Use round-to-nearest internally in jn, test with ALL_RM_TEST (bug 18602).
[glibc.git] / sysdeps / ieee754 / ldbl-96 / s_fmal.c
blobeec5a02e0b3d926fcccaf6a214687f694ad153fd
1 /* Compute x * y + z as ternary operation.
2 Copyright (C) 2010-2015 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Jakub Jelinek <jakub@redhat.com>, 2010.
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; if not, see
18 <http://www.gnu.org/licenses/>. */
20 #include <float.h>
21 #include <math.h>
22 #include <fenv.h>
23 #include <ieee754.h>
24 #include <math_private.h>
25 #include <tininess.h>
27 /* This implementation uses rounding to odd to avoid problems with
28 double rounding. See a paper by Boldo and Melquiond:
29 http://www.lri.fr/~melquion/doc/08-tc.pdf */
31 long double
32 __fmal (long double x, long double y, long double z)
34 union ieee854_long_double u, v, w;
35 int adjust = 0;
36 u.d = x;
37 v.d = y;
38 w.d = z;
39 if (__builtin_expect (u.ieee.exponent + v.ieee.exponent
40 >= 0x7fff + IEEE854_LONG_DOUBLE_BIAS
41 - LDBL_MANT_DIG, 0)
42 || __builtin_expect (u.ieee.exponent >= 0x7fff - LDBL_MANT_DIG, 0)
43 || __builtin_expect (v.ieee.exponent >= 0x7fff - LDBL_MANT_DIG, 0)
44 || __builtin_expect (w.ieee.exponent >= 0x7fff - LDBL_MANT_DIG, 0)
45 || __builtin_expect (u.ieee.exponent + v.ieee.exponent
46 <= IEEE854_LONG_DOUBLE_BIAS + LDBL_MANT_DIG, 0))
48 /* If z is Inf, but x and y are finite, the result should be
49 z rather than NaN. */
50 if (w.ieee.exponent == 0x7fff
51 && u.ieee.exponent != 0x7fff
52 && v.ieee.exponent != 0x7fff)
53 return (z + x) + y;
54 /* If z is zero and x are y are nonzero, compute the result
55 as x * y to avoid the wrong sign of a zero result if x * y
56 underflows to 0. */
57 if (z == 0 && x != 0 && y != 0)
58 return x * y;
59 /* If x or y or z is Inf/NaN, or if x * y is zero, compute as
60 x * y + z. */
61 if (u.ieee.exponent == 0x7fff
62 || v.ieee.exponent == 0x7fff
63 || w.ieee.exponent == 0x7fff
64 || x == 0
65 || y == 0)
66 return x * y + z;
67 /* If fma will certainly overflow, compute as x * y. */
68 if (u.ieee.exponent + v.ieee.exponent
69 > 0x7fff + IEEE854_LONG_DOUBLE_BIAS)
70 return x * y;
71 /* If x * y is less than 1/4 of LDBL_DENORM_MIN, neither the
72 result nor whether there is underflow depends on its exact
73 value, only on its sign. */
74 if (u.ieee.exponent + v.ieee.exponent
75 < IEEE854_LONG_DOUBLE_BIAS - LDBL_MANT_DIG - 2)
77 int neg = u.ieee.negative ^ v.ieee.negative;
78 long double tiny = neg ? -0x1p-16445L : 0x1p-16445L;
79 if (w.ieee.exponent >= 3)
80 return tiny + z;
81 /* Scaling up, adding TINY and scaling down produces the
82 correct result, because in round-to-nearest mode adding
83 TINY has no effect and in other modes double rounding is
84 harmless. But it may not produce required underflow
85 exceptions. */
86 v.d = z * 0x1p65L + tiny;
87 if (TININESS_AFTER_ROUNDING
88 ? v.ieee.exponent < 66
89 : (w.ieee.exponent == 0
90 || (w.ieee.exponent == 1
91 && w.ieee.negative != neg
92 && w.ieee.mantissa1 == 0
93 && w.ieee.mantissa0 == 0x80000000)))
95 volatile long double force_underflow = x * y;
96 (void) force_underflow;
98 return v.d * 0x1p-65L;
100 if (u.ieee.exponent + v.ieee.exponent
101 >= 0x7fff + IEEE854_LONG_DOUBLE_BIAS - LDBL_MANT_DIG)
103 /* Compute 1p-64 times smaller result and multiply
104 at the end. */
105 if (u.ieee.exponent > v.ieee.exponent)
106 u.ieee.exponent -= LDBL_MANT_DIG;
107 else
108 v.ieee.exponent -= LDBL_MANT_DIG;
109 /* If x + y exponent is very large and z exponent is very small,
110 it doesn't matter if we don't adjust it. */
111 if (w.ieee.exponent > LDBL_MANT_DIG)
112 w.ieee.exponent -= LDBL_MANT_DIG;
113 adjust = 1;
115 else if (w.ieee.exponent >= 0x7fff - LDBL_MANT_DIG)
117 /* Similarly.
118 If z exponent is very large and x and y exponents are
119 very small, adjust them up to avoid spurious underflows,
120 rather than down. */
121 if (u.ieee.exponent + v.ieee.exponent
122 <= IEEE854_LONG_DOUBLE_BIAS + LDBL_MANT_DIG)
124 if (u.ieee.exponent > v.ieee.exponent)
125 u.ieee.exponent += 2 * LDBL_MANT_DIG + 2;
126 else
127 v.ieee.exponent += 2 * LDBL_MANT_DIG + 2;
129 else if (u.ieee.exponent > v.ieee.exponent)
131 if (u.ieee.exponent > LDBL_MANT_DIG)
132 u.ieee.exponent -= LDBL_MANT_DIG;
134 else if (v.ieee.exponent > LDBL_MANT_DIG)
135 v.ieee.exponent -= LDBL_MANT_DIG;
136 w.ieee.exponent -= LDBL_MANT_DIG;
137 adjust = 1;
139 else if (u.ieee.exponent >= 0x7fff - LDBL_MANT_DIG)
141 u.ieee.exponent -= LDBL_MANT_DIG;
142 if (v.ieee.exponent)
143 v.ieee.exponent += LDBL_MANT_DIG;
144 else
145 v.d *= 0x1p64L;
147 else if (v.ieee.exponent >= 0x7fff - LDBL_MANT_DIG)
149 v.ieee.exponent -= LDBL_MANT_DIG;
150 if (u.ieee.exponent)
151 u.ieee.exponent += LDBL_MANT_DIG;
152 else
153 u.d *= 0x1p64L;
155 else /* if (u.ieee.exponent + v.ieee.exponent
156 <= IEEE854_LONG_DOUBLE_BIAS + LDBL_MANT_DIG) */
158 if (u.ieee.exponent > v.ieee.exponent)
159 u.ieee.exponent += 2 * LDBL_MANT_DIG + 2;
160 else
161 v.ieee.exponent += 2 * LDBL_MANT_DIG + 2;
162 if (w.ieee.exponent <= 4 * LDBL_MANT_DIG + 6)
164 if (w.ieee.exponent)
165 w.ieee.exponent += 2 * LDBL_MANT_DIG + 2;
166 else
167 w.d *= 0x1p130L;
168 adjust = -1;
170 /* Otherwise x * y should just affect inexact
171 and nothing else. */
173 x = u.d;
174 y = v.d;
175 z = w.d;
178 /* Ensure correct sign of exact 0 + 0. */
179 if (__glibc_unlikely ((x == 0 || y == 0) && z == 0))
180 return x * y + z;
182 fenv_t env;
183 feholdexcept (&env);
184 fesetround (FE_TONEAREST);
186 /* Multiplication m1 + m2 = x * y using Dekker's algorithm. */
187 #define C ((1LL << (LDBL_MANT_DIG + 1) / 2) + 1)
188 long double x1 = x * C;
189 long double y1 = y * C;
190 long double m1 = x * y;
191 x1 = (x - x1) + x1;
192 y1 = (y - y1) + y1;
193 long double x2 = x - x1;
194 long double y2 = y - y1;
195 long double m2 = (((x1 * y1 - m1) + x1 * y2) + x2 * y1) + x2 * y2;
197 /* Addition a1 + a2 = z + m1 using Knuth's algorithm. */
198 long double a1 = z + m1;
199 long double t1 = a1 - z;
200 long double t2 = a1 - t1;
201 t1 = m1 - t1;
202 t2 = z - t2;
203 long double a2 = t1 + t2;
204 /* Ensure the arithmetic is not scheduled after feclearexcept call. */
205 math_force_eval (m2);
206 math_force_eval (a2);
207 feclearexcept (FE_INEXACT);
209 /* If the result is an exact zero, ensure it has the correct sign. */
210 if (a1 == 0 && m2 == 0)
212 feupdateenv (&env);
213 /* Ensure that round-to-nearest value of z + m1 is not reused. */
214 z = math_opt_barrier (z);
215 return z + m1;
218 fesetround (FE_TOWARDZERO);
219 /* Perform m2 + a2 addition with round to odd. */
220 u.d = a2 + m2;
222 if (__glibc_likely (adjust == 0))
224 if ((u.ieee.mantissa1 & 1) == 0 && u.ieee.exponent != 0x7fff)
225 u.ieee.mantissa1 |= fetestexcept (FE_INEXACT) != 0;
226 feupdateenv (&env);
227 /* Result is a1 + u.d. */
228 return a1 + u.d;
230 else if (__glibc_likely (adjust > 0))
232 if ((u.ieee.mantissa1 & 1) == 0 && u.ieee.exponent != 0x7fff)
233 u.ieee.mantissa1 |= fetestexcept (FE_INEXACT) != 0;
234 feupdateenv (&env);
235 /* Result is a1 + u.d, scaled up. */
236 return (a1 + u.d) * 0x1p64L;
238 else
240 if ((u.ieee.mantissa1 & 1) == 0)
241 u.ieee.mantissa1 |= fetestexcept (FE_INEXACT) != 0;
242 v.d = a1 + u.d;
243 /* Ensure the addition is not scheduled after fetestexcept call. */
244 math_force_eval (v.d);
245 int j = fetestexcept (FE_INEXACT) != 0;
246 feupdateenv (&env);
247 /* Ensure the following computations are performed in default rounding
248 mode instead of just reusing the round to zero computation. */
249 asm volatile ("" : "=m" (u) : "m" (u));
250 /* If a1 + u.d is exact, the only rounding happens during
251 scaling down. */
252 if (j == 0)
253 return v.d * 0x1p-130L;
254 /* If result rounded to zero is not subnormal, no double
255 rounding will occur. */
256 if (v.ieee.exponent > 130)
257 return (a1 + u.d) * 0x1p-130L;
258 /* If v.d * 0x1p-130L with round to zero is a subnormal above
259 or equal to LDBL_MIN / 2, then v.d * 0x1p-130L shifts mantissa
260 down just by 1 bit, which means v.ieee.mantissa1 |= j would
261 change the round bit, not sticky or guard bit.
262 v.d * 0x1p-130L never normalizes by shifting up,
263 so round bit plus sticky bit should be already enough
264 for proper rounding. */
265 if (v.ieee.exponent == 130)
267 /* If the exponent would be in the normal range when
268 rounding to normal precision with unbounded exponent
269 range, the exact result is known and spurious underflows
270 must be avoided on systems detecting tininess after
271 rounding. */
272 if (TININESS_AFTER_ROUNDING)
274 w.d = a1 + u.d;
275 if (w.ieee.exponent == 131)
276 return w.d * 0x1p-130L;
278 /* v.ieee.mantissa1 & 2 is LSB bit of the result before rounding,
279 v.ieee.mantissa1 & 1 is the round bit and j is our sticky
280 bit. */
281 w.d = 0.0L;
282 w.ieee.mantissa1 = ((v.ieee.mantissa1 & 3) << 1) | j;
283 w.ieee.negative = v.ieee.negative;
284 v.ieee.mantissa1 &= ~3U;
285 v.d *= 0x1p-130L;
286 w.d *= 0x1p-2L;
287 return v.d + w.d;
289 v.ieee.mantissa1 |= j;
290 return v.d * 0x1p-130L;
293 weak_alias (__fmal, fmal)