Use round-to-nearest internally in jn, test with ALL_RM_TEST (bug 18602).
[glibc.git] / sysdeps / ieee754 / ldbl-96 / s_fma.c
blob8fd238cfe480c44cb68915d4b8dfe9a5ef54213a
1 /* Compute x * y + z as ternary operation.
2 Copyright (C) 2010-2015 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Jakub Jelinek <jakub@redhat.com>, 2010.
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; if not, see
18 <http://www.gnu.org/licenses/>. */
20 #include <float.h>
21 #include <math.h>
22 #include <fenv.h>
23 #include <ieee754.h>
24 #include <math_private.h>
26 /* This implementation uses rounding to odd to avoid problems with
27 double rounding. See a paper by Boldo and Melquiond:
28 http://www.lri.fr/~melquion/doc/08-tc.pdf */
30 double
31 __fma (double x, double y, double z)
33 if (__glibc_unlikely (isinf (z)))
35 /* If z is Inf, but x and y are finite, the result should be
36 z rather than NaN. */
37 if (isfinite (x) && isfinite (y))
38 return (z + x) + y;
39 return (x * y) + z;
42 /* Ensure correct sign of exact 0 + 0. */
43 if (__glibc_unlikely ((x == 0 || y == 0) && z == 0))
44 return x * y + z;
46 fenv_t env;
47 feholdexcept (&env);
48 fesetround (FE_TONEAREST);
50 /* Multiplication m1 + m2 = x * y using Dekker's algorithm. */
51 #define C ((1ULL << (LDBL_MANT_DIG + 1) / 2) + 1)
52 long double x1 = (long double) x * C;
53 long double y1 = (long double) y * C;
54 long double m1 = (long double) x * y;
55 x1 = (x - x1) + x1;
56 y1 = (y - y1) + y1;
57 long double x2 = x - x1;
58 long double y2 = y - y1;
59 long double m2 = (((x1 * y1 - m1) + x1 * y2) + x2 * y1) + x2 * y2;
61 /* Addition a1 + a2 = z + m1 using Knuth's algorithm. */
62 long double a1 = z + m1;
63 long double t1 = a1 - z;
64 long double t2 = a1 - t1;
65 t1 = m1 - t1;
66 t2 = z - t2;
67 long double a2 = t1 + t2;
68 /* Ensure the arithmetic is not scheduled after feclearexcept call. */
69 math_force_eval (m2);
70 math_force_eval (a2);
71 feclearexcept (FE_INEXACT);
73 /* If the result is an exact zero, ensure it has the correct sign. */
74 if (a1 == 0 && m2 == 0)
76 feupdateenv (&env);
77 /* Ensure that round-to-nearest value of z + m1 is not reused. */
78 z = math_opt_barrier (z);
79 return z + m1;
82 fesetround (FE_TOWARDZERO);
83 /* Perform m2 + a2 addition with round to odd. */
84 a2 = a2 + m2;
86 /* Add that to a1 again using rounding to odd. */
87 union ieee854_long_double u;
88 u.d = a1 + a2;
89 if ((u.ieee.mantissa1 & 1) == 0 && u.ieee.exponent != 0x7fff)
90 u.ieee.mantissa1 |= fetestexcept (FE_INEXACT) != 0;
91 feupdateenv (&env);
93 /* Add finally round to double precision. */
94 return u.d;
96 #ifndef __fma
97 weak_alias (__fma, fma)
98 #endif