Update copyright years in csu/libc-tls.c
[glibc.git] / manual / arith.texi
blob3f4e56a6e806894524a25553a23f31167cd3ad27
1 @node Arithmetic, Date and Time, Mathematics, Top
2 @c %MENU% Low level arithmetic functions
3 @chapter Arithmetic Functions
5 This chapter contains information about functions for doing basic
6 arithmetic operations, such as splitting a float into its integer and
7 fractional parts or retrieving the imaginary part of a complex value.
8 These functions are declared in the header files @file{math.h} and
9 @file{complex.h}.
11 @menu
12 * Integers::                    Basic integer types and concepts
13 * Integer Division::            Integer division with guaranteed rounding.
14 * Floating Point Numbers::      Basic concepts.  IEEE 754.
15 * Floating Point Classes::      The five kinds of floating-point number.
16 * Floating Point Errors::       When something goes wrong in a calculation.
17 * Rounding::                    Controlling how results are rounded.
18 * Control Functions::           Saving and restoring the FPU's state.
19 * Arithmetic Functions::        Fundamental operations provided by the library.
20 * Complex Numbers::             The types.  Writing complex constants.
21 * Operations on Complex::       Projection, conjugation, decomposition.
22 * Parsing of Numbers::          Converting strings to numbers.
23 * System V Number Conversion::  An archaic way to convert numbers to strings.
24 @end menu
26 @node Integers
27 @section Integers
28 @cindex integer
30 The C language defines several integer data types: integer, short integer,
31 long integer, and character, all in both signed and unsigned varieties.
32 The GNU C compiler extends the language to contain long long integers
33 as well.
34 @cindex signedness
36 The C integer types were intended to allow code to be portable among
37 machines with different inherent data sizes (word sizes), so each type
38 may have different ranges on different machines.  The problem with
39 this is that a program often needs to be written for a particular range
40 of integers, and sometimes must be written for a particular size of
41 storage, regardless of what machine the program runs on.
43 To address this problem, @theglibc{} contains C type definitions
44 you can use to declare integers that meet your exact needs.  Because the
45 @glibcadj{} header files are customized to a specific machine, your
46 program source code doesn't have to be.
48 These @code{typedef}s are in @file{stdint.h}.
49 @pindex stdint.h
51 If you require that an integer be represented in exactly N bits, use one
52 of the following types, with the obvious mapping to bit size and signedness:
54 @itemize @bullet
55 @item int8_t
56 @item int16_t
57 @item int32_t
58 @item int64_t
59 @item uint8_t
60 @item uint16_t
61 @item uint32_t
62 @item uint64_t
63 @end itemize
65 If your C compiler and target machine do not allow integers of a certain
66 size, the corresponding above type does not exist.
68 If you don't need a specific storage size, but want the smallest data
69 structure with @emph{at least} N bits, use one of these:
71 @itemize @bullet
72 @item int_least8_t
73 @item int_least16_t
74 @item int_least32_t
75 @item int_least64_t
76 @item uint_least8_t
77 @item uint_least16_t
78 @item uint_least32_t
79 @item uint_least64_t
80 @end itemize
82 If you don't need a specific storage size, but want the data structure
83 that allows the fastest access while having at least N bits (and
84 among data structures with the same access speed, the smallest one), use
85 one of these:
87 @itemize @bullet
88 @item int_fast8_t
89 @item int_fast16_t
90 @item int_fast32_t
91 @item int_fast64_t
92 @item uint_fast8_t
93 @item uint_fast16_t
94 @item uint_fast32_t
95 @item uint_fast64_t
96 @end itemize
98 If you want an integer with the widest range possible on the platform on
99 which it is being used, use one of the following.  If you use these,
100 you should write code that takes into account the variable size and range
101 of the integer.
103 @itemize @bullet
104 @item intmax_t
105 @item uintmax_t
106 @end itemize
108 @Theglibc{} also provides macros that tell you the maximum and
109 minimum possible values for each integer data type.  The macro names
110 follow these examples: @code{INT32_MAX}, @code{UINT8_MAX},
111 @code{INT_FAST32_MIN}, @code{INT_LEAST64_MIN}, @code{UINTMAX_MAX},
112 @code{INTMAX_MAX}, @code{INTMAX_MIN}.  Note that there are no macros for
113 unsigned integer minima.  These are always zero.
114 @cindex maximum possible integer
115 @cindex minimum possible integer
117 There are similar macros for use with C's built in integer types which
118 should come with your C compiler.  These are described in @ref{Data Type
119 Measurements}.
121 Don't forget you can use the C @code{sizeof} function with any of these
122 data types to get the number of bytes of storage each uses.
125 @node Integer Division
126 @section Integer Division
127 @cindex integer division functions
129 This section describes functions for performing integer division.  These
130 functions are redundant when GNU CC is used, because in GNU C the
131 @samp{/} operator always rounds towards zero.  But in other C
132 implementations, @samp{/} may round differently with negative arguments.
133 @code{div} and @code{ldiv} are useful because they specify how to round
134 the quotient: towards zero.  The remainder has the same sign as the
135 numerator.
137 These functions are specified to return a result @var{r} such that the value
138 @code{@var{r}.quot*@var{denominator} + @var{r}.rem} equals
139 @var{numerator}.
141 @pindex stdlib.h
142 To use these facilities, you should include the header file
143 @file{stdlib.h} in your program.
145 @comment stdlib.h
146 @comment ISO
147 @deftp {Data Type} div_t
148 This is a structure type used to hold the result returned by the @code{div}
149 function.  It has the following members:
151 @table @code
152 @item int quot
153 The quotient from the division.
155 @item int rem
156 The remainder from the division.
157 @end table
158 @end deftp
160 @comment stdlib.h
161 @comment ISO
162 @deftypefun div_t div (int @var{numerator}, int @var{denominator})
163 This function @code{div} computes the quotient and remainder from
164 the division of @var{numerator} by @var{denominator}, returning the
165 result in a structure of type @code{div_t}.
167 If the result cannot be represented (as in a division by zero), the
168 behavior is undefined.
170 Here is an example, albeit not a very useful one.
172 @smallexample
173 div_t result;
174 result = div (20, -6);
175 @end smallexample
177 @noindent
178 Now @code{result.quot} is @code{-3} and @code{result.rem} is @code{2}.
179 @end deftypefun
181 @comment stdlib.h
182 @comment ISO
183 @deftp {Data Type} ldiv_t
184 This is a structure type used to hold the result returned by the @code{ldiv}
185 function.  It has the following members:
187 @table @code
188 @item long int quot
189 The quotient from the division.
191 @item long int rem
192 The remainder from the division.
193 @end table
195 (This is identical to @code{div_t} except that the components are of
196 type @code{long int} rather than @code{int}.)
197 @end deftp
199 @comment stdlib.h
200 @comment ISO
201 @deftypefun ldiv_t ldiv (long int @var{numerator}, long int @var{denominator})
202 The @code{ldiv} function is similar to @code{div}, except that the
203 arguments are of type @code{long int} and the result is returned as a
204 structure of type @code{ldiv_t}.
205 @end deftypefun
207 @comment stdlib.h
208 @comment ISO
209 @deftp {Data Type} lldiv_t
210 This is a structure type used to hold the result returned by the @code{lldiv}
211 function.  It has the following members:
213 @table @code
214 @item long long int quot
215 The quotient from the division.
217 @item long long int rem
218 The remainder from the division.
219 @end table
221 (This is identical to @code{div_t} except that the components are of
222 type @code{long long int} rather than @code{int}.)
223 @end deftp
225 @comment stdlib.h
226 @comment ISO
227 @deftypefun lldiv_t lldiv (long long int @var{numerator}, long long int @var{denominator})
228 The @code{lldiv} function is like the @code{div} function, but the
229 arguments are of type @code{long long int} and the result is returned as
230 a structure of type @code{lldiv_t}.
232 The @code{lldiv} function was added in @w{ISO C99}.
233 @end deftypefun
235 @comment inttypes.h
236 @comment ISO
237 @deftp {Data Type} imaxdiv_t
238 This is a structure type used to hold the result returned by the @code{imaxdiv}
239 function.  It has the following members:
241 @table @code
242 @item intmax_t quot
243 The quotient from the division.
245 @item intmax_t rem
246 The remainder from the division.
247 @end table
249 (This is identical to @code{div_t} except that the components are of
250 type @code{intmax_t} rather than @code{int}.)
252 See @ref{Integers} for a description of the @code{intmax_t} type.
254 @end deftp
256 @comment inttypes.h
257 @comment ISO
258 @deftypefun imaxdiv_t imaxdiv (intmax_t @var{numerator}, intmax_t @var{denominator})
259 The @code{imaxdiv} function is like the @code{div} function, but the
260 arguments are of type @code{intmax_t} and the result is returned as
261 a structure of type @code{imaxdiv_t}.
263 See @ref{Integers} for a description of the @code{intmax_t} type.
265 The @code{imaxdiv} function was added in @w{ISO C99}.
266 @end deftypefun
269 @node Floating Point Numbers
270 @section Floating Point Numbers
271 @cindex floating point
272 @cindex IEEE 754
273 @cindex IEEE floating point
275 Most computer hardware has support for two different kinds of numbers:
276 integers (@math{@dots{}-3, -2, -1, 0, 1, 2, 3@dots{}}) and
277 floating-point numbers.  Floating-point numbers have three parts: the
278 @dfn{mantissa}, the @dfn{exponent}, and the @dfn{sign bit}.  The real
279 number represented by a floating-point value is given by
280 @tex
281 $(s \mathrel? -1 \mathrel: 1) \cdot 2^e \cdot M$
282 @end tex
283 @ifnottex
284 @math{(s ? -1 : 1) @mul{} 2^e @mul{} M}
285 @end ifnottex
286 where @math{s} is the sign bit, @math{e} the exponent, and @math{M}
287 the mantissa.  @xref{Floating Point Concepts}, for details.  (It is
288 possible to have a different @dfn{base} for the exponent, but all modern
289 hardware uses @math{2}.)
291 Floating-point numbers can represent a finite subset of the real
292 numbers.  While this subset is large enough for most purposes, it is
293 important to remember that the only reals that can be represented
294 exactly are rational numbers that have a terminating binary expansion
295 shorter than the width of the mantissa.  Even simple fractions such as
296 @math{1/5} can only be approximated by floating point.
298 Mathematical operations and functions frequently need to produce values
299 that are not representable.  Often these values can be approximated
300 closely enough for practical purposes, but sometimes they can't.
301 Historically there was no way to tell when the results of a calculation
302 were inaccurate.  Modern computers implement the @w{IEEE 754} standard
303 for numerical computations, which defines a framework for indicating to
304 the program when the results of calculation are not trustworthy.  This
305 framework consists of a set of @dfn{exceptions} that indicate why a
306 result could not be represented, and the special values @dfn{infinity}
307 and @dfn{not a number} (NaN).
309 @node Floating Point Classes
310 @section Floating-Point Number Classification Functions
311 @cindex floating-point classes
312 @cindex classes, floating-point
313 @pindex math.h
315 @w{ISO C99} defines macros that let you determine what sort of
316 floating-point number a variable holds.
318 @comment math.h
319 @comment ISO
320 @deftypefn {Macro} int fpclassify (@emph{float-type} @var{x})
321 This is a generic macro which works on all floating-point types and
322 which returns a value of type @code{int}.  The possible values are:
324 @vtable @code
325 @item FP_NAN
326 The floating-point number @var{x} is ``Not a Number'' (@pxref{Infinity
327 and NaN})
328 @item FP_INFINITE
329 The value of @var{x} is either plus or minus infinity (@pxref{Infinity
330 and NaN})
331 @item FP_ZERO
332 The value of @var{x} is zero.  In floating-point formats like @w{IEEE
333 754}, where zero can be signed, this value is also returned if
334 @var{x} is negative zero.
335 @item FP_SUBNORMAL
336 Numbers whose absolute value is too small to be represented in the
337 normal format are represented in an alternate, @dfn{denormalized} format
338 (@pxref{Floating Point Concepts}).  This format is less precise but can
339 represent values closer to zero.  @code{fpclassify} returns this value
340 for values of @var{x} in this alternate format.
341 @item FP_NORMAL
342 This value is returned for all other values of @var{x}.  It indicates
343 that there is nothing special about the number.
344 @end vtable
346 @end deftypefn
348 @code{fpclassify} is most useful if more than one property of a number
349 must be tested.  There are more specific macros which only test one
350 property at a time.  Generally these macros execute faster than
351 @code{fpclassify}, since there is special hardware support for them.
352 You should therefore use the specific macros whenever possible.
354 @comment math.h
355 @comment ISO
356 @deftypefn {Macro} int isfinite (@emph{float-type} @var{x})
357 This macro returns a nonzero value if @var{x} is finite: not plus or
358 minus infinity, and not NaN.  It is equivalent to
360 @smallexample
361 (fpclassify (x) != FP_NAN && fpclassify (x) != FP_INFINITE)
362 @end smallexample
364 @code{isfinite} is implemented as a macro which accepts any
365 floating-point type.
366 @end deftypefn
368 @comment math.h
369 @comment ISO
370 @deftypefn {Macro} int isnormal (@emph{float-type} @var{x})
371 This macro returns a nonzero value if @var{x} is finite and normalized.
372 It is equivalent to
374 @smallexample
375 (fpclassify (x) == FP_NORMAL)
376 @end smallexample
377 @end deftypefn
379 @comment math.h
380 @comment ISO
381 @deftypefn {Macro} int isnan (@emph{float-type} @var{x})
382 This macro returns a nonzero value if @var{x} is NaN.  It is equivalent
385 @smallexample
386 (fpclassify (x) == FP_NAN)
387 @end smallexample
388 @end deftypefn
390 Another set of floating-point classification functions was provided by
391 BSD.  @Theglibc{} also supports these functions; however, we
392 recommend that you use the ISO C99 macros in new code.  Those are standard
393 and will be available more widely.  Also, since they are macros, you do
394 not have to worry about the type of their argument.
396 @comment math.h
397 @comment BSD
398 @deftypefun int isinf (double @var{x})
399 @comment math.h
400 @comment BSD
401 @deftypefunx int isinff (float @var{x})
402 @comment math.h
403 @comment BSD
404 @deftypefunx int isinfl (long double @var{x})
405 This function returns @code{-1} if @var{x} represents negative infinity,
406 @code{1} if @var{x} represents positive infinity, and @code{0} otherwise.
407 @end deftypefun
409 @comment math.h
410 @comment BSD
411 @deftypefun int isnan (double @var{x})
412 @comment math.h
413 @comment BSD
414 @deftypefunx int isnanf (float @var{x})
415 @comment math.h
416 @comment BSD
417 @deftypefunx int isnanl (long double @var{x})
418 This function returns a nonzero value if @var{x} is a ``not a number''
419 value, and zero otherwise.
421 @strong{NB:} The @code{isnan} macro defined by @w{ISO C99} overrides
422 the BSD function.  This is normally not a problem, because the two
423 routines behave identically.  However, if you really need to get the BSD
424 function for some reason, you can write
426 @smallexample
427 (isnan) (x)
428 @end smallexample
429 @end deftypefun
431 @comment math.h
432 @comment BSD
433 @deftypefun int finite (double @var{x})
434 @comment math.h
435 @comment BSD
436 @deftypefunx int finitef (float @var{x})
437 @comment math.h
438 @comment BSD
439 @deftypefunx int finitel (long double @var{x})
440 This function returns a nonzero value if @var{x} is finite or a ``not a
441 number'' value, and zero otherwise.
442 @end deftypefun
444 @strong{Portability Note:} The functions listed in this section are BSD
445 extensions.
448 @node Floating Point Errors
449 @section Errors in Floating-Point Calculations
451 @menu
452 * FP Exceptions::               IEEE 754 math exceptions and how to detect them.
453 * Infinity and NaN::            Special values returned by calculations.
454 * Status bit operations::       Checking for exceptions after the fact.
455 * Math Error Reporting::        How the math functions report errors.
456 @end menu
458 @node FP Exceptions
459 @subsection FP Exceptions
460 @cindex exception
461 @cindex signal
462 @cindex zero divide
463 @cindex division by zero
464 @cindex inexact exception
465 @cindex invalid exception
466 @cindex overflow exception
467 @cindex underflow exception
469 The @w{IEEE 754} standard defines five @dfn{exceptions} that can occur
470 during a calculation.  Each corresponds to a particular sort of error,
471 such as overflow.
473 When exceptions occur (when exceptions are @dfn{raised}, in the language
474 of the standard), one of two things can happen.  By default the
475 exception is simply noted in the floating-point @dfn{status word}, and
476 the program continues as if nothing had happened.  The operation
477 produces a default value, which depends on the exception (see the table
478 below).  Your program can check the status word to find out which
479 exceptions happened.
481 Alternatively, you can enable @dfn{traps} for exceptions.  In that case,
482 when an exception is raised, your program will receive the @code{SIGFPE}
483 signal.  The default action for this signal is to terminate the
484 program.  @xref{Signal Handling}, for how you can change the effect of
485 the signal.
487 @findex matherr
488 In the System V math library, the user-defined function @code{matherr}
489 is called when certain exceptions occur inside math library functions.
490 However, the Unix98 standard deprecates this interface.  We support it
491 for historical compatibility, but recommend that you do not use it in
492 new programs.
494 @noindent
495 The exceptions defined in @w{IEEE 754} are:
497 @table @samp
498 @item Invalid Operation
499 This exception is raised if the given operands are invalid for the
500 operation to be performed.  Examples are
501 (see @w{IEEE 754}, @w{section 7}):
502 @enumerate
503 @item
504 Addition or subtraction: @math{@infinity{} - @infinity{}}.  (But
505 @math{@infinity{} + @infinity{} = @infinity{}}).
506 @item
507 Multiplication: @math{0 @mul{} @infinity{}}.
508 @item
509 Division: @math{0/0} or @math{@infinity{}/@infinity{}}.
510 @item
511 Remainder: @math{x} REM @math{y}, where @math{y} is zero or @math{x} is
512 infinite.
513 @item
514 Square root if the operand is less then zero.  More generally, any
515 mathematical function evaluated outside its domain produces this
516 exception.
517 @item
518 Conversion of a floating-point number to an integer or decimal
519 string, when the number cannot be represented in the target format (due
520 to overflow, infinity, or NaN).
521 @item
522 Conversion of an unrecognizable input string.
523 @item
524 Comparison via predicates involving @math{<} or @math{>}, when one or
525 other of the operands is NaN.  You can prevent this exception by using
526 the unordered comparison functions instead; see @ref{FP Comparison Functions}.
527 @end enumerate
529 If the exception does not trap, the result of the operation is NaN.
531 @item Division by Zero
532 This exception is raised when a finite nonzero number is divided
533 by zero.  If no trap occurs the result is either @math{+@infinity{}} or
534 @math{-@infinity{}}, depending on the signs of the operands.
536 @item Overflow
537 This exception is raised whenever the result cannot be represented
538 as a finite value in the precision format of the destination.  If no trap
539 occurs the result depends on the sign of the intermediate result and the
540 current rounding mode (@w{IEEE 754}, @w{section 7.3}):
541 @enumerate
542 @item
543 Round to nearest carries all overflows to @math{@infinity{}}
544 with the sign of the intermediate result.
545 @item
546 Round toward @math{0} carries all overflows to the largest representable
547 finite number with the sign of the intermediate result.
548 @item
549 Round toward @math{-@infinity{}} carries positive overflows to the
550 largest representable finite number and negative overflows to
551 @math{-@infinity{}}.
553 @item
554 Round toward @math{@infinity{}} carries negative overflows to the
555 most negative representable finite number and positive overflows
556 to @math{@infinity{}}.
557 @end enumerate
559 Whenever the overflow exception is raised, the inexact exception is also
560 raised.
562 @item Underflow
563 The underflow exception is raised when an intermediate result is too
564 small to be calculated accurately, or if the operation's result rounded
565 to the destination precision is too small to be normalized.
567 When no trap is installed for the underflow exception, underflow is
568 signaled (via the underflow flag) only when both tininess and loss of
569 accuracy have been detected.  If no trap handler is installed the
570 operation continues with an imprecise small value, or zero if the
571 destination precision cannot hold the small exact result.
573 @item Inexact
574 This exception is signalled if a rounded result is not exact (such as
575 when calculating the square root of two) or a result overflows without
576 an overflow trap.
577 @end table
579 @node Infinity and NaN
580 @subsection Infinity and NaN
581 @cindex infinity
582 @cindex not a number
583 @cindex NaN
585 @w{IEEE 754} floating point numbers can represent positive or negative
586 infinity, and @dfn{NaN} (not a number).  These three values arise from
587 calculations whose result is undefined or cannot be represented
588 accurately.  You can also deliberately set a floating-point variable to
589 any of them, which is sometimes useful.  Some examples of calculations
590 that produce infinity or NaN:
592 @ifnottex
593 @smallexample
594 @math{1/0 = @infinity{}}
595 @math{log (0) = -@infinity{}}
596 @math{sqrt (-1) = NaN}
597 @end smallexample
598 @end ifnottex
599 @tex
600 $${1\over0} = \infty$$
601 $$\log 0 = -\infty$$
602 $$\sqrt{-1} = \hbox{NaN}$$
603 @end tex
605 When a calculation produces any of these values, an exception also
606 occurs; see @ref{FP Exceptions}.
608 The basic operations and math functions all accept infinity and NaN and
609 produce sensible output.  Infinities propagate through calculations as
610 one would expect: for example, @math{2 + @infinity{} = @infinity{}},
611 @math{4/@infinity{} = 0}, atan @math{(@infinity{}) = @pi{}/2}.  NaN, on
612 the other hand, infects any calculation that involves it.  Unless the
613 calculation would produce the same result no matter what real value
614 replaced NaN, the result is NaN.
616 In comparison operations, positive infinity is larger than all values
617 except itself and NaN, and negative infinity is smaller than all values
618 except itself and NaN.  NaN is @dfn{unordered}: it is not equal to,
619 greater than, or less than anything, @emph{including itself}. @code{x ==
620 x} is false if the value of @code{x} is NaN.  You can use this to test
621 whether a value is NaN or not, but the recommended way to test for NaN
622 is with the @code{isnan} function (@pxref{Floating Point Classes}).  In
623 addition, @code{<}, @code{>}, @code{<=}, and @code{>=} will raise an
624 exception when applied to NaNs.
626 @file{math.h} defines macros that allow you to explicitly set a variable
627 to infinity or NaN.
629 @comment math.h
630 @comment ISO
631 @deftypevr Macro float INFINITY
632 An expression representing positive infinity.  It is equal to the value
633 produced  by mathematical operations like @code{1.0 / 0.0}.
634 @code{-INFINITY} represents negative infinity.
636 You can test whether a floating-point value is infinite by comparing it
637 to this macro.  However, this is not recommended; you should use the
638 @code{isfinite} macro instead.  @xref{Floating Point Classes}.
640 This macro was introduced in the @w{ISO C99} standard.
641 @end deftypevr
643 @comment math.h
644 @comment GNU
645 @deftypevr Macro float NAN
646 An expression representing a value which is ``not a number''.  This
647 macro is a GNU extension, available only on machines that support the
648 ``not a number'' value---that is to say, on all machines that support
649 IEEE floating point.
651 You can use @samp{#ifdef NAN} to test whether the machine supports
652 NaN.  (Of course, you must arrange for GNU extensions to be visible,
653 such as by defining @code{_GNU_SOURCE}, and then you must include
654 @file{math.h}.)
655 @end deftypevr
657 @w{IEEE 754} also allows for another unusual value: negative zero.  This
658 value is produced when you divide a positive number by negative
659 infinity, or when a negative result is smaller than the limits of
660 representation.
662 @node Status bit operations
663 @subsection Examining the FPU status word
665 @w{ISO C99} defines functions to query and manipulate the
666 floating-point status word.  You can use these functions to check for
667 untrapped exceptions when it's convenient, rather than worrying about
668 them in the middle of a calculation.
670 These constants represent the various @w{IEEE 754} exceptions.  Not all
671 FPUs report all the different exceptions.  Each constant is defined if
672 and only if the FPU you are compiling for supports that exception, so
673 you can test for FPU support with @samp{#ifdef}.  They are defined in
674 @file{fenv.h}.
676 @vtable @code
677 @comment fenv.h
678 @comment ISO
679 @item FE_INEXACT
680  The inexact exception.
681 @comment fenv.h
682 @comment ISO
683 @item FE_DIVBYZERO
684  The divide by zero exception.
685 @comment fenv.h
686 @comment ISO
687 @item FE_UNDERFLOW
688  The underflow exception.
689 @comment fenv.h
690 @comment ISO
691 @item FE_OVERFLOW
692  The overflow exception.
693 @comment fenv.h
694 @comment ISO
695 @item FE_INVALID
696  The invalid exception.
697 @end vtable
699 The macro @code{FE_ALL_EXCEPT} is the bitwise OR of all exception macros
700 which are supported by the FP implementation.
702 These functions allow you to clear exception flags, test for exceptions,
703 and save and restore the set of exceptions flagged.
705 @comment fenv.h
706 @comment ISO
707 @deftypefun int feclearexcept (int @var{excepts})
708 This function clears all of the supported exception flags indicated by
709 @var{excepts}.
711 The function returns zero in case the operation was successful, a
712 non-zero value otherwise.
713 @end deftypefun
715 @comment fenv.h
716 @comment ISO
717 @deftypefun int feraiseexcept (int @var{excepts})
718 This function raises the supported exceptions indicated by
719 @var{excepts}.  If more than one exception bit in @var{excepts} is set
720 the order in which the exceptions are raised is undefined except that
721 overflow (@code{FE_OVERFLOW}) or underflow (@code{FE_UNDERFLOW}) are
722 raised before inexact (@code{FE_INEXACT}).  Whether for overflow or
723 underflow the inexact exception is also raised is also implementation
724 dependent.
726 The function returns zero in case the operation was successful, a
727 non-zero value otherwise.
728 @end deftypefun
730 @comment fenv.h
731 @comment ISO
732 @deftypefun int fetestexcept (int @var{excepts})
733 Test whether the exception flags indicated by the parameter @var{except}
734 are currently set.  If any of them are, a nonzero value is returned
735 which specifies which exceptions are set.  Otherwise the result is zero.
736 @end deftypefun
738 To understand these functions, imagine that the status word is an
739 integer variable named @var{status}.  @code{feclearexcept} is then
740 equivalent to @samp{status &= ~excepts} and @code{fetestexcept} is
741 equivalent to @samp{(status & excepts)}.  The actual implementation may
742 be very different, of course.
744 Exception flags are only cleared when the program explicitly requests it,
745 by calling @code{feclearexcept}.  If you want to check for exceptions
746 from a set of calculations, you should clear all the flags first.  Here
747 is a simple example of the way to use @code{fetestexcept}:
749 @smallexample
751   double f;
752   int raised;
753   feclearexcept (FE_ALL_EXCEPT);
754   f = compute ();
755   raised = fetestexcept (FE_OVERFLOW | FE_INVALID);
756   if (raised & FE_OVERFLOW) @{ /* @dots{} */ @}
757   if (raised & FE_INVALID) @{ /* @dots{} */ @}
758   /* @dots{} */
760 @end smallexample
762 You cannot explicitly set bits in the status word.  You can, however,
763 save the entire status word and restore it later.  This is done with the
764 following functions:
766 @comment fenv.h
767 @comment ISO
768 @deftypefun int fegetexceptflag (fexcept_t *@var{flagp}, int @var{excepts})
769 This function stores in the variable pointed to by @var{flagp} an
770 implementation-defined value representing the current setting of the
771 exception flags indicated by @var{excepts}.
773 The function returns zero in case the operation was successful, a
774 non-zero value otherwise.
775 @end deftypefun
777 @comment fenv.h
778 @comment ISO
779 @deftypefun int fesetexceptflag (const fexcept_t *@var{flagp}, int @var{excepts})
780 This function restores the flags for the exceptions indicated by
781 @var{excepts} to the values stored in the variable pointed to by
782 @var{flagp}.
784 The function returns zero in case the operation was successful, a
785 non-zero value otherwise.
786 @end deftypefun
788 Note that the value stored in @code{fexcept_t} bears no resemblance to
789 the bit mask returned by @code{fetestexcept}.  The type may not even be
790 an integer.  Do not attempt to modify an @code{fexcept_t} variable.
792 @node Math Error Reporting
793 @subsection Error Reporting by Mathematical Functions
794 @cindex errors, mathematical
795 @cindex domain error
796 @cindex range error
798 Many of the math functions are defined only over a subset of the real or
799 complex numbers.  Even if they are mathematically defined, their result
800 may be larger or smaller than the range representable by their return
801 type.  These are known as @dfn{domain errors}, @dfn{overflows}, and
802 @dfn{underflows}, respectively.  Math functions do several things when
803 one of these errors occurs.  In this manual we will refer to the
804 complete response as @dfn{signalling} a domain error, overflow, or
805 underflow.
807 When a math function suffers a domain error, it raises the invalid
808 exception and returns NaN.  It also sets @var{errno} to @code{EDOM};
809 this is for compatibility with old systems that do not support @w{IEEE
810 754} exception handling.  Likewise, when overflow occurs, math
811 functions raise the overflow exception and return @math{@infinity{}} or
812 @math{-@infinity{}} as appropriate.  They also set @var{errno} to
813 @code{ERANGE}.  When underflow occurs, the underflow exception is
814 raised, and zero (appropriately signed) is returned.  @var{errno} may be
815 set to @code{ERANGE}, but this is not guaranteed.
817 Some of the math functions are defined mathematically to result in a
818 complex value over parts of their domains.  The most familiar example of
819 this is taking the square root of a negative number.  The complex math
820 functions, such as @code{csqrt}, will return the appropriate complex value
821 in this case.  The real-valued functions, such as @code{sqrt}, will
822 signal a domain error.
824 Some older hardware does not support infinities.  On that hardware,
825 overflows instead return a particular very large number (usually the
826 largest representable number).  @file{math.h} defines macros you can use
827 to test for overflow on both old and new hardware.
829 @comment math.h
830 @comment ISO
831 @deftypevr Macro double HUGE_VAL
832 @comment math.h
833 @comment ISO
834 @deftypevrx Macro float HUGE_VALF
835 @comment math.h
836 @comment ISO
837 @deftypevrx Macro {long double} HUGE_VALL
838 An expression representing a particular very large number.  On machines
839 that use @w{IEEE 754} floating point format, @code{HUGE_VAL} is infinity.
840 On other machines, it's typically the largest positive number that can
841 be represented.
843 Mathematical functions return the appropriately typed version of
844 @code{HUGE_VAL} or @code{@minus{}HUGE_VAL} when the result is too large
845 to be represented.
846 @end deftypevr
848 @node Rounding
849 @section Rounding Modes
851 Floating-point calculations are carried out internally with extra
852 precision, and then rounded to fit into the destination type.  This
853 ensures that results are as precise as the input data.  @w{IEEE 754}
854 defines four possible rounding modes:
856 @table @asis
857 @item Round to nearest.
858 This is the default mode.  It should be used unless there is a specific
859 need for one of the others.  In this mode results are rounded to the
860 nearest representable value.  If the result is midway between two
861 representable values, the even representable is chosen. @dfn{Even} here
862 means the lowest-order bit is zero.  This rounding mode prevents
863 statistical bias and guarantees numeric stability: round-off errors in a
864 lengthy calculation will remain smaller than half of @code{FLT_EPSILON}.
866 @c @item Round toward @math{+@infinity{}}
867 @item Round toward plus Infinity.
868 All results are rounded to the smallest representable value
869 which is greater than the result.
871 @c @item Round toward @math{-@infinity{}}
872 @item Round toward minus Infinity.
873 All results are rounded to the largest representable value which is less
874 than the result.
876 @item Round toward zero.
877 All results are rounded to the largest representable value whose
878 magnitude is less than that of the result.  In other words, if the
879 result is negative it is rounded up; if it is positive, it is rounded
880 down.
881 @end table
883 @noindent
884 @file{fenv.h} defines constants which you can use to refer to the
885 various rounding modes.  Each one will be defined if and only if the FPU
886 supports the corresponding rounding mode.
888 @table @code
889 @comment fenv.h
890 @comment ISO
891 @vindex FE_TONEAREST
892 @item FE_TONEAREST
893 Round to nearest.
895 @comment fenv.h
896 @comment ISO
897 @vindex FE_UPWARD
898 @item FE_UPWARD
899 Round toward @math{+@infinity{}}.
901 @comment fenv.h
902 @comment ISO
903 @vindex FE_DOWNWARD
904 @item FE_DOWNWARD
905 Round toward @math{-@infinity{}}.
907 @comment fenv.h
908 @comment ISO
909 @vindex FE_TOWARDZERO
910 @item FE_TOWARDZERO
911 Round toward zero.
912 @end table
914 Underflow is an unusual case.  Normally, @w{IEEE 754} floating point
915 numbers are always normalized (@pxref{Floating Point Concepts}).
916 Numbers smaller than @math{2^r} (where @math{r} is the minimum exponent,
917 @code{FLT_MIN_RADIX-1} for @var{float}) cannot be represented as
918 normalized numbers.  Rounding all such numbers to zero or @math{2^r}
919 would cause some algorithms to fail at 0.  Therefore, they are left in
920 denormalized form.  That produces loss of precision, since some bits of
921 the mantissa are stolen to indicate the decimal point.
923 If a result is too small to be represented as a denormalized number, it
924 is rounded to zero.  However, the sign of the result is preserved; if
925 the calculation was negative, the result is @dfn{negative zero}.
926 Negative zero can also result from some operations on infinity, such as
927 @math{4/-@infinity{}}.
929 At any time one of the above four rounding modes is selected.  You can
930 find out which one with this function:
932 @comment fenv.h
933 @comment ISO
934 @deftypefun int fegetround (void)
935 Returns the currently selected rounding mode, represented by one of the
936 values of the defined rounding mode macros.
937 @end deftypefun
939 @noindent
940 To change the rounding mode, use this function:
942 @comment fenv.h
943 @comment ISO
944 @deftypefun int fesetround (int @var{round})
945 Changes the currently selected rounding mode to @var{round}.  If
946 @var{round} does not correspond to one of the supported rounding modes
947 nothing is changed.  @code{fesetround} returns zero if it changed the
948 rounding mode, a nonzero value if the mode is not supported.
949 @end deftypefun
951 You should avoid changing the rounding mode if possible.  It can be an
952 expensive operation; also, some hardware requires you to compile your
953 program differently for it to work.  The resulting code may run slower.
954 See your compiler documentation for details.
955 @c This section used to claim that functions existed to round one number
956 @c in a specific fashion.  I can't find any functions in the library
957 @c that do that. -zw
959 @node Control Functions
960 @section Floating-Point Control Functions
962 @w{IEEE 754} floating-point implementations allow the programmer to
963 decide whether traps will occur for each of the exceptions, by setting
964 bits in the @dfn{control word}.  In C, traps result in the program
965 receiving the @code{SIGFPE} signal; see @ref{Signal Handling}.
967 @strong{NB:} @w{IEEE 754} says that trap handlers are given details of
968 the exceptional situation, and can set the result value.  C signals do
969 not provide any mechanism to pass this information back and forth.
970 Trapping exceptions in C is therefore not very useful.
972 It is sometimes necessary to save the state of the floating-point unit
973 while you perform some calculation.  The library provides functions
974 which save and restore the exception flags, the set of exceptions that
975 generate traps, and the rounding mode.  This information is known as the
976 @dfn{floating-point environment}.
978 The functions to save and restore the floating-point environment all use
979 a variable of type @code{fenv_t} to store information.  This type is
980 defined in @file{fenv.h}.  Its size and contents are
981 implementation-defined.  You should not attempt to manipulate a variable
982 of this type directly.
984 To save the state of the FPU, use one of these functions:
986 @comment fenv.h
987 @comment ISO
988 @deftypefun int fegetenv (fenv_t *@var{envp})
989 Store the floating-point environment in the variable pointed to by
990 @var{envp}.
992 The function returns zero in case the operation was successful, a
993 non-zero value otherwise.
994 @end deftypefun
996 @comment fenv.h
997 @comment ISO
998 @deftypefun int feholdexcept (fenv_t *@var{envp})
999 Store the current floating-point environment in the object pointed to by
1000 @var{envp}.  Then clear all exception flags, and set the FPU to trap no
1001 exceptions.  Not all FPUs support trapping no exceptions; if
1002 @code{feholdexcept} cannot set this mode, it returns nonzero value.  If it
1003 succeeds, it returns zero.
1004 @end deftypefun
1006 The functions which restore the floating-point environment can take these
1007 kinds of arguments:
1009 @itemize @bullet
1010 @item
1011 Pointers to @code{fenv_t} objects, which were initialized previously by a
1012 call to @code{fegetenv} or @code{feholdexcept}.
1013 @item
1014 @vindex FE_DFL_ENV
1015 The special macro @code{FE_DFL_ENV} which represents the floating-point
1016 environment as it was available at program start.
1017 @item
1018 Implementation defined macros with names starting with @code{FE_} and
1019 having type @code{fenv_t *}.
1021 @vindex FE_NOMASK_ENV
1022 If possible, @theglibc{} defines a macro @code{FE_NOMASK_ENV}
1023 which represents an environment where every exception raised causes a
1024 trap to occur.  You can test for this macro using @code{#ifdef}.  It is
1025 only defined if @code{_GNU_SOURCE} is defined.
1027 Some platforms might define other predefined environments.
1028 @end itemize
1030 @noindent
1031 To set the floating-point environment, you can use either of these
1032 functions:
1034 @comment fenv.h
1035 @comment ISO
1036 @deftypefun int fesetenv (const fenv_t *@var{envp})
1037 Set the floating-point environment to that described by @var{envp}.
1039 The function returns zero in case the operation was successful, a
1040 non-zero value otherwise.
1041 @end deftypefun
1043 @comment fenv.h
1044 @comment ISO
1045 @deftypefun int feupdateenv (const fenv_t *@var{envp})
1046 Like @code{fesetenv}, this function sets the floating-point environment
1047 to that described by @var{envp}.  However, if any exceptions were
1048 flagged in the status word before @code{feupdateenv} was called, they
1049 remain flagged after the call.  In other words, after @code{feupdateenv}
1050 is called, the status word is the bitwise OR of the previous status word
1051 and the one saved in @var{envp}.
1053 The function returns zero in case the operation was successful, a
1054 non-zero value otherwise.
1055 @end deftypefun
1057 @noindent
1058 To control for individual exceptions if raising them causes a trap to
1059 occur, you can use the following two functions.
1061 @strong{Portability Note:} These functions are all GNU extensions.
1063 @comment fenv.h
1064 @comment GNU
1065 @deftypefun int feenableexcept (int @var{excepts})
1066 This functions enables traps for each of the exceptions as indicated by
1067 the parameter @var{except}.  The individual excepetions are described in
1068 @ref{Status bit operations}.  Only the specified exceptions are
1069 enabled, the status of the other exceptions is not changed.
1071 The function returns the previous enabled exceptions in case the
1072 operation was successful, @code{-1} otherwise.
1073 @end deftypefun
1075 @comment fenv.h
1076 @comment GNU
1077 @deftypefun int fedisableexcept (int @var{excepts})
1078 This functions disables traps for each of the exceptions as indicated by
1079 the parameter @var{except}.  The individual excepetions are described in
1080 @ref{Status bit operations}.  Only the specified exceptions are
1081 disabled, the status of the other exceptions is not changed.
1083 The function returns the previous enabled exceptions in case the
1084 operation was successful, @code{-1} otherwise.
1085 @end deftypefun
1087 @comment fenv.h
1088 @comment GNU
1089 @deftypefun int fegetexcept (int @var{excepts})
1090 The function returns a bitmask of all currently enabled exceptions.  It
1091 returns @code{-1} in case of failure.
1092 @end deftypefun
1094 @node Arithmetic Functions
1095 @section Arithmetic Functions
1097 The C library provides functions to do basic operations on
1098 floating-point numbers.  These include absolute value, maximum and minimum,
1099 normalization, bit twiddling, rounding, and a few others.
1101 @menu
1102 * Absolute Value::              Absolute values of integers and floats.
1103 * Normalization Functions::     Extracting exponents and putting them back.
1104 * Rounding Functions::          Rounding floats to integers.
1105 * Remainder Functions::         Remainders on division, precisely defined.
1106 * FP Bit Twiddling::            Sign bit adjustment.  Adding epsilon.
1107 * FP Comparison Functions::     Comparisons without risk of exceptions.
1108 * Misc FP Arithmetic::          Max, min, positive difference, multiply-add.
1109 @end menu
1111 @node Absolute Value
1112 @subsection Absolute Value
1113 @cindex absolute value functions
1115 These functions are provided for obtaining the @dfn{absolute value} (or
1116 @dfn{magnitude}) of a number.  The absolute value of a real number
1117 @var{x} is @var{x} if @var{x} is positive, @minus{}@var{x} if @var{x} is
1118 negative.  For a complex number @var{z}, whose real part is @var{x} and
1119 whose imaginary part is @var{y}, the absolute value is @w{@code{sqrt
1120 (@var{x}*@var{x} + @var{y}*@var{y})}}.
1122 @pindex math.h
1123 @pindex stdlib.h
1124 Prototypes for @code{abs}, @code{labs} and @code{llabs} are in @file{stdlib.h};
1125 @code{imaxabs} is declared in @file{inttypes.h};
1126 @code{fabs}, @code{fabsf} and @code{fabsl} are declared in @file{math.h}.
1127 @code{cabs}, @code{cabsf} and @code{cabsl} are declared in @file{complex.h}.
1129 @comment stdlib.h
1130 @comment ISO
1131 @deftypefun int abs (int @var{number})
1132 @comment stdlib.h
1133 @comment ISO
1134 @deftypefunx {long int} labs (long int @var{number})
1135 @comment stdlib.h
1136 @comment ISO
1137 @deftypefunx {long long int} llabs (long long int @var{number})
1138 @comment inttypes.h
1139 @comment ISO
1140 @deftypefunx intmax_t imaxabs (intmax_t @var{number})
1141 These functions return the absolute value of @var{number}.
1143 Most computers use a two's complement integer representation, in which
1144 the absolute value of @code{INT_MIN} (the smallest possible @code{int})
1145 cannot be represented; thus, @w{@code{abs (INT_MIN)}} is not defined.
1147 @code{llabs} and @code{imaxdiv} are new to @w{ISO C99}.
1149 See @ref{Integers} for a description of the @code{intmax_t} type.
1151 @end deftypefun
1153 @comment math.h
1154 @comment ISO
1155 @deftypefun double fabs (double @var{number})
1156 @comment math.h
1157 @comment ISO
1158 @deftypefunx float fabsf (float @var{number})
1159 @comment math.h
1160 @comment ISO
1161 @deftypefunx {long double} fabsl (long double @var{number})
1162 This function returns the absolute value of the floating-point number
1163 @var{number}.
1164 @end deftypefun
1166 @comment complex.h
1167 @comment ISO
1168 @deftypefun double cabs (complex double @var{z})
1169 @comment complex.h
1170 @comment ISO
1171 @deftypefunx float cabsf (complex float @var{z})
1172 @comment complex.h
1173 @comment ISO
1174 @deftypefunx {long double} cabsl (complex long double @var{z})
1175 These functions return the absolute  value of the complex number @var{z}
1176 (@pxref{Complex Numbers}).  The absolute value of a complex number is:
1178 @smallexample
1179 sqrt (creal (@var{z}) * creal (@var{z}) + cimag (@var{z}) * cimag (@var{z}))
1180 @end smallexample
1182 This function should always be used instead of the direct formula
1183 because it takes special care to avoid losing precision.  It may also
1184 take advantage of hardware support for this operation. See @code{hypot}
1185 in @ref{Exponents and Logarithms}.
1186 @end deftypefun
1188 @node Normalization Functions
1189 @subsection Normalization Functions
1190 @cindex normalization functions (floating-point)
1192 The functions described in this section are primarily provided as a way
1193 to efficiently perform certain low-level manipulations on floating point
1194 numbers that are represented internally using a binary radix;
1195 see @ref{Floating Point Concepts}.  These functions are required to
1196 have equivalent behavior even if the representation does not use a radix
1197 of 2, but of course they are unlikely to be particularly efficient in
1198 those cases.
1200 @pindex math.h
1201 All these functions are declared in @file{math.h}.
1203 @comment math.h
1204 @comment ISO
1205 @deftypefun double frexp (double @var{value}, int *@var{exponent})
1206 @comment math.h
1207 @comment ISO
1208 @deftypefunx float frexpf (float @var{value}, int *@var{exponent})
1209 @comment math.h
1210 @comment ISO
1211 @deftypefunx {long double} frexpl (long double @var{value}, int *@var{exponent})
1212 These functions are used to split the number @var{value}
1213 into a normalized fraction and an exponent.
1215 If the argument @var{value} is not zero, the return value is @var{value}
1216 times a power of two, and is always in the range 1/2 (inclusive) to 1
1217 (exclusive).  The corresponding exponent is stored in
1218 @code{*@var{exponent}}; the return value multiplied by 2 raised to this
1219 exponent equals the original number @var{value}.
1221 For example, @code{frexp (12.8, &exponent)} returns @code{0.8} and
1222 stores @code{4} in @code{exponent}.
1224 If @var{value} is zero, then the return value is zero and
1225 zero is stored in @code{*@var{exponent}}.
1226 @end deftypefun
1228 @comment math.h
1229 @comment ISO
1230 @deftypefun double ldexp (double @var{value}, int @var{exponent})
1231 @comment math.h
1232 @comment ISO
1233 @deftypefunx float ldexpf (float @var{value}, int @var{exponent})
1234 @comment math.h
1235 @comment ISO
1236 @deftypefunx {long double} ldexpl (long double @var{value}, int @var{exponent})
1237 These functions return the result of multiplying the floating-point
1238 number @var{value} by 2 raised to the power @var{exponent}.  (It can
1239 be used to reassemble floating-point numbers that were taken apart
1240 by @code{frexp}.)
1242 For example, @code{ldexp (0.8, 4)} returns @code{12.8}.
1243 @end deftypefun
1245 The following functions, which come from BSD, provide facilities
1246 equivalent to those of @code{ldexp} and @code{frexp}.  See also the
1247 @w{ISO C} function @code{logb} which originally also appeared in BSD.
1249 @comment math.h
1250 @comment BSD
1251 @deftypefun double scalb (double @var{value}, int @var{exponent})
1252 @comment math.h
1253 @comment BSD
1254 @deftypefunx float scalbf (float @var{value}, int @var{exponent})
1255 @comment math.h
1256 @comment BSD
1257 @deftypefunx {long double} scalbl (long double @var{value}, int @var{exponent})
1258 The @code{scalb} function is the BSD name for @code{ldexp}.
1259 @end deftypefun
1261 @comment math.h
1262 @comment BSD
1263 @deftypefun {long long int} scalbn (double @var{x}, int @var{n})
1264 @comment math.h
1265 @comment BSD
1266 @deftypefunx {long long int} scalbnf (float @var{x}, int @var{n})
1267 @comment math.h
1268 @comment BSD
1269 @deftypefunx {long long int} scalbnl (long double @var{x}, int @var{n})
1270 @code{scalbn} is identical to @code{scalb}, except that the exponent
1271 @var{n} is an @code{int} instead of a floating-point number.
1272 @end deftypefun
1274 @comment math.h
1275 @comment BSD
1276 @deftypefun {long long int} scalbln (double @var{x}, long int @var{n})
1277 @comment math.h
1278 @comment BSD
1279 @deftypefunx {long long int} scalblnf (float @var{x}, long int @var{n})
1280 @comment math.h
1281 @comment BSD
1282 @deftypefunx {long long int} scalblnl (long double @var{x}, long int @var{n})
1283 @code{scalbln} is identical to @code{scalb}, except that the exponent
1284 @var{n} is a @code{long int} instead of a floating-point number.
1285 @end deftypefun
1287 @comment math.h
1288 @comment BSD
1289 @deftypefun {long long int} significand (double @var{x})
1290 @comment math.h
1291 @comment BSD
1292 @deftypefunx {long long int} significandf (float @var{x})
1293 @comment math.h
1294 @comment BSD
1295 @deftypefunx {long long int} significandl (long double @var{x})
1296 @code{significand} returns the mantissa of @var{x} scaled to the range
1297 @math{[1, 2)}.
1298 It is equivalent to @w{@code{scalb (@var{x}, (double) -ilogb (@var{x}))}}.
1300 This function exists mainly for use in certain standardized tests
1301 of @w{IEEE 754} conformance.
1302 @end deftypefun
1304 @node Rounding Functions
1305 @subsection Rounding Functions
1306 @cindex converting floats to integers
1308 @pindex math.h
1309 The functions listed here perform operations such as rounding and
1310 truncation of floating-point values. Some of these functions convert
1311 floating point numbers to integer values.  They are all declared in
1312 @file{math.h}.
1314 You can also convert floating-point numbers to integers simply by
1315 casting them to @code{int}.  This discards the fractional part,
1316 effectively rounding towards zero.  However, this only works if the
1317 result can actually be represented as an @code{int}---for very large
1318 numbers, this is impossible.  The functions listed here return the
1319 result as a @code{double} instead to get around this problem.
1321 @comment math.h
1322 @comment ISO
1323 @deftypefun double ceil (double @var{x})
1324 @comment math.h
1325 @comment ISO
1326 @deftypefunx float ceilf (float @var{x})
1327 @comment math.h
1328 @comment ISO
1329 @deftypefunx {long double} ceill (long double @var{x})
1330 These functions round @var{x} upwards to the nearest integer,
1331 returning that value as a @code{double}.  Thus, @code{ceil (1.5)}
1332 is @code{2.0}.
1333 @end deftypefun
1335 @comment math.h
1336 @comment ISO
1337 @deftypefun double floor (double @var{x})
1338 @comment math.h
1339 @comment ISO
1340 @deftypefunx float floorf (float @var{x})
1341 @comment math.h
1342 @comment ISO
1343 @deftypefunx {long double} floorl (long double @var{x})
1344 These functions round @var{x} downwards to the nearest
1345 integer, returning that value as a @code{double}.  Thus, @code{floor
1346 (1.5)} is @code{1.0} and @code{floor (-1.5)} is @code{-2.0}.
1347 @end deftypefun
1349 @comment math.h
1350 @comment ISO
1351 @deftypefun double trunc (double @var{x})
1352 @comment math.h
1353 @comment ISO
1354 @deftypefunx float truncf (float @var{x})
1355 @comment math.h
1356 @comment ISO
1357 @deftypefunx {long double} truncl (long double @var{x})
1358 The @code{trunc} functions round @var{x} towards zero to the nearest
1359 integer (returned in floating-point format).  Thus, @code{trunc (1.5)}
1360 is @code{1.0} and @code{trunc (-1.5)} is @code{-1.0}.
1361 @end deftypefun
1363 @comment math.h
1364 @comment ISO
1365 @deftypefun double rint (double @var{x})
1366 @comment math.h
1367 @comment ISO
1368 @deftypefunx float rintf (float @var{x})
1369 @comment math.h
1370 @comment ISO
1371 @deftypefunx {long double} rintl (long double @var{x})
1372 These functions round @var{x} to an integer value according to the
1373 current rounding mode.  @xref{Floating Point Parameters}, for
1374 information about the various rounding modes.  The default
1375 rounding mode is to round to the nearest integer; some machines
1376 support other modes, but round-to-nearest is always used unless
1377 you explicitly select another.
1379 If @var{x} was not initially an integer, these functions raise the
1380 inexact exception.
1381 @end deftypefun
1383 @comment math.h
1384 @comment ISO
1385 @deftypefun double nearbyint (double @var{x})
1386 @comment math.h
1387 @comment ISO
1388 @deftypefunx float nearbyintf (float @var{x})
1389 @comment math.h
1390 @comment ISO
1391 @deftypefunx {long double} nearbyintl (long double @var{x})
1392 These functions return the same value as the @code{rint} functions, but
1393 do not raise the inexact exception if @var{x} is not an integer.
1394 @end deftypefun
1396 @comment math.h
1397 @comment ISO
1398 @deftypefun double round (double @var{x})
1399 @comment math.h
1400 @comment ISO
1401 @deftypefunx float roundf (float @var{x})
1402 @comment math.h
1403 @comment ISO
1404 @deftypefunx {long double} roundl (long double @var{x})
1405 These functions are similar to @code{rint}, but they round halfway
1406 cases away from zero instead of to the nearest integer (or other
1407 current rounding mode).
1408 @end deftypefun
1410 @comment math.h
1411 @comment ISO
1412 @deftypefun {long int} lrint (double @var{x})
1413 @comment math.h
1414 @comment ISO
1415 @deftypefunx {long int} lrintf (float @var{x})
1416 @comment math.h
1417 @comment ISO
1418 @deftypefunx {long int} lrintl (long double @var{x})
1419 These functions are just like @code{rint}, but they return a
1420 @code{long int} instead of a floating-point number.
1421 @end deftypefun
1423 @comment math.h
1424 @comment ISO
1425 @deftypefun {long long int} llrint (double @var{x})
1426 @comment math.h
1427 @comment ISO
1428 @deftypefunx {long long int} llrintf (float @var{x})
1429 @comment math.h
1430 @comment ISO
1431 @deftypefunx {long long int} llrintl (long double @var{x})
1432 These functions are just like @code{rint}, but they return a
1433 @code{long long int} instead of a floating-point number.
1434 @end deftypefun
1436 @comment math.h
1437 @comment ISO
1438 @deftypefun {long int} lround (double @var{x})
1439 @comment math.h
1440 @comment ISO
1441 @deftypefunx {long int} lroundf (float @var{x})
1442 @comment math.h
1443 @comment ISO
1444 @deftypefunx {long int} lroundl (long double @var{x})
1445 These functions are just like @code{round}, but they return a
1446 @code{long int} instead of a floating-point number.
1447 @end deftypefun
1449 @comment math.h
1450 @comment ISO
1451 @deftypefun {long long int} llround (double @var{x})
1452 @comment math.h
1453 @comment ISO
1454 @deftypefunx {long long int} llroundf (float @var{x})
1455 @comment math.h
1456 @comment ISO
1457 @deftypefunx {long long int} llroundl (long double @var{x})
1458 These functions are just like @code{round}, but they return a
1459 @code{long long int} instead of a floating-point number.
1460 @end deftypefun
1463 @comment math.h
1464 @comment ISO
1465 @deftypefun double modf (double @var{value}, double *@var{integer-part})
1466 @comment math.h
1467 @comment ISO
1468 @deftypefunx float modff (float @var{value}, float *@var{integer-part})
1469 @comment math.h
1470 @comment ISO
1471 @deftypefunx {long double} modfl (long double @var{value}, long double *@var{integer-part})
1472 These functions break the argument @var{value} into an integer part and a
1473 fractional part (between @code{-1} and @code{1}, exclusive).  Their sum
1474 equals @var{value}.  Each of the parts has the same sign as @var{value},
1475 and the integer part is always rounded toward zero.
1477 @code{modf} stores the integer part in @code{*@var{integer-part}}, and
1478 returns the fractional part.  For example, @code{modf (2.5, &intpart)}
1479 returns @code{0.5} and stores @code{2.0} into @code{intpart}.
1480 @end deftypefun
1482 @node Remainder Functions
1483 @subsection Remainder Functions
1485 The functions in this section compute the remainder on division of two
1486 floating-point numbers.  Each is a little different; pick the one that
1487 suits your problem.
1489 @comment math.h
1490 @comment ISO
1491 @deftypefun double fmod (double @var{numerator}, double @var{denominator})
1492 @comment math.h
1493 @comment ISO
1494 @deftypefunx float fmodf (float @var{numerator}, float @var{denominator})
1495 @comment math.h
1496 @comment ISO
1497 @deftypefunx {long double} fmodl (long double @var{numerator}, long double @var{denominator})
1498 These functions compute the remainder from the division of
1499 @var{numerator} by @var{denominator}.  Specifically, the return value is
1500 @code{@var{numerator} - @w{@var{n} * @var{denominator}}}, where @var{n}
1501 is the quotient of @var{numerator} divided by @var{denominator}, rounded
1502 towards zero to an integer.  Thus, @w{@code{fmod (6.5, 2.3)}} returns
1503 @code{1.9}, which is @code{6.5} minus @code{4.6}.
1505 The result has the same sign as the @var{numerator} and has magnitude
1506 less than the magnitude of the @var{denominator}.
1508 If @var{denominator} is zero, @code{fmod} signals a domain error.
1509 @end deftypefun
1511 @comment math.h
1512 @comment BSD
1513 @deftypefun double drem (double @var{numerator}, double @var{denominator})
1514 @comment math.h
1515 @comment BSD
1516 @deftypefunx float dremf (float @var{numerator}, float @var{denominator})
1517 @comment math.h
1518 @comment BSD
1519 @deftypefunx {long double} dreml (long double @var{numerator}, long double @var{denominator})
1520 These functions are like @code{fmod} except that they round the
1521 internal quotient @var{n} to the nearest integer instead of towards zero
1522 to an integer.  For example, @code{drem (6.5, 2.3)} returns @code{-0.4},
1523 which is @code{6.5} minus @code{6.9}.
1525 The absolute value of the result is less than or equal to half the
1526 absolute value of the @var{denominator}.  The difference between
1527 @code{fmod (@var{numerator}, @var{denominator})} and @code{drem
1528 (@var{numerator}, @var{denominator})} is always either
1529 @var{denominator}, minus @var{denominator}, or zero.
1531 If @var{denominator} is zero, @code{drem} signals a domain error.
1532 @end deftypefun
1534 @comment math.h
1535 @comment BSD
1536 @deftypefun double remainder (double @var{numerator}, double @var{denominator})
1537 @comment math.h
1538 @comment BSD
1539 @deftypefunx float remainderf (float @var{numerator}, float @var{denominator})
1540 @comment math.h
1541 @comment BSD
1542 @deftypefunx {long double} remainderl (long double @var{numerator}, long double @var{denominator})
1543 This function is another name for @code{drem}.
1544 @end deftypefun
1546 @node FP Bit Twiddling
1547 @subsection Setting and modifying single bits of FP values
1548 @cindex FP arithmetic
1550 There are some operations that are too complicated or expensive to
1551 perform by hand on floating-point numbers.  @w{ISO C99} defines
1552 functions to do these operations, which mostly involve changing single
1553 bits.
1555 @comment math.h
1556 @comment ISO
1557 @deftypefun double copysign (double @var{x}, double @var{y})
1558 @comment math.h
1559 @comment ISO
1560 @deftypefunx float copysignf (float @var{x}, float @var{y})
1561 @comment math.h
1562 @comment ISO
1563 @deftypefunx {long double} copysignl (long double @var{x}, long double @var{y})
1564 These functions return @var{x} but with the sign of @var{y}.  They work
1565 even if @var{x} or @var{y} are NaN or zero.  Both of these can carry a
1566 sign (although not all implementations support it) and this is one of
1567 the few operations that can tell the difference.
1569 @code{copysign} never raises an exception.
1570 @c except signalling NaNs
1572 This function is defined in @w{IEC 559} (and the appendix with
1573 recommended functions in @w{IEEE 754}/@w{IEEE 854}).
1574 @end deftypefun
1576 @comment math.h
1577 @comment ISO
1578 @deftypefun int signbit (@emph{float-type} @var{x})
1579 @code{signbit} is a generic macro which can work on all floating-point
1580 types.  It returns a nonzero value if the value of @var{x} has its sign
1581 bit set.
1583 This is not the same as @code{x < 0.0}, because @w{IEEE 754} floating
1584 point allows zero to be signed.  The comparison @code{-0.0 < 0.0} is
1585 false, but @code{signbit (-0.0)} will return a nonzero value.
1586 @end deftypefun
1588 @comment math.h
1589 @comment ISO
1590 @deftypefun double nextafter (double @var{x}, double @var{y})
1591 @comment math.h
1592 @comment ISO
1593 @deftypefunx float nextafterf (float @var{x}, float @var{y})
1594 @comment math.h
1595 @comment ISO
1596 @deftypefunx {long double} nextafterl (long double @var{x}, long double @var{y})
1597 The @code{nextafter} function returns the next representable neighbor of
1598 @var{x} in the direction towards @var{y}.  The size of the step between
1599 @var{x} and the result depends on the type of the result.  If
1600 @math{@var{x} = @var{y}} the function simply returns @var{y}.  If either
1601 value is @code{NaN}, @code{NaN} is returned.  Otherwise
1602 a value corresponding to the value of the least significant bit in the
1603 mantissa is added or subtracted, depending on the direction.
1604 @code{nextafter} will signal overflow or underflow if the result goes
1605 outside of the range of normalized numbers.
1607 This function is defined in @w{IEC 559} (and the appendix with
1608 recommended functions in @w{IEEE 754}/@w{IEEE 854}).
1609 @end deftypefun
1611 @comment math.h
1612 @comment ISO
1613 @deftypefun double nexttoward (double @var{x}, long double @var{y})
1614 @comment math.h
1615 @comment ISO
1616 @deftypefunx float nexttowardf (float @var{x}, long double @var{y})
1617 @comment math.h
1618 @comment ISO
1619 @deftypefunx {long double} nexttowardl (long double @var{x}, long double @var{y})
1620 These functions are identical to the corresponding versions of
1621 @code{nextafter} except that their second argument is a @code{long
1622 double}.
1623 @end deftypefun
1625 @cindex NaN
1626 @comment math.h
1627 @comment ISO
1628 @deftypefun double nan (const char *@var{tagp})
1629 @comment math.h
1630 @comment ISO
1631 @deftypefunx float nanf (const char *@var{tagp})
1632 @comment math.h
1633 @comment ISO
1634 @deftypefunx {long double} nanl (const char *@var{tagp})
1635 The @code{nan} function returns a representation of NaN, provided that
1636 NaN is supported by the target platform.
1637 @code{nan ("@var{n-char-sequence}")} is equivalent to
1638 @code{strtod ("NAN(@var{n-char-sequence})")}.
1640 The argument @var{tagp} is used in an unspecified manner.  On @w{IEEE
1641 754} systems, there are many representations of NaN, and @var{tagp}
1642 selects one.  On other systems it may do nothing.
1643 @end deftypefun
1645 @node FP Comparison Functions
1646 @subsection Floating-Point Comparison Functions
1647 @cindex unordered comparison
1649 The standard C comparison operators provoke exceptions when one or other
1650 of the operands is NaN.  For example,
1652 @smallexample
1653 int v = a < 1.0;
1654 @end smallexample
1656 @noindent
1657 will raise an exception if @var{a} is NaN.  (This does @emph{not}
1658 happen with @code{==} and @code{!=}; those merely return false and true,
1659 respectively, when NaN is examined.)  Frequently this exception is
1660 undesirable.  @w{ISO C99} therefore defines comparison functions that
1661 do not raise exceptions when NaN is examined.  All of the functions are
1662 implemented as macros which allow their arguments to be of any
1663 floating-point type.  The macros are guaranteed to evaluate their
1664 arguments only once.
1666 @comment math.h
1667 @comment ISO
1668 @deftypefn Macro int isgreater (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1669 This macro determines whether the argument @var{x} is greater than
1670 @var{y}.  It is equivalent to @code{(@var{x}) > (@var{y})}, but no
1671 exception is raised if @var{x} or @var{y} are NaN.
1672 @end deftypefn
1674 @comment math.h
1675 @comment ISO
1676 @deftypefn Macro int isgreaterequal (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1677 This macro determines whether the argument @var{x} is greater than or
1678 equal to @var{y}.  It is equivalent to @code{(@var{x}) >= (@var{y})}, but no
1679 exception is raised if @var{x} or @var{y} are NaN.
1680 @end deftypefn
1682 @comment math.h
1683 @comment ISO
1684 @deftypefn Macro int isless (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1685 This macro determines whether the argument @var{x} is less than @var{y}.
1686 It is equivalent to @code{(@var{x}) < (@var{y})}, but no exception is
1687 raised if @var{x} or @var{y} are NaN.
1688 @end deftypefn
1690 @comment math.h
1691 @comment ISO
1692 @deftypefn Macro int islessequal (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1693 This macro determines whether the argument @var{x} is less than or equal
1694 to @var{y}.  It is equivalent to @code{(@var{x}) <= (@var{y})}, but no
1695 exception is raised if @var{x} or @var{y} are NaN.
1696 @end deftypefn
1698 @comment math.h
1699 @comment ISO
1700 @deftypefn Macro int islessgreater (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1701 This macro determines whether the argument @var{x} is less or greater
1702 than @var{y}.  It is equivalent to @code{(@var{x}) < (@var{y}) ||
1703 (@var{x}) > (@var{y})} (although it only evaluates @var{x} and @var{y}
1704 once), but no exception is raised if @var{x} or @var{y} are NaN.
1706 This macro is not equivalent to @code{@var{x} != @var{y}}, because that
1707 expression is true if @var{x} or @var{y} are NaN.
1708 @end deftypefn
1710 @comment math.h
1711 @comment ISO
1712 @deftypefn Macro int isunordered (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1713 This macro determines whether its arguments are unordered.  In other
1714 words, it is true if @var{x} or @var{y} are NaN, and false otherwise.
1715 @end deftypefn
1717 Not all machines provide hardware support for these operations.  On
1718 machines that don't, the macros can be very slow.  Therefore, you should
1719 not use these functions when NaN is not a concern.
1721 @strong{NB:} There are no macros @code{isequal} or @code{isunequal}.
1722 They are unnecessary, because the @code{==} and @code{!=} operators do
1723 @emph{not} throw an exception if one or both of the operands are NaN.
1725 @node Misc FP Arithmetic
1726 @subsection Miscellaneous FP arithmetic functions
1727 @cindex minimum
1728 @cindex maximum
1729 @cindex positive difference
1730 @cindex multiply-add
1732 The functions in this section perform miscellaneous but common
1733 operations that are awkward to express with C operators.  On some
1734 processors these functions can use special machine instructions to
1735 perform these operations faster than the equivalent C code.
1737 @comment math.h
1738 @comment ISO
1739 @deftypefun double fmin (double @var{x}, double @var{y})
1740 @comment math.h
1741 @comment ISO
1742 @deftypefunx float fminf (float @var{x}, float @var{y})
1743 @comment math.h
1744 @comment ISO
1745 @deftypefunx {long double} fminl (long double @var{x}, long double @var{y})
1746 The @code{fmin} function returns the lesser of the two values @var{x}
1747 and @var{y}.  It is similar to the expression
1748 @smallexample
1749 ((x) < (y) ? (x) : (y))
1750 @end smallexample
1751 except that @var{x} and @var{y} are only evaluated once.
1753 If an argument is NaN, the other argument is returned.  If both arguments
1754 are NaN, NaN is returned.
1755 @end deftypefun
1757 @comment math.h
1758 @comment ISO
1759 @deftypefun double fmax (double @var{x}, double @var{y})
1760 @comment math.h
1761 @comment ISO
1762 @deftypefunx float fmaxf (float @var{x}, float @var{y})
1763 @comment math.h
1764 @comment ISO
1765 @deftypefunx {long double} fmaxl (long double @var{x}, long double @var{y})
1766 The @code{fmax} function returns the greater of the two values @var{x}
1767 and @var{y}.
1769 If an argument is NaN, the other argument is returned.  If both arguments
1770 are NaN, NaN is returned.
1771 @end deftypefun
1773 @comment math.h
1774 @comment ISO
1775 @deftypefun double fdim (double @var{x}, double @var{y})
1776 @comment math.h
1777 @comment ISO
1778 @deftypefunx float fdimf (float @var{x}, float @var{y})
1779 @comment math.h
1780 @comment ISO
1781 @deftypefunx {long double} fdiml (long double @var{x}, long double @var{y})
1782 The @code{fdim} function returns the positive difference between
1783 @var{x} and @var{y}.  The positive difference is @math{@var{x} -
1784 @var{y}} if @var{x} is greater than @var{y}, and @math{0} otherwise.
1786 If @var{x}, @var{y}, or both are NaN, NaN is returned.
1787 @end deftypefun
1789 @comment math.h
1790 @comment ISO
1791 @deftypefun double fma (double @var{x}, double @var{y}, double @var{z})
1792 @comment math.h
1793 @comment ISO
1794 @deftypefunx float fmaf (float @var{x}, float @var{y}, float @var{z})
1795 @comment math.h
1796 @comment ISO
1797 @deftypefunx {long double} fmal (long double @var{x}, long double @var{y}, long double @var{z})
1798 @cindex butterfly
1799 The @code{fma} function performs floating-point multiply-add.  This is
1800 the operation @math{(@var{x} @mul{} @var{y}) + @var{z}}, but the
1801 intermediate result is not rounded to the destination type.  This can
1802 sometimes improve the precision of a calculation.
1804 This function was introduced because some processors have a special
1805 instruction to perform multiply-add.  The C compiler cannot use it
1806 directly, because the expression @samp{x*y + z} is defined to round the
1807 intermediate result.  @code{fma} lets you choose when you want to round
1808 only once.
1810 @vindex FP_FAST_FMA
1811 On processors which do not implement multiply-add in hardware,
1812 @code{fma} can be very slow since it must avoid intermediate rounding.
1813 @file{math.h} defines the symbols @code{FP_FAST_FMA},
1814 @code{FP_FAST_FMAF}, and @code{FP_FAST_FMAL} when the corresponding
1815 version of @code{fma} is no slower than the expression @samp{x*y + z}.
1816 In @theglibc{}, this always means the operation is implemented in
1817 hardware.
1818 @end deftypefun
1820 @node Complex Numbers
1821 @section Complex Numbers
1822 @pindex complex.h
1823 @cindex complex numbers
1825 @w{ISO C99} introduces support for complex numbers in C.  This is done
1826 with a new type qualifier, @code{complex}.  It is a keyword if and only
1827 if @file{complex.h} has been included.  There are three complex types,
1828 corresponding to the three real types:  @code{float complex},
1829 @code{double complex}, and @code{long double complex}.
1831 To construct complex numbers you need a way to indicate the imaginary
1832 part of a number.  There is no standard notation for an imaginary
1833 floating point constant.  Instead, @file{complex.h} defines two macros
1834 that can be used to create complex numbers.
1836 @deftypevr Macro {const float complex} _Complex_I
1837 This macro is a representation of the complex number ``@math{0+1i}''.
1838 Multiplying a real floating-point value by @code{_Complex_I} gives a
1839 complex number whose value is purely imaginary.  You can use this to
1840 construct complex constants:
1842 @smallexample
1843 @math{3.0 + 4.0i} = @code{3.0 + 4.0 * _Complex_I}
1844 @end smallexample
1846 Note that @code{_Complex_I * _Complex_I} has the value @code{-1}, but
1847 the type of that value is @code{complex}.
1848 @end deftypevr
1850 @c Put this back in when gcc supports _Imaginary_I.  It's too confusing.
1851 @ignore
1852 @noindent
1853 Without an optimizing compiler this is more expensive than the use of
1854 @code{_Imaginary_I} but with is better than nothing.  You can avoid all
1855 the hassles if you use the @code{I} macro below if the name is not
1856 problem.
1858 @deftypevr Macro {const float imaginary} _Imaginary_I
1859 This macro is a representation of the value ``@math{1i}''.  I.e., it is
1860 the value for which
1862 @smallexample
1863 _Imaginary_I * _Imaginary_I = -1
1864 @end smallexample
1866 @noindent
1867 The result is not of type @code{float imaginary} but instead @code{float}.
1868 One can use it to easily construct complex number like in
1870 @smallexample
1871 3.0 - _Imaginary_I * 4.0
1872 @end smallexample
1874 @noindent
1875 which results in the complex number with a real part of 3.0 and a
1876 imaginary part -4.0.
1877 @end deftypevr
1878 @end ignore
1880 @noindent
1881 @code{_Complex_I} is a bit of a mouthful.  @file{complex.h} also defines
1882 a shorter name for the same constant.
1884 @deftypevr Macro {const float complex} I
1885 This macro has exactly the same value as @code{_Complex_I}.  Most of the
1886 time it is preferable.  However, it causes problems if you want to use
1887 the identifier @code{I} for something else.  You can safely write
1889 @smallexample
1890 #include <complex.h>
1891 #undef I
1892 @end smallexample
1894 @noindent
1895 if you need @code{I} for your own purposes.  (In that case we recommend
1896 you also define some other short name for @code{_Complex_I}, such as
1897 @code{J}.)
1899 @ignore
1900 If the implementation does not support the @code{imaginary} types
1901 @code{I} is defined as @code{_Complex_I} which is the second best
1902 solution.  It still can be used in the same way but requires a most
1903 clever compiler to get the same results.
1904 @end ignore
1905 @end deftypevr
1907 @node Operations on Complex
1908 @section Projections, Conjugates, and Decomposing of Complex Numbers
1909 @cindex project complex numbers
1910 @cindex conjugate complex numbers
1911 @cindex decompose complex numbers
1912 @pindex complex.h
1914 @w{ISO C99} also defines functions that perform basic operations on
1915 complex numbers, such as decomposition and conjugation.  The prototypes
1916 for all these functions are in @file{complex.h}.  All functions are
1917 available in three variants, one for each of the three complex types.
1919 @comment complex.h
1920 @comment ISO
1921 @deftypefun double creal (complex double @var{z})
1922 @comment complex.h
1923 @comment ISO
1924 @deftypefunx float crealf (complex float @var{z})
1925 @comment complex.h
1926 @comment ISO
1927 @deftypefunx {long double} creall (complex long double @var{z})
1928 These functions return the real part of the complex number @var{z}.
1929 @end deftypefun
1931 @comment complex.h
1932 @comment ISO
1933 @deftypefun double cimag (complex double @var{z})
1934 @comment complex.h
1935 @comment ISO
1936 @deftypefunx float cimagf (complex float @var{z})
1937 @comment complex.h
1938 @comment ISO
1939 @deftypefunx {long double} cimagl (complex long double @var{z})
1940 These functions return the imaginary part of the complex number @var{z}.
1941 @end deftypefun
1943 @comment complex.h
1944 @comment ISO
1945 @deftypefun {complex double} conj (complex double @var{z})
1946 @comment complex.h
1947 @comment ISO
1948 @deftypefunx {complex float} conjf (complex float @var{z})
1949 @comment complex.h
1950 @comment ISO
1951 @deftypefunx {complex long double} conjl (complex long double @var{z})
1952 These functions return the conjugate value of the complex number
1953 @var{z}.  The conjugate of a complex number has the same real part and a
1954 negated imaginary part.  In other words, @samp{conj(a + bi) = a + -bi}.
1955 @end deftypefun
1957 @comment complex.h
1958 @comment ISO
1959 @deftypefun double carg (complex double @var{z})
1960 @comment complex.h
1961 @comment ISO
1962 @deftypefunx float cargf (complex float @var{z})
1963 @comment complex.h
1964 @comment ISO
1965 @deftypefunx {long double} cargl (complex long double @var{z})
1966 These functions return the argument of the complex number @var{z}.
1967 The argument of a complex number is the angle in the complex plane
1968 between the positive real axis and a line passing through zero and the
1969 number.  This angle is measured in the usual fashion and ranges from
1970 @math{-@pi{}} to @math{@pi{}}.
1972 @code{carg} has a branch cut along the negative real axis.
1973 @end deftypefun
1975 @comment complex.h
1976 @comment ISO
1977 @deftypefun {complex double} cproj (complex double @var{z})
1978 @comment complex.h
1979 @comment ISO
1980 @deftypefunx {complex float} cprojf (complex float @var{z})
1981 @comment complex.h
1982 @comment ISO
1983 @deftypefunx {complex long double} cprojl (complex long double @var{z})
1984 These functions return the projection of the complex value @var{z} onto
1985 the Riemann sphere.  Values with a infinite imaginary part are projected
1986 to positive infinity on the real axis, even if the real part is NaN.  If
1987 the real part is infinite, the result is equivalent to
1989 @smallexample
1990 INFINITY + I * copysign (0.0, cimag (z))
1991 @end smallexample
1992 @end deftypefun
1994 @node Parsing of Numbers
1995 @section Parsing of Numbers
1996 @cindex parsing numbers (in formatted input)
1997 @cindex converting strings to numbers
1998 @cindex number syntax, parsing
1999 @cindex syntax, for reading numbers
2001 This section describes functions for ``reading'' integer and
2002 floating-point numbers from a string.  It may be more convenient in some
2003 cases to use @code{sscanf} or one of the related functions; see
2004 @ref{Formatted Input}.  But often you can make a program more robust by
2005 finding the tokens in the string by hand, then converting the numbers
2006 one by one.
2008 @menu
2009 * Parsing of Integers::         Functions for conversion of integer values.
2010 * Parsing of Floats::           Functions for conversion of floating-point
2011                                  values.
2012 @end menu
2014 @node Parsing of Integers
2015 @subsection Parsing of Integers
2017 @pindex stdlib.h
2018 @pindex wchar.h
2019 The @samp{str} functions are declared in @file{stdlib.h} and those
2020 beginning with @samp{wcs} are declared in @file{wchar.h}.  One might
2021 wonder about the use of @code{restrict} in the prototypes of the
2022 functions in this section.  It is seemingly useless but the @w{ISO C}
2023 standard uses it (for the functions defined there) so we have to do it
2024 as well.
2026 @comment stdlib.h
2027 @comment ISO
2028 @deftypefun {long int} strtol (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2029 The @code{strtol} (``string-to-long'') function converts the initial
2030 part of @var{string} to a signed integer, which is returned as a value
2031 of type @code{long int}.
2033 This function attempts to decompose @var{string} as follows:
2035 @itemize @bullet
2036 @item
2037 A (possibly empty) sequence of whitespace characters.  Which characters
2038 are whitespace is determined by the @code{isspace} function
2039 (@pxref{Classification of Characters}).  These are discarded.
2041 @item
2042 An optional plus or minus sign (@samp{+} or @samp{-}).
2044 @item
2045 A nonempty sequence of digits in the radix specified by @var{base}.
2047 If @var{base} is zero, decimal radix is assumed unless the series of
2048 digits begins with @samp{0} (specifying octal radix), or @samp{0x} or
2049 @samp{0X} (specifying hexadecimal radix); in other words, the same
2050 syntax used for integer constants in C.
2052 Otherwise @var{base} must have a value between @code{2} and @code{36}.
2053 If @var{base} is @code{16}, the digits may optionally be preceded by
2054 @samp{0x} or @samp{0X}.  If base has no legal value the value returned
2055 is @code{0l} and the global variable @code{errno} is set to @code{EINVAL}.
2057 @item
2058 Any remaining characters in the string.  If @var{tailptr} is not a null
2059 pointer, @code{strtol} stores a pointer to this tail in
2060 @code{*@var{tailptr}}.
2061 @end itemize
2063 If the string is empty, contains only whitespace, or does not contain an
2064 initial substring that has the expected syntax for an integer in the
2065 specified @var{base}, no conversion is performed.  In this case,
2066 @code{strtol} returns a value of zero and the value stored in
2067 @code{*@var{tailptr}} is the value of @var{string}.
2069 In a locale other than the standard @code{"C"} locale, this function
2070 may recognize additional implementation-dependent syntax.
2072 If the string has valid syntax for an integer but the value is not
2073 representable because of overflow, @code{strtol} returns either
2074 @code{LONG_MAX} or @code{LONG_MIN} (@pxref{Range of Type}), as
2075 appropriate for the sign of the value.  It also sets @code{errno}
2076 to @code{ERANGE} to indicate there was overflow.
2078 You should not check for errors by examining the return value of
2079 @code{strtol}, because the string might be a valid representation of
2080 @code{0l}, @code{LONG_MAX}, or @code{LONG_MIN}.  Instead, check whether
2081 @var{tailptr} points to what you expect after the number
2082 (e.g. @code{'\0'} if the string should end after the number).  You also
2083 need to clear @var{errno} before the call and check it afterward, in
2084 case there was overflow.
2086 There is an example at the end of this section.
2087 @end deftypefun
2089 @comment wchar.h
2090 @comment ISO
2091 @deftypefun {long int} wcstol (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2092 The @code{wcstol} function is equivalent to the @code{strtol} function
2093 in nearly all aspects but handles wide character strings.
2095 The @code{wcstol} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2096 @end deftypefun
2098 @comment stdlib.h
2099 @comment ISO
2100 @deftypefun {unsigned long int} strtoul (const char *retrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2101 The @code{strtoul} (``string-to-unsigned-long'') function is like
2102 @code{strtol} except it converts to an @code{unsigned long int} value.
2103 The syntax is the same as described above for @code{strtol}.  The value
2104 returned on overflow is @code{ULONG_MAX} (@pxref{Range of Type}).
2106 If @var{string} depicts a negative number, @code{strtoul} acts the same
2107 as @var{strtol} but casts the result to an unsigned integer.  That means
2108 for example that @code{strtoul} on @code{"-1"} returns @code{ULONG_MAX}
2109 and an input more negative than @code{LONG_MIN} returns
2110 (@code{ULONG_MAX} + 1) / 2.
2112 @code{strtoul} sets @var{errno} to @code{EINVAL} if @var{base} is out of
2113 range, or @code{ERANGE} on overflow.
2114 @end deftypefun
2116 @comment wchar.h
2117 @comment ISO
2118 @deftypefun {unsigned long int} wcstoul (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2119 The @code{wcstoul} function is equivalent to the @code{strtoul} function
2120 in nearly all aspects but handles wide character strings.
2122 The @code{wcstoul} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2123 @end deftypefun
2125 @comment stdlib.h
2126 @comment ISO
2127 @deftypefun {long long int} strtoll (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2128 The @code{strtoll} function is like @code{strtol} except that it returns
2129 a @code{long long int} value, and accepts numbers with a correspondingly
2130 larger range.
2132 If the string has valid syntax for an integer but the value is not
2133 representable because of overflow, @code{strtoll} returns either
2134 @code{LLONG_MAX} or @code{LLONG_MIN} (@pxref{Range of Type}), as
2135 appropriate for the sign of the value.  It also sets @code{errno} to
2136 @code{ERANGE} to indicate there was overflow.
2138 The @code{strtoll} function was introduced in @w{ISO C99}.
2139 @end deftypefun
2141 @comment wchar.h
2142 @comment ISO
2143 @deftypefun {long long int} wcstoll (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2144 The @code{wcstoll} function is equivalent to the @code{strtoll} function
2145 in nearly all aspects but handles wide character strings.
2147 The @code{wcstoll} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2148 @end deftypefun
2150 @comment stdlib.h
2151 @comment BSD
2152 @deftypefun {long long int} strtoq (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2153 @code{strtoq} (``string-to-quad-word'') is the BSD name for @code{strtoll}.
2154 @end deftypefun
2156 @comment wchar.h
2157 @comment GNU
2158 @deftypefun {long long int} wcstoq (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2159 The @code{wcstoq} function is equivalent to the @code{strtoq} function
2160 in nearly all aspects but handles wide character strings.
2162 The @code{wcstoq} function is a GNU extension.
2163 @end deftypefun
2165 @comment stdlib.h
2166 @comment ISO
2167 @deftypefun {unsigned long long int} strtoull (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2168 The @code{strtoull} function is related to @code{strtoll} the same way
2169 @code{strtoul} is related to @code{strtol}.
2171 The @code{strtoull} function was introduced in @w{ISO C99}.
2172 @end deftypefun
2174 @comment wchar.h
2175 @comment ISO
2176 @deftypefun {unsigned long long int} wcstoull (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2177 The @code{wcstoull} function is equivalent to the @code{strtoull} function
2178 in nearly all aspects but handles wide character strings.
2180 The @code{wcstoull} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2181 @end deftypefun
2183 @comment stdlib.h
2184 @comment BSD
2185 @deftypefun {unsigned long long int} strtouq (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2186 @code{strtouq} is the BSD name for @code{strtoull}.
2187 @end deftypefun
2189 @comment wchar.h
2190 @comment GNU
2191 @deftypefun {unsigned long long int} wcstouq (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2192 The @code{wcstouq} function is equivalent to the @code{strtouq} function
2193 in nearly all aspects but handles wide character strings.
2195 The @code{wcstouq} function is a GNU extension.
2196 @end deftypefun
2198 @comment inttypes.h
2199 @comment ISO
2200 @deftypefun intmax_t strtoimax (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2201 The @code{strtoimax} function is like @code{strtol} except that it returns
2202 a @code{intmax_t} value, and accepts numbers of a corresponding range.
2204 If the string has valid syntax for an integer but the value is not
2205 representable because of overflow, @code{strtoimax} returns either
2206 @code{INTMAX_MAX} or @code{INTMAX_MIN} (@pxref{Integers}), as
2207 appropriate for the sign of the value.  It also sets @code{errno} to
2208 @code{ERANGE} to indicate there was overflow.
2210 See @ref{Integers} for a description of the @code{intmax_t} type.  The
2211 @code{strtoimax} function was introduced in @w{ISO C99}.
2212 @end deftypefun
2214 @comment wchar.h
2215 @comment ISO
2216 @deftypefun intmax_t wcstoimax (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2217 The @code{wcstoimax} function is equivalent to the @code{strtoimax} function
2218 in nearly all aspects but handles wide character strings.
2220 The @code{wcstoimax} function was introduced in @w{ISO C99}.
2221 @end deftypefun
2223 @comment inttypes.h
2224 @comment ISO
2225 @deftypefun uintmax_t strtoumax (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2226 The @code{strtoumax} function is related to @code{strtoimax}
2227 the same way that @code{strtoul} is related to @code{strtol}.
2229 See @ref{Integers} for a description of the @code{intmax_t} type.  The
2230 @code{strtoumax} function was introduced in @w{ISO C99}.
2231 @end deftypefun
2233 @comment wchar.h
2234 @comment ISO
2235 @deftypefun uintmax_t wcstoumax (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2236 The @code{wcstoumax} function is equivalent to the @code{strtoumax} function
2237 in nearly all aspects but handles wide character strings.
2239 The @code{wcstoumax} function was introduced in @w{ISO C99}.
2240 @end deftypefun
2242 @comment stdlib.h
2243 @comment ISO
2244 @deftypefun {long int} atol (const char *@var{string})
2245 This function is similar to the @code{strtol} function with a @var{base}
2246 argument of @code{10}, except that it need not detect overflow errors.
2247 The @code{atol} function is provided mostly for compatibility with
2248 existing code; using @code{strtol} is more robust.
2249 @end deftypefun
2251 @comment stdlib.h
2252 @comment ISO
2253 @deftypefun int atoi (const char *@var{string})
2254 This function is like @code{atol}, except that it returns an @code{int}.
2255 The @code{atoi} function is also considered obsolete; use @code{strtol}
2256 instead.
2257 @end deftypefun
2259 @comment stdlib.h
2260 @comment ISO
2261 @deftypefun {long long int} atoll (const char *@var{string})
2262 This function is similar to @code{atol}, except it returns a @code{long
2263 long int}.
2265 The @code{atoll} function was introduced in @w{ISO C99}.  It too is
2266 obsolete (despite having just been added); use @code{strtoll} instead.
2267 @end deftypefun
2269 All the functions mentioned in this section so far do not handle
2270 alternative representations of characters as described in the locale
2271 data.  Some locales specify thousands separator and the way they have to
2272 be used which can help to make large numbers more readable.  To read
2273 such numbers one has to use the @code{scanf} functions with the @samp{'}
2274 flag.
2276 Here is a function which parses a string as a sequence of integers and
2277 returns the sum of them:
2279 @smallexample
2281 sum_ints_from_string (char *string)
2283   int sum = 0;
2285   while (1) @{
2286     char *tail;
2287     int next;
2289     /* @r{Skip whitespace by hand, to detect the end.}  */
2290     while (isspace (*string)) string++;
2291     if (*string == 0)
2292       break;
2294     /* @r{There is more nonwhitespace,}  */
2295     /* @r{so it ought to be another number.}  */
2296     errno = 0;
2297     /* @r{Parse it.}  */
2298     next = strtol (string, &tail, 0);
2299     /* @r{Add it in, if not overflow.}  */
2300     if (errno)
2301       printf ("Overflow\n");
2302     else
2303       sum += next;
2304     /* @r{Advance past it.}  */
2305     string = tail;
2306   @}
2308   return sum;
2310 @end smallexample
2312 @node Parsing of Floats
2313 @subsection Parsing of Floats
2315 @pindex stdlib.h
2316 The @samp{str} functions are declared in @file{stdlib.h} and those
2317 beginning with @samp{wcs} are declared in @file{wchar.h}.  One might
2318 wonder about the use of @code{restrict} in the prototypes of the
2319 functions in this section.  It is seemingly useless but the @w{ISO C}
2320 standard uses it (for the functions defined there) so we have to do it
2321 as well.
2323 @comment stdlib.h
2324 @comment ISO
2325 @deftypefun double strtod (const char *restrict @var{string}, char **restrict @var{tailptr})
2326 The @code{strtod} (``string-to-double'') function converts the initial
2327 part of @var{string} to a floating-point number, which is returned as a
2328 value of type @code{double}.
2330 This function attempts to decompose @var{string} as follows:
2332 @itemize @bullet
2333 @item
2334 A (possibly empty) sequence of whitespace characters.  Which characters
2335 are whitespace is determined by the @code{isspace} function
2336 (@pxref{Classification of Characters}).  These are discarded.
2338 @item
2339 An optional plus or minus sign (@samp{+} or @samp{-}).
2341 @item A floating point number in decimal or hexadecimal format.  The
2342 decimal format is:
2343 @itemize @minus
2345 @item
2346 A nonempty sequence of digits optionally containing a decimal-point
2347 character---normally @samp{.}, but it depends on the locale
2348 (@pxref{General Numeric}).
2350 @item
2351 An optional exponent part, consisting of a character @samp{e} or
2352 @samp{E}, an optional sign, and a sequence of digits.
2354 @end itemize
2356 The hexadecimal format is as follows:
2357 @itemize @minus
2359 @item
2360 A 0x or 0X followed by a nonempty sequence of hexadecimal digits
2361 optionally containing a decimal-point character---normally @samp{.}, but
2362 it depends on the locale (@pxref{General Numeric}).
2364 @item
2365 An optional binary-exponent part, consisting of a character @samp{p} or
2366 @samp{P}, an optional sign, and a sequence of digits.
2368 @end itemize
2370 @item
2371 Any remaining characters in the string.  If @var{tailptr} is not a null
2372 pointer, a pointer to this tail of the string is stored in
2373 @code{*@var{tailptr}}.
2374 @end itemize
2376 If the string is empty, contains only whitespace, or does not contain an
2377 initial substring that has the expected syntax for a floating-point
2378 number, no conversion is performed.  In this case, @code{strtod} returns
2379 a value of zero and the value returned in @code{*@var{tailptr}} is the
2380 value of @var{string}.
2382 In a locale other than the standard @code{"C"} or @code{"POSIX"} locales,
2383 this function may recognize additional locale-dependent syntax.
2385 If the string has valid syntax for a floating-point number but the value
2386 is outside the range of a @code{double}, @code{strtod} will signal
2387 overflow or underflow as described in @ref{Math Error Reporting}.
2389 @code{strtod} recognizes four special input strings.  The strings
2390 @code{"inf"} and @code{"infinity"} are converted to @math{@infinity{}},
2391 or to the largest representable value if the floating-point format
2392 doesn't support infinities.  You can prepend a @code{"+"} or @code{"-"}
2393 to specify the sign.  Case is ignored when scanning these strings.
2395 The strings @code{"nan"} and @code{"nan(@var{chars@dots{}})"} are converted
2396 to NaN.  Again, case is ignored.  If @var{chars@dots{}} are provided, they
2397 are used in some unspecified fashion to select a particular
2398 representation of NaN (there can be several).
2400 Since zero is a valid result as well as the value returned on error, you
2401 should check for errors in the same way as for @code{strtol}, by
2402 examining @var{errno} and @var{tailptr}.
2403 @end deftypefun
2405 @comment stdlib.h
2406 @comment ISO
2407 @deftypefun float strtof (const char *@var{string}, char **@var{tailptr})
2408 @comment stdlib.h
2409 @comment ISO
2410 @deftypefunx {long double} strtold (const char *@var{string}, char **@var{tailptr})
2411 These functions are analogous to @code{strtod}, but return @code{float}
2412 and @code{long double} values respectively.  They report errors in the
2413 same way as @code{strtod}.  @code{strtof} can be substantially faster
2414 than @code{strtod}, but has less precision; conversely, @code{strtold}
2415 can be much slower but has more precision (on systems where @code{long
2416 double} is a separate type).
2418 These functions have been GNU extensions and are new to @w{ISO C99}.
2419 @end deftypefun
2421 @comment wchar.h
2422 @comment ISO
2423 @deftypefun double wcstod (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr})
2424 @comment stdlib.h
2425 @comment ISO
2426 @deftypefunx float wcstof (const wchar_t *@var{string}, wchar_t **@var{tailptr})
2427 @comment stdlib.h
2428 @comment ISO
2429 @deftypefunx {long double} wcstold (const wchar_t *@var{string}, wchar_t **@var{tailptr})
2430 The @code{wcstod}, @code{wcstof}, and @code{wcstol} functions are
2431 equivalent in nearly all aspect to the @code{strtod}, @code{strtof}, and
2432 @code{strtold} functions but it handles wide character string.
2434 The @code{wcstod} function was introduced in @w{Amendment 1} of @w{ISO
2435 C90}.  The @code{wcstof} and @code{wcstold} functions were introduced in
2436 @w{ISO C99}.
2437 @end deftypefun
2439 @comment stdlib.h
2440 @comment ISO
2441 @deftypefun double atof (const char *@var{string})
2442 This function is similar to the @code{strtod} function, except that it
2443 need not detect overflow and underflow errors.  The @code{atof} function
2444 is provided mostly for compatibility with existing code; using
2445 @code{strtod} is more robust.
2446 @end deftypefun
2448 @Theglibc{} also provides @samp{_l} versions of these functions,
2449 which take an additional argument, the locale to use in conversion.
2450 @xref{Parsing of Integers}.
2452 @node System V Number Conversion
2453 @section Old-fashioned System V number-to-string functions
2455 The old @w{System V} C library provided three functions to convert
2456 numbers to strings, with unusual and hard-to-use semantics.  @Theglibc{}
2457 also provides these functions and some natural extensions.
2459 These functions are only available in @theglibc{} and on systems descended
2460 from AT&T Unix.  Therefore, unless these functions do precisely what you
2461 need, it is better to use @code{sprintf}, which is standard.
2463 All these functions are defined in @file{stdlib.h}.
2465 @comment stdlib.h
2466 @comment SVID, Unix98
2467 @deftypefun {char *} ecvt (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
2468 The function @code{ecvt} converts the floating-point number @var{value}
2469 to a string with at most @var{ndigit} decimal digits.  The
2470 returned string contains no decimal point or sign. The first digit of
2471 the string is non-zero (unless @var{value} is actually zero) and the
2472 last digit is rounded to nearest.  @code{*@var{decpt}} is set to the
2473 index in the string of the first digit after the decimal point.
2474 @code{*@var{neg}} is set to a nonzero value if @var{value} is negative,
2475 zero otherwise.
2477 If @var{ndigit} decimal digits would exceed the precision of a
2478 @code{double} it is reduced to a system-specific value.
2480 The returned string is statically allocated and overwritten by each call
2481 to @code{ecvt}.
2483 If @var{value} is zero, it is implementation defined whether
2484 @code{*@var{decpt}} is @code{0} or @code{1}.
2486 For example: @code{ecvt (12.3, 5, &d, &n)} returns @code{"12300"}
2487 and sets @var{d} to @code{2} and @var{n} to @code{0}.
2488 @end deftypefun
2490 @comment stdlib.h
2491 @comment SVID, Unix98
2492 @deftypefun {char *} fcvt (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
2493 The function @code{fcvt} is like @code{ecvt}, but @var{ndigit} specifies
2494 the number of digits after the decimal point.  If @var{ndigit} is less
2495 than zero, @var{value} is rounded to the @math{@var{ndigit}+1}'th place to the
2496 left of the decimal point.  For example, if @var{ndigit} is @code{-1},
2497 @var{value} will be rounded to the nearest 10.  If @var{ndigit} is
2498 negative and larger than the number of digits to the left of the decimal
2499 point in @var{value}, @var{value} will be rounded to one significant digit.
2501 If @var{ndigit} decimal digits would exceed the precision of a
2502 @code{double} it is reduced to a system-specific value.
2504 The returned string is statically allocated and overwritten by each call
2505 to @code{fcvt}.
2506 @end deftypefun
2508 @comment stdlib.h
2509 @comment SVID, Unix98
2510 @deftypefun {char *} gcvt (double @var{value}, int @var{ndigit}, char *@var{buf})
2511 @code{gcvt} is functionally equivalent to @samp{sprintf(buf, "%*g",
2512 ndigit, value}.  It is provided only for compatibility's sake.  It
2513 returns @var{buf}.
2515 If @var{ndigit} decimal digits would exceed the precision of a
2516 @code{double} it is reduced to a system-specific value.
2517 @end deftypefun
2519 As extensions, @theglibc{} provides versions of these three
2520 functions that take @code{long double} arguments.
2522 @comment stdlib.h
2523 @comment GNU
2524 @deftypefun {char *} qecvt (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
2525 This function is equivalent to @code{ecvt} except that it takes a
2526 @code{long double} for the first parameter and that @var{ndigit} is
2527 restricted by the precision of a @code{long double}.
2528 @end deftypefun
2530 @comment stdlib.h
2531 @comment GNU
2532 @deftypefun {char *} qfcvt (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
2533 This function is equivalent to @code{fcvt} except that it
2534 takes a @code{long double} for the first parameter and that @var{ndigit} is
2535 restricted by the precision of a @code{long double}.
2536 @end deftypefun
2538 @comment stdlib.h
2539 @comment GNU
2540 @deftypefun {char *} qgcvt (long double @var{value}, int @var{ndigit}, char *@var{buf})
2541 This function is equivalent to @code{gcvt} except that it takes a
2542 @code{long double} for the first parameter and that @var{ndigit} is
2543 restricted by the precision of a @code{long double}.
2544 @end deftypefun
2547 @cindex gcvt_r
2548 The @code{ecvt} and @code{fcvt} functions, and their @code{long double}
2549 equivalents, all return a string located in a static buffer which is
2550 overwritten by the next call to the function.  @Theglibc{}
2551 provides another set of extended functions which write the converted
2552 string into a user-supplied buffer.  These have the conventional
2553 @code{_r} suffix.
2555 @code{gcvt_r} is not necessary, because @code{gcvt} already uses a
2556 user-supplied buffer.
2558 @comment stdlib.h
2559 @comment GNU
2560 @deftypefun int ecvt_r (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
2561 The @code{ecvt_r} function is the same as @code{ecvt}, except
2562 that it places its result into the user-specified buffer pointed to by
2563 @var{buf}, with length @var{len}.  The return value is @code{-1} in
2564 case of an error and zero otherwise.
2566 This function is a GNU extension.
2567 @end deftypefun
2569 @comment stdlib.h
2570 @comment SVID, Unix98
2571 @deftypefun int fcvt_r (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
2572 The @code{fcvt_r} function is the same as @code{fcvt}, except that it
2573 places its result into the user-specified buffer pointed to by
2574 @var{buf}, with length @var{len}.  The return value is @code{-1} in
2575 case of an error and zero otherwise.
2577 This function is a GNU extension.
2578 @end deftypefun
2580 @comment stdlib.h
2581 @comment GNU
2582 @deftypefun int qecvt_r (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
2583 The @code{qecvt_r} function is the same as @code{qecvt}, except
2584 that it places its result into the user-specified buffer pointed to by
2585 @var{buf}, with length @var{len}.  The return value is @code{-1} in
2586 case of an error and zero otherwise.
2588 This function is a GNU extension.
2589 @end deftypefun
2591 @comment stdlib.h
2592 @comment GNU
2593 @deftypefun int qfcvt_r (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
2594 The @code{qfcvt_r} function is the same as @code{qfcvt}, except
2595 that it places its result into the user-specified buffer pointed to by
2596 @var{buf}, with length @var{len}.  The return value is @code{-1} in
2597 case of an error and zero otherwise.
2599 This function is a GNU extension.
2600 @end deftypefun