1 /* Generate expected output for libm tests with MPFR and MPC.
2 Copyright (C) 2013-2024 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
15 You should have received a copy of the GNU Lesser General Public
16 License along with the GNU C Library; if not, see
17 <https://www.gnu.org/licenses/>. */
19 /* Compile this program as:
21 gcc -std=gnu11 -O2 -Wall -Wextra gen-auto-libm-tests.c -lmpc -lmpfr -lgmp \
22 -o gen-auto-libm-tests
24 (use of current MPC and MPFR versions recommended) and run it as:
26 gen-auto-libm-tests auto-libm-test-in <func> auto-libm-test-out-<func>
28 to generate results for normal libm functions, or
30 gen-auto-libm-tests --narrow auto-libm-test-in <func> \
31 auto-libm-test-out-narrow-<func>
33 to generate results for a function rounding results to a narrower
34 type (in the case of fma and sqrt, both output files are generated
35 from the same test inputs).
37 The input file auto-libm-test-in contains three kinds of lines:
39 Lines beginning with "#" are comments, and are ignored, as are
42 Other lines are test lines, of the form "function input1 input2
43 ... [flag1 flag2 ...]". Inputs are either finite real numbers or
44 integers, depending on the function under test. Real numbers may
45 be in any form acceptable to mpfr_strtofr (base 0); integers in any
46 form acceptable to mpz_set_str (base 0). In addition, real numbers
47 may be certain special strings such as "pi", as listed in the
48 special_real_inputs array.
50 Each flag is a flag name possibly followed by a series of
51 ":condition". Conditions may be any of the names of floating-point
52 formats in the floating_point_formats array, "long32" and "long64"
53 to indicate the number of bits in the "long" type, or other strings
54 for which libm-test.inc defines a TEST_COND_<condition> macro (with
55 "-"- changed to "_" in the condition name) evaluating to nonzero
56 when the condition is true and zero when the condition is false.
57 The meaning is that the flag applies to the test if all the listed
58 conditions are true. "flag:cond1:cond2 flag:cond3:cond4" means the
59 flag applies if ((cond1 && cond2) || (cond3 && cond4)).
61 A real number specified as an input is considered to represent the
62 set of real numbers arising from rounding the given number in any
63 direction for any supported floating-point format; any roundings
64 that give infinity are ignored. Each input on a test line has all
65 the possible roundings considered independently. Each resulting
66 choice of the tuple of inputs to the function is ignored if the
67 mathematical result of the function involves a NaN or an exact
68 infinity, and is otherwise considered for each floating-point
69 format for which all those inputs are exactly representable. Thus
70 tests may result in "overflow", "underflow" and "inexact"
71 exceptions; "invalid" may arise only when the final result type is
72 an integer type and it is the conversion of a mathematically
73 defined finite result to integer type that results in that
76 By default, it is assumed that "overflow" and "underflow"
77 exceptions should be correct, but that "inexact" exceptions should
78 only be correct for functions listed as exactly determined. For
79 such functions, "underflow" exceptions should respect whether the
80 machine has before-rounding or after-rounding tininess detection.
81 For other functions, it is considered that if the exact result is
82 somewhere between the greatest magnitude subnormal of a given sign
83 (exclusive) and the least magnitude normal of that sign
84 (inclusive), underflow exceptions are permitted but optional on all
85 machines, and they are also permitted but optional for smaller
86 subnormal exact results for functions that are not exactly
87 determined. errno setting is expected for overflow to infinity and
88 underflow to zero (for real functions), and for out-of-range
89 conversion of a finite result to integer type, and is considered
90 permitted but optional for all other cases where overflow
91 exceptions occur, and where underflow exceptions occur or are
92 permitted. In other cases (where no overflow or underflow is
93 permitted), errno is expected to be left unchanged.
95 The flag "ignore-zero-inf-sign" indicates the the signs of
96 zero and infinite results should be ignored; "xfail" indicates the
97 test is disabled as expected to produce incorrect results,
98 "xfail-rounding" indicates the test is disabled only in rounding
99 modes other than round-to-nearest; "no-mathvec" indicates the test
100 is disabled in vector math libraries. Otherwise, test flags are of
101 the form "spurious-<exception>" and "missing-<exception>", for any
102 exception ("overflow", "underflow", "inexact", "invalid",
103 "divbyzero"), "spurious-errno" and "missing-errno", to indicate
104 when tests are expected to deviate from the exception and errno
105 settings corresponding to the mathematical results. "xfail",
106 "xfail-rounding", "spurious-" and "missing-" flags should be
107 accompanied by a comment referring to an open bug in glibc
110 The output file auto-libm-test-out-<func> contains the test lines from
111 auto-libm-test-in, and, after the line for a given test, some
112 number of output test lines. An output test line is of the form "=
113 function rounding-mode format input1 input2 ... : output1 output2
114 ... : flags". rounding-mode is "tonearest", "towardzero", "upward"
115 or "downward". format is a name from the floating_point_formats
116 array, possibly followed by a sequence of ":flag" for flags from
117 "long32" and "long64". Inputs and outputs are specified as hex
118 floats with the required suffix for the floating-point type, or
119 plus_infty or minus_infty for infinite expected results, or as
120 integer constant expressions (not necessarily with the right type)
121 or IGNORE for integer inputs and outputs. Flags are
122 "ignore-zero-info-sign", "xfail", "<exception>",
123 "<exception>-ok", "errno-<value>", "errno-<value>-ok", which may be
124 unconditional or conditional. "<exception>" indicates that a
125 correct result means the given exception should be raised.
126 "errno-<value>" indicates that a correct result means errno should
127 be set to the given value. "-ok" means not to test for the given
128 exception or errno value (whether because it was marked as possibly
129 missing or spurious, or because the calculation of correct results
130 indicated it was optional). Conditions "before-rounding" and
131 "after-rounding" indicate tests where expectations for underflow
132 exceptions depend on how the architecture detects tininess.
134 For functions rounding their results to a narrower type, the format
135 given on an output test line is the result format followed by
136 information about the requirements on the argument format to be
137 able to represent the argument values, in the form
138 "format:arg_fmt(MAX_EXP,NUM_ONES,MIN_EXP,MAX_PREC)". Instead of
139 separate lines for separate argument formats, an output test line
140 relates to all argument formats that can represent the values.
141 MAX_EXP is the maximum exponent of a nonzero bit in any argument,
142 or 0 if all arguments are zero; NUM_ONES is the maximum number of
143 leading bits with value 1 in an argument with exponent MAX_EXP, or
144 0 if all arguments are zero; MIN_EXP is the minimum exponent of a
145 nonzero bit in any argument, or 0 if all arguments are zero;
146 MAX_PREC is the maximum precision required to represent all
147 arguments, or 0 if all arguments are zero. */
165 #define ARRAY_SIZE(A) (sizeof (A) / sizeof ((A)[0]))
167 /* The supported floating-point formats. */
180 /* Structure describing a single floating-point format. */
183 /* The name of the format. */
185 /* A string for the largest normal value, or NULL for IEEE formats
186 where this can be determined automatically. */
187 const char *max_string
;
188 /* The number of mantissa bits. */
190 /* The least N such that 2^N overflows. */
192 /* One more than the least N such that 2^N is normal. */
194 /* The largest normal value. */
196 /* The value 0.5ulp above the least positive normal value. */
197 mpfr_t min_plus_half
;
198 /* The least positive normal value, 2^(MIN_EXP-1). */
200 /* The greatest positive subnormal value. */
202 /* The least positive subnormal value, 2^(MIN_EXP-MANT_DIG). */
206 /* List of floating-point formats, in the same order as the fp_format
208 static fp_format_desc fp_formats
[fp_num_formats
] =
210 { "binary32", NULL
, 24, 128, -125, {}, {}, {}, {}, {} },
211 { "binary64", NULL
, 53, 1024, -1021, {}, {}, {}, {}, {} },
212 { "intel96", NULL
, 64, 16384, -16381, {}, {}, {}, {}, {} },
213 { "m68k96", NULL
, 64, 16384, -16382, {}, {}, {}, {}, {} },
214 { "binary128", NULL
, 113, 16384, -16381, {}, {}, {}, {}, {} },
215 { "ibm128", "0x1.fffffffffffff7ffffffffffff8p+1023",
216 106, 1024, -968, {}, {}, {}, {}, {} },
219 /* The supported rounding modes. */
230 /* Structure describing a single rounding mode. */
233 /* The name of the rounding mode. */
235 /* The MPFR rounding mode. */
236 mpfr_rnd_t mpfr_mode
;
237 /* The MPC rounding mode. */
239 } rounding_mode_desc
;
241 /* List of rounding modes, in the same order as the rounding_mode
243 static const rounding_mode_desc rounding_modes
[rm_num_modes
] =
245 { "downward", MPFR_RNDD
, MPC_RNDDD
},
246 { "tonearest", MPFR_RNDN
, MPC_RNDNN
},
247 { "towardzero", MPFR_RNDZ
, MPC_RNDZZ
},
248 { "upward", MPFR_RNDU
, MPC_RNDUU
},
251 /* The supported exceptions. */
260 exc_first_exception
= 0
263 /* List of exceptions, in the same order as the fp_exception
265 static const char *const exceptions
[exc_num_exceptions
] =
274 /* The internal precision to use for most MPFR calculations, which
275 must be at least 2 more than the greatest precision of any
276 supported floating-point format. */
277 static int internal_precision
;
279 /* A value that overflows all supported floating-point formats. */
280 static mpfr_t global_max
;
282 /* A value that is at most half the least subnormal in any
283 floating-point format and so is rounded the same way as all
284 sufficiently small positive values. */
285 static mpfr_t global_min
;
287 /* The maximum number of (real or integer) arguments to a function
288 handled by this program (complex arguments count as two real
292 /* The maximum number of (real or integer) return values from a
293 function handled by this program. */
296 /* A type of a function argument or return value. */
299 /* No type (not a valid argument or return value). */
301 /* A floating-point value with the type corresponding to that of
304 /* An integer value of type int. */
306 /* An integer value of type long. */
308 /* An integer value of type long long. */
312 /* A type of a generic real or integer value. */
317 /* Floating-point (represented with MPFR). */
319 /* Integer (represented with GMP). */
321 } generic_value_type
;
323 /* A generic value (argument or result). */
326 /* The type of this value. */
327 generic_value_type type
;
336 /* A type of input flag. */
339 flag_ignore_zero_inf_sign
,
342 /* The "spurious" and "missing" flags must be in the same order as
343 the fp_exception enumeration. */
344 flag_spurious_divbyzero
,
345 flag_spurious_inexact
,
346 flag_spurious_invalid
,
347 flag_spurious_overflow
,
348 flag_spurious_underflow
,
350 flag_missing_divbyzero
,
351 flag_missing_inexact
,
352 flag_missing_invalid
,
353 flag_missing_overflow
,
354 flag_missing_underflow
,
357 num_input_flag_types
,
359 flag_spurious_first
= flag_spurious_divbyzero
,
360 flag_missing_first
= flag_missing_divbyzero
363 /* List of flags, in the same order as the input_flag_type
365 static const char *const input_flags
[num_input_flag_types
] =
367 "ignore-zero-inf-sign",
370 "spurious-divbyzero",
374 "spurious-underflow",
385 /* An input flag, possibly conditional. */
388 /* The type of this flag. */
389 input_flag_type type
;
390 /* The conditions on this flag, as a string ":cond1:cond2..." or
395 /* Structure describing a single test from the input file (which may
396 expand into many tests in the output). The choice of function,
397 which implies the numbers and types of arguments and results, is
398 implicit rather than stored in this structure (except as part of
402 /* The text of the input line describing the test, including the
405 /* The number of combinations of interpretations of input values for
406 different floating-point formats and rounding modes. */
407 size_t num_input_cases
;
408 /* The corresponding lists of inputs. */
409 generic_value
**inputs
;
410 /* The number of flags for this test. */
412 /* The corresponding list of flags. */
414 /* The old output for this test. */
415 const char *old_output
;
418 /* Ways to calculate a function. */
421 /* MPFR function with a single argument and result. */
423 /* MPFR function with two arguments and one result. */
425 /* MPFR function with three arguments and one result. */
427 /* MPFR function with a single argument and floating-point and
430 /* MPFR function with integer and floating-point arguments and one
433 /* MPFR function with a single argument and two floating-point
436 /* MPC function with a single complex argument and one real
439 /* MPC function with a single complex argument and one complex
442 /* MPC function with two complex arguments and one complex
447 /* Description of how to calculate a function. */
450 /* Which method is used to calculate the function. */
451 func_calc_method method
;
452 /* The specific function called. */
455 int (*mpfr_f_f
) (mpfr_t
, const mpfr_t
, mpfr_rnd_t
);
456 int (*mpfr_ff_f
) (mpfr_t
, const mpfr_t
, const mpfr_t
, mpfr_rnd_t
);
457 int (*mpfr_fff_f
) (mpfr_t
, const mpfr_t
, const mpfr_t
, const mpfr_t
,
459 int (*mpfr_f_f1
) (mpfr_t
, int *, const mpfr_t
, mpfr_rnd_t
);
460 int (*mpfr_if_f
) (mpfr_t
, long, const mpfr_t
, mpfr_rnd_t
);
461 int (*mpfr_f_11
) (mpfr_t
, mpfr_t
, const mpfr_t
, mpfr_rnd_t
);
462 int (*mpc_c_f
) (mpfr_t
, const mpc_t
, mpfr_rnd_t
);
463 int (*mpc_c_c
) (mpc_t
, const mpc_t
, mpc_rnd_t
);
464 int (*mpc_cc_c
) (mpc_t
, const mpc_t
, const mpc_t
, mpc_rnd_t
);
468 /* Structure describing a function handled by this program. */
471 /* The name of the function. */
473 /* The number of arguments. */
475 /* The types of the arguments. */
476 arg_ret_type arg_types
[MAX_NARGS
];
477 /* The number of return values. */
479 /* The types of the return values. */
480 arg_ret_type ret_types
[MAX_NRET
];
481 /* Whether the function has exactly determined results and
484 /* Whether the function is a complex function, so errno setting is
487 /* Whether to treat arguments given as floating-point constants as
488 exact only, rather than rounding them up and down to all
491 /* How to calculate this function. */
493 /* The number of tests allocated for this function. */
494 size_t num_tests_alloc
;
495 /* The number of tests for this function. */
497 /* The tests themselves. */
501 #define ARGS1(T1) 1, { T1 }
502 #define ARGS2(T1, T2) 2, { T1, T2 }
503 #define ARGS3(T1, T2, T3) 3, { T1, T2, T3 }
504 #define ARGS4(T1, T2, T3, T4) 4, { T1, T2, T3, T4 }
505 #define RET1(T1) 1, { T1 }
506 #define RET2(T1, T2) 2, { T1, T2 }
507 #define CALC(TYPE, FN) { TYPE, { .TYPE = FN } }
508 #define FUNC(NAME, ARGS, RET, EXACT, COMPLEX_FN, EXACT_ARGS, CALC) \
510 NAME, ARGS, RET, EXACT, COMPLEX_FN, EXACT_ARGS, CALC, 0, 0, NULL \
513 #define FUNC_mpfr_f_f(NAME, MPFR_FUNC, EXACT) \
514 FUNC (NAME, ARGS1 (type_fp), RET1 (type_fp), EXACT, false, false, \
515 CALC (mpfr_f_f, MPFR_FUNC))
516 #define FUNC_mpfr_ff_f(NAME, MPFR_FUNC, EXACT) \
517 FUNC (NAME, ARGS2 (type_fp, type_fp), RET1 (type_fp), EXACT, false, \
518 false, CALC (mpfr_ff_f, MPFR_FUNC))
519 #define FUNC_mpfr_if_f(NAME, MPFR_FUNC, EXACT) \
520 FUNC (NAME, ARGS2 (type_int, type_fp), RET1 (type_fp), EXACT, false, \
521 false, CALC (mpfr_if_f, MPFR_FUNC))
522 #define FUNC_mpc_c_f(NAME, MPFR_FUNC, EXACT) \
523 FUNC (NAME, ARGS2 (type_fp, type_fp), RET1 (type_fp), EXACT, true, \
524 false, CALC (mpc_c_f, MPFR_FUNC))
525 #define FUNC_mpc_c_c(NAME, MPFR_FUNC, EXACT) \
526 FUNC (NAME, ARGS2 (type_fp, type_fp), RET2 (type_fp, type_fp), EXACT, \
527 true, false, CALC (mpc_c_c, MPFR_FUNC))
529 /* List of functions handled by this program. */
530 static test_function test_functions
[] =
532 FUNC_mpfr_f_f ("acos", mpfr_acos
, false),
533 FUNC_mpfr_f_f ("acosh", mpfr_acosh
, false),
534 FUNC_mpfr_ff_f ("add", mpfr_add
, true),
535 FUNC_mpfr_f_f ("asin", mpfr_asin
, false),
536 FUNC_mpfr_f_f ("asinh", mpfr_asinh
, false),
537 FUNC_mpfr_f_f ("atan", mpfr_atan
, false),
538 FUNC_mpfr_ff_f ("atan2", mpfr_atan2
, false),
539 FUNC_mpfr_f_f ("atanh", mpfr_atanh
, false),
540 FUNC_mpc_c_f ("cabs", mpc_abs
, false),
541 FUNC_mpc_c_c ("cacos", mpc_acos
, false),
542 FUNC_mpc_c_c ("cacosh", mpc_acosh
, false),
543 FUNC_mpc_c_f ("carg", mpc_arg
, false),
544 FUNC_mpc_c_c ("casin", mpc_asin
, false),
545 FUNC_mpc_c_c ("casinh", mpc_asinh
, false),
546 FUNC_mpc_c_c ("catan", mpc_atan
, false),
547 FUNC_mpc_c_c ("catanh", mpc_atanh
, false),
548 FUNC_mpfr_f_f ("cbrt", mpfr_cbrt
, false),
549 FUNC_mpc_c_c ("ccos", mpc_cos
, false),
550 FUNC_mpc_c_c ("ccosh", mpc_cosh
, false),
551 FUNC_mpc_c_c ("cexp", mpc_exp
, false),
552 FUNC_mpc_c_c ("clog", mpc_log
, false),
553 FUNC_mpc_c_c ("clog10", mpc_log10
, false),
554 FUNC_mpfr_f_f ("cos", mpfr_cos
, false),
555 FUNC_mpfr_f_f ("cosh", mpfr_cosh
, false),
556 FUNC ("cpow", ARGS4 (type_fp
, type_fp
, type_fp
, type_fp
),
557 RET2 (type_fp
, type_fp
), false, true, false,
558 CALC (mpc_cc_c
, mpc_pow
)),
559 FUNC_mpc_c_c ("csin", mpc_sin
, false),
560 FUNC_mpc_c_c ("csinh", mpc_sinh
, false),
561 FUNC_mpc_c_c ("csqrt", mpc_sqrt
, false),
562 FUNC_mpc_c_c ("ctan", mpc_tan
, false),
563 FUNC_mpc_c_c ("ctanh", mpc_tanh
, false),
564 FUNC_mpfr_ff_f ("div", mpfr_div
, true),
565 FUNC_mpfr_f_f ("erf", mpfr_erf
, false),
566 FUNC_mpfr_f_f ("erfc", mpfr_erfc
, false),
567 FUNC_mpfr_f_f ("exp", mpfr_exp
, false),
568 FUNC_mpfr_f_f ("exp10", mpfr_exp10
, false),
569 FUNC_mpfr_f_f ("exp2", mpfr_exp2
, false),
570 FUNC_mpfr_f_f ("expm1", mpfr_expm1
, false),
571 FUNC ("fma", ARGS3 (type_fp
, type_fp
, type_fp
), RET1 (type_fp
),
572 true, false, true, CALC (mpfr_fff_f
, mpfr_fma
)),
573 FUNC_mpfr_ff_f ("hypot", mpfr_hypot
, false),
574 FUNC_mpfr_f_f ("j0", mpfr_j0
, false),
575 FUNC_mpfr_f_f ("j1", mpfr_j1
, false),
576 FUNC_mpfr_if_f ("jn", mpfr_jn
, false),
577 FUNC ("lgamma", ARGS1 (type_fp
), RET2 (type_fp
, type_int
), false, false,
578 false, CALC (mpfr_f_f1
, mpfr_lgamma
)),
579 FUNC_mpfr_f_f ("log", mpfr_log
, false),
580 FUNC_mpfr_f_f ("log10", mpfr_log10
, false),
581 FUNC_mpfr_f_f ("log1p", mpfr_log1p
, false),
582 FUNC_mpfr_f_f ("log2", mpfr_log2
, false),
583 FUNC_mpfr_ff_f ("mul", mpfr_mul
, true),
584 FUNC_mpfr_ff_f ("pow", mpfr_pow
, false),
585 FUNC_mpfr_f_f ("sin", mpfr_sin
, false),
586 FUNC ("sincos", ARGS1 (type_fp
), RET2 (type_fp
, type_fp
), false, false,
587 false, CALC (mpfr_f_11
, mpfr_sin_cos
)),
588 FUNC_mpfr_f_f ("sinh", mpfr_sinh
, false),
589 FUNC_mpfr_ff_f ("sub", mpfr_sub
, true),
590 FUNC_mpfr_f_f ("sqrt", mpfr_sqrt
, true),
591 FUNC_mpfr_f_f ("tan", mpfr_tan
, false),
592 FUNC_mpfr_f_f ("tanh", mpfr_tanh
, false),
593 FUNC_mpfr_f_f ("tgamma", mpfr_gamma
, false),
594 FUNC_mpfr_f_f ("y0", mpfr_y0
, false),
595 FUNC_mpfr_f_f ("y1", mpfr_y1
, false),
596 FUNC_mpfr_if_f ("yn", mpfr_yn
, false),
599 /* Allocate memory, with error checking. */
604 void *p
= malloc (n
);
606 error (EXIT_FAILURE
, errno
, "xmalloc failed");
611 xrealloc (void *p
, size_t n
)
615 error (EXIT_FAILURE
, errno
, "xrealloc failed");
620 xstrdup (const char *s
)
622 char *p
= strdup (s
);
624 error (EXIT_FAILURE
, errno
, "xstrdup failed");
628 /* Assert that the result of an MPFR operation was exact; that is,
629 that the returned ternary value was 0. */
637 /* Return the generic type of an argument or return value type T. */
639 static generic_value_type
640 generic_arg_ret_type (arg_ret_type t
)
657 /* Free a generic_value *V. */
660 generic_value_free (generic_value
*v
)
665 mpfr_clear (v
->value
.f
);
669 mpz_clear (v
->value
.i
);
677 /* Copy a generic_value *SRC to *DEST. */
680 generic_value_copy (generic_value
*dest
, const generic_value
*src
)
682 dest
->type
= src
->type
;
686 mpfr_init (dest
->value
.f
);
687 assert_exact (mpfr_set (dest
->value
.f
, src
->value
.f
, MPFR_RNDN
));
691 mpz_init (dest
->value
.i
);
692 mpz_set (dest
->value
.i
, src
->value
.i
);
700 /* Initialize data for floating-point formats. */
703 init_fp_formats (void)
705 int global_max_exp
= 0, global_min_subnorm_exp
= 0;
706 for (fp_format f
= fp_first_format
; f
< fp_num_formats
; f
++)
708 if (fp_formats
[f
].mant_dig
+ 2 > internal_precision
)
709 internal_precision
= fp_formats
[f
].mant_dig
+ 2;
710 if (fp_formats
[f
].max_exp
> global_max_exp
)
711 global_max_exp
= fp_formats
[f
].max_exp
;
712 int min_subnorm_exp
= fp_formats
[f
].min_exp
- fp_formats
[f
].mant_dig
;
713 if (min_subnorm_exp
< global_min_subnorm_exp
)
714 global_min_subnorm_exp
= min_subnorm_exp
;
715 mpfr_init2 (fp_formats
[f
].max
, fp_formats
[f
].mant_dig
);
716 if (fp_formats
[f
].max_string
!= NULL
)
719 assert_exact (mpfr_strtofr (fp_formats
[f
].max
,
720 fp_formats
[f
].max_string
,
726 assert_exact (mpfr_set_ui_2exp (fp_formats
[f
].max
, 1,
727 fp_formats
[f
].max_exp
,
729 mpfr_nextbelow (fp_formats
[f
].max
);
731 mpfr_init2 (fp_formats
[f
].min
, fp_formats
[f
].mant_dig
);
732 assert_exact (mpfr_set_ui_2exp (fp_formats
[f
].min
, 1,
733 fp_formats
[f
].min_exp
- 1,
735 mpfr_init2 (fp_formats
[f
].min_plus_half
, fp_formats
[f
].mant_dig
+ 1);
736 assert_exact (mpfr_set (fp_formats
[f
].min_plus_half
,
737 fp_formats
[f
].min
, MPFR_RNDN
));
738 mpfr_nextabove (fp_formats
[f
].min_plus_half
);
739 mpfr_init2 (fp_formats
[f
].subnorm_max
, fp_formats
[f
].mant_dig
);
740 assert_exact (mpfr_set (fp_formats
[f
].subnorm_max
, fp_formats
[f
].min
,
742 mpfr_nextbelow (fp_formats
[f
].subnorm_max
);
743 mpfr_nextbelow (fp_formats
[f
].subnorm_max
);
744 mpfr_init2 (fp_formats
[f
].subnorm_min
, fp_formats
[f
].mant_dig
);
745 assert_exact (mpfr_set_ui_2exp (fp_formats
[f
].subnorm_min
, 1,
746 min_subnorm_exp
, MPFR_RNDN
));
748 mpfr_set_default_prec (internal_precision
);
749 mpfr_init (global_max
);
750 assert_exact (mpfr_set_ui_2exp (global_max
, 1, global_max_exp
, MPFR_RNDN
));
751 mpfr_init (global_min
);
752 assert_exact (mpfr_set_ui_2exp (global_min
, 1, global_min_subnorm_exp
- 1,
756 /* Fill in mpfr_t values for special strings in input arguments. */
759 special_fill_max (mpfr_t res0
, mpfr_t res1
__attribute__ ((unused
)),
762 mpfr_init2 (res0
, fp_formats
[format
].mant_dig
);
763 assert_exact (mpfr_set (res0
, fp_formats
[format
].max
, MPFR_RNDN
));
768 special_fill_minus_max (mpfr_t res0
, mpfr_t res1
__attribute__ ((unused
)),
771 mpfr_init2 (res0
, fp_formats
[format
].mant_dig
);
772 assert_exact (mpfr_neg (res0
, fp_formats
[format
].max
, MPFR_RNDN
));
777 special_fill_min (mpfr_t res0
, mpfr_t res1
__attribute__ ((unused
)),
780 mpfr_init2 (res0
, fp_formats
[format
].mant_dig
);
781 assert_exact (mpfr_set (res0
, fp_formats
[format
].min
, MPFR_RNDN
));
786 special_fill_minus_min (mpfr_t res0
, mpfr_t res1
__attribute__ ((unused
)),
789 mpfr_init2 (res0
, fp_formats
[format
].mant_dig
);
790 assert_exact (mpfr_neg (res0
, fp_formats
[format
].min
, MPFR_RNDN
));
795 special_fill_min_subnorm (mpfr_t res0
, mpfr_t res1
__attribute__ ((unused
)),
798 mpfr_init2 (res0
, fp_formats
[format
].mant_dig
);
799 assert_exact (mpfr_set (res0
, fp_formats
[format
].subnorm_min
, MPFR_RNDN
));
804 special_fill_minus_min_subnorm (mpfr_t res0
,
805 mpfr_t res1
__attribute__ ((unused
)),
808 mpfr_init2 (res0
, fp_formats
[format
].mant_dig
);
809 assert_exact (mpfr_neg (res0
, fp_formats
[format
].subnorm_min
, MPFR_RNDN
));
814 special_fill_min_subnorm_p120 (mpfr_t res0
,
815 mpfr_t res1
__attribute__ ((unused
)),
818 mpfr_init2 (res0
, fp_formats
[format
].mant_dig
);
819 assert_exact (mpfr_mul_2ui (res0
, fp_formats
[format
].subnorm_min
,
825 special_fill_pi (mpfr_t res0
, mpfr_t res1
, fp_format format
)
827 mpfr_init2 (res0
, fp_formats
[format
].mant_dig
);
828 mpfr_const_pi (res0
, MPFR_RNDU
);
829 mpfr_init2 (res1
, fp_formats
[format
].mant_dig
);
830 mpfr_const_pi (res1
, MPFR_RNDD
);
835 special_fill_minus_pi (mpfr_t res0
, mpfr_t res1
, fp_format format
)
837 mpfr_init2 (res0
, fp_formats
[format
].mant_dig
);
838 mpfr_const_pi (res0
, MPFR_RNDU
);
839 assert_exact (mpfr_neg (res0
, res0
, MPFR_RNDN
));
840 mpfr_init2 (res1
, fp_formats
[format
].mant_dig
);
841 mpfr_const_pi (res1
, MPFR_RNDD
);
842 assert_exact (mpfr_neg (res1
, res1
, MPFR_RNDN
));
847 special_fill_pi_2 (mpfr_t res0
, mpfr_t res1
, fp_format format
)
849 mpfr_init2 (res0
, fp_formats
[format
].mant_dig
);
850 mpfr_const_pi (res0
, MPFR_RNDU
);
851 assert_exact (mpfr_div_ui (res0
, res0
, 2, MPFR_RNDN
));
852 mpfr_init2 (res1
, fp_formats
[format
].mant_dig
);
853 mpfr_const_pi (res1
, MPFR_RNDD
);
854 assert_exact (mpfr_div_ui (res1
, res1
, 2, MPFR_RNDN
));
859 special_fill_minus_pi_2 (mpfr_t res0
, mpfr_t res1
, fp_format format
)
861 mpfr_init2 (res0
, fp_formats
[format
].mant_dig
);
862 mpfr_const_pi (res0
, MPFR_RNDU
);
863 assert_exact (mpfr_div_ui (res0
, res0
, 2, MPFR_RNDN
));
864 assert_exact (mpfr_neg (res0
, res0
, MPFR_RNDN
));
865 mpfr_init2 (res1
, fp_formats
[format
].mant_dig
);
866 mpfr_const_pi (res1
, MPFR_RNDD
);
867 assert_exact (mpfr_div_ui (res1
, res1
, 2, MPFR_RNDN
));
868 assert_exact (mpfr_neg (res1
, res1
, MPFR_RNDN
));
873 special_fill_pi_4 (mpfr_t res0
, mpfr_t res1
, fp_format format
)
875 mpfr_init2 (res0
, fp_formats
[format
].mant_dig
);
876 assert_exact (mpfr_set_si (res0
, 1, MPFR_RNDN
));
877 mpfr_atan (res0
, res0
, MPFR_RNDU
);
878 mpfr_init2 (res1
, fp_formats
[format
].mant_dig
);
879 assert_exact (mpfr_set_si (res1
, 1, MPFR_RNDN
));
880 mpfr_atan (res1
, res1
, MPFR_RNDD
);
885 special_fill_pi_6 (mpfr_t res0
, mpfr_t res1
, fp_format format
)
887 mpfr_init2 (res0
, fp_formats
[format
].mant_dig
);
888 assert_exact (mpfr_set_si_2exp (res0
, 1, -1, MPFR_RNDN
));
889 mpfr_asin (res0
, res0
, MPFR_RNDU
);
890 mpfr_init2 (res1
, fp_formats
[format
].mant_dig
);
891 assert_exact (mpfr_set_si_2exp (res1
, 1, -1, MPFR_RNDN
));
892 mpfr_asin (res1
, res1
, MPFR_RNDD
);
897 special_fill_minus_pi_6 (mpfr_t res0
, mpfr_t res1
, fp_format format
)
899 mpfr_init2 (res0
, fp_formats
[format
].mant_dig
);
900 assert_exact (mpfr_set_si_2exp (res0
, -1, -1, MPFR_RNDN
));
901 mpfr_asin (res0
, res0
, MPFR_RNDU
);
902 mpfr_init2 (res1
, fp_formats
[format
].mant_dig
);
903 assert_exact (mpfr_set_si_2exp (res1
, -1, -1, MPFR_RNDN
));
904 mpfr_asin (res1
, res1
, MPFR_RNDD
);
909 special_fill_pi_3 (mpfr_t res0
, mpfr_t res1
, fp_format format
)
911 mpfr_init2 (res0
, fp_formats
[format
].mant_dig
);
912 assert_exact (mpfr_set_si_2exp (res0
, 1, -1, MPFR_RNDN
));
913 mpfr_acos (res0
, res0
, MPFR_RNDU
);
914 mpfr_init2 (res1
, fp_formats
[format
].mant_dig
);
915 assert_exact (mpfr_set_si_2exp (res1
, 1, -1, MPFR_RNDN
));
916 mpfr_acos (res1
, res1
, MPFR_RNDD
);
921 special_fill_2pi_3 (mpfr_t res0
, mpfr_t res1
, fp_format format
)
923 mpfr_init2 (res0
, fp_formats
[format
].mant_dig
);
924 assert_exact (mpfr_set_si_2exp (res0
, -1, -1, MPFR_RNDN
));
925 mpfr_acos (res0
, res0
, MPFR_RNDU
);
926 mpfr_init2 (res1
, fp_formats
[format
].mant_dig
);
927 assert_exact (mpfr_set_si_2exp (res1
, -1, -1, MPFR_RNDN
));
928 mpfr_acos (res1
, res1
, MPFR_RNDD
);
933 special_fill_2pi (mpfr_t res0
, mpfr_t res1
, fp_format format
)
935 mpfr_init2 (res0
, fp_formats
[format
].mant_dig
);
936 mpfr_const_pi (res0
, MPFR_RNDU
);
937 assert_exact (mpfr_mul_ui (res0
, res0
, 2, MPFR_RNDN
));
938 mpfr_init2 (res1
, fp_formats
[format
].mant_dig
);
939 mpfr_const_pi (res1
, MPFR_RNDD
);
940 assert_exact (mpfr_mul_ui (res1
, res1
, 2, MPFR_RNDN
));
945 special_fill_e (mpfr_t res0
, mpfr_t res1
, fp_format format
)
947 mpfr_init2 (res0
, fp_formats
[format
].mant_dig
);
948 assert_exact (mpfr_set_si (res0
, 1, MPFR_RNDN
));
949 mpfr_exp (res0
, res0
, MPFR_RNDU
);
950 mpfr_init2 (res1
, fp_formats
[format
].mant_dig
);
951 assert_exact (mpfr_set_si (res1
, 1, MPFR_RNDN
));
952 mpfr_exp (res1
, res1
, MPFR_RNDD
);
957 special_fill_1_e (mpfr_t res0
, mpfr_t res1
, fp_format format
)
959 mpfr_init2 (res0
, fp_formats
[format
].mant_dig
);
960 assert_exact (mpfr_set_si (res0
, -1, MPFR_RNDN
));
961 mpfr_exp (res0
, res0
, MPFR_RNDU
);
962 mpfr_init2 (res1
, fp_formats
[format
].mant_dig
);
963 assert_exact (mpfr_set_si (res1
, -1, MPFR_RNDN
));
964 mpfr_exp (res1
, res1
, MPFR_RNDD
);
969 special_fill_e_minus_1 (mpfr_t res0
, mpfr_t res1
, fp_format format
)
971 mpfr_init2 (res0
, fp_formats
[format
].mant_dig
);
972 assert_exact (mpfr_set_si (res0
, 1, MPFR_RNDN
));
973 mpfr_expm1 (res0
, res0
, MPFR_RNDU
);
974 mpfr_init2 (res1
, fp_formats
[format
].mant_dig
);
975 assert_exact (mpfr_set_si (res1
, 1, MPFR_RNDN
));
976 mpfr_expm1 (res1
, res1
, MPFR_RNDD
);
980 /* A special string accepted in input arguments. */
985 /* The function that interprets it for a given floating-point
986 format, filling in up to two mpfr_t values and returning the
987 number of values filled. */
988 size_t (*func
) (mpfr_t
, mpfr_t
, fp_format
);
989 } special_real_input
;
991 /* List of special strings accepted in input arguments. */
993 static const special_real_input special_real_inputs
[] =
995 { "max", special_fill_max
},
996 { "-max", special_fill_minus_max
},
997 { "min", special_fill_min
},
998 { "-min", special_fill_minus_min
},
999 { "min_subnorm", special_fill_min_subnorm
},
1000 { "-min_subnorm", special_fill_minus_min_subnorm
},
1001 { "min_subnorm_p120", special_fill_min_subnorm_p120
},
1002 { "pi", special_fill_pi
},
1003 { "-pi", special_fill_minus_pi
},
1004 { "pi/2", special_fill_pi_2
},
1005 { "-pi/2", special_fill_minus_pi_2
},
1006 { "pi/4", special_fill_pi_4
},
1007 { "pi/6", special_fill_pi_6
},
1008 { "-pi/6", special_fill_minus_pi_6
},
1009 { "pi/3", special_fill_pi_3
},
1010 { "2pi/3", special_fill_2pi_3
},
1011 { "2pi", special_fill_2pi
},
1012 { "e", special_fill_e
},
1013 { "1/e", special_fill_1_e
},
1014 { "e-1", special_fill_e_minus_1
},
1017 /* Given a real number R computed in round-to-zero mode, set the
1018 lowest bit as a sticky bit if INEXACT, and saturate the exponent
1019 range for very large or small values. */
1022 adjust_real (mpfr_t r
, bool inexact
)
1026 /* NaNs are exact, as are infinities in round-to-zero mode. */
1027 assert (mpfr_number_p (r
));
1028 if (mpfr_cmpabs (r
, global_min
) < 0)
1029 assert_exact (mpfr_copysign (r
, global_min
, r
, MPFR_RNDN
));
1030 else if (mpfr_cmpabs (r
, global_max
) > 0)
1031 assert_exact (mpfr_copysign (r
, global_max
, r
, MPFR_RNDN
));
1036 mpfr_exp_t e
= mpfr_get_z_2exp (tmp
, r
);
1037 if (mpz_sgn (tmp
) < 0)
1040 mpz_setbit (tmp
, 0);
1044 mpz_setbit (tmp
, 0);
1045 assert_exact (mpfr_set_z_2exp (r
, tmp
, e
, MPFR_RNDN
));
1050 /* Given a finite real number R with sticky bit, compute the roundings
1051 to FORMAT in each rounding mode, storing the results in RES, the
1052 before-rounding exceptions in EXC_BEFORE and the after-rounding
1053 exceptions in EXC_AFTER. */
1056 round_real (mpfr_t res
[rm_num_modes
],
1057 unsigned int exc_before
[rm_num_modes
],
1058 unsigned int exc_after
[rm_num_modes
],
1059 mpfr_t r
, fp_format format
)
1061 assert (mpfr_number_p (r
));
1062 for (rounding_mode m
= rm_first_mode
; m
< rm_num_modes
; m
++)
1064 mpfr_init2 (res
[m
], fp_formats
[format
].mant_dig
);
1065 exc_before
[m
] = exc_after
[m
] = 0;
1066 bool inexact
= mpfr_set (res
[m
], r
, rounding_modes
[m
].mpfr_mode
);
1067 if (mpfr_cmpabs (res
[m
], fp_formats
[format
].max
) > 0)
1070 exc_before
[m
] |= 1U << exc_overflow
;
1071 exc_after
[m
] |= 1U << exc_overflow
;
1076 overflow_inf
= true;
1079 overflow_inf
= false;
1082 overflow_inf
= mpfr_signbit (res
[m
]);
1085 overflow_inf
= !mpfr_signbit (res
[m
]);
1091 mpfr_set_inf (res
[m
], mpfr_signbit (res
[m
]) ? -1 : 1);
1093 assert_exact (mpfr_copysign (res
[m
], fp_formats
[format
].max
,
1094 res
[m
], MPFR_RNDN
));
1096 if (mpfr_cmpabs (r
, fp_formats
[format
].min
) < 0)
1098 /* Tiny before rounding; may or may not be tiny after
1099 rounding, and underflow applies only if also inexact
1100 around rounding to a possibly subnormal value. */
1101 bool tiny_after_rounding
1102 = mpfr_cmpabs (res
[m
], fp_formats
[format
].min
) < 0;
1103 /* To round to a possibly subnormal value, and determine
1104 inexactness as a subnormal in the process, scale up and
1105 round to integer, then scale back down. */
1108 assert_exact (mpfr_mul_2si (tmp
, r
, (fp_formats
[format
].mant_dig
1109 - fp_formats
[format
].min_exp
),
1111 int rint_res
= mpfr_rint (tmp
, tmp
, rounding_modes
[m
].mpfr_mode
);
1112 /* The integer must be representable. */
1113 assert (rint_res
== 0 || rint_res
== 2 || rint_res
== -2);
1114 /* If rounding to full precision was inexact, so must
1115 rounding to subnormal precision be inexact. */
1117 assert (rint_res
!= 0);
1119 inexact
= rint_res
!= 0;
1120 assert_exact (mpfr_mul_2si (res
[m
], tmp
,
1121 (fp_formats
[format
].min_exp
1122 - fp_formats
[format
].mant_dig
),
1127 exc_before
[m
] |= 1U << exc_underflow
;
1128 if (tiny_after_rounding
)
1129 exc_after
[m
] |= 1U << exc_underflow
;
1134 exc_before
[m
] |= 1U << exc_inexact
;
1135 exc_after
[m
] |= 1U << exc_inexact
;
1140 /* Handle the input argument at ARG (NUL-terminated), updating the
1141 lists of test inputs in IT accordingly. NUM_PREV_ARGS arguments
1142 are already in those lists. If EXACT_ARGS, interpret a value given
1143 as a floating-point constant exactly (it must be exact for some
1144 supported format) rather than rounding up and down. The argument,
1145 of type GTYPE, comes from file FILENAME, line LINENO. */
1148 handle_input_arg (const char *arg
, input_test
*it
, size_t num_prev_args
,
1149 generic_value_type gtype
, bool exact_args
,
1150 const char *filename
, unsigned int lineno
)
1152 size_t num_values
= 0;
1153 generic_value values
[2 * fp_num_formats
];
1154 bool check_empty_list
= false;
1158 for (fp_format f
= fp_first_format
; f
< fp_num_formats
; f
++)
1160 mpfr_t extra_values
[2];
1161 size_t num_extra_values
= 0;
1162 for (size_t i
= 0; i
< ARRAY_SIZE (special_real_inputs
); i
++)
1164 if (strcmp (arg
, special_real_inputs
[i
].str
) == 0)
1167 = special_real_inputs
[i
].func (extra_values
[0],
1168 extra_values
[1], f
);
1169 assert (num_extra_values
> 0
1170 && num_extra_values
<= ARRAY_SIZE (extra_values
));
1174 if (num_extra_values
== 0)
1179 check_empty_list
= true;
1181 bool inexact
= mpfr_strtofr (tmp
, arg
, &ep
, 0, MPFR_RNDZ
);
1182 if (*ep
!= 0 || !mpfr_number_p (tmp
))
1183 error_at_line (EXIT_FAILURE
, 0, filename
, lineno
,
1184 "bad floating-point argument: '%s'", arg
);
1185 adjust_real (tmp
, inexact
);
1186 mpfr_t rounded
[rm_num_modes
];
1187 unsigned int exc_before
[rm_num_modes
];
1188 unsigned int exc_after
[rm_num_modes
];
1189 round_real (rounded
, exc_before
, exc_after
, tmp
, f
);
1191 if (mpfr_number_p (rounded
[rm_upward
])
1192 && (!exact_args
|| mpfr_equal_p (rounded
[rm_upward
],
1193 rounded
[rm_downward
])))
1195 mpfr_init2 (extra_values
[num_extra_values
],
1196 fp_formats
[f
].mant_dig
);
1197 assert_exact (mpfr_set (extra_values
[num_extra_values
],
1198 rounded
[rm_upward
], MPFR_RNDN
));
1201 if (mpfr_number_p (rounded
[rm_downward
]) && !exact_args
)
1203 mpfr_init2 (extra_values
[num_extra_values
],
1204 fp_formats
[f
].mant_dig
);
1205 assert_exact (mpfr_set (extra_values
[num_extra_values
],
1206 rounded
[rm_downward
], MPFR_RNDN
));
1209 for (rounding_mode m
= rm_first_mode
; m
< rm_num_modes
; m
++)
1210 mpfr_clear (rounded
[m
]);
1212 for (size_t i
= 0; i
< num_extra_values
; i
++)
1215 for (size_t j
= 0; j
< num_values
; j
++)
1217 if (mpfr_equal_p (values
[j
].value
.f
, extra_values
[i
])
1218 && ((mpfr_signbit (values
[j
].value
.f
) != 0)
1219 == (mpfr_signbit (extra_values
[i
]) != 0)))
1227 assert (num_values
< ARRAY_SIZE (values
));
1228 values
[num_values
].type
= gtype_fp
;
1229 mpfr_init2 (values
[num_values
].value
.f
,
1230 fp_formats
[f
].mant_dig
);
1231 assert_exact (mpfr_set (values
[num_values
].value
.f
,
1232 extra_values
[i
], MPFR_RNDN
));
1235 mpfr_clear (extra_values
[i
]);
1242 values
[0].type
= gtype_int
;
1243 int ret
= mpz_init_set_str (values
[0].value
.i
, arg
, 0);
1245 error_at_line (EXIT_FAILURE
, 0, filename
, lineno
,
1246 "bad integer argument: '%s'", arg
);
1252 if (check_empty_list
&& num_values
== 0)
1253 error_at_line (EXIT_FAILURE
, 0, filename
, lineno
,
1254 "floating-point argument not exact for any format: '%s'",
1256 assert (num_values
> 0 && num_values
<= ARRAY_SIZE (values
));
1257 if (it
->num_input_cases
>= SIZE_MAX
/ num_values
)
1258 error_at_line (EXIT_FAILURE
, 0, filename
, lineno
, "too many input cases");
1259 generic_value
**old_inputs
= it
->inputs
;
1260 size_t new_num_input_cases
= it
->num_input_cases
* num_values
;
1261 generic_value
**new_inputs
= xmalloc (new_num_input_cases
1262 * sizeof (new_inputs
[0]));
1263 for (size_t i
= 0; i
< it
->num_input_cases
; i
++)
1265 for (size_t j
= 0; j
< num_values
; j
++)
1267 size_t idx
= i
* num_values
+ j
;
1268 new_inputs
[idx
] = xmalloc ((num_prev_args
+ 1)
1269 * sizeof (new_inputs
[idx
][0]));
1270 for (size_t k
= 0; k
< num_prev_args
; k
++)
1271 generic_value_copy (&new_inputs
[idx
][k
], &old_inputs
[i
][k
]);
1272 generic_value_copy (&new_inputs
[idx
][num_prev_args
], &values
[j
]);
1274 for (size_t j
= 0; j
< num_prev_args
; j
++)
1275 generic_value_free (&old_inputs
[i
][j
]);
1276 free (old_inputs
[i
]);
1279 for (size_t i
= 0; i
< num_values
; i
++)
1280 generic_value_free (&values
[i
]);
1281 it
->inputs
= new_inputs
;
1282 it
->num_input_cases
= new_num_input_cases
;
1285 /* Handle the input flag ARG (NUL-terminated), storing it in *FLAG.
1286 The flag comes from file FILENAME, line LINENO. */
1289 handle_input_flag (char *arg
, input_flag
*flag
,
1290 const char *filename
, unsigned int lineno
)
1292 char *ep
= strchr (arg
, ':');
1295 ep
= strchr (arg
, 0);
1296 assert (ep
!= NULL
);
1301 for (input_flag_type i
= flag_first_flag
; i
< num_input_flag_types
; i
++)
1303 if (strcmp (arg
, input_flags
[i
]) == 0)
1311 error_at_line (EXIT_FAILURE
, 0, filename
, lineno
, "unknown flag: '%s'",
1317 flag
->cond
= xstrdup (ep
);
1320 /* Add the test LINE (file FILENAME, line LINENO) to the test
1324 add_test (char *line
, const char *filename
, unsigned int lineno
)
1326 size_t num_tokens
= 1;
1328 while ((p
= strchr (p
, ' ')) != NULL
)
1334 error_at_line (EXIT_FAILURE
, 0, filename
, lineno
,
1335 "line too short: '%s'", line
);
1336 p
= strchr (line
, ' ');
1337 size_t func_name_len
= p
- line
;
1338 for (size_t i
= 0; i
< ARRAY_SIZE (test_functions
); i
++)
1340 if (func_name_len
== strlen (test_functions
[i
].name
)
1341 && strncmp (line
, test_functions
[i
].name
, func_name_len
) == 0)
1343 test_function
*tf
= &test_functions
[i
];
1344 if (num_tokens
< 1 + tf
->num_args
)
1345 error_at_line (EXIT_FAILURE
, 0, filename
, lineno
,
1346 "line too short: '%s'", line
);
1347 if (tf
->num_tests
== tf
->num_tests_alloc
)
1349 tf
->num_tests_alloc
= 2 * tf
->num_tests_alloc
+ 16;
1351 = xrealloc (tf
->tests
,
1352 tf
->num_tests_alloc
* sizeof (tf
->tests
[0]));
1354 input_test
*it
= &tf
->tests
[tf
->num_tests
];
1356 it
->num_input_cases
= 1;
1357 it
->inputs
= xmalloc (sizeof (it
->inputs
[0]));
1358 it
->inputs
[0] = NULL
;
1359 it
->old_output
= NULL
;
1361 for (size_t j
= 0; j
< tf
->num_args
; j
++)
1363 char *ep
= strchr (p
, ' ');
1366 ep
= strchr (p
, '\n');
1367 assert (ep
!= NULL
);
1370 error_at_line (EXIT_FAILURE
, 0, filename
, lineno
,
1371 "empty token in line: '%s'", line
);
1372 for (char *t
= p
; t
< ep
; t
++)
1373 if (isspace ((unsigned char) *t
))
1374 error_at_line (EXIT_FAILURE
, 0, filename
, lineno
,
1375 "whitespace in token in line: '%s'", line
);
1378 handle_input_arg (p
, it
, j
,
1379 generic_arg_ret_type (tf
->arg_types
[j
]),
1380 tf
->exact_args
, filename
, lineno
);
1384 it
->num_flags
= num_tokens
- 1 - tf
->num_args
;
1385 it
->flags
= xmalloc (it
->num_flags
* sizeof (it
->flags
[0]));
1386 for (size_t j
= 0; j
< it
->num_flags
; j
++)
1388 char *ep
= strchr (p
, ' ');
1391 ep
= strchr (p
, '\n');
1392 assert (ep
!= NULL
);
1395 error_at_line (EXIT_FAILURE
, 0, filename
, lineno
,
1396 "empty token in line: '%s'", line
);
1397 for (char *t
= p
; t
< ep
; t
++)
1398 if (isspace ((unsigned char) *t
))
1399 error_at_line (EXIT_FAILURE
, 0, filename
, lineno
,
1400 "whitespace in token in line: '%s'", line
);
1403 handle_input_flag (p
, &it
->flags
[j
], filename
, lineno
);
1412 error_at_line (EXIT_FAILURE
, 0, filename
, lineno
,
1413 "unknown function in line: '%s'", line
);
1416 /* Read in the test input data from FILENAME. */
1419 read_input (const char *filename
)
1421 FILE *fp
= fopen (filename
, "r");
1423 error (EXIT_FAILURE
, errno
, "open '%s'", filename
);
1424 unsigned int lineno
= 0;
1429 ssize_t ret
= getline (&line
, &size
, fp
);
1433 if (line
[0] == '#' || line
[0] == '\n')
1435 add_test (line
, filename
, lineno
);
1438 error (EXIT_FAILURE
, errno
, "read from '%s'", filename
);
1439 if (fclose (fp
) != 0)
1440 error (EXIT_FAILURE
, errno
, "close '%s'", filename
);
1443 /* Calculate the generic results (round-to-zero with sticky bit) for
1444 the function described by CALC, with inputs INPUTS, if MODE is
1445 rm_towardzero; for other modes, calculate results in that mode,
1446 which must be exact zero results. */
1449 calc_generic_results (generic_value
*outputs
, generic_value
*inputs
,
1450 const func_calc_desc
*calc
, rounding_mode mode
)
1455 mpfr_rnd_t mode_mpfr
= rounding_modes
[mode
].mpfr_mode
;
1456 mpc_rnd_t mode_mpc
= rounding_modes
[mode
].mpc_mode
;
1458 switch (calc
->method
)
1461 assert (inputs
[0].type
== gtype_fp
);
1462 outputs
[0].type
= gtype_fp
;
1463 mpfr_init (outputs
[0].value
.f
);
1464 inexact
= calc
->func
.mpfr_f_f (outputs
[0].value
.f
, inputs
[0].value
.f
,
1466 if (mode
!= rm_towardzero
)
1467 assert (!inexact
&& mpfr_zero_p (outputs
[0].value
.f
));
1468 adjust_real (outputs
[0].value
.f
, inexact
);
1472 assert (inputs
[0].type
== gtype_fp
);
1473 assert (inputs
[1].type
== gtype_fp
);
1474 outputs
[0].type
= gtype_fp
;
1475 mpfr_init (outputs
[0].value
.f
);
1476 inexact
= calc
->func
.mpfr_ff_f (outputs
[0].value
.f
, inputs
[0].value
.f
,
1477 inputs
[1].value
.f
, mode_mpfr
);
1478 if (mode
!= rm_towardzero
)
1479 assert (!inexact
&& mpfr_zero_p (outputs
[0].value
.f
));
1480 adjust_real (outputs
[0].value
.f
, inexact
);
1484 assert (inputs
[0].type
== gtype_fp
);
1485 assert (inputs
[1].type
== gtype_fp
);
1486 assert (inputs
[2].type
== gtype_fp
);
1487 outputs
[0].type
= gtype_fp
;
1488 mpfr_init (outputs
[0].value
.f
);
1489 inexact
= calc
->func
.mpfr_fff_f (outputs
[0].value
.f
, inputs
[0].value
.f
,
1490 inputs
[1].value
.f
, inputs
[2].value
.f
,
1492 if (mode
!= rm_towardzero
)
1493 assert (!inexact
&& mpfr_zero_p (outputs
[0].value
.f
));
1494 adjust_real (outputs
[0].value
.f
, inexact
);
1498 assert (inputs
[0].type
== gtype_fp
);
1499 outputs
[0].type
= gtype_fp
;
1500 outputs
[1].type
= gtype_int
;
1501 mpfr_init (outputs
[0].value
.f
);
1503 inexact
= calc
->func
.mpfr_f_f1 (outputs
[0].value
.f
, &i
,
1504 inputs
[0].value
.f
, mode_mpfr
);
1505 if (mode
!= rm_towardzero
)
1506 assert (!inexact
&& mpfr_zero_p (outputs
[0].value
.f
));
1507 adjust_real (outputs
[0].value
.f
, inexact
);
1508 mpz_init_set_si (outputs
[1].value
.i
, i
);
1512 assert (inputs
[0].type
== gtype_int
);
1513 assert (inputs
[1].type
== gtype_fp
);
1514 outputs
[0].type
= gtype_fp
;
1515 mpfr_init (outputs
[0].value
.f
);
1516 assert (mpz_fits_slong_p (inputs
[0].value
.i
));
1517 long l
= mpz_get_si (inputs
[0].value
.i
);
1518 inexact
= calc
->func
.mpfr_if_f (outputs
[0].value
.f
, l
,
1519 inputs
[1].value
.f
, mode_mpfr
);
1520 if (mode
!= rm_towardzero
)
1521 assert (!inexact
&& mpfr_zero_p (outputs
[0].value
.f
));
1522 adjust_real (outputs
[0].value
.f
, inexact
);
1526 assert (inputs
[0].type
== gtype_fp
);
1527 outputs
[0].type
= gtype_fp
;
1528 mpfr_init (outputs
[0].value
.f
);
1529 outputs
[1].type
= gtype_fp
;
1530 mpfr_init (outputs
[1].value
.f
);
1531 int comb_ternary
= calc
->func
.mpfr_f_11 (outputs
[0].value
.f
,
1535 if (mode
!= rm_towardzero
)
1536 assert (((comb_ternary
& 0x3) == 0
1537 && mpfr_zero_p (outputs
[0].value
.f
))
1538 || ((comb_ternary
& 0xc) == 0
1539 && mpfr_zero_p (outputs
[1].value
.f
)));
1540 adjust_real (outputs
[0].value
.f
, (comb_ternary
& 0x3) != 0);
1541 adjust_real (outputs
[1].value
.f
, (comb_ternary
& 0xc) != 0);
1545 assert (inputs
[0].type
== gtype_fp
);
1546 assert (inputs
[1].type
== gtype_fp
);
1547 outputs
[0].type
= gtype_fp
;
1548 mpfr_init (outputs
[0].value
.f
);
1549 mpc_init2 (ci1
, internal_precision
);
1550 assert_exact (mpc_set_fr_fr (ci1
, inputs
[0].value
.f
, inputs
[1].value
.f
,
1552 inexact
= calc
->func
.mpc_c_f (outputs
[0].value
.f
, ci1
, mode_mpfr
);
1553 if (mode
!= rm_towardzero
)
1554 assert (!inexact
&& mpfr_zero_p (outputs
[0].value
.f
));
1555 adjust_real (outputs
[0].value
.f
, inexact
);
1560 assert (inputs
[0].type
== gtype_fp
);
1561 assert (inputs
[1].type
== gtype_fp
);
1562 outputs
[0].type
= gtype_fp
;
1563 mpfr_init (outputs
[0].value
.f
);
1564 outputs
[1].type
= gtype_fp
;
1565 mpfr_init (outputs
[1].value
.f
);
1566 mpc_init2 (ci1
, internal_precision
);
1567 mpc_init2 (co
, internal_precision
);
1568 assert_exact (mpc_set_fr_fr (ci1
, inputs
[0].value
.f
, inputs
[1].value
.f
,
1570 mpc_ternary
= calc
->func
.mpc_c_c (co
, ci1
, mode_mpc
);
1571 if (mode
!= rm_towardzero
)
1572 assert ((!MPC_INEX_RE (mpc_ternary
)
1573 && mpfr_zero_p (mpc_realref (co
)))
1574 || (!MPC_INEX_IM (mpc_ternary
)
1575 && mpfr_zero_p (mpc_imagref (co
))));
1576 assert_exact (mpfr_set (outputs
[0].value
.f
, mpc_realref (co
),
1578 assert_exact (mpfr_set (outputs
[1].value
.f
, mpc_imagref (co
),
1580 adjust_real (outputs
[0].value
.f
, MPC_INEX_RE (mpc_ternary
));
1581 adjust_real (outputs
[1].value
.f
, MPC_INEX_IM (mpc_ternary
));
1587 assert (inputs
[0].type
== gtype_fp
);
1588 assert (inputs
[1].type
== gtype_fp
);
1589 assert (inputs
[2].type
== gtype_fp
);
1590 assert (inputs
[3].type
== gtype_fp
);
1591 outputs
[0].type
= gtype_fp
;
1592 mpfr_init (outputs
[0].value
.f
);
1593 outputs
[1].type
= gtype_fp
;
1594 mpfr_init (outputs
[1].value
.f
);
1595 mpc_init2 (ci1
, internal_precision
);
1596 mpc_init2 (ci2
, internal_precision
);
1597 mpc_init2 (co
, internal_precision
);
1598 assert_exact (mpc_set_fr_fr (ci1
, inputs
[0].value
.f
, inputs
[1].value
.f
,
1600 assert_exact (mpc_set_fr_fr (ci2
, inputs
[2].value
.f
, inputs
[3].value
.f
,
1602 mpc_ternary
= calc
->func
.mpc_cc_c (co
, ci1
, ci2
, mode_mpc
);
1603 if (mode
!= rm_towardzero
)
1604 assert ((!MPC_INEX_RE (mpc_ternary
)
1605 && mpfr_zero_p (mpc_realref (co
)))
1606 || (!MPC_INEX_IM (mpc_ternary
)
1607 && mpfr_zero_p (mpc_imagref (co
))));
1608 assert_exact (mpfr_set (outputs
[0].value
.f
, mpc_realref (co
),
1610 assert_exact (mpfr_set (outputs
[1].value
.f
, mpc_imagref (co
),
1612 adjust_real (outputs
[0].value
.f
, MPC_INEX_RE (mpc_ternary
));
1613 adjust_real (outputs
[1].value
.f
, MPC_INEX_IM (mpc_ternary
));
1624 /* Return the number of bits for integer type TYPE, where "long" has
1625 LONG_BITS bits (32 or 64). */
1628 int_type_bits (arg_ret_type type
, int long_bits
)
1630 assert (long_bits
== 32 || long_bits
== 64);
1641 case type_long_long
:
1650 /* Check whether an integer Z fits a given type TYPE, where "long" has
1651 LONG_BITS bits (32 or 64). */
1654 int_fits_type (mpz_t z
, arg_ret_type type
, int long_bits
)
1656 int bits
= int_type_bits (type
, long_bits
);
1660 mpz_ui_pow_ui (t
, 2, bits
- 1);
1661 if (mpz_cmp (z
, t
) >= 0)
1664 if (mpz_cmp (z
, t
) < 0)
1670 /* Print a generic value V to FP (name FILENAME), preceded by a space,
1671 for type TYPE, LONG_BITS bits per long, printing " IGNORE" instead
1675 output_generic_value (FILE *fp
, const char *filename
, const generic_value
*v
,
1676 bool ignore
, arg_ret_type type
, int long_bits
)
1680 if (fputs (" IGNORE", fp
) < 0)
1681 error (EXIT_FAILURE
, errno
, "write to '%s'", filename
);
1684 assert (v
->type
== generic_arg_ret_type (type
));
1700 case type_long_long
:
1710 if (mpfr_inf_p (v
->value
.f
))
1712 if (fputs ((mpfr_signbit (v
->value
.f
)
1713 ? " minus_infty" : " plus_infty"), fp
) < 0)
1714 error (EXIT_FAILURE
, errno
, "write to '%s'", filename
);
1718 assert (mpfr_number_p (v
->value
.f
));
1719 if (mpfr_fprintf (fp
, " %Ra%s", v
->value
.f
, suffix
) < 0)
1720 error (EXIT_FAILURE
, errno
, "mpfr_fprintf to '%s'", filename
);
1725 int bits
= int_type_bits (type
, long_bits
);
1728 mpz_ui_pow_ui (tmp
, 2, bits
- 1);
1730 if (mpz_cmp (v
->value
.i
, tmp
) == 0)
1732 mpz_add_ui (tmp
, tmp
, 1);
1733 if (mpfr_fprintf (fp
, " (%Zd%s-1)", tmp
, suffix
) < 0)
1734 error (EXIT_FAILURE
, errno
, "mpfr_fprintf to '%s'", filename
);
1738 if (mpfr_fprintf (fp
, " %Zd%s", v
->value
.i
, suffix
) < 0)
1739 error (EXIT_FAILURE
, errno
, "mpfr_fprintf to '%s'", filename
);
1749 /* Generate test output to FP (name FILENAME) for test function TF
1750 (rounding results to a narrower type if NARROW), input test IT,
1751 choice of input values INPUTS. */
1754 output_for_one_input_case (FILE *fp
, const char *filename
, test_function
*tf
,
1755 bool narrow
, input_test
*it
, generic_value
*inputs
)
1757 bool long_bits_matters
= false;
1758 bool fits_long32
= true;
1759 for (size_t i
= 0; i
< tf
->num_args
; i
++)
1761 generic_value_type gtype
= generic_arg_ret_type (tf
->arg_types
[i
]);
1762 assert (inputs
[i
].type
== gtype
);
1763 if (gtype
== gtype_int
)
1765 bool fits_64
= int_fits_type (inputs
[i
].value
.i
, tf
->arg_types
[i
],
1769 if (tf
->arg_types
[i
] == type_long
1770 && !int_fits_type (inputs
[i
].value
.i
, tf
->arg_types
[i
], 32))
1772 long_bits_matters
= true;
1773 fits_long32
= false;
1777 generic_value generic_outputs
[MAX_NRET
];
1778 calc_generic_results (generic_outputs
, inputs
, &tf
->calc
, rm_towardzero
);
1779 bool ignore_output_long32
[MAX_NRET
] = { false };
1780 bool ignore_output_long64
[MAX_NRET
] = { false };
1781 for (size_t i
= 0; i
< tf
->num_ret
; i
++)
1783 assert (generic_outputs
[i
].type
1784 == generic_arg_ret_type (tf
->ret_types
[i
]));
1785 switch (generic_outputs
[i
].type
)
1788 if (!mpfr_number_p (generic_outputs
[i
].value
.f
))
1789 goto out
; /* Result is NaN or exact infinity. */
1793 ignore_output_long32
[i
] = !int_fits_type (generic_outputs
[i
].value
.i
,
1794 tf
->ret_types
[i
], 32);
1795 ignore_output_long64
[i
] = !int_fits_type (generic_outputs
[i
].value
.i
,
1796 tf
->ret_types
[i
], 64);
1797 if (ignore_output_long32
[i
] != ignore_output_long64
[i
])
1798 long_bits_matters
= true;
1805 /* Iterate over relevant sizes of long and floating-point formats. */
1806 for (int long_bits
= 32; long_bits
<= 64; long_bits
+= 32)
1808 if (long_bits
== 32 && !fits_long32
)
1810 if (long_bits
== 64 && !long_bits_matters
)
1812 const char *long_cond
;
1813 if (long_bits_matters
)
1814 long_cond
= (long_bits
== 32 ? ":long32" : ":long64");
1817 bool *ignore_output
= (long_bits
== 32
1818 ? ignore_output_long32
1819 : ignore_output_long64
);
1820 for (fp_format f
= fp_first_format
; f
< fp_num_formats
; f
++)
1823 mpfr_t res
[rm_num_modes
];
1824 unsigned int exc_before
[rm_num_modes
];
1825 unsigned int exc_after
[rm_num_modes
];
1826 bool have_fp_arg
= false;
1831 for (size_t i
= 0; i
< tf
->num_args
; i
++)
1833 if (inputs
[i
].type
== gtype_fp
)
1837 if (mpfr_zero_p (inputs
[i
].value
.f
))
1839 assert (mpfr_regular_p (inputs
[i
].value
.f
));
1840 int this_exp
, this_num_ones
, this_min_exp
, this_prec
;
1843 mpfr_exp_t e
= mpfr_get_z_2exp (tmp
, inputs
[i
].value
.f
);
1844 if (mpz_sgn (tmp
) < 0)
1846 size_t bits
= mpz_sizeinbase (tmp
, 2);
1847 mp_bitcnt_t tz
= mpz_scan1 (tmp
, 0);
1848 this_min_exp
= e
+ tz
;
1849 this_prec
= bits
- tz
;
1850 assert (this_prec
> 0);
1851 this_exp
= this_min_exp
+ this_prec
- 1;
1853 == mpfr_get_exp (inputs
[i
].value
.f
) - 1);
1855 while ((size_t) this_num_ones
< bits
1856 && mpz_tstbit (tmp
, bits
- 1 - this_num_ones
))
1861 if (this_exp
> max_exp
1862 || (this_exp
== max_exp
1863 && this_num_ones
> num_ones
))
1866 num_ones
= this_num_ones
;
1868 if (this_min_exp
< min_exp
)
1869 min_exp
= this_min_exp
;
1870 if (this_prec
> max_prec
)
1871 max_prec
= this_prec
;
1876 num_ones
= this_num_ones
;
1877 min_exp
= this_min_exp
;
1878 max_prec
= this_prec
;
1884 round_real (res
, exc_before
, exc_after
,
1885 inputs
[i
].value
.f
, f
);
1886 if (!mpfr_equal_p (res
[rm_tonearest
], inputs
[i
].value
.f
))
1888 for (rounding_mode m
= rm_first_mode
;
1891 mpfr_clear (res
[m
]);
1899 /* The inputs fit this type if required to do so, so compute
1900 the ideal outputs and exceptions. */
1901 mpfr_t all_res
[MAX_NRET
][rm_num_modes
];
1902 unsigned int all_exc_before
[MAX_NRET
][rm_num_modes
];
1903 unsigned int all_exc_after
[MAX_NRET
][rm_num_modes
];
1904 unsigned int merged_exc_before
[rm_num_modes
] = { 0 };
1905 unsigned int merged_exc_after
[rm_num_modes
] = { 0 };
1906 /* For functions not exactly determined, track whether
1907 underflow is required (some result is inexact, and
1908 magnitude does not exceed the greatest magnitude
1909 subnormal), and permitted (not an exact zero, and
1910 magnitude does not exceed the least magnitude
1912 bool must_underflow
= false;
1913 bool may_underflow
= false;
1914 for (size_t i
= 0; i
< tf
->num_ret
; i
++)
1916 switch (generic_outputs
[i
].type
)
1919 round_real (all_res
[i
], all_exc_before
[i
], all_exc_after
[i
],
1920 generic_outputs
[i
].value
.f
, f
);
1921 for (rounding_mode m
= rm_first_mode
; m
< rm_num_modes
; m
++)
1923 merged_exc_before
[m
] |= all_exc_before
[i
][m
];
1924 merged_exc_after
[m
] |= all_exc_after
[i
][m
];
1928 |= ((all_exc_before
[i
][m
]
1929 & (1U << exc_inexact
)) != 0
1930 && (mpfr_cmpabs (generic_outputs
[i
].value
.f
,
1931 fp_formats
[f
].subnorm_max
)
1934 |= (!mpfr_zero_p (generic_outputs
[i
].value
.f
)
1935 && (mpfr_cmpabs (generic_outputs
[i
].value
.f
,
1936 fp_formats
[f
].min_plus_half
)
1939 /* If the result is an exact zero, the sign may
1940 depend on the rounding mode, so recompute it
1941 directly in that mode. */
1942 if (mpfr_zero_p (all_res
[i
][m
])
1943 && (all_exc_before
[i
][m
] & (1U << exc_inexact
)) == 0)
1945 generic_value outputs_rm
[MAX_NRET
];
1946 calc_generic_results (outputs_rm
, inputs
,
1948 assert_exact (mpfr_set (all_res
[i
][m
],
1949 outputs_rm
[i
].value
.f
,
1951 for (size_t j
= 0; j
< tf
->num_ret
; j
++)
1952 generic_value_free (&outputs_rm
[j
]);
1958 if (ignore_output
[i
])
1959 for (rounding_mode m
= rm_first_mode
;
1963 merged_exc_before
[m
] |= 1U << exc_invalid
;
1964 merged_exc_after
[m
] |= 1U << exc_invalid
;
1972 assert (may_underflow
|| !must_underflow
);
1973 for (rounding_mode m
= rm_first_mode
; m
< rm_num_modes
; m
++)
1975 bool before_after_matters
1976 = tf
->exact
&& merged_exc_before
[m
] != merged_exc_after
[m
];
1977 if (before_after_matters
)
1979 assert ((merged_exc_before
[m
] ^ merged_exc_after
[m
])
1980 == (1U << exc_underflow
));
1981 assert ((merged_exc_before
[m
] & (1U << exc_underflow
)) != 0);
1983 unsigned int merged_exc
= merged_exc_before
[m
];
1986 if (fprintf (fp
, "= %s %s %s%s:arg_fmt(%d,%d,%d,%d)",
1987 tf
->name
, rounding_modes
[m
].name
,
1988 fp_formats
[f
].name
, long_cond
, max_exp
,
1989 num_ones
, min_exp
, max_prec
) < 0)
1990 error (EXIT_FAILURE
, errno
, "write to '%s'", filename
);
1994 if (fprintf (fp
, "= %s %s %s%s", tf
->name
,
1995 rounding_modes
[m
].name
, fp_formats
[f
].name
,
1997 error (EXIT_FAILURE
, errno
, "write to '%s'", filename
);
2000 for (size_t i
= 0; i
< tf
->num_args
; i
++)
2001 output_generic_value (fp
, filename
, &inputs
[i
], false,
2002 tf
->arg_types
[i
], long_bits
);
2003 if (fputs (" :", fp
) < 0)
2004 error (EXIT_FAILURE
, errno
, "write to '%s'", filename
);
2005 /* Print outputs. */
2006 bool must_erange
= false;
2007 bool some_underflow_zero
= false;
2008 for (size_t i
= 0; i
< tf
->num_ret
; i
++)
2011 g
.type
= generic_outputs
[i
].type
;
2015 if (mpfr_inf_p (all_res
[i
][m
])
2016 && (all_exc_before
[i
][m
]
2017 & (1U << exc_overflow
)) != 0)
2019 if (mpfr_zero_p (all_res
[i
][m
])
2021 || mpfr_zero_p (all_res
[i
][rm_tonearest
]))
2022 && (all_exc_before
[i
][m
]
2023 & (1U << exc_underflow
)) != 0)
2025 if (mpfr_zero_p (all_res
[i
][rm_towardzero
])
2026 && (all_exc_before
[i
][m
]
2027 & (1U << exc_underflow
)) != 0)
2028 some_underflow_zero
= true;
2029 mpfr_init2 (g
.value
.f
, fp_formats
[f
].mant_dig
);
2030 assert_exact (mpfr_set (g
.value
.f
, all_res
[i
][m
],
2035 mpz_init (g
.value
.i
);
2036 mpz_set (g
.value
.i
, generic_outputs
[i
].value
.i
);
2042 output_generic_value (fp
, filename
, &g
, ignore_output
[i
],
2043 tf
->ret_types
[i
], long_bits
);
2044 generic_value_free (&g
);
2046 if (fputs (" :", fp
) < 0)
2047 error (EXIT_FAILURE
, errno
, "write to '%s'", filename
);
2048 /* Print miscellaneous flags (passed through from
2050 for (size_t i
= 0; i
< it
->num_flags
; i
++)
2051 switch (it
->flags
[i
].type
)
2053 case flag_ignore_zero_inf_sign
:
2055 case flag_no_mathvec
:
2056 if (fprintf (fp
, " %s%s",
2057 input_flags
[it
->flags
[i
].type
],
2061 error (EXIT_FAILURE
, errno
, "write to '%s'",
2064 case flag_xfail_rounding
:
2065 if (m
!= rm_tonearest
)
2066 if (fprintf (fp
, " xfail%s",
2070 error (EXIT_FAILURE
, errno
, "write to '%s'",
2076 /* For the ibm128 format, expect incorrect overflowing
2077 results in rounding modes other than to nearest;
2078 likewise incorrect results where the result may
2080 if (f
== fp_ldbl_128ibm
2081 && m
!= rm_tonearest
2082 && (some_underflow_zero
2083 || (merged_exc_before
[m
] & (1U << exc_overflow
)) != 0))
2084 if (fputs (" xfail:ibm128-libgcc", fp
) < 0)
2085 error (EXIT_FAILURE
, errno
, "write to '%s'", filename
);
2086 /* Print exception flags and compute errno
2087 expectations where not already computed. */
2088 bool may_edom
= false;
2089 bool must_edom
= false;
2090 bool may_erange
= must_erange
|| may_underflow
;
2091 for (fp_exception e
= exc_first_exception
;
2092 e
< exc_num_exceptions
;
2095 bool expect_e
= (merged_exc
& (1U << e
)) != 0;
2096 bool e_optional
= false;
2101 may_erange
= must_erange
= true;
2111 may_edom
= must_edom
= true;
2124 if (may_underflow
&& !must_underflow
)
2133 assert (!before_after_matters
);
2134 if (fprintf (fp
, " %s-ok", exceptions
[e
]) < 0)
2135 error (EXIT_FAILURE
, errno
, "write to '%s'",
2141 if (fprintf (fp
, " %s", exceptions
[e
]) < 0)
2142 error (EXIT_FAILURE
, errno
, "write to '%s'",
2144 if (before_after_matters
&& e
== exc_underflow
)
2145 if (fputs (":before-rounding", fp
) < 0)
2146 error (EXIT_FAILURE
, errno
, "write to '%s'",
2148 for (int after
= 0; after
<= 1; after
++)
2150 bool expect_e_here
= expect_e
;
2151 if (after
== 1 && (!before_after_matters
2152 || e
!= exc_underflow
))
2154 const char *after_cond
;
2155 if (before_after_matters
&& e
== exc_underflow
)
2159 : ":before-rounding");
2160 expect_e_here
= !after
;
2164 input_flag_type okflag
;
2165 okflag
= (expect_e_here
2166 ? flag_missing_first
2167 : flag_spurious_first
) + e
;
2168 for (size_t i
= 0; i
< it
->num_flags
; i
++)
2169 if (it
->flags
[i
].type
== okflag
)
2170 if (fprintf (fp
, " %s-ok%s%s",
2174 : ""), after_cond
) < 0)
2175 error (EXIT_FAILURE
, errno
, "write to '%s'",
2180 /* Print errno expectations. */
2184 must_erange
= false;
2186 if (may_edom
&& !must_edom
)
2188 if (fputs (" errno-edom-ok", fp
) < 0)
2189 error (EXIT_FAILURE
, errno
, "write to '%s'",
2195 if (fputs (" errno-edom", fp
) < 0)
2196 error (EXIT_FAILURE
, errno
, "write to '%s'",
2198 input_flag_type okflag
= (must_edom
2199 ? flag_missing_errno
2200 : flag_spurious_errno
);
2201 for (size_t i
= 0; i
< it
->num_flags
; i
++)
2202 if (it
->flags
[i
].type
== okflag
)
2203 if (fprintf (fp
, " errno-edom-ok%s",
2207 error (EXIT_FAILURE
, errno
, "write to '%s'",
2210 if (before_after_matters
)
2211 assert (may_erange
&& !must_erange
);
2212 if (may_erange
&& !must_erange
)
2214 if (fprintf (fp
, " errno-erange-ok%s",
2215 (before_after_matters
2216 ? ":before-rounding"
2218 error (EXIT_FAILURE
, errno
, "write to '%s'",
2221 if (before_after_matters
|| !(may_erange
&& !must_erange
))
2224 if (fputs (" errno-erange", fp
) < 0)
2225 error (EXIT_FAILURE
, errno
, "write to '%s'",
2227 input_flag_type okflag
= (must_erange
2228 ? flag_missing_errno
2229 : flag_spurious_errno
);
2230 for (size_t i
= 0; i
< it
->num_flags
; i
++)
2231 if (it
->flags
[i
].type
== okflag
)
2232 if (fprintf (fp
, " errno-erange-ok%s%s",
2236 (before_after_matters
2239 error (EXIT_FAILURE
, errno
, "write to '%s'",
2242 if (putc ('\n', fp
) < 0)
2243 error (EXIT_FAILURE
, errno
, "write to '%s'", filename
);
2245 for (size_t i
= 0; i
< tf
->num_ret
; i
++)
2247 if (generic_outputs
[i
].type
== gtype_fp
)
2248 for (rounding_mode m
= rm_first_mode
; m
< rm_num_modes
; m
++)
2249 mpfr_clear (all_res
[i
][m
]);
2254 for (size_t i
= 0; i
< tf
->num_ret
; i
++)
2255 generic_value_free (&generic_outputs
[i
]);
2258 /* Generate test output data for FUNCTION to FILENAME. The function
2259 is interpreted as rounding its results to a narrower type if
2263 generate_output (const char *function
, bool narrow
, const char *filename
)
2265 FILE *fp
= fopen (filename
, "w");
2267 error (EXIT_FAILURE
, errno
, "open '%s'", filename
);
2268 for (size_t i
= 0; i
< ARRAY_SIZE (test_functions
); i
++)
2270 test_function
*tf
= &test_functions
[i
];
2271 if (strcmp (tf
->name
, function
) != 0)
2273 for (size_t j
= 0; j
< tf
->num_tests
; j
++)
2275 input_test
*it
= &tf
->tests
[j
];
2276 if (fputs (it
->line
, fp
) < 0)
2277 error (EXIT_FAILURE
, errno
, "write to '%s'", filename
);
2278 for (size_t k
= 0; k
< it
->num_input_cases
; k
++)
2279 output_for_one_input_case (fp
, filename
, tf
, narrow
,
2283 if (fclose (fp
) != 0)
2284 error (EXIT_FAILURE
, errno
, "close '%s'", filename
);
2288 main (int argc
, char **argv
)
2291 && !(argc
== 5 && strcmp (argv
[1], "--narrow") == 0))
2292 error (EXIT_FAILURE
, 0,
2293 "usage: gen-auto-libm-tests [--narrow] <input> <func> <output>");
2295 const char *input_filename
= argv
[1];
2296 const char *function
= argv
[2];
2297 const char *output_filename
= argv
[3];
2301 input_filename
= argv
[1];
2303 output_filename
= argv
[3];
2308 input_filename
= argv
[2];
2310 output_filename
= argv
[4];
2313 read_input (input_filename
);
2314 generate_output (function
, narrow
, output_filename
);
2315 exit (EXIT_SUCCESS
);