Use round-to-nearest internally in jn, test with ALL_RM_TEST (bug 18602).
[glibc.git] / sysdeps / ieee754 / ldbl-96 / e_gammal_r.c
blob800522b7c88c23fb4c1ae07e16f03fc2f48b2d8a
1 /* Implementation of gamma function according to ISO C.
2 Copyright (C) 1997-2015 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; if not, see
18 <http://www.gnu.org/licenses/>. */
20 #include <math.h>
21 #include <math_private.h>
22 #include <float.h>
24 /* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) inside exp in Stirling's
25 approximation to gamma function. */
27 static const long double gamma_coeff[] =
29 0x1.5555555555555556p-4L,
30 -0xb.60b60b60b60b60bp-12L,
31 0x3.4034034034034034p-12L,
32 -0x2.7027027027027028p-12L,
33 0x3.72a3c5631fe46aep-12L,
34 -0x7.daac36664f1f208p-12L,
35 0x1.a41a41a41a41a41ap-8L,
36 -0x7.90a1b2c3d4e5f708p-8L,
39 #define NCOEFF (sizeof (gamma_coeff) / sizeof (gamma_coeff[0]))
41 /* Return gamma (X), for positive X less than 1766, in the form R *
42 2^(*EXP2_ADJ), where R is the return value and *EXP2_ADJ is set to
43 avoid overflow or underflow in intermediate calculations. */
45 static long double
46 gammal_positive (long double x, int *exp2_adj)
48 int local_signgam;
49 if (x < 0.5L)
51 *exp2_adj = 0;
52 return __ieee754_expl (__ieee754_lgammal_r (x + 1, &local_signgam)) / x;
54 else if (x <= 1.5L)
56 *exp2_adj = 0;
57 return __ieee754_expl (__ieee754_lgammal_r (x, &local_signgam));
59 else if (x < 7.5L)
61 /* Adjust into the range for using exp (lgamma). */
62 *exp2_adj = 0;
63 long double n = __ceill (x - 1.5L);
64 long double x_adj = x - n;
65 long double eps;
66 long double prod = __gamma_productl (x_adj, 0, n, &eps);
67 return (__ieee754_expl (__ieee754_lgammal_r (x_adj, &local_signgam))
68 * prod * (1.0L + eps));
70 else
72 long double eps = 0;
73 long double x_eps = 0;
74 long double x_adj = x;
75 long double prod = 1;
76 if (x < 13.0L)
78 /* Adjust into the range for applying Stirling's
79 approximation. */
80 long double n = __ceill (13.0L - x);
81 x_adj = x + n;
82 x_eps = (x - (x_adj - n));
83 prod = __gamma_productl (x_adj - n, x_eps, n, &eps);
85 /* The result is now gamma (X_ADJ + X_EPS) / (PROD * (1 + EPS)).
86 Compute gamma (X_ADJ + X_EPS) using Stirling's approximation,
87 starting by computing pow (X_ADJ, X_ADJ) with a power of 2
88 factored out. */
89 long double exp_adj = -eps;
90 long double x_adj_int = __roundl (x_adj);
91 long double x_adj_frac = x_adj - x_adj_int;
92 int x_adj_log2;
93 long double x_adj_mant = __frexpl (x_adj, &x_adj_log2);
94 if (x_adj_mant < M_SQRT1_2l)
96 x_adj_log2--;
97 x_adj_mant *= 2.0L;
99 *exp2_adj = x_adj_log2 * (int) x_adj_int;
100 long double ret = (__ieee754_powl (x_adj_mant, x_adj)
101 * __ieee754_exp2l (x_adj_log2 * x_adj_frac)
102 * __ieee754_expl (-x_adj)
103 * __ieee754_sqrtl (2 * M_PIl / x_adj)
104 / prod);
105 exp_adj += x_eps * __ieee754_logl (x);
106 long double bsum = gamma_coeff[NCOEFF - 1];
107 long double x_adj2 = x_adj * x_adj;
108 for (size_t i = 1; i <= NCOEFF - 1; i++)
109 bsum = bsum / x_adj2 + gamma_coeff[NCOEFF - 1 - i];
110 exp_adj += bsum / x_adj;
111 return ret + ret * __expm1l (exp_adj);
115 long double
116 __ieee754_gammal_r (long double x, int *signgamp)
118 u_int32_t es, hx, lx;
120 GET_LDOUBLE_WORDS (es, hx, lx, x);
122 if (__glibc_unlikely (((es & 0x7fff) | hx | lx) == 0))
124 /* Return value for x == 0 is Inf with divide by zero exception. */
125 *signgamp = 0;
126 return 1.0 / x;
128 if (__glibc_unlikely (es == 0xffffffff && ((hx & 0x7fffffff) | lx) == 0))
130 /* x == -Inf. According to ISO this is NaN. */
131 *signgamp = 0;
132 return x - x;
134 if (__glibc_unlikely ((es & 0x7fff) == 0x7fff))
136 /* Positive infinity (return positive infinity) or NaN (return
137 NaN). */
138 *signgamp = 0;
139 return x + x;
141 if (__builtin_expect ((es & 0x8000) != 0, 0) && __rintl (x) == x)
143 /* Return value for integer x < 0 is NaN with invalid exception. */
144 *signgamp = 0;
145 return (x - x) / (x - x);
148 if (x >= 1756.0L)
150 /* Overflow. */
151 *signgamp = 0;
152 return LDBL_MAX * LDBL_MAX;
154 else if (x > 0.0L)
156 *signgamp = 0;
157 int exp2_adj;
158 long double ret = gammal_positive (x, &exp2_adj);
159 return __scalbnl (ret, exp2_adj);
161 else if (x >= -LDBL_EPSILON / 4.0L)
163 *signgamp = 0;
164 return 1.0f / x;
166 else
168 long double tx = __truncl (x);
169 *signgamp = (tx == 2.0L * __truncl (tx / 2.0L)) ? -1 : 1;
170 if (x <= -1766.0L)
171 /* Underflow. */
172 return LDBL_MIN * LDBL_MIN;
173 long double frac = tx - x;
174 if (frac > 0.5L)
175 frac = 1.0L - frac;
176 long double sinpix = (frac <= 0.25L
177 ? __sinl (M_PIl * frac)
178 : __cosl (M_PIl * (0.5L - frac)));
179 int exp2_adj;
180 long double ret = M_PIl / (-x * sinpix
181 * gammal_positive (-x, &exp2_adj));
182 return __scalbnl (ret, -exp2_adj);
185 strong_alias (__ieee754_gammal_r, __gammal_r_finite)