or1k: Add prctl wrapper to unwrap variadic args
[glibc.git] / math / gen-auto-libm-tests.c
blobc35242b356821eed9767a9c86120ae2bea264269
1 /* Generate expected output for libm tests with MPFR and MPC.
2 Copyright (C) 2013-2024 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
15 You should have received a copy of the GNU Lesser General Public
16 License along with the GNU C Library; if not, see
17 <https://www.gnu.org/licenses/>. */
19 /* Compile this program as:
21 gcc -std=gnu11 -O2 -Wall -Wextra gen-auto-libm-tests.c -lmpc -lmpfr -lgmp \
22 -o gen-auto-libm-tests
24 (use of current MPC and MPFR versions recommended) and run it as:
26 gen-auto-libm-tests auto-libm-test-in <func> auto-libm-test-out-<func>
28 to generate results for normal libm functions, or
30 gen-auto-libm-tests --narrow auto-libm-test-in <func> \
31 auto-libm-test-out-narrow-<func>
33 to generate results for a function rounding results to a narrower
34 type (in the case of fma and sqrt, both output files are generated
35 from the same test inputs).
37 The input file auto-libm-test-in contains three kinds of lines:
39 Lines beginning with "#" are comments, and are ignored, as are
40 empty lines.
42 Other lines are test lines, of the form "function input1 input2
43 ... [flag1 flag2 ...]". Inputs are either finite real numbers or
44 integers, depending on the function under test. Real numbers may
45 be in any form acceptable to mpfr_strtofr (base 0); integers in any
46 form acceptable to mpz_set_str (base 0). In addition, real numbers
47 may be certain special strings such as "pi", as listed in the
48 special_real_inputs array.
50 Each flag is a flag name possibly followed by a series of
51 ":condition". Conditions may be any of the names of floating-point
52 formats in the floating_point_formats array, "long32" and "long64"
53 to indicate the number of bits in the "long" type, or other strings
54 for which libm-test.inc defines a TEST_COND_<condition> macro (with
55 "-"- changed to "_" in the condition name) evaluating to nonzero
56 when the condition is true and zero when the condition is false.
57 The meaning is that the flag applies to the test if all the listed
58 conditions are true. "flag:cond1:cond2 flag:cond3:cond4" means the
59 flag applies if ((cond1 && cond2) || (cond3 && cond4)).
61 A real number specified as an input is considered to represent the
62 set of real numbers arising from rounding the given number in any
63 direction for any supported floating-point format; any roundings
64 that give infinity are ignored. Each input on a test line has all
65 the possible roundings considered independently. Each resulting
66 choice of the tuple of inputs to the function is ignored if the
67 mathematical result of the function involves a NaN or an exact
68 infinity, and is otherwise considered for each floating-point
69 format for which all those inputs are exactly representable. Thus
70 tests may result in "overflow", "underflow" and "inexact"
71 exceptions; "invalid" may arise only when the final result type is
72 an integer type and it is the conversion of a mathematically
73 defined finite result to integer type that results in that
74 exception.
76 By default, it is assumed that "overflow" and "underflow"
77 exceptions should be correct, but that "inexact" exceptions should
78 only be correct for functions listed as exactly determined. For
79 such functions, "underflow" exceptions should respect whether the
80 machine has before-rounding or after-rounding tininess detection.
81 For other functions, it is considered that if the exact result is
82 somewhere between the greatest magnitude subnormal of a given sign
83 (exclusive) and the least magnitude normal of that sign
84 (inclusive), underflow exceptions are permitted but optional on all
85 machines, and they are also permitted but optional for smaller
86 subnormal exact results for functions that are not exactly
87 determined. errno setting is expected for overflow to infinity and
88 underflow to zero (for real functions), and for out-of-range
89 conversion of a finite result to integer type, and is considered
90 permitted but optional for all other cases where overflow
91 exceptions occur, and where underflow exceptions occur or are
92 permitted. In other cases (where no overflow or underflow is
93 permitted), errno is expected to be left unchanged.
95 The flag "ignore-zero-inf-sign" indicates the the signs of
96 zero and infinite results should be ignored; "xfail" indicates the
97 test is disabled as expected to produce incorrect results,
98 "xfail-rounding" indicates the test is disabled only in rounding
99 modes other than round-to-nearest; "no-mathvec" indicates the test
100 is disabled in vector math libraries. Otherwise, test flags are of
101 the form "spurious-<exception>" and "missing-<exception>", for any
102 exception ("overflow", "underflow", "inexact", "invalid",
103 "divbyzero"), "spurious-errno" and "missing-errno", to indicate
104 when tests are expected to deviate from the exception and errno
105 settings corresponding to the mathematical results. "xfail",
106 "xfail-rounding", "spurious-" and "missing-" flags should be
107 accompanied by a comment referring to an open bug in glibc
108 Bugzilla.
110 The output file auto-libm-test-out-<func> contains the test lines from
111 auto-libm-test-in, and, after the line for a given test, some
112 number of output test lines. An output test line is of the form "=
113 function rounding-mode format input1 input2 ... : output1 output2
114 ... : flags". rounding-mode is "tonearest", "towardzero", "upward"
115 or "downward". format is a name from the floating_point_formats
116 array, possibly followed by a sequence of ":flag" for flags from
117 "long32" and "long64". Inputs and outputs are specified as hex
118 floats with the required suffix for the floating-point type, or
119 plus_infty or minus_infty for infinite expected results, or as
120 integer constant expressions (not necessarily with the right type)
121 or IGNORE for integer inputs and outputs. Flags are
122 "ignore-zero-info-sign", "xfail", "<exception>",
123 "<exception>-ok", "errno-<value>", "errno-<value>-ok", which may be
124 unconditional or conditional. "<exception>" indicates that a
125 correct result means the given exception should be raised.
126 "errno-<value>" indicates that a correct result means errno should
127 be set to the given value. "-ok" means not to test for the given
128 exception or errno value (whether because it was marked as possibly
129 missing or spurious, or because the calculation of correct results
130 indicated it was optional). Conditions "before-rounding" and
131 "after-rounding" indicate tests where expectations for underflow
132 exceptions depend on how the architecture detects tininess.
134 For functions rounding their results to a narrower type, the format
135 given on an output test line is the result format followed by
136 information about the requirements on the argument format to be
137 able to represent the argument values, in the form
138 "format:arg_fmt(MAX_EXP,NUM_ONES,MIN_EXP,MAX_PREC)". Instead of
139 separate lines for separate argument formats, an output test line
140 relates to all argument formats that can represent the values.
141 MAX_EXP is the maximum exponent of a nonzero bit in any argument,
142 or 0 if all arguments are zero; NUM_ONES is the maximum number of
143 leading bits with value 1 in an argument with exponent MAX_EXP, or
144 0 if all arguments are zero; MIN_EXP is the minimum exponent of a
145 nonzero bit in any argument, or 0 if all arguments are zero;
146 MAX_PREC is the maximum precision required to represent all
147 arguments, or 0 if all arguments are zero. */
149 #define _GNU_SOURCE
151 #include <assert.h>
152 #include <ctype.h>
153 #include <errno.h>
154 #include <error.h>
155 #include <stdbool.h>
156 #include <stdint.h>
157 #include <stdio.h>
158 #include <stdlib.h>
159 #include <string.h>
161 #include <gmp.h>
162 #include <mpfr.h>
163 #include <mpc.h>
165 #define ARRAY_SIZE(A) (sizeof (A) / sizeof ((A)[0]))
167 /* The supported floating-point formats. */
168 typedef enum
170 fp_flt_32,
171 fp_dbl_64,
172 fp_ldbl_96_intel,
173 fp_ldbl_96_m68k,
174 fp_ldbl_128,
175 fp_ldbl_128ibm,
176 fp_num_formats,
177 fp_first_format = 0
178 } fp_format;
180 /* Structure describing a single floating-point format. */
181 typedef struct
183 /* The name of the format. */
184 const char *name;
185 /* A string for the largest normal value, or NULL for IEEE formats
186 where this can be determined automatically. */
187 const char *max_string;
188 /* The number of mantissa bits. */
189 int mant_dig;
190 /* The least N such that 2^N overflows. */
191 int max_exp;
192 /* One more than the least N such that 2^N is normal. */
193 int min_exp;
194 /* The largest normal value. */
195 mpfr_t max;
196 /* The value 0.5ulp above the least positive normal value. */
197 mpfr_t min_plus_half;
198 /* The least positive normal value, 2^(MIN_EXP-1). */
199 mpfr_t min;
200 /* The greatest positive subnormal value. */
201 mpfr_t subnorm_max;
202 /* The least positive subnormal value, 2^(MIN_EXP-MANT_DIG). */
203 mpfr_t subnorm_min;
204 } fp_format_desc;
206 /* List of floating-point formats, in the same order as the fp_format
207 enumeration. */
208 static fp_format_desc fp_formats[fp_num_formats] =
210 { "binary32", NULL, 24, 128, -125, {}, {}, {}, {}, {} },
211 { "binary64", NULL, 53, 1024, -1021, {}, {}, {}, {}, {} },
212 { "intel96", NULL, 64, 16384, -16381, {}, {}, {}, {}, {} },
213 { "m68k96", NULL, 64, 16384, -16382, {}, {}, {}, {}, {} },
214 { "binary128", NULL, 113, 16384, -16381, {}, {}, {}, {}, {} },
215 { "ibm128", "0x1.fffffffffffff7ffffffffffff8p+1023",
216 106, 1024, -968, {}, {}, {}, {}, {} },
219 /* The supported rounding modes. */
220 typedef enum
222 rm_downward,
223 rm_tonearest,
224 rm_towardzero,
225 rm_upward,
226 rm_num_modes,
227 rm_first_mode = 0
228 } rounding_mode;
230 /* Structure describing a single rounding mode. */
231 typedef struct
233 /* The name of the rounding mode. */
234 const char *name;
235 /* The MPFR rounding mode. */
236 mpfr_rnd_t mpfr_mode;
237 /* The MPC rounding mode. */
238 mpc_rnd_t mpc_mode;
239 } rounding_mode_desc;
241 /* List of rounding modes, in the same order as the rounding_mode
242 enumeration. */
243 static const rounding_mode_desc rounding_modes[rm_num_modes] =
245 { "downward", MPFR_RNDD, MPC_RNDDD },
246 { "tonearest", MPFR_RNDN, MPC_RNDNN },
247 { "towardzero", MPFR_RNDZ, MPC_RNDZZ },
248 { "upward", MPFR_RNDU, MPC_RNDUU },
251 /* The supported exceptions. */
252 typedef enum
254 exc_divbyzero,
255 exc_inexact,
256 exc_invalid,
257 exc_overflow,
258 exc_underflow,
259 exc_num_exceptions,
260 exc_first_exception = 0
261 } fp_exception;
263 /* List of exceptions, in the same order as the fp_exception
264 enumeration. */
265 static const char *const exceptions[exc_num_exceptions] =
267 "divbyzero",
268 "inexact",
269 "invalid",
270 "overflow",
271 "underflow",
274 /* The internal precision to use for most MPFR calculations, which
275 must be at least 2 more than the greatest precision of any
276 supported floating-point format. */
277 static int internal_precision;
279 /* A value that overflows all supported floating-point formats. */
280 static mpfr_t global_max;
282 /* A value that is at most half the least subnormal in any
283 floating-point format and so is rounded the same way as all
284 sufficiently small positive values. */
285 static mpfr_t global_min;
287 /* The maximum number of (real or integer) arguments to a function
288 handled by this program (complex arguments count as two real
289 arguments). */
290 #define MAX_NARGS 4
292 /* The maximum number of (real or integer) return values from a
293 function handled by this program. */
294 #define MAX_NRET 2
296 /* A type of a function argument or return value. */
297 typedef enum
299 /* No type (not a valid argument or return value). */
300 type_none,
301 /* A floating-point value with the type corresponding to that of
302 the function. */
303 type_fp,
304 /* An integer value of type int. */
305 type_int,
306 /* An integer value of type long. */
307 type_long,
308 /* An integer value of type long long. */
309 type_long_long,
310 } arg_ret_type;
312 /* A type of a generic real or integer value. */
313 typedef enum
315 /* No type. */
316 gtype_none,
317 /* Floating-point (represented with MPFR). */
318 gtype_fp,
319 /* Integer (represented with GMP). */
320 gtype_int,
321 } generic_value_type;
323 /* A generic value (argument or result). */
324 typedef struct
326 /* The type of this value. */
327 generic_value_type type;
328 /* Its value. */
329 union
331 mpfr_t f;
332 mpz_t i;
333 } value;
334 } generic_value;
336 /* A type of input flag. */
337 typedef enum
339 flag_ignore_zero_inf_sign,
340 flag_xfail,
341 flag_xfail_rounding,
342 /* The "spurious" and "missing" flags must be in the same order as
343 the fp_exception enumeration. */
344 flag_spurious_divbyzero,
345 flag_spurious_inexact,
346 flag_spurious_invalid,
347 flag_spurious_overflow,
348 flag_spurious_underflow,
349 flag_spurious_errno,
350 flag_missing_divbyzero,
351 flag_missing_inexact,
352 flag_missing_invalid,
353 flag_missing_overflow,
354 flag_missing_underflow,
355 flag_missing_errno,
356 flag_no_mathvec,
357 num_input_flag_types,
358 flag_first_flag = 0,
359 flag_spurious_first = flag_spurious_divbyzero,
360 flag_missing_first = flag_missing_divbyzero
361 } input_flag_type;
363 /* List of flags, in the same order as the input_flag_type
364 enumeration. */
365 static const char *const input_flags[num_input_flag_types] =
367 "ignore-zero-inf-sign",
368 "xfail",
369 "xfail-rounding",
370 "spurious-divbyzero",
371 "spurious-inexact",
372 "spurious-invalid",
373 "spurious-overflow",
374 "spurious-underflow",
375 "spurious-errno",
376 "missing-divbyzero",
377 "missing-inexact",
378 "missing-invalid",
379 "missing-overflow",
380 "missing-underflow",
381 "missing-errno",
382 "no-mathvec",
385 /* An input flag, possibly conditional. */
386 typedef struct
388 /* The type of this flag. */
389 input_flag_type type;
390 /* The conditions on this flag, as a string ":cond1:cond2..." or
391 NULL. */
392 const char *cond;
393 } input_flag;
395 /* Structure describing a single test from the input file (which may
396 expand into many tests in the output). The choice of function,
397 which implies the numbers and types of arguments and results, is
398 implicit rather than stored in this structure (except as part of
399 the source line). */
400 typedef struct
402 /* The text of the input line describing the test, including the
403 trailing newline. */
404 const char *line;
405 /* The number of combinations of interpretations of input values for
406 different floating-point formats and rounding modes. */
407 size_t num_input_cases;
408 /* The corresponding lists of inputs. */
409 generic_value **inputs;
410 /* The number of flags for this test. */
411 size_t num_flags;
412 /* The corresponding list of flags. */
413 input_flag *flags;
414 /* The old output for this test. */
415 const char *old_output;
416 } input_test;
418 /* Ways to calculate a function. */
419 typedef enum
421 /* MPFR function with a single argument and result. */
422 mpfr_f_f,
423 /* MPFR function with two arguments and one result. */
424 mpfr_ff_f,
425 /* MPFR function with three arguments and one result. */
426 mpfr_fff_f,
427 /* MPFR function with a single argument and floating-point and
428 integer results. */
429 mpfr_f_f1,
430 /* MPFR function with integer and floating-point arguments and one
431 result. */
432 mpfr_if_f,
433 /* MPFR function with a single argument and two floating-point
434 results. */
435 mpfr_f_11,
436 /* MPC function with a single complex argument and one real
437 result. */
438 mpc_c_f,
439 /* MPC function with a single complex argument and one complex
440 result. */
441 mpc_c_c,
442 /* MPC function with two complex arguments and one complex
443 result. */
444 mpc_cc_c,
445 } func_calc_method;
447 /* Description of how to calculate a function. */
448 typedef struct
450 /* Which method is used to calculate the function. */
451 func_calc_method method;
452 /* The specific function called. */
453 union
455 int (*mpfr_f_f) (mpfr_t, const mpfr_t, mpfr_rnd_t);
456 int (*mpfr_ff_f) (mpfr_t, const mpfr_t, const mpfr_t, mpfr_rnd_t);
457 int (*mpfr_fff_f) (mpfr_t, const mpfr_t, const mpfr_t, const mpfr_t,
458 mpfr_rnd_t);
459 int (*mpfr_f_f1) (mpfr_t, int *, const mpfr_t, mpfr_rnd_t);
460 int (*mpfr_if_f) (mpfr_t, long, const mpfr_t, mpfr_rnd_t);
461 int (*mpfr_f_11) (mpfr_t, mpfr_t, const mpfr_t, mpfr_rnd_t);
462 int (*mpc_c_f) (mpfr_t, const mpc_t, mpfr_rnd_t);
463 int (*mpc_c_c) (mpc_t, const mpc_t, mpc_rnd_t);
464 int (*mpc_cc_c) (mpc_t, const mpc_t, const mpc_t, mpc_rnd_t);
465 } func;
466 } func_calc_desc;
468 /* Structure describing a function handled by this program. */
469 typedef struct
471 /* The name of the function. */
472 const char *name;
473 /* The number of arguments. */
474 size_t num_args;
475 /* The types of the arguments. */
476 arg_ret_type arg_types[MAX_NARGS];
477 /* The number of return values. */
478 size_t num_ret;
479 /* The types of the return values. */
480 arg_ret_type ret_types[MAX_NRET];
481 /* Whether the function has exactly determined results and
482 exceptions. */
483 bool exact;
484 /* Whether the function is a complex function, so errno setting is
485 optional. */
486 bool complex_fn;
487 /* Whether to treat arguments given as floating-point constants as
488 exact only, rather than rounding them up and down to all
489 formats. */
490 bool exact_args;
491 /* How to calculate this function. */
492 func_calc_desc calc;
493 /* The number of tests allocated for this function. */
494 size_t num_tests_alloc;
495 /* The number of tests for this function. */
496 size_t num_tests;
497 /* The tests themselves. */
498 input_test *tests;
499 } test_function;
501 #define ARGS1(T1) 1, { T1 }
502 #define ARGS2(T1, T2) 2, { T1, T2 }
503 #define ARGS3(T1, T2, T3) 3, { T1, T2, T3 }
504 #define ARGS4(T1, T2, T3, T4) 4, { T1, T2, T3, T4 }
505 #define RET1(T1) 1, { T1 }
506 #define RET2(T1, T2) 2, { T1, T2 }
507 #define CALC(TYPE, FN) { TYPE, { .TYPE = FN } }
508 #define FUNC(NAME, ARGS, RET, EXACT, COMPLEX_FN, EXACT_ARGS, CALC) \
510 NAME, ARGS, RET, EXACT, COMPLEX_FN, EXACT_ARGS, CALC, 0, 0, NULL \
513 #define FUNC_mpfr_f_f(NAME, MPFR_FUNC, EXACT) \
514 FUNC (NAME, ARGS1 (type_fp), RET1 (type_fp), EXACT, false, false, \
515 CALC (mpfr_f_f, MPFR_FUNC))
516 #define FUNC_mpfr_ff_f(NAME, MPFR_FUNC, EXACT) \
517 FUNC (NAME, ARGS2 (type_fp, type_fp), RET1 (type_fp), EXACT, false, \
518 false, CALC (mpfr_ff_f, MPFR_FUNC))
519 #define FUNC_mpfr_if_f(NAME, MPFR_FUNC, EXACT) \
520 FUNC (NAME, ARGS2 (type_int, type_fp), RET1 (type_fp), EXACT, false, \
521 false, CALC (mpfr_if_f, MPFR_FUNC))
522 #define FUNC_mpc_c_f(NAME, MPFR_FUNC, EXACT) \
523 FUNC (NAME, ARGS2 (type_fp, type_fp), RET1 (type_fp), EXACT, true, \
524 false, CALC (mpc_c_f, MPFR_FUNC))
525 #define FUNC_mpc_c_c(NAME, MPFR_FUNC, EXACT) \
526 FUNC (NAME, ARGS2 (type_fp, type_fp), RET2 (type_fp, type_fp), EXACT, \
527 true, false, CALC (mpc_c_c, MPFR_FUNC))
529 /* List of functions handled by this program. */
530 static test_function test_functions[] =
532 FUNC_mpfr_f_f ("acos", mpfr_acos, false),
533 FUNC_mpfr_f_f ("acosh", mpfr_acosh, false),
534 FUNC_mpfr_ff_f ("add", mpfr_add, true),
535 FUNC_mpfr_f_f ("asin", mpfr_asin, false),
536 FUNC_mpfr_f_f ("asinh", mpfr_asinh, false),
537 FUNC_mpfr_f_f ("atan", mpfr_atan, false),
538 FUNC_mpfr_ff_f ("atan2", mpfr_atan2, false),
539 FUNC_mpfr_f_f ("atanh", mpfr_atanh, false),
540 FUNC_mpc_c_f ("cabs", mpc_abs, false),
541 FUNC_mpc_c_c ("cacos", mpc_acos, false),
542 FUNC_mpc_c_c ("cacosh", mpc_acosh, false),
543 FUNC_mpc_c_f ("carg", mpc_arg, false),
544 FUNC_mpc_c_c ("casin", mpc_asin, false),
545 FUNC_mpc_c_c ("casinh", mpc_asinh, false),
546 FUNC_mpc_c_c ("catan", mpc_atan, false),
547 FUNC_mpc_c_c ("catanh", mpc_atanh, false),
548 FUNC_mpfr_f_f ("cbrt", mpfr_cbrt, false),
549 FUNC_mpc_c_c ("ccos", mpc_cos, false),
550 FUNC_mpc_c_c ("ccosh", mpc_cosh, false),
551 FUNC_mpc_c_c ("cexp", mpc_exp, false),
552 FUNC_mpc_c_c ("clog", mpc_log, false),
553 FUNC_mpc_c_c ("clog10", mpc_log10, false),
554 FUNC_mpfr_f_f ("cos", mpfr_cos, false),
555 FUNC_mpfr_f_f ("cosh", mpfr_cosh, false),
556 FUNC ("cpow", ARGS4 (type_fp, type_fp, type_fp, type_fp),
557 RET2 (type_fp, type_fp), false, true, false,
558 CALC (mpc_cc_c, mpc_pow)),
559 FUNC_mpc_c_c ("csin", mpc_sin, false),
560 FUNC_mpc_c_c ("csinh", mpc_sinh, false),
561 FUNC_mpc_c_c ("csqrt", mpc_sqrt, false),
562 FUNC_mpc_c_c ("ctan", mpc_tan, false),
563 FUNC_mpc_c_c ("ctanh", mpc_tanh, false),
564 FUNC_mpfr_ff_f ("div", mpfr_div, true),
565 FUNC_mpfr_f_f ("erf", mpfr_erf, false),
566 FUNC_mpfr_f_f ("erfc", mpfr_erfc, false),
567 FUNC_mpfr_f_f ("exp", mpfr_exp, false),
568 FUNC_mpfr_f_f ("exp10", mpfr_exp10, false),
569 FUNC_mpfr_f_f ("exp2", mpfr_exp2, false),
570 FUNC_mpfr_f_f ("expm1", mpfr_expm1, false),
571 FUNC ("fma", ARGS3 (type_fp, type_fp, type_fp), RET1 (type_fp),
572 true, false, true, CALC (mpfr_fff_f, mpfr_fma)),
573 FUNC_mpfr_ff_f ("hypot", mpfr_hypot, false),
574 FUNC_mpfr_f_f ("j0", mpfr_j0, false),
575 FUNC_mpfr_f_f ("j1", mpfr_j1, false),
576 FUNC_mpfr_if_f ("jn", mpfr_jn, false),
577 FUNC ("lgamma", ARGS1 (type_fp), RET2 (type_fp, type_int), false, false,
578 false, CALC (mpfr_f_f1, mpfr_lgamma)),
579 FUNC_mpfr_f_f ("log", mpfr_log, false),
580 FUNC_mpfr_f_f ("log10", mpfr_log10, false),
581 FUNC_mpfr_f_f ("log1p", mpfr_log1p, false),
582 FUNC_mpfr_f_f ("log2", mpfr_log2, false),
583 FUNC_mpfr_ff_f ("mul", mpfr_mul, true),
584 FUNC_mpfr_ff_f ("pow", mpfr_pow, false),
585 FUNC_mpfr_f_f ("sin", mpfr_sin, false),
586 FUNC ("sincos", ARGS1 (type_fp), RET2 (type_fp, type_fp), false, false,
587 false, CALC (mpfr_f_11, mpfr_sin_cos)),
588 FUNC_mpfr_f_f ("sinh", mpfr_sinh, false),
589 FUNC_mpfr_ff_f ("sub", mpfr_sub, true),
590 FUNC_mpfr_f_f ("sqrt", mpfr_sqrt, true),
591 FUNC_mpfr_f_f ("tan", mpfr_tan, false),
592 FUNC_mpfr_f_f ("tanh", mpfr_tanh, false),
593 FUNC_mpfr_f_f ("tgamma", mpfr_gamma, false),
594 FUNC_mpfr_f_f ("y0", mpfr_y0, false),
595 FUNC_mpfr_f_f ("y1", mpfr_y1, false),
596 FUNC_mpfr_if_f ("yn", mpfr_yn, false),
599 /* Allocate memory, with error checking. */
601 static void *
602 xmalloc (size_t n)
604 void *p = malloc (n);
605 if (p == NULL)
606 error (EXIT_FAILURE, errno, "xmalloc failed");
607 return p;
610 static void *
611 xrealloc (void *p, size_t n)
613 p = realloc (p, n);
614 if (p == NULL)
615 error (EXIT_FAILURE, errno, "xrealloc failed");
616 return p;
619 static char *
620 xstrdup (const char *s)
622 char *p = strdup (s);
623 if (p == NULL)
624 error (EXIT_FAILURE, errno, "xstrdup failed");
625 return p;
628 /* Assert that the result of an MPFR operation was exact; that is,
629 that the returned ternary value was 0. */
631 static void
632 assert_exact (int i)
634 assert (i == 0);
637 /* Return the generic type of an argument or return value type T. */
639 static generic_value_type
640 generic_arg_ret_type (arg_ret_type t)
642 switch (t)
644 case type_fp:
645 return gtype_fp;
647 case type_int:
648 case type_long:
649 case type_long_long:
650 return gtype_int;
652 default:
653 abort ();
657 /* Free a generic_value *V. */
659 static void
660 generic_value_free (generic_value *v)
662 switch (v->type)
664 case gtype_fp:
665 mpfr_clear (v->value.f);
666 break;
668 case gtype_int:
669 mpz_clear (v->value.i);
670 break;
672 default:
673 abort ();
677 /* Copy a generic_value *SRC to *DEST. */
679 static void
680 generic_value_copy (generic_value *dest, const generic_value *src)
682 dest->type = src->type;
683 switch (src->type)
685 case gtype_fp:
686 mpfr_init (dest->value.f);
687 assert_exact (mpfr_set (dest->value.f, src->value.f, MPFR_RNDN));
688 break;
690 case gtype_int:
691 mpz_init (dest->value.i);
692 mpz_set (dest->value.i, src->value.i);
693 break;
695 default:
696 abort ();
700 /* Initialize data for floating-point formats. */
702 static void
703 init_fp_formats (void)
705 int global_max_exp = 0, global_min_subnorm_exp = 0;
706 for (fp_format f = fp_first_format; f < fp_num_formats; f++)
708 if (fp_formats[f].mant_dig + 2 > internal_precision)
709 internal_precision = fp_formats[f].mant_dig + 2;
710 if (fp_formats[f].max_exp > global_max_exp)
711 global_max_exp = fp_formats[f].max_exp;
712 int min_subnorm_exp = fp_formats[f].min_exp - fp_formats[f].mant_dig;
713 if (min_subnorm_exp < global_min_subnorm_exp)
714 global_min_subnorm_exp = min_subnorm_exp;
715 mpfr_init2 (fp_formats[f].max, fp_formats[f].mant_dig);
716 if (fp_formats[f].max_string != NULL)
718 char *ep = NULL;
719 assert_exact (mpfr_strtofr (fp_formats[f].max,
720 fp_formats[f].max_string,
721 &ep, 0, MPFR_RNDN));
722 assert (*ep == 0);
724 else
726 assert_exact (mpfr_set_ui_2exp (fp_formats[f].max, 1,
727 fp_formats[f].max_exp,
728 MPFR_RNDN));
729 mpfr_nextbelow (fp_formats[f].max);
731 mpfr_init2 (fp_formats[f].min, fp_formats[f].mant_dig);
732 assert_exact (mpfr_set_ui_2exp (fp_formats[f].min, 1,
733 fp_formats[f].min_exp - 1,
734 MPFR_RNDN));
735 mpfr_init2 (fp_formats[f].min_plus_half, fp_formats[f].mant_dig + 1);
736 assert_exact (mpfr_set (fp_formats[f].min_plus_half,
737 fp_formats[f].min, MPFR_RNDN));
738 mpfr_nextabove (fp_formats[f].min_plus_half);
739 mpfr_init2 (fp_formats[f].subnorm_max, fp_formats[f].mant_dig);
740 assert_exact (mpfr_set (fp_formats[f].subnorm_max, fp_formats[f].min,
741 MPFR_RNDN));
742 mpfr_nextbelow (fp_formats[f].subnorm_max);
743 mpfr_nextbelow (fp_formats[f].subnorm_max);
744 mpfr_init2 (fp_formats[f].subnorm_min, fp_formats[f].mant_dig);
745 assert_exact (mpfr_set_ui_2exp (fp_formats[f].subnorm_min, 1,
746 min_subnorm_exp, MPFR_RNDN));
748 mpfr_set_default_prec (internal_precision);
749 mpfr_init (global_max);
750 assert_exact (mpfr_set_ui_2exp (global_max, 1, global_max_exp, MPFR_RNDN));
751 mpfr_init (global_min);
752 assert_exact (mpfr_set_ui_2exp (global_min, 1, global_min_subnorm_exp - 1,
753 MPFR_RNDN));
756 /* Fill in mpfr_t values for special strings in input arguments. */
758 static size_t
759 special_fill_max (mpfr_t res0, mpfr_t res1 __attribute__ ((unused)),
760 fp_format format)
762 mpfr_init2 (res0, fp_formats[format].mant_dig);
763 assert_exact (mpfr_set (res0, fp_formats[format].max, MPFR_RNDN));
764 return 1;
767 static size_t
768 special_fill_minus_max (mpfr_t res0, mpfr_t res1 __attribute__ ((unused)),
769 fp_format format)
771 mpfr_init2 (res0, fp_formats[format].mant_dig);
772 assert_exact (mpfr_neg (res0, fp_formats[format].max, MPFR_RNDN));
773 return 1;
776 static size_t
777 special_fill_min (mpfr_t res0, mpfr_t res1 __attribute__ ((unused)),
778 fp_format format)
780 mpfr_init2 (res0, fp_formats[format].mant_dig);
781 assert_exact (mpfr_set (res0, fp_formats[format].min, MPFR_RNDN));
782 return 1;
785 static size_t
786 special_fill_minus_min (mpfr_t res0, mpfr_t res1 __attribute__ ((unused)),
787 fp_format format)
789 mpfr_init2 (res0, fp_formats[format].mant_dig);
790 assert_exact (mpfr_neg (res0, fp_formats[format].min, MPFR_RNDN));
791 return 1;
794 static size_t
795 special_fill_min_subnorm (mpfr_t res0, mpfr_t res1 __attribute__ ((unused)),
796 fp_format format)
798 mpfr_init2 (res0, fp_formats[format].mant_dig);
799 assert_exact (mpfr_set (res0, fp_formats[format].subnorm_min, MPFR_RNDN));
800 return 1;
803 static size_t
804 special_fill_minus_min_subnorm (mpfr_t res0,
805 mpfr_t res1 __attribute__ ((unused)),
806 fp_format format)
808 mpfr_init2 (res0, fp_formats[format].mant_dig);
809 assert_exact (mpfr_neg (res0, fp_formats[format].subnorm_min, MPFR_RNDN));
810 return 1;
813 static size_t
814 special_fill_min_subnorm_p120 (mpfr_t res0,
815 mpfr_t res1 __attribute__ ((unused)),
816 fp_format format)
818 mpfr_init2 (res0, fp_formats[format].mant_dig);
819 assert_exact (mpfr_mul_2ui (res0, fp_formats[format].subnorm_min,
820 120, MPFR_RNDN));
821 return 1;
824 static size_t
825 special_fill_pi (mpfr_t res0, mpfr_t res1, fp_format format)
827 mpfr_init2 (res0, fp_formats[format].mant_dig);
828 mpfr_const_pi (res0, MPFR_RNDU);
829 mpfr_init2 (res1, fp_formats[format].mant_dig);
830 mpfr_const_pi (res1, MPFR_RNDD);
831 return 2;
834 static size_t
835 special_fill_minus_pi (mpfr_t res0, mpfr_t res1, fp_format format)
837 mpfr_init2 (res0, fp_formats[format].mant_dig);
838 mpfr_const_pi (res0, MPFR_RNDU);
839 assert_exact (mpfr_neg (res0, res0, MPFR_RNDN));
840 mpfr_init2 (res1, fp_formats[format].mant_dig);
841 mpfr_const_pi (res1, MPFR_RNDD);
842 assert_exact (mpfr_neg (res1, res1, MPFR_RNDN));
843 return 2;
846 static size_t
847 special_fill_pi_2 (mpfr_t res0, mpfr_t res1, fp_format format)
849 mpfr_init2 (res0, fp_formats[format].mant_dig);
850 mpfr_const_pi (res0, MPFR_RNDU);
851 assert_exact (mpfr_div_ui (res0, res0, 2, MPFR_RNDN));
852 mpfr_init2 (res1, fp_formats[format].mant_dig);
853 mpfr_const_pi (res1, MPFR_RNDD);
854 assert_exact (mpfr_div_ui (res1, res1, 2, MPFR_RNDN));
855 return 2;
858 static size_t
859 special_fill_minus_pi_2 (mpfr_t res0, mpfr_t res1, fp_format format)
861 mpfr_init2 (res0, fp_formats[format].mant_dig);
862 mpfr_const_pi (res0, MPFR_RNDU);
863 assert_exact (mpfr_div_ui (res0, res0, 2, MPFR_RNDN));
864 assert_exact (mpfr_neg (res0, res0, MPFR_RNDN));
865 mpfr_init2 (res1, fp_formats[format].mant_dig);
866 mpfr_const_pi (res1, MPFR_RNDD);
867 assert_exact (mpfr_div_ui (res1, res1, 2, MPFR_RNDN));
868 assert_exact (mpfr_neg (res1, res1, MPFR_RNDN));
869 return 2;
872 static size_t
873 special_fill_pi_4 (mpfr_t res0, mpfr_t res1, fp_format format)
875 mpfr_init2 (res0, fp_formats[format].mant_dig);
876 assert_exact (mpfr_set_si (res0, 1, MPFR_RNDN));
877 mpfr_atan (res0, res0, MPFR_RNDU);
878 mpfr_init2 (res1, fp_formats[format].mant_dig);
879 assert_exact (mpfr_set_si (res1, 1, MPFR_RNDN));
880 mpfr_atan (res1, res1, MPFR_RNDD);
881 return 2;
884 static size_t
885 special_fill_pi_6 (mpfr_t res0, mpfr_t res1, fp_format format)
887 mpfr_init2 (res0, fp_formats[format].mant_dig);
888 assert_exact (mpfr_set_si_2exp (res0, 1, -1, MPFR_RNDN));
889 mpfr_asin (res0, res0, MPFR_RNDU);
890 mpfr_init2 (res1, fp_formats[format].mant_dig);
891 assert_exact (mpfr_set_si_2exp (res1, 1, -1, MPFR_RNDN));
892 mpfr_asin (res1, res1, MPFR_RNDD);
893 return 2;
896 static size_t
897 special_fill_minus_pi_6 (mpfr_t res0, mpfr_t res1, fp_format format)
899 mpfr_init2 (res0, fp_formats[format].mant_dig);
900 assert_exact (mpfr_set_si_2exp (res0, -1, -1, MPFR_RNDN));
901 mpfr_asin (res0, res0, MPFR_RNDU);
902 mpfr_init2 (res1, fp_formats[format].mant_dig);
903 assert_exact (mpfr_set_si_2exp (res1, -1, -1, MPFR_RNDN));
904 mpfr_asin (res1, res1, MPFR_RNDD);
905 return 2;
908 static size_t
909 special_fill_pi_3 (mpfr_t res0, mpfr_t res1, fp_format format)
911 mpfr_init2 (res0, fp_formats[format].mant_dig);
912 assert_exact (mpfr_set_si_2exp (res0, 1, -1, MPFR_RNDN));
913 mpfr_acos (res0, res0, MPFR_RNDU);
914 mpfr_init2 (res1, fp_formats[format].mant_dig);
915 assert_exact (mpfr_set_si_2exp (res1, 1, -1, MPFR_RNDN));
916 mpfr_acos (res1, res1, MPFR_RNDD);
917 return 2;
920 static size_t
921 special_fill_2pi_3 (mpfr_t res0, mpfr_t res1, fp_format format)
923 mpfr_init2 (res0, fp_formats[format].mant_dig);
924 assert_exact (mpfr_set_si_2exp (res0, -1, -1, MPFR_RNDN));
925 mpfr_acos (res0, res0, MPFR_RNDU);
926 mpfr_init2 (res1, fp_formats[format].mant_dig);
927 assert_exact (mpfr_set_si_2exp (res1, -1, -1, MPFR_RNDN));
928 mpfr_acos (res1, res1, MPFR_RNDD);
929 return 2;
932 static size_t
933 special_fill_2pi (mpfr_t res0, mpfr_t res1, fp_format format)
935 mpfr_init2 (res0, fp_formats[format].mant_dig);
936 mpfr_const_pi (res0, MPFR_RNDU);
937 assert_exact (mpfr_mul_ui (res0, res0, 2, MPFR_RNDN));
938 mpfr_init2 (res1, fp_formats[format].mant_dig);
939 mpfr_const_pi (res1, MPFR_RNDD);
940 assert_exact (mpfr_mul_ui (res1, res1, 2, MPFR_RNDN));
941 return 2;
944 static size_t
945 special_fill_e (mpfr_t res0, mpfr_t res1, fp_format format)
947 mpfr_init2 (res0, fp_formats[format].mant_dig);
948 assert_exact (mpfr_set_si (res0, 1, MPFR_RNDN));
949 mpfr_exp (res0, res0, MPFR_RNDU);
950 mpfr_init2 (res1, fp_formats[format].mant_dig);
951 assert_exact (mpfr_set_si (res1, 1, MPFR_RNDN));
952 mpfr_exp (res1, res1, MPFR_RNDD);
953 return 2;
956 static size_t
957 special_fill_1_e (mpfr_t res0, mpfr_t res1, fp_format format)
959 mpfr_init2 (res0, fp_formats[format].mant_dig);
960 assert_exact (mpfr_set_si (res0, -1, MPFR_RNDN));
961 mpfr_exp (res0, res0, MPFR_RNDU);
962 mpfr_init2 (res1, fp_formats[format].mant_dig);
963 assert_exact (mpfr_set_si (res1, -1, MPFR_RNDN));
964 mpfr_exp (res1, res1, MPFR_RNDD);
965 return 2;
968 static size_t
969 special_fill_e_minus_1 (mpfr_t res0, mpfr_t res1, fp_format format)
971 mpfr_init2 (res0, fp_formats[format].mant_dig);
972 assert_exact (mpfr_set_si (res0, 1, MPFR_RNDN));
973 mpfr_expm1 (res0, res0, MPFR_RNDU);
974 mpfr_init2 (res1, fp_formats[format].mant_dig);
975 assert_exact (mpfr_set_si (res1, 1, MPFR_RNDN));
976 mpfr_expm1 (res1, res1, MPFR_RNDD);
977 return 2;
980 /* A special string accepted in input arguments. */
981 typedef struct
983 /* The string. */
984 const char *str;
985 /* The function that interprets it for a given floating-point
986 format, filling in up to two mpfr_t values and returning the
987 number of values filled. */
988 size_t (*func) (mpfr_t, mpfr_t, fp_format);
989 } special_real_input;
991 /* List of special strings accepted in input arguments. */
993 static const special_real_input special_real_inputs[] =
995 { "max", special_fill_max },
996 { "-max", special_fill_minus_max },
997 { "min", special_fill_min },
998 { "-min", special_fill_minus_min },
999 { "min_subnorm", special_fill_min_subnorm },
1000 { "-min_subnorm", special_fill_minus_min_subnorm },
1001 { "min_subnorm_p120", special_fill_min_subnorm_p120 },
1002 { "pi", special_fill_pi },
1003 { "-pi", special_fill_minus_pi },
1004 { "pi/2", special_fill_pi_2 },
1005 { "-pi/2", special_fill_minus_pi_2 },
1006 { "pi/4", special_fill_pi_4 },
1007 { "pi/6", special_fill_pi_6 },
1008 { "-pi/6", special_fill_minus_pi_6 },
1009 { "pi/3", special_fill_pi_3 },
1010 { "2pi/3", special_fill_2pi_3 },
1011 { "2pi", special_fill_2pi },
1012 { "e", special_fill_e },
1013 { "1/e", special_fill_1_e },
1014 { "e-1", special_fill_e_minus_1 },
1017 /* Given a real number R computed in round-to-zero mode, set the
1018 lowest bit as a sticky bit if INEXACT, and saturate the exponent
1019 range for very large or small values. */
1021 static void
1022 adjust_real (mpfr_t r, bool inexact)
1024 if (!inexact)
1025 return;
1026 /* NaNs are exact, as are infinities in round-to-zero mode. */
1027 assert (mpfr_number_p (r));
1028 if (mpfr_cmpabs (r, global_min) < 0)
1029 assert_exact (mpfr_copysign (r, global_min, r, MPFR_RNDN));
1030 else if (mpfr_cmpabs (r, global_max) > 0)
1031 assert_exact (mpfr_copysign (r, global_max, r, MPFR_RNDN));
1032 else
1034 mpz_t tmp;
1035 mpz_init (tmp);
1036 mpfr_exp_t e = mpfr_get_z_2exp (tmp, r);
1037 if (mpz_sgn (tmp) < 0)
1039 mpz_neg (tmp, tmp);
1040 mpz_setbit (tmp, 0);
1041 mpz_neg (tmp, tmp);
1043 else
1044 mpz_setbit (tmp, 0);
1045 assert_exact (mpfr_set_z_2exp (r, tmp, e, MPFR_RNDN));
1046 mpz_clear (tmp);
1050 /* Given a finite real number R with sticky bit, compute the roundings
1051 to FORMAT in each rounding mode, storing the results in RES, the
1052 before-rounding exceptions in EXC_BEFORE and the after-rounding
1053 exceptions in EXC_AFTER. */
1055 static void
1056 round_real (mpfr_t res[rm_num_modes],
1057 unsigned int exc_before[rm_num_modes],
1058 unsigned int exc_after[rm_num_modes],
1059 mpfr_t r, fp_format format)
1061 assert (mpfr_number_p (r));
1062 for (rounding_mode m = rm_first_mode; m < rm_num_modes; m++)
1064 mpfr_init2 (res[m], fp_formats[format].mant_dig);
1065 exc_before[m] = exc_after[m] = 0;
1066 bool inexact = mpfr_set (res[m], r, rounding_modes[m].mpfr_mode);
1067 if (mpfr_cmpabs (res[m], fp_formats[format].max) > 0)
1069 inexact = true;
1070 exc_before[m] |= 1U << exc_overflow;
1071 exc_after[m] |= 1U << exc_overflow;
1072 bool overflow_inf;
1073 switch (m)
1075 case rm_tonearest:
1076 overflow_inf = true;
1077 break;
1078 case rm_towardzero:
1079 overflow_inf = false;
1080 break;
1081 case rm_downward:
1082 overflow_inf = mpfr_signbit (res[m]);
1083 break;
1084 case rm_upward:
1085 overflow_inf = !mpfr_signbit (res[m]);
1086 break;
1087 default:
1088 abort ();
1090 if (overflow_inf)
1091 mpfr_set_inf (res[m], mpfr_signbit (res[m]) ? -1 : 1);
1092 else
1093 assert_exact (mpfr_copysign (res[m], fp_formats[format].max,
1094 res[m], MPFR_RNDN));
1096 if (mpfr_cmpabs (r, fp_formats[format].min) < 0)
1098 /* Tiny before rounding; may or may not be tiny after
1099 rounding, and underflow applies only if also inexact
1100 around rounding to a possibly subnormal value. */
1101 bool tiny_after_rounding
1102 = mpfr_cmpabs (res[m], fp_formats[format].min) < 0;
1103 /* To round to a possibly subnormal value, and determine
1104 inexactness as a subnormal in the process, scale up and
1105 round to integer, then scale back down. */
1106 mpfr_t tmp;
1107 mpfr_init (tmp);
1108 assert_exact (mpfr_mul_2si (tmp, r, (fp_formats[format].mant_dig
1109 - fp_formats[format].min_exp),
1110 MPFR_RNDN));
1111 int rint_res = mpfr_rint (tmp, tmp, rounding_modes[m].mpfr_mode);
1112 /* The integer must be representable. */
1113 assert (rint_res == 0 || rint_res == 2 || rint_res == -2);
1114 /* If rounding to full precision was inexact, so must
1115 rounding to subnormal precision be inexact. */
1116 if (inexact)
1117 assert (rint_res != 0);
1118 else
1119 inexact = rint_res != 0;
1120 assert_exact (mpfr_mul_2si (res[m], tmp,
1121 (fp_formats[format].min_exp
1122 - fp_formats[format].mant_dig),
1123 MPFR_RNDN));
1124 mpfr_clear (tmp);
1125 if (inexact)
1127 exc_before[m] |= 1U << exc_underflow;
1128 if (tiny_after_rounding)
1129 exc_after[m] |= 1U << exc_underflow;
1132 if (inexact)
1134 exc_before[m] |= 1U << exc_inexact;
1135 exc_after[m] |= 1U << exc_inexact;
1140 /* Handle the input argument at ARG (NUL-terminated), updating the
1141 lists of test inputs in IT accordingly. NUM_PREV_ARGS arguments
1142 are already in those lists. If EXACT_ARGS, interpret a value given
1143 as a floating-point constant exactly (it must be exact for some
1144 supported format) rather than rounding up and down. The argument,
1145 of type GTYPE, comes from file FILENAME, line LINENO. */
1147 static void
1148 handle_input_arg (const char *arg, input_test *it, size_t num_prev_args,
1149 generic_value_type gtype, bool exact_args,
1150 const char *filename, unsigned int lineno)
1152 size_t num_values = 0;
1153 generic_value values[2 * fp_num_formats];
1154 bool check_empty_list = false;
1155 switch (gtype)
1157 case gtype_fp:
1158 for (fp_format f = fp_first_format; f < fp_num_formats; f++)
1160 mpfr_t extra_values[2];
1161 size_t num_extra_values = 0;
1162 for (size_t i = 0; i < ARRAY_SIZE (special_real_inputs); i++)
1164 if (strcmp (arg, special_real_inputs[i].str) == 0)
1166 num_extra_values
1167 = special_real_inputs[i].func (extra_values[0],
1168 extra_values[1], f);
1169 assert (num_extra_values > 0
1170 && num_extra_values <= ARRAY_SIZE (extra_values));
1171 break;
1174 if (num_extra_values == 0)
1176 mpfr_t tmp;
1177 char *ep;
1178 if (exact_args)
1179 check_empty_list = true;
1180 mpfr_init (tmp);
1181 bool inexact = mpfr_strtofr (tmp, arg, &ep, 0, MPFR_RNDZ);
1182 if (*ep != 0 || !mpfr_number_p (tmp))
1183 error_at_line (EXIT_FAILURE, 0, filename, lineno,
1184 "bad floating-point argument: '%s'", arg);
1185 adjust_real (tmp, inexact);
1186 mpfr_t rounded[rm_num_modes];
1187 unsigned int exc_before[rm_num_modes];
1188 unsigned int exc_after[rm_num_modes];
1189 round_real (rounded, exc_before, exc_after, tmp, f);
1190 mpfr_clear (tmp);
1191 if (mpfr_number_p (rounded[rm_upward])
1192 && (!exact_args || mpfr_equal_p (rounded[rm_upward],
1193 rounded[rm_downward])))
1195 mpfr_init2 (extra_values[num_extra_values],
1196 fp_formats[f].mant_dig);
1197 assert_exact (mpfr_set (extra_values[num_extra_values],
1198 rounded[rm_upward], MPFR_RNDN));
1199 num_extra_values++;
1201 if (mpfr_number_p (rounded[rm_downward]) && !exact_args)
1203 mpfr_init2 (extra_values[num_extra_values],
1204 fp_formats[f].mant_dig);
1205 assert_exact (mpfr_set (extra_values[num_extra_values],
1206 rounded[rm_downward], MPFR_RNDN));
1207 num_extra_values++;
1209 for (rounding_mode m = rm_first_mode; m < rm_num_modes; m++)
1210 mpfr_clear (rounded[m]);
1212 for (size_t i = 0; i < num_extra_values; i++)
1214 bool found = false;
1215 for (size_t j = 0; j < num_values; j++)
1217 if (mpfr_equal_p (values[j].value.f, extra_values[i])
1218 && ((mpfr_signbit (values[j].value.f) != 0)
1219 == (mpfr_signbit (extra_values[i]) != 0)))
1221 found = true;
1222 break;
1225 if (!found)
1227 assert (num_values < ARRAY_SIZE (values));
1228 values[num_values].type = gtype_fp;
1229 mpfr_init2 (values[num_values].value.f,
1230 fp_formats[f].mant_dig);
1231 assert_exact (mpfr_set (values[num_values].value.f,
1232 extra_values[i], MPFR_RNDN));
1233 num_values++;
1235 mpfr_clear (extra_values[i]);
1238 break;
1240 case gtype_int:
1241 num_values = 1;
1242 values[0].type = gtype_int;
1243 int ret = mpz_init_set_str (values[0].value.i, arg, 0);
1244 if (ret != 0)
1245 error_at_line (EXIT_FAILURE, 0, filename, lineno,
1246 "bad integer argument: '%s'", arg);
1247 break;
1249 default:
1250 abort ();
1252 if (check_empty_list && num_values == 0)
1253 error_at_line (EXIT_FAILURE, 0, filename, lineno,
1254 "floating-point argument not exact for any format: '%s'",
1255 arg);
1256 assert (num_values > 0 && num_values <= ARRAY_SIZE (values));
1257 if (it->num_input_cases >= SIZE_MAX / num_values)
1258 error_at_line (EXIT_FAILURE, 0, filename, lineno, "too many input cases");
1259 generic_value **old_inputs = it->inputs;
1260 size_t new_num_input_cases = it->num_input_cases * num_values;
1261 generic_value **new_inputs = xmalloc (new_num_input_cases
1262 * sizeof (new_inputs[0]));
1263 for (size_t i = 0; i < it->num_input_cases; i++)
1265 for (size_t j = 0; j < num_values; j++)
1267 size_t idx = i * num_values + j;
1268 new_inputs[idx] = xmalloc ((num_prev_args + 1)
1269 * sizeof (new_inputs[idx][0]));
1270 for (size_t k = 0; k < num_prev_args; k++)
1271 generic_value_copy (&new_inputs[idx][k], &old_inputs[i][k]);
1272 generic_value_copy (&new_inputs[idx][num_prev_args], &values[j]);
1274 for (size_t j = 0; j < num_prev_args; j++)
1275 generic_value_free (&old_inputs[i][j]);
1276 free (old_inputs[i]);
1278 free (old_inputs);
1279 for (size_t i = 0; i < num_values; i++)
1280 generic_value_free (&values[i]);
1281 it->inputs = new_inputs;
1282 it->num_input_cases = new_num_input_cases;
1285 /* Handle the input flag ARG (NUL-terminated), storing it in *FLAG.
1286 The flag comes from file FILENAME, line LINENO. */
1288 static void
1289 handle_input_flag (char *arg, input_flag *flag,
1290 const char *filename, unsigned int lineno)
1292 char *ep = strchr (arg, ':');
1293 if (ep == NULL)
1295 ep = strchr (arg, 0);
1296 assert (ep != NULL);
1298 char c = *ep;
1299 *ep = 0;
1300 bool found = false;
1301 for (input_flag_type i = flag_first_flag; i < num_input_flag_types; i++)
1303 if (strcmp (arg, input_flags[i]) == 0)
1305 found = true;
1306 flag->type = i;
1307 break;
1310 if (!found)
1311 error_at_line (EXIT_FAILURE, 0, filename, lineno, "unknown flag: '%s'",
1312 arg);
1313 *ep = c;
1314 if (c == 0)
1315 flag->cond = NULL;
1316 else
1317 flag->cond = xstrdup (ep);
1320 /* Add the test LINE (file FILENAME, line LINENO) to the test
1321 data. */
1323 static void
1324 add_test (char *line, const char *filename, unsigned int lineno)
1326 size_t num_tokens = 1;
1327 char *p = line;
1328 while ((p = strchr (p, ' ')) != NULL)
1330 num_tokens++;
1331 p++;
1333 if (num_tokens < 2)
1334 error_at_line (EXIT_FAILURE, 0, filename, lineno,
1335 "line too short: '%s'", line);
1336 p = strchr (line, ' ');
1337 size_t func_name_len = p - line;
1338 for (size_t i = 0; i < ARRAY_SIZE (test_functions); i++)
1340 if (func_name_len == strlen (test_functions[i].name)
1341 && strncmp (line, test_functions[i].name, func_name_len) == 0)
1343 test_function *tf = &test_functions[i];
1344 if (num_tokens < 1 + tf->num_args)
1345 error_at_line (EXIT_FAILURE, 0, filename, lineno,
1346 "line too short: '%s'", line);
1347 if (tf->num_tests == tf->num_tests_alloc)
1349 tf->num_tests_alloc = 2 * tf->num_tests_alloc + 16;
1350 tf->tests
1351 = xrealloc (tf->tests,
1352 tf->num_tests_alloc * sizeof (tf->tests[0]));
1354 input_test *it = &tf->tests[tf->num_tests];
1355 it->line = line;
1356 it->num_input_cases = 1;
1357 it->inputs = xmalloc (sizeof (it->inputs[0]));
1358 it->inputs[0] = NULL;
1359 it->old_output = NULL;
1360 p++;
1361 for (size_t j = 0; j < tf->num_args; j++)
1363 char *ep = strchr (p, ' ');
1364 if (ep == NULL)
1366 ep = strchr (p, '\n');
1367 assert (ep != NULL);
1369 if (ep == p)
1370 error_at_line (EXIT_FAILURE, 0, filename, lineno,
1371 "empty token in line: '%s'", line);
1372 for (char *t = p; t < ep; t++)
1373 if (isspace ((unsigned char) *t))
1374 error_at_line (EXIT_FAILURE, 0, filename, lineno,
1375 "whitespace in token in line: '%s'", line);
1376 char c = *ep;
1377 *ep = 0;
1378 handle_input_arg (p, it, j,
1379 generic_arg_ret_type (tf->arg_types[j]),
1380 tf->exact_args, filename, lineno);
1381 *ep = c;
1382 p = ep + 1;
1384 it->num_flags = num_tokens - 1 - tf->num_args;
1385 it->flags = xmalloc (it->num_flags * sizeof (it->flags[0]));
1386 for (size_t j = 0; j < it->num_flags; j++)
1388 char *ep = strchr (p, ' ');
1389 if (ep == NULL)
1391 ep = strchr (p, '\n');
1392 assert (ep != NULL);
1394 if (ep == p)
1395 error_at_line (EXIT_FAILURE, 0, filename, lineno,
1396 "empty token in line: '%s'", line);
1397 for (char *t = p; t < ep; t++)
1398 if (isspace ((unsigned char) *t))
1399 error_at_line (EXIT_FAILURE, 0, filename, lineno,
1400 "whitespace in token in line: '%s'", line);
1401 char c = *ep;
1402 *ep = 0;
1403 handle_input_flag (p, &it->flags[j], filename, lineno);
1404 *ep = c;
1405 p = ep + 1;
1407 assert (*p == 0);
1408 tf->num_tests++;
1409 return;
1412 error_at_line (EXIT_FAILURE, 0, filename, lineno,
1413 "unknown function in line: '%s'", line);
1416 /* Read in the test input data from FILENAME. */
1418 static void
1419 read_input (const char *filename)
1421 FILE *fp = fopen (filename, "r");
1422 if (fp == NULL)
1423 error (EXIT_FAILURE, errno, "open '%s'", filename);
1424 unsigned int lineno = 0;
1425 for (;;)
1427 size_t size = 0;
1428 char *line = NULL;
1429 ssize_t ret = getline (&line, &size, fp);
1430 if (ret == -1)
1431 break;
1432 lineno++;
1433 if (line[0] == '#' || line[0] == '\n')
1434 continue;
1435 add_test (line, filename, lineno);
1437 if (ferror (fp))
1438 error (EXIT_FAILURE, errno, "read from '%s'", filename);
1439 if (fclose (fp) != 0)
1440 error (EXIT_FAILURE, errno, "close '%s'", filename);
1443 /* Calculate the generic results (round-to-zero with sticky bit) for
1444 the function described by CALC, with inputs INPUTS, if MODE is
1445 rm_towardzero; for other modes, calculate results in that mode,
1446 which must be exact zero results. */
1448 static void
1449 calc_generic_results (generic_value *outputs, generic_value *inputs,
1450 const func_calc_desc *calc, rounding_mode mode)
1452 bool inexact;
1453 int mpc_ternary;
1454 mpc_t ci1, ci2, co;
1455 mpfr_rnd_t mode_mpfr = rounding_modes[mode].mpfr_mode;
1456 mpc_rnd_t mode_mpc = rounding_modes[mode].mpc_mode;
1458 switch (calc->method)
1460 case mpfr_f_f:
1461 assert (inputs[0].type == gtype_fp);
1462 outputs[0].type = gtype_fp;
1463 mpfr_init (outputs[0].value.f);
1464 inexact = calc->func.mpfr_f_f (outputs[0].value.f, inputs[0].value.f,
1465 mode_mpfr);
1466 if (mode != rm_towardzero)
1467 assert (!inexact && mpfr_zero_p (outputs[0].value.f));
1468 adjust_real (outputs[0].value.f, inexact);
1469 break;
1471 case mpfr_ff_f:
1472 assert (inputs[0].type == gtype_fp);
1473 assert (inputs[1].type == gtype_fp);
1474 outputs[0].type = gtype_fp;
1475 mpfr_init (outputs[0].value.f);
1476 inexact = calc->func.mpfr_ff_f (outputs[0].value.f, inputs[0].value.f,
1477 inputs[1].value.f, mode_mpfr);
1478 if (mode != rm_towardzero)
1479 assert (!inexact && mpfr_zero_p (outputs[0].value.f));
1480 adjust_real (outputs[0].value.f, inexact);
1481 break;
1483 case mpfr_fff_f:
1484 assert (inputs[0].type == gtype_fp);
1485 assert (inputs[1].type == gtype_fp);
1486 assert (inputs[2].type == gtype_fp);
1487 outputs[0].type = gtype_fp;
1488 mpfr_init (outputs[0].value.f);
1489 inexact = calc->func.mpfr_fff_f (outputs[0].value.f, inputs[0].value.f,
1490 inputs[1].value.f, inputs[2].value.f,
1491 mode_mpfr);
1492 if (mode != rm_towardzero)
1493 assert (!inexact && mpfr_zero_p (outputs[0].value.f));
1494 adjust_real (outputs[0].value.f, inexact);
1495 break;
1497 case mpfr_f_f1:
1498 assert (inputs[0].type == gtype_fp);
1499 outputs[0].type = gtype_fp;
1500 outputs[1].type = gtype_int;
1501 mpfr_init (outputs[0].value.f);
1502 int i = 0;
1503 inexact = calc->func.mpfr_f_f1 (outputs[0].value.f, &i,
1504 inputs[0].value.f, mode_mpfr);
1505 if (mode != rm_towardzero)
1506 assert (!inexact && mpfr_zero_p (outputs[0].value.f));
1507 adjust_real (outputs[0].value.f, inexact);
1508 mpz_init_set_si (outputs[1].value.i, i);
1509 break;
1511 case mpfr_if_f:
1512 assert (inputs[0].type == gtype_int);
1513 assert (inputs[1].type == gtype_fp);
1514 outputs[0].type = gtype_fp;
1515 mpfr_init (outputs[0].value.f);
1516 assert (mpz_fits_slong_p (inputs[0].value.i));
1517 long l = mpz_get_si (inputs[0].value.i);
1518 inexact = calc->func.mpfr_if_f (outputs[0].value.f, l,
1519 inputs[1].value.f, mode_mpfr);
1520 if (mode != rm_towardzero)
1521 assert (!inexact && mpfr_zero_p (outputs[0].value.f));
1522 adjust_real (outputs[0].value.f, inexact);
1523 break;
1525 case mpfr_f_11:
1526 assert (inputs[0].type == gtype_fp);
1527 outputs[0].type = gtype_fp;
1528 mpfr_init (outputs[0].value.f);
1529 outputs[1].type = gtype_fp;
1530 mpfr_init (outputs[1].value.f);
1531 int comb_ternary = calc->func.mpfr_f_11 (outputs[0].value.f,
1532 outputs[1].value.f,
1533 inputs[0].value.f,
1534 mode_mpfr);
1535 if (mode != rm_towardzero)
1536 assert (((comb_ternary & 0x3) == 0
1537 && mpfr_zero_p (outputs[0].value.f))
1538 || ((comb_ternary & 0xc) == 0
1539 && mpfr_zero_p (outputs[1].value.f)));
1540 adjust_real (outputs[0].value.f, (comb_ternary & 0x3) != 0);
1541 adjust_real (outputs[1].value.f, (comb_ternary & 0xc) != 0);
1542 break;
1544 case mpc_c_f:
1545 assert (inputs[0].type == gtype_fp);
1546 assert (inputs[1].type == gtype_fp);
1547 outputs[0].type = gtype_fp;
1548 mpfr_init (outputs[0].value.f);
1549 mpc_init2 (ci1, internal_precision);
1550 assert_exact (mpc_set_fr_fr (ci1, inputs[0].value.f, inputs[1].value.f,
1551 MPC_RNDNN));
1552 inexact = calc->func.mpc_c_f (outputs[0].value.f, ci1, mode_mpfr);
1553 if (mode != rm_towardzero)
1554 assert (!inexact && mpfr_zero_p (outputs[0].value.f));
1555 adjust_real (outputs[0].value.f, inexact);
1556 mpc_clear (ci1);
1557 break;
1559 case mpc_c_c:
1560 assert (inputs[0].type == gtype_fp);
1561 assert (inputs[1].type == gtype_fp);
1562 outputs[0].type = gtype_fp;
1563 mpfr_init (outputs[0].value.f);
1564 outputs[1].type = gtype_fp;
1565 mpfr_init (outputs[1].value.f);
1566 mpc_init2 (ci1, internal_precision);
1567 mpc_init2 (co, internal_precision);
1568 assert_exact (mpc_set_fr_fr (ci1, inputs[0].value.f, inputs[1].value.f,
1569 MPC_RNDNN));
1570 mpc_ternary = calc->func.mpc_c_c (co, ci1, mode_mpc);
1571 if (mode != rm_towardzero)
1572 assert ((!MPC_INEX_RE (mpc_ternary)
1573 && mpfr_zero_p (mpc_realref (co)))
1574 || (!MPC_INEX_IM (mpc_ternary)
1575 && mpfr_zero_p (mpc_imagref (co))));
1576 assert_exact (mpfr_set (outputs[0].value.f, mpc_realref (co),
1577 MPFR_RNDN));
1578 assert_exact (mpfr_set (outputs[1].value.f, mpc_imagref (co),
1579 MPFR_RNDN));
1580 adjust_real (outputs[0].value.f, MPC_INEX_RE (mpc_ternary));
1581 adjust_real (outputs[1].value.f, MPC_INEX_IM (mpc_ternary));
1582 mpc_clear (ci1);
1583 mpc_clear (co);
1584 break;
1586 case mpc_cc_c:
1587 assert (inputs[0].type == gtype_fp);
1588 assert (inputs[1].type == gtype_fp);
1589 assert (inputs[2].type == gtype_fp);
1590 assert (inputs[3].type == gtype_fp);
1591 outputs[0].type = gtype_fp;
1592 mpfr_init (outputs[0].value.f);
1593 outputs[1].type = gtype_fp;
1594 mpfr_init (outputs[1].value.f);
1595 mpc_init2 (ci1, internal_precision);
1596 mpc_init2 (ci2, internal_precision);
1597 mpc_init2 (co, internal_precision);
1598 assert_exact (mpc_set_fr_fr (ci1, inputs[0].value.f, inputs[1].value.f,
1599 MPC_RNDNN));
1600 assert_exact (mpc_set_fr_fr (ci2, inputs[2].value.f, inputs[3].value.f,
1601 MPC_RNDNN));
1602 mpc_ternary = calc->func.mpc_cc_c (co, ci1, ci2, mode_mpc);
1603 if (mode != rm_towardzero)
1604 assert ((!MPC_INEX_RE (mpc_ternary)
1605 && mpfr_zero_p (mpc_realref (co)))
1606 || (!MPC_INEX_IM (mpc_ternary)
1607 && mpfr_zero_p (mpc_imagref (co))));
1608 assert_exact (mpfr_set (outputs[0].value.f, mpc_realref (co),
1609 MPFR_RNDN));
1610 assert_exact (mpfr_set (outputs[1].value.f, mpc_imagref (co),
1611 MPFR_RNDN));
1612 adjust_real (outputs[0].value.f, MPC_INEX_RE (mpc_ternary));
1613 adjust_real (outputs[1].value.f, MPC_INEX_IM (mpc_ternary));
1614 mpc_clear (ci1);
1615 mpc_clear (ci2);
1616 mpc_clear (co);
1617 break;
1619 default:
1620 abort ();
1624 /* Return the number of bits for integer type TYPE, where "long" has
1625 LONG_BITS bits (32 or 64). */
1627 static int
1628 int_type_bits (arg_ret_type type, int long_bits)
1630 assert (long_bits == 32 || long_bits == 64);
1631 switch (type)
1633 case type_int:
1634 return 32;
1635 break;
1637 case type_long:
1638 return long_bits;
1639 break;
1641 case type_long_long:
1642 return 64;
1643 break;
1645 default:
1646 abort ();
1650 /* Check whether an integer Z fits a given type TYPE, where "long" has
1651 LONG_BITS bits (32 or 64). */
1653 static bool
1654 int_fits_type (mpz_t z, arg_ret_type type, int long_bits)
1656 int bits = int_type_bits (type, long_bits);
1657 bool ret = true;
1658 mpz_t t;
1659 mpz_init (t);
1660 mpz_ui_pow_ui (t, 2, bits - 1);
1661 if (mpz_cmp (z, t) >= 0)
1662 ret = false;
1663 mpz_neg (t, t);
1664 if (mpz_cmp (z, t) < 0)
1665 ret = false;
1666 mpz_clear (t);
1667 return ret;
1670 /* Print a generic value V to FP (name FILENAME), preceded by a space,
1671 for type TYPE, LONG_BITS bits per long, printing " IGNORE" instead
1672 if IGNORE. */
1674 static void
1675 output_generic_value (FILE *fp, const char *filename, const generic_value *v,
1676 bool ignore, arg_ret_type type, int long_bits)
1678 if (ignore)
1680 if (fputs (" IGNORE", fp) < 0)
1681 error (EXIT_FAILURE, errno, "write to '%s'", filename);
1682 return;
1684 assert (v->type == generic_arg_ret_type (type));
1685 const char *suffix;
1686 switch (type)
1688 case type_fp:
1689 suffix = "";
1690 break;
1692 case type_int:
1693 suffix = "";
1694 break;
1696 case type_long:
1697 suffix = "L";
1698 break;
1700 case type_long_long:
1701 suffix = "LL";
1702 break;
1704 default:
1705 abort ();
1707 switch (v->type)
1709 case gtype_fp:
1710 if (mpfr_inf_p (v->value.f))
1712 if (fputs ((mpfr_signbit (v->value.f)
1713 ? " minus_infty" : " plus_infty"), fp) < 0)
1714 error (EXIT_FAILURE, errno, "write to '%s'", filename);
1716 else
1718 assert (mpfr_number_p (v->value.f));
1719 if (mpfr_fprintf (fp, " %Ra%s", v->value.f, suffix) < 0)
1720 error (EXIT_FAILURE, errno, "mpfr_fprintf to '%s'", filename);
1722 break;
1724 case gtype_int: ;
1725 int bits = int_type_bits (type, long_bits);
1726 mpz_t tmp;
1727 mpz_init (tmp);
1728 mpz_ui_pow_ui (tmp, 2, bits - 1);
1729 mpz_neg (tmp, tmp);
1730 if (mpz_cmp (v->value.i, tmp) == 0)
1732 mpz_add_ui (tmp, tmp, 1);
1733 if (mpfr_fprintf (fp, " (%Zd%s-1)", tmp, suffix) < 0)
1734 error (EXIT_FAILURE, errno, "mpfr_fprintf to '%s'", filename);
1736 else
1738 if (mpfr_fprintf (fp, " %Zd%s", v->value.i, suffix) < 0)
1739 error (EXIT_FAILURE, errno, "mpfr_fprintf to '%s'", filename);
1741 mpz_clear (tmp);
1742 break;
1744 default:
1745 abort ();
1749 /* Generate test output to FP (name FILENAME) for test function TF
1750 (rounding results to a narrower type if NARROW), input test IT,
1751 choice of input values INPUTS. */
1753 static void
1754 output_for_one_input_case (FILE *fp, const char *filename, test_function *tf,
1755 bool narrow, input_test *it, generic_value *inputs)
1757 bool long_bits_matters = false;
1758 bool fits_long32 = true;
1759 for (size_t i = 0; i < tf->num_args; i++)
1761 generic_value_type gtype = generic_arg_ret_type (tf->arg_types[i]);
1762 assert (inputs[i].type == gtype);
1763 if (gtype == gtype_int)
1765 bool fits_64 = int_fits_type (inputs[i].value.i, tf->arg_types[i],
1766 64);
1767 if (!fits_64)
1768 return;
1769 if (tf->arg_types[i] == type_long
1770 && !int_fits_type (inputs[i].value.i, tf->arg_types[i], 32))
1772 long_bits_matters = true;
1773 fits_long32 = false;
1777 generic_value generic_outputs[MAX_NRET];
1778 calc_generic_results (generic_outputs, inputs, &tf->calc, rm_towardzero);
1779 bool ignore_output_long32[MAX_NRET] = { false };
1780 bool ignore_output_long64[MAX_NRET] = { false };
1781 for (size_t i = 0; i < tf->num_ret; i++)
1783 assert (generic_outputs[i].type
1784 == generic_arg_ret_type (tf->ret_types[i]));
1785 switch (generic_outputs[i].type)
1787 case gtype_fp:
1788 if (!mpfr_number_p (generic_outputs[i].value.f))
1789 goto out; /* Result is NaN or exact infinity. */
1790 break;
1792 case gtype_int:
1793 ignore_output_long32[i] = !int_fits_type (generic_outputs[i].value.i,
1794 tf->ret_types[i], 32);
1795 ignore_output_long64[i] = !int_fits_type (generic_outputs[i].value.i,
1796 tf->ret_types[i], 64);
1797 if (ignore_output_long32[i] != ignore_output_long64[i])
1798 long_bits_matters = true;
1799 break;
1801 default:
1802 abort ();
1805 /* Iterate over relevant sizes of long and floating-point formats. */
1806 for (int long_bits = 32; long_bits <= 64; long_bits += 32)
1808 if (long_bits == 32 && !fits_long32)
1809 continue;
1810 if (long_bits == 64 && !long_bits_matters)
1811 continue;
1812 const char *long_cond;
1813 if (long_bits_matters)
1814 long_cond = (long_bits == 32 ? ":long32" : ":long64");
1815 else
1816 long_cond = "";
1817 bool *ignore_output = (long_bits == 32
1818 ? ignore_output_long32
1819 : ignore_output_long64);
1820 for (fp_format f = fp_first_format; f < fp_num_formats; f++)
1822 bool fits = true;
1823 mpfr_t res[rm_num_modes];
1824 unsigned int exc_before[rm_num_modes];
1825 unsigned int exc_after[rm_num_modes];
1826 bool have_fp_arg = false;
1827 int max_exp = 0;
1828 int num_ones = 0;
1829 int min_exp = 0;
1830 int max_prec = 0;
1831 for (size_t i = 0; i < tf->num_args; i++)
1833 if (inputs[i].type == gtype_fp)
1835 if (narrow)
1837 if (mpfr_zero_p (inputs[i].value.f))
1838 continue;
1839 assert (mpfr_regular_p (inputs[i].value.f));
1840 int this_exp, this_num_ones, this_min_exp, this_prec;
1841 mpz_t tmp;
1842 mpz_init (tmp);
1843 mpfr_exp_t e = mpfr_get_z_2exp (tmp, inputs[i].value.f);
1844 if (mpz_sgn (tmp) < 0)
1845 mpz_neg (tmp, tmp);
1846 size_t bits = mpz_sizeinbase (tmp, 2);
1847 mp_bitcnt_t tz = mpz_scan1 (tmp, 0);
1848 this_min_exp = e + tz;
1849 this_prec = bits - tz;
1850 assert (this_prec > 0);
1851 this_exp = this_min_exp + this_prec - 1;
1852 assert (this_exp
1853 == mpfr_get_exp (inputs[i].value.f) - 1);
1854 this_num_ones = 1;
1855 while ((size_t) this_num_ones < bits
1856 && mpz_tstbit (tmp, bits - 1 - this_num_ones))
1857 this_num_ones++;
1858 mpz_clear (tmp);
1859 if (have_fp_arg)
1861 if (this_exp > max_exp
1862 || (this_exp == max_exp
1863 && this_num_ones > num_ones))
1865 max_exp = this_exp;
1866 num_ones = this_num_ones;
1868 if (this_min_exp < min_exp)
1869 min_exp = this_min_exp;
1870 if (this_prec > max_prec)
1871 max_prec = this_prec;
1873 else
1875 max_exp = this_exp;
1876 num_ones = this_num_ones;
1877 min_exp = this_min_exp;
1878 max_prec = this_prec;
1880 have_fp_arg = true;
1882 else
1884 round_real (res, exc_before, exc_after,
1885 inputs[i].value.f, f);
1886 if (!mpfr_equal_p (res[rm_tonearest], inputs[i].value.f))
1887 fits = false;
1888 for (rounding_mode m = rm_first_mode;
1889 m < rm_num_modes;
1890 m++)
1891 mpfr_clear (res[m]);
1892 if (!fits)
1893 break;
1897 if (!fits)
1898 continue;
1899 /* The inputs fit this type if required to do so, so compute
1900 the ideal outputs and exceptions. */
1901 mpfr_t all_res[MAX_NRET][rm_num_modes];
1902 unsigned int all_exc_before[MAX_NRET][rm_num_modes];
1903 unsigned int all_exc_after[MAX_NRET][rm_num_modes];
1904 unsigned int merged_exc_before[rm_num_modes] = { 0 };
1905 unsigned int merged_exc_after[rm_num_modes] = { 0 };
1906 /* For functions not exactly determined, track whether
1907 underflow is required (some result is inexact, and
1908 magnitude does not exceed the greatest magnitude
1909 subnormal), and permitted (not an exact zero, and
1910 magnitude does not exceed the least magnitude
1911 normal). */
1912 bool must_underflow = false;
1913 bool may_underflow = false;
1914 for (size_t i = 0; i < tf->num_ret; i++)
1916 switch (generic_outputs[i].type)
1918 case gtype_fp:
1919 round_real (all_res[i], all_exc_before[i], all_exc_after[i],
1920 generic_outputs[i].value.f, f);
1921 for (rounding_mode m = rm_first_mode; m < rm_num_modes; m++)
1923 merged_exc_before[m] |= all_exc_before[i][m];
1924 merged_exc_after[m] |= all_exc_after[i][m];
1925 if (!tf->exact)
1927 must_underflow
1928 |= ((all_exc_before[i][m]
1929 & (1U << exc_inexact)) != 0
1930 && (mpfr_cmpabs (generic_outputs[i].value.f,
1931 fp_formats[f].subnorm_max)
1932 <= 0));
1933 may_underflow
1934 |= (!mpfr_zero_p (generic_outputs[i].value.f)
1935 && (mpfr_cmpabs (generic_outputs[i].value.f,
1936 fp_formats[f].min_plus_half)
1937 <= 0));
1939 /* If the result is an exact zero, the sign may
1940 depend on the rounding mode, so recompute it
1941 directly in that mode. */
1942 if (mpfr_zero_p (all_res[i][m])
1943 && (all_exc_before[i][m] & (1U << exc_inexact)) == 0)
1945 generic_value outputs_rm[MAX_NRET];
1946 calc_generic_results (outputs_rm, inputs,
1947 &tf->calc, m);
1948 assert_exact (mpfr_set (all_res[i][m],
1949 outputs_rm[i].value.f,
1950 MPFR_RNDN));
1951 for (size_t j = 0; j < tf->num_ret; j++)
1952 generic_value_free (&outputs_rm[j]);
1955 break;
1957 case gtype_int:
1958 if (ignore_output[i])
1959 for (rounding_mode m = rm_first_mode;
1960 m < rm_num_modes;
1961 m++)
1963 merged_exc_before[m] |= 1U << exc_invalid;
1964 merged_exc_after[m] |= 1U << exc_invalid;
1966 break;
1968 default:
1969 abort ();
1972 assert (may_underflow || !must_underflow);
1973 for (rounding_mode m = rm_first_mode; m < rm_num_modes; m++)
1975 bool before_after_matters
1976 = tf->exact && merged_exc_before[m] != merged_exc_after[m];
1977 if (before_after_matters)
1979 assert ((merged_exc_before[m] ^ merged_exc_after[m])
1980 == (1U << exc_underflow));
1981 assert ((merged_exc_before[m] & (1U << exc_underflow)) != 0);
1983 unsigned int merged_exc = merged_exc_before[m];
1984 if (narrow)
1986 if (fprintf (fp, "= %s %s %s%s:arg_fmt(%d,%d,%d,%d)",
1987 tf->name, rounding_modes[m].name,
1988 fp_formats[f].name, long_cond, max_exp,
1989 num_ones, min_exp, max_prec) < 0)
1990 error (EXIT_FAILURE, errno, "write to '%s'", filename);
1992 else
1994 if (fprintf (fp, "= %s %s %s%s", tf->name,
1995 rounding_modes[m].name, fp_formats[f].name,
1996 long_cond) < 0)
1997 error (EXIT_FAILURE, errno, "write to '%s'", filename);
1999 /* Print inputs. */
2000 for (size_t i = 0; i < tf->num_args; i++)
2001 output_generic_value (fp, filename, &inputs[i], false,
2002 tf->arg_types[i], long_bits);
2003 if (fputs (" :", fp) < 0)
2004 error (EXIT_FAILURE, errno, "write to '%s'", filename);
2005 /* Print outputs. */
2006 bool must_erange = false;
2007 bool some_underflow_zero = false;
2008 for (size_t i = 0; i < tf->num_ret; i++)
2010 generic_value g;
2011 g.type = generic_outputs[i].type;
2012 switch (g.type)
2014 case gtype_fp:
2015 if (mpfr_inf_p (all_res[i][m])
2016 && (all_exc_before[i][m]
2017 & (1U << exc_overflow)) != 0)
2018 must_erange = true;
2019 if (mpfr_zero_p (all_res[i][m])
2020 && (tf->exact
2021 || mpfr_zero_p (all_res[i][rm_tonearest]))
2022 && (all_exc_before[i][m]
2023 & (1U << exc_underflow)) != 0)
2024 must_erange = true;
2025 if (mpfr_zero_p (all_res[i][rm_towardzero])
2026 && (all_exc_before[i][m]
2027 & (1U << exc_underflow)) != 0)
2028 some_underflow_zero = true;
2029 mpfr_init2 (g.value.f, fp_formats[f].mant_dig);
2030 assert_exact (mpfr_set (g.value.f, all_res[i][m],
2031 MPFR_RNDN));
2032 break;
2034 case gtype_int:
2035 mpz_init (g.value.i);
2036 mpz_set (g.value.i, generic_outputs[i].value.i);
2037 break;
2039 default:
2040 abort ();
2042 output_generic_value (fp, filename, &g, ignore_output[i],
2043 tf->ret_types[i], long_bits);
2044 generic_value_free (&g);
2046 if (fputs (" :", fp) < 0)
2047 error (EXIT_FAILURE, errno, "write to '%s'", filename);
2048 /* Print miscellaneous flags (passed through from
2049 input). */
2050 for (size_t i = 0; i < it->num_flags; i++)
2051 switch (it->flags[i].type)
2053 case flag_ignore_zero_inf_sign:
2054 case flag_xfail:
2055 case flag_no_mathvec:
2056 if (fprintf (fp, " %s%s",
2057 input_flags[it->flags[i].type],
2058 (it->flags[i].cond
2059 ? it->flags[i].cond
2060 : "")) < 0)
2061 error (EXIT_FAILURE, errno, "write to '%s'",
2062 filename);
2063 break;
2064 case flag_xfail_rounding:
2065 if (m != rm_tonearest)
2066 if (fprintf (fp, " xfail%s",
2067 (it->flags[i].cond
2068 ? it->flags[i].cond
2069 : "")) < 0)
2070 error (EXIT_FAILURE, errno, "write to '%s'",
2071 filename);
2072 break;
2073 default:
2074 break;
2076 /* For the ibm128 format, expect incorrect overflowing
2077 results in rounding modes other than to nearest;
2078 likewise incorrect results where the result may
2079 underflow to 0. */
2080 if (f == fp_ldbl_128ibm
2081 && m != rm_tonearest
2082 && (some_underflow_zero
2083 || (merged_exc_before[m] & (1U << exc_overflow)) != 0))
2084 if (fputs (" xfail:ibm128-libgcc", fp) < 0)
2085 error (EXIT_FAILURE, errno, "write to '%s'", filename);
2086 /* Print exception flags and compute errno
2087 expectations where not already computed. */
2088 bool may_edom = false;
2089 bool must_edom = false;
2090 bool may_erange = must_erange || may_underflow;
2091 for (fp_exception e = exc_first_exception;
2092 e < exc_num_exceptions;
2093 e++)
2095 bool expect_e = (merged_exc & (1U << e)) != 0;
2096 bool e_optional = false;
2097 switch (e)
2099 case exc_divbyzero:
2100 if (expect_e)
2101 may_erange = must_erange = true;
2102 break;
2104 case exc_inexact:
2105 if (!tf->exact)
2106 e_optional = true;
2107 break;
2109 case exc_invalid:
2110 if (expect_e)
2111 may_edom = must_edom = true;
2112 break;
2114 case exc_overflow:
2115 if (expect_e)
2116 may_erange = true;
2117 break;
2119 case exc_underflow:
2120 if (expect_e)
2121 may_erange = true;
2122 if (must_underflow)
2123 assert (expect_e);
2124 if (may_underflow && !must_underflow)
2125 e_optional = true;
2126 break;
2128 default:
2129 abort ();
2131 if (e_optional)
2133 assert (!before_after_matters);
2134 if (fprintf (fp, " %s-ok", exceptions[e]) < 0)
2135 error (EXIT_FAILURE, errno, "write to '%s'",
2136 filename);
2138 else
2140 if (expect_e)
2141 if (fprintf (fp, " %s", exceptions[e]) < 0)
2142 error (EXIT_FAILURE, errno, "write to '%s'",
2143 filename);
2144 if (before_after_matters && e == exc_underflow)
2145 if (fputs (":before-rounding", fp) < 0)
2146 error (EXIT_FAILURE, errno, "write to '%s'",
2147 filename);
2148 for (int after = 0; after <= 1; after++)
2150 bool expect_e_here = expect_e;
2151 if (after == 1 && (!before_after_matters
2152 || e != exc_underflow))
2153 continue;
2154 const char *after_cond;
2155 if (before_after_matters && e == exc_underflow)
2157 after_cond = (after
2158 ? ":after-rounding"
2159 : ":before-rounding");
2160 expect_e_here = !after;
2162 else
2163 after_cond = "";
2164 input_flag_type okflag;
2165 okflag = (expect_e_here
2166 ? flag_missing_first
2167 : flag_spurious_first) + e;
2168 for (size_t i = 0; i < it->num_flags; i++)
2169 if (it->flags[i].type == okflag)
2170 if (fprintf (fp, " %s-ok%s%s",
2171 exceptions[e],
2172 (it->flags[i].cond
2173 ? it->flags[i].cond
2174 : ""), after_cond) < 0)
2175 error (EXIT_FAILURE, errno, "write to '%s'",
2176 filename);
2180 /* Print errno expectations. */
2181 if (tf->complex_fn)
2183 must_edom = false;
2184 must_erange = false;
2186 if (may_edom && !must_edom)
2188 if (fputs (" errno-edom-ok", fp) < 0)
2189 error (EXIT_FAILURE, errno, "write to '%s'",
2190 filename);
2192 else
2194 if (must_edom)
2195 if (fputs (" errno-edom", fp) < 0)
2196 error (EXIT_FAILURE, errno, "write to '%s'",
2197 filename);
2198 input_flag_type okflag = (must_edom
2199 ? flag_missing_errno
2200 : flag_spurious_errno);
2201 for (size_t i = 0; i < it->num_flags; i++)
2202 if (it->flags[i].type == okflag)
2203 if (fprintf (fp, " errno-edom-ok%s",
2204 (it->flags[i].cond
2205 ? it->flags[i].cond
2206 : "")) < 0)
2207 error (EXIT_FAILURE, errno, "write to '%s'",
2208 filename);
2210 if (before_after_matters)
2211 assert (may_erange && !must_erange);
2212 if (may_erange && !must_erange)
2214 if (fprintf (fp, " errno-erange-ok%s",
2215 (before_after_matters
2216 ? ":before-rounding"
2217 : "")) < 0)
2218 error (EXIT_FAILURE, errno, "write to '%s'",
2219 filename);
2221 if (before_after_matters || !(may_erange && !must_erange))
2223 if (must_erange)
2224 if (fputs (" errno-erange", fp) < 0)
2225 error (EXIT_FAILURE, errno, "write to '%s'",
2226 filename);
2227 input_flag_type okflag = (must_erange
2228 ? flag_missing_errno
2229 : flag_spurious_errno);
2230 for (size_t i = 0; i < it->num_flags; i++)
2231 if (it->flags[i].type == okflag)
2232 if (fprintf (fp, " errno-erange-ok%s%s",
2233 (it->flags[i].cond
2234 ? it->flags[i].cond
2235 : ""),
2236 (before_after_matters
2237 ? ":after-rounding"
2238 : "")) < 0)
2239 error (EXIT_FAILURE, errno, "write to '%s'",
2240 filename);
2242 if (putc ('\n', fp) < 0)
2243 error (EXIT_FAILURE, errno, "write to '%s'", filename);
2245 for (size_t i = 0; i < tf->num_ret; i++)
2247 if (generic_outputs[i].type == gtype_fp)
2248 for (rounding_mode m = rm_first_mode; m < rm_num_modes; m++)
2249 mpfr_clear (all_res[i][m]);
2253 out:
2254 for (size_t i = 0; i < tf->num_ret; i++)
2255 generic_value_free (&generic_outputs[i]);
2258 /* Generate test output data for FUNCTION to FILENAME. The function
2259 is interpreted as rounding its results to a narrower type if
2260 NARROW. */
2262 static void
2263 generate_output (const char *function, bool narrow, const char *filename)
2265 FILE *fp = fopen (filename, "w");
2266 if (fp == NULL)
2267 error (EXIT_FAILURE, errno, "open '%s'", filename);
2268 for (size_t i = 0; i < ARRAY_SIZE (test_functions); i++)
2270 test_function *tf = &test_functions[i];
2271 if (strcmp (tf->name, function) != 0)
2272 continue;
2273 for (size_t j = 0; j < tf->num_tests; j++)
2275 input_test *it = &tf->tests[j];
2276 if (fputs (it->line, fp) < 0)
2277 error (EXIT_FAILURE, errno, "write to '%s'", filename);
2278 for (size_t k = 0; k < it->num_input_cases; k++)
2279 output_for_one_input_case (fp, filename, tf, narrow,
2280 it, it->inputs[k]);
2283 if (fclose (fp) != 0)
2284 error (EXIT_FAILURE, errno, "close '%s'", filename);
2288 main (int argc, char **argv)
2290 if (argc != 4
2291 && !(argc == 5 && strcmp (argv[1], "--narrow") == 0))
2292 error (EXIT_FAILURE, 0,
2293 "usage: gen-auto-libm-tests [--narrow] <input> <func> <output>");
2294 bool narrow;
2295 const char *input_filename = argv[1];
2296 const char *function = argv[2];
2297 const char *output_filename = argv[3];
2298 if (argc == 4)
2300 narrow = false;
2301 input_filename = argv[1];
2302 function = argv[2];
2303 output_filename = argv[3];
2305 else
2307 narrow = true;
2308 input_filename = argv[2];
2309 function = argv[3];
2310 output_filename = argv[4];
2312 init_fp_formats ();
2313 read_input (input_filename);
2314 generate_output (function, narrow, output_filename);
2315 exit (EXIT_SUCCESS);