / 7][j] |= mask2;
404 * Now generate the table used to do combined
405 * 32 bit permutation and e expansion
407 * We use it because we have to permute 16384 32 bit
408 * longs into 48 bit in order to initialize sb.
410 * Looping 48 rounds per permutation becomes
411 * just too slow...
415 _ufc_clearmem((char*)eperm32tab, (int)sizeof(eperm32tab));
416 for(bit = 0; bit < 48; bit++) {
417 ufc_long mask1,comes_from;
418 comes_from = perm32[esel[bit]-1]-1;
419 mask1 = bytemask[comes_from % 8];
420 for(j = 256; j--;) {
421 if(j & mask1)
422 eperm32tab[comes_from / 8][j][bit / 24] |= BITMASK[bit % 24];
427 * Create an inverse matrix for esel telling
428 * where to plug out bits if undoing it
430 for(bit=48; bit--;) {
431 e_inverse[esel[bit] - 1 ] = bit;
432 e_inverse[esel[bit] - 1 + 32] = bit + 48;
436 * create efp: the matrix used to
437 * undo the E expansion and effect final permutation
439 _ufc_clearmem((char*)efp, (int)sizeof efp);
440 for(bit = 0; bit < 64; bit++) {
441 int o_bit, o_long;
442 ufc_long word_value, mask1, mask2;
443 int comes_from_f_bit, comes_from_e_bit;
444 int comes_from_word, bit_within_word;
446 /* See where bit i belongs in the two 32 bit long's */
447 o_long = bit / 32; /* 0..1 */
448 o_bit = bit % 32; /* 0..31 */
451 * And find a bit in the e permutated value setting this bit.
453 * Note: the e selection may have selected the same bit several
454 * times. By the initialization of e_inverse, we only look
455 * for one specific instance.
457 comes_from_f_bit = final_perm[bit] - 1; /* 0..63 */
458 comes_from_e_bit = e_inverse[comes_from_f_bit]; /* 0..95 */
459 comes_from_word = comes_from_e_bit / 6; /* 0..15 */
460 bit_within_word = comes_from_e_bit % 6; /* 0..5 */
462 mask1 = longmask[bit_within_word + 26];
463 mask2 = longmask[o_bit];
465 for(word_value = 64; word_value--;) {
466 if(word_value & mask1)
467 efp[comes_from_word][word_value][o_long] |= mask2;
470 atomic_write_barrier ();
471 small_tables_initialized = 1;
472 #ifdef __GNU_LIBRARY__
473 small_tables_done:
474 __libc_lock_unlock(_ufc_tables_lock);
475 #endif
476 } else
477 atomic_read_barrier ();
480 * Create the sb tables:
482 * For each 12 bit segment of an 48 bit intermediate
483 * result, the sb table precomputes the two 4 bit
484 * values of the sbox lookups done with the two 6
485 * bit halves, shifts them to their proper place,
486 * sends them through perm32 and finally E expands
487 * them so that they are ready for the next
488 * DES round.
492 if (__data->sb0 + sizeof (__data->sb0) == __data->sb1
493 && __data->sb1 + sizeof (__data->sb1) == __data->sb2
494 && __data->sb2 + sizeof (__data->sb2) == __data->sb3)
495 _ufc_clearmem(__data->sb0,
496 (int)sizeof(__data->sb0)
497 + (int)sizeof(__data->sb1)
498 + (int)sizeof(__data->sb2)
499 + (int)sizeof(__data->sb3));
500 else {
501 _ufc_clearmem(__data->sb0, (int)sizeof(__data->sb0));
502 _ufc_clearmem(__data->sb1, (int)sizeof(__data->sb1));
503 _ufc_clearmem(__data->sb2, (int)sizeof(__data->sb2));
504 _ufc_clearmem(__data->sb3, (int)sizeof(__data->sb3));
507 for(sg = 0; sg < 4; sg++) {
508 int j1, j2;
509 int s1, s2;
511 for(j1 = 0; j1 < 64; j1++) {
512 s1 = s_lookup(2 * sg, j1);
513 for(j2 = 0; j2 < 64; j2++) {
514 ufc_long to_permute, inx;
516 s2 = s_lookup(2 * sg + 1, j2);
517 to_permute = (((ufc_long)s1 << 4) |
518 (ufc_long)s2) << (24 - 8 * (ufc_long)sg);
520 #ifdef _UFC_32_
521 inx = ((j1 << 6) | j2) << 1;
522 sb[sg][inx ] = eperm32tab[0][(to_permute >> 24) & 0xff][0];
523 sb[sg][inx+1] = eperm32tab[0][(to_permute >> 24) & 0xff][1];
524 sb[sg][inx ] |= eperm32tab[1][(to_permute >> 16) & 0xff][0];
525 sb[sg][inx+1] |= eperm32tab[1][(to_permute >> 16) & 0xff][1];
526 sb[sg][inx ] |= eperm32tab[2][(to_permute >> 8) & 0xff][0];
527 sb[sg][inx+1] |= eperm32tab[2][(to_permute >> 8) & 0xff][1];
528 sb[sg][inx ] |= eperm32tab[3][(to_permute) & 0xff][0];
529 sb[sg][inx+1] |= eperm32tab[3][(to_permute) & 0xff][1];
530 #endif
531 #ifdef _UFC_64_
532 inx = ((j1 << 6) | j2);
533 sb[sg][inx] =
534 ((long64)eperm32tab[0][(to_permute >> 24) & 0xff][0] << 32) |
535 (long64)eperm32tab[0][(to_permute >> 24) & 0xff][1];
536 sb[sg][inx] |=
537 ((long64)eperm32tab[1][(to_permute >> 16) & 0xff][0] << 32) |
538 (long64)eperm32tab[1][(to_permute >> 16) & 0xff][1];
539 sb[sg][inx] |=
540 ((long64)eperm32tab[2][(to_permute >> 8) & 0xff][0] << 32) |
541 (long64)eperm32tab[2][(to_permute >> 8) & 0xff][1];
542 sb[sg][inx] |=
543 ((long64)eperm32tab[3][(to_permute) & 0xff][0] << 32) |
544 (long64)eperm32tab[3][(to_permute) & 0xff][1];
545 #endif
550 __data->current_saltbits = 0;
551 __data->current_salt[0] = 0;
552 __data->current_salt[1] = 0;
553 __data->initialized++;
556 void
557 __init_des()
559 __init_des_r(&_ufc_foobar);
563 * Process the elements of the sb table permuting the
564 * bits swapped in the expansion by the current salt.
567 #ifdef _UFC_32_
568 STATIC void
569 shuffle_sb(k, saltbits)
570 long32 *k;
571 ufc_long saltbits;
573 ufc_long j;
574 long32 x;
575 for(j=4096; j--;) {
576 x = (k[0] ^ k[1]) & (long32)saltbits;
577 *k++ ^= x;
578 *k++ ^= x;
581 #endif
583 #ifdef _UFC_64_
584 STATIC void
585 shuffle_sb(k, saltbits)
586 long64 *k;
587 ufc_long saltbits;
589 ufc_long j;
590 long64 x;
591 for(j=4096; j--;) {
592 x = ((*k >> 32) ^ *k) & (long64)saltbits;
593 *k++ ^= (x << 32) | x;
596 #endif
599 * Setup the unit for a new salt
600 * Hopefully we'll not see a new salt in each crypt call.
603 void
604 _ufc_setup_salt_r(s, __data)
605 const char *s;
606 struct crypt_data * __restrict __data;
608 ufc_long i, j, saltbits;
610 if(__data->initialized == 0)
611 __init_des_r(__data);
613 if(s[0] == __data->current_salt[0] && s[1] == __data->current_salt[1])
614 return;
615 __data->current_salt[0] = s[0]; __data->current_salt[1] = s[1];
618 * This is the only crypt change to DES:
619 * entries are swapped in the expansion table
620 * according to the bits set in the salt.
622 saltbits = 0;
623 for(i = 0; i < 2; i++) {
624 long c=ascii_to_bin(s[i]);
625 for(j = 0; j < 6; j++) {
626 if((c >> j) & 0x1)
627 saltbits |= BITMASK[6 * i + j];
632 * Permute the sb table values
633 * to reflect the changed e
634 * selection table
636 #ifdef _UFC_32_
637 #define LONGG long32*
638 #endif
639 #ifdef _UFC_64_
640 #define LONGG long64*
641 #endif
643 shuffle_sb((LONGG)__data->sb0, __data->current_saltbits ^ saltbits);
644 shuffle_sb((LONGG)__data->sb1, __data->current_saltbits ^ saltbits);
645 shuffle_sb((LONGG)__data->sb2, __data->current_saltbits ^ saltbits);
646 shuffle_sb((LONGG)__data->sb3, __data->current_saltbits ^ saltbits);
648 __data->current_saltbits = saltbits;
651 void
652 _ufc_mk_keytab_r(key, __data)
653 const char *key;
654 struct crypt_data * __restrict __data;
656 ufc_long v1, v2, *k1;
657 int i;
658 #ifdef _UFC_32_
659 long32 v, *k2;
660 k2 = (long32*)__data->keysched;
661 #endif
662 #ifdef _UFC_64_
663 long64 v, *k2;
664 k2 = (long64*)__data->keysched;
665 #endif
667 v1 = v2 = 0; k1 = &do_pc1[0][0][0];
668 for(i = 8; i--;) {
669 v1 |= k1[*key & 0x7f]; k1 += 128;
670 v2 |= k1[*key++ & 0x7f]; k1 += 128;
673 for(i = 0; i < 16; i++) {
674 k1 = &do_pc2[0][0];
676 v1 = (v1 << rots[i]) | (v1 >> (28 - rots[i]));
677 v = k1[(v1 >> 21) & 0x7f]; k1 += 128;
678 v |= k1[(v1 >> 14) & 0x7f]; k1 += 128;
679 v |= k1[(v1 >> 7) & 0x7f]; k1 += 128;
680 v |= k1[(v1 ) & 0x7f]; k1 += 128;
682 #ifdef _UFC_32_
683 *k2++ = (v | 0x00008000);
684 v = 0;
685 #endif
686 #ifdef _UFC_64_
687 v = (v << 32);
688 #endif
690 v2 = (v2 << rots[i]) | (v2 >> (28 - rots[i]));
691 v |= k1[(v2 >> 21) & 0x7f]; k1 += 128;
692 v |= k1[(v2 >> 14) & 0x7f]; k1 += 128;
693 v |= k1[(v2 >> 7) & 0x7f]; k1 += 128;
694 v |= k1[(v2 ) & 0x7f];
696 #ifdef _UFC_32_
697 *k2++ = (v | 0x00008000);
698 #endif
699 #ifdef _UFC_64_
700 *k2++ = v | 0x0000800000008000l;
701 #endif
704 __data->direction = 0;
708 * Undo an extra E selection and do final permutations
711 void
712 _ufc_dofinalperm_r(res, __data)
713 ufc_long *res;
714 struct crypt_data * __restrict __data;
716 ufc_long v1, v2, x;
717 ufc_long l1,l2,r1,r2;
719 l1 = res[0]; l2 = res[1];
720 r1 = res[2]; r2 = res[3];
722 x = (l1 ^ l2) & __data->current_saltbits; l1 ^= x; l2 ^= x;
723 x = (r1 ^ r2) & __data->current_saltbits; r1 ^= x; r2 ^= x;
725 v1=v2=0; l1 >>= 3; l2 >>= 3; r1 >>= 3; r2 >>= 3;
727 v1 |= efp[15][ r2 & 0x3f][0]; v2 |= efp[15][ r2 & 0x3f][1];
728 v1 |= efp[14][(r2 >>= 6) & 0x3f][0]; v2 |= efp[14][ r2 & 0x3f][1];
729 v1 |= efp[13][(r2 >>= 10) & 0x3f][0]; v2 |= efp[13][ r2 & 0x3f][1];
730 v1 |= efp[12][(r2 >>= 6) & 0x3f][0]; v2 |= efp[12][ r2 & 0x3f][1];
732 v1 |= efp[11][ r1 & 0x3f][0]; v2 |= efp[11][ r1 & 0x3f][1];
733 v1 |= efp[10][(r1 >>= 6) & 0x3f][0]; v2 |= efp[10][ r1 & 0x3f][1];
734 v1 |= efp[ 9][(r1 >>= 10) & 0x3f][0]; v2 |= efp[ 9][ r1 & 0x3f][1];
735 v1 |= efp[ 8][(r1 >>= 6) & 0x3f][0]; v2 |= efp[ 8][ r1 & 0x3f][1];
737 v1 |= efp[ 7][ l2 & 0x3f][0]; v2 |= efp[ 7][ l2 & 0x3f][1];
738 v1 |= efp[ 6][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 6][ l2 & 0x3f][1];
739 v1 |= efp[ 5][(l2 >>= 10) & 0x3f][0]; v2 |= efp[ 5][ l2 & 0x3f][1];
740 v1 |= efp[ 4][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 4][ l2 & 0x3f][1];
742 v1 |= efp[ 3][ l1 & 0x3f][0]; v2 |= efp[ 3][ l1 & 0x3f][1];
743 v1 |= efp[ 2][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 2][ l1 & 0x3f][1];
744 v1 |= efp[ 1][(l1 >>= 10) & 0x3f][0]; v2 |= efp[ 1][ l1 & 0x3f][1];
745 v1 |= efp[ 0][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 0][ l1 & 0x3f][1];
747 res[0] = v1; res[1] = v2;
751 * crypt only: convert from 64 bit to 11 bit ASCII
752 * prefixing with the salt
755 void
756 _ufc_output_conversion_r(v1, v2, salt, __data)
757 ufc_long v1, v2;
758 const char *salt;
759 struct crypt_data * __restrict __data;
761 int i, s, shf;
763 __data->crypt_3_buf[0] = salt[0];
764 __data->crypt_3_buf[1] = salt[1] ? salt[1] : salt[0];
766 for(i = 0; i < 5; i++) {
767 shf = (26 - 6 * i); /* to cope with MSC compiler bug */
768 __data->crypt_3_buf[i + 2] = bin_to_ascii((v1 >> shf) & 0x3f);
771 s = (v2 & 0xf) << 2;
772 v2 = (v2 >> 2) | ((v1 & 0x3) << 30);
774 for(i = 5; i < 10; i++) {
775 shf = (56 - 6 * i);
776 __data->crypt_3_buf[i + 2] = bin_to_ascii((v2 >> shf) & 0x3f);
779 __data->crypt_3_buf[12] = bin_to_ascii(s);
780 __data->crypt_3_buf[13] = 0;
785 * UNIX encrypt function. Takes a bitvector
786 * represented by one byte per bit and
787 * encrypt/decrypt according to edflag
790 void
791 __encrypt_r(__block, __edflag, __data)
792 char *__block;
793 int __edflag;
794 struct crypt_data * __restrict __data;
796 ufc_long l1, l2, r1, r2, res[4];
797 int i;
798 #ifdef _UFC_32_
799 long32 *kt;
800 kt = (long32*)__data->keysched;
801 #endif
802 #ifdef _UFC_64_
803 long64 *kt;
804 kt = (long64*)__data->keysched;
805 #endif
808 * Undo any salt changes to E expansion
810 _ufc_setup_salt_r("..", __data);
813 * Reverse key table if
814 * changing operation (encrypt/decrypt)
816 if((__edflag == 0) != (__data->direction == 0)) {
817 for(i = 0; i < 8; i++) {
818 #ifdef _UFC_32_
819 long32 x;
820 x = kt[2 * (15-i)];
821 kt[2 * (15-i)] = kt[2 * i];
822 kt[2 * i] = x;
824 x = kt[2 * (15-i) + 1];
825 kt[2 * (15-i) + 1] = kt[2 * i + 1];
826 kt[2 * i + 1] = x;
827 #endif
828 #ifdef _UFC_64_
829 long64 x;
830 x = kt[15-i];
831 kt[15-i] = kt[i];
832 kt[i] = x;
833 #endif
835 __data->direction = __edflag;
839 * Do initial permutation + E expansion
841 i = 0;
842 for(l1 = 0; i < 24; i++) {
843 if(__block[initial_perm[esel[i]-1]-1])
844 l1 |= BITMASK[i];
846 for(l2 = 0; i < 48; i++) {
847 if(__block[initial_perm[esel[i]-1]-1])
848 l2 |= BITMASK[i-24];
851 i = 0;
852 for(r1 = 0; i < 24; i++) {
853 if(__block[initial_perm[esel[i]-1+32]-1])
854 r1 |= BITMASK[i];
856 for(r2 = 0; i < 48; i++) {
857 if(__block[initial_perm[esel[i]-1+32]-1])
858 r2 |= BITMASK[i-24];
862 * Do DES inner loops + final conversion
864 res[0] = l1; res[1] = l2;
865 res[2] = r1; res[3] = r2;
866 _ufc_doit_r((ufc_long)1, __data, &res[0]);
869 * Do final permutations
871 _ufc_dofinalperm_r(res, __data);
874 * And convert to bit array
876 l1 = res[0]; r1 = res[1];
877 for(i = 0; i < 32; i++) {
878 *__block++ = (l1 & longmask[i]) != 0;
880 for(i = 0; i < 32; i++) {
881 *__block++ = (r1 & longmask[i]) != 0;
884 weak_alias (__encrypt_r, encrypt_r)
886 void
887 encrypt(__block, __edflag)
888 char *__block;
889 int __edflag;
891 __encrypt_r(__block, __edflag, &_ufc_foobar);
896 * UNIX setkey function. Take a 64 bit DES
897 * key and setup the machinery.
900 void
901 __setkey_r(__key, __data)
902 const char *__key;
903 struct crypt_data * __restrict __data;
905 int i,j;
906 unsigned char c;
907 unsigned char ktab[8];
909 _ufc_setup_salt_r("..", __data); /* be sure we're initialized */
911 for(i = 0; i < 8; i++) {
912 for(j = 0, c = 0; j < 8; j++)
913 c = c << 1 | *__key++;
914 ktab[i] = c >> 1;
916 _ufc_mk_keytab_r((char *) ktab, __data);
918 weak_alias (__setkey_r, setkey_r)
920 void
921 setkey(__key)
922 const char *__key;
924 __setkey_r(__key, &_ufc_foobar);