Fix implicit declaration
[glibc.git] / stdlib / strtod_l.c
blob6707e482a443008af8294cc23d797333aad4894e
1 /* Convert string representing a number to float value, using given locale.
2 Copyright (C) 1997-2014 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; if not, see
18 <http://www.gnu.org/licenses/>. */
20 #include <xlocale.h>
22 extern double ____strtod_l_internal (const char *, char **, int, __locale_t);
23 extern unsigned long long int ____strtoull_l_internal (const char *, char **,
24 int, int, __locale_t);
26 /* Configuration part. These macros are defined by `strtold.c',
27 `strtof.c', `wcstod.c', `wcstold.c', and `wcstof.c' to produce the
28 `long double' and `float' versions of the reader. */
29 #ifndef FLOAT
30 # include <math_ldbl_opt.h>
31 # define FLOAT double
32 # define FLT DBL
33 # ifdef USE_WIDE_CHAR
34 # define STRTOF wcstod_l
35 # define __STRTOF __wcstod_l
36 # else
37 # define STRTOF strtod_l
38 # define __STRTOF __strtod_l
39 # endif
40 # define MPN2FLOAT __mpn_construct_double
41 # define FLOAT_HUGE_VAL HUGE_VAL
42 # define SET_MANTISSA(flt, mant) \
43 do { union ieee754_double u; \
44 u.d = (flt); \
45 u.ieee_nan.mantissa0 = (mant) >> 32; \
46 u.ieee_nan.mantissa1 = (mant); \
47 if ((u.ieee.mantissa0 | u.ieee.mantissa1) != 0) \
48 (flt) = u.d; \
49 } while (0)
50 #endif
51 /* End of configuration part. */
53 #include <ctype.h>
54 #include <errno.h>
55 #include <float.h>
56 #include <ieee754.h>
57 #include "../locale/localeinfo.h"
58 #include <locale.h>
59 #include <math.h>
60 #include <stdlib.h>
61 #include <string.h>
62 #include <stdint.h>
63 #include <rounding-mode.h>
64 #include <tininess.h>
66 /* The gmp headers need some configuration frobs. */
67 #define HAVE_ALLOCA 1
69 /* Include gmp-mparam.h first, such that definitions of _SHORT_LIMB
70 and _LONG_LONG_LIMB in it can take effect into gmp.h. */
71 #include <gmp-mparam.h>
72 #include <gmp.h>
73 #include "gmp-impl.h"
74 #include "longlong.h"
75 #include "fpioconst.h"
77 #include <assert.h>
80 /* We use this code for the extended locale handling where the
81 function gets as an additional argument the locale which has to be
82 used. To access the values we have to redefine the _NL_CURRENT and
83 _NL_CURRENT_WORD macros. */
84 #undef _NL_CURRENT
85 #define _NL_CURRENT(category, item) \
86 (current->values[_NL_ITEM_INDEX (item)].string)
87 #undef _NL_CURRENT_WORD
88 #define _NL_CURRENT_WORD(category, item) \
89 ((uint32_t) current->values[_NL_ITEM_INDEX (item)].word)
91 #if defined _LIBC || defined HAVE_WCHAR_H
92 # include <wchar.h>
93 #endif
95 #ifdef USE_WIDE_CHAR
96 # include <wctype.h>
97 # define STRING_TYPE wchar_t
98 # define CHAR_TYPE wint_t
99 # define L_(Ch) L##Ch
100 # define ISSPACE(Ch) __iswspace_l ((Ch), loc)
101 # define ISDIGIT(Ch) __iswdigit_l ((Ch), loc)
102 # define ISXDIGIT(Ch) __iswxdigit_l ((Ch), loc)
103 # define TOLOWER(Ch) __towlower_l ((Ch), loc)
104 # define TOLOWER_C(Ch) __towlower_l ((Ch), _nl_C_locobj_ptr)
105 # define STRNCASECMP(S1, S2, N) \
106 __wcsncasecmp_l ((S1), (S2), (N), _nl_C_locobj_ptr)
107 # define STRTOULL(S, E, B) ____wcstoull_l_internal ((S), (E), (B), 0, loc)
108 #else
109 # define STRING_TYPE char
110 # define CHAR_TYPE char
111 # define L_(Ch) Ch
112 # define ISSPACE(Ch) __isspace_l ((Ch), loc)
113 # define ISDIGIT(Ch) __isdigit_l ((Ch), loc)
114 # define ISXDIGIT(Ch) __isxdigit_l ((Ch), loc)
115 # define TOLOWER(Ch) __tolower_l ((Ch), loc)
116 # define TOLOWER_C(Ch) __tolower_l ((Ch), _nl_C_locobj_ptr)
117 # define STRNCASECMP(S1, S2, N) \
118 __strncasecmp_l ((S1), (S2), (N), _nl_C_locobj_ptr)
119 # define STRTOULL(S, E, B) ____strtoull_l_internal ((S), (E), (B), 0, loc)
120 #endif
123 /* Constants we need from float.h; select the set for the FLOAT precision. */
124 #define MANT_DIG PASTE(FLT,_MANT_DIG)
125 #define DIG PASTE(FLT,_DIG)
126 #define MAX_EXP PASTE(FLT,_MAX_EXP)
127 #define MIN_EXP PASTE(FLT,_MIN_EXP)
128 #define MAX_10_EXP PASTE(FLT,_MAX_10_EXP)
129 #define MIN_10_EXP PASTE(FLT,_MIN_10_EXP)
130 #define MAX_VALUE PASTE(FLT,_MAX)
131 #define MIN_VALUE PASTE(FLT,_MIN)
133 /* Extra macros required to get FLT expanded before the pasting. */
134 #define PASTE(a,b) PASTE1(a,b)
135 #define PASTE1(a,b) a##b
137 /* Function to construct a floating point number from an MP integer
138 containing the fraction bits, a base 2 exponent, and a sign flag. */
139 extern FLOAT MPN2FLOAT (mp_srcptr mpn, int exponent, int negative);
141 /* Definitions according to limb size used. */
142 #if BITS_PER_MP_LIMB == 32
143 # define MAX_DIG_PER_LIMB 9
144 # define MAX_FAC_PER_LIMB 1000000000UL
145 #elif BITS_PER_MP_LIMB == 64
146 # define MAX_DIG_PER_LIMB 19
147 # define MAX_FAC_PER_LIMB 10000000000000000000ULL
148 #else
149 # error "mp_limb_t size " BITS_PER_MP_LIMB "not accounted for"
150 #endif
152 extern const mp_limb_t _tens_in_limb[MAX_DIG_PER_LIMB + 1];
154 #ifndef howmany
155 #define howmany(x,y) (((x)+((y)-1))/(y))
156 #endif
157 #define SWAP(x, y) ({ typeof(x) _tmp = x; x = y; y = _tmp; })
159 #define RETURN_LIMB_SIZE howmany (MANT_DIG, BITS_PER_MP_LIMB)
161 #define RETURN(val,end) \
162 do { if (endptr != NULL) *endptr = (STRING_TYPE *) (end); \
163 return val; } while (0)
165 /* Maximum size necessary for mpn integers to hold floating point
166 numbers. The largest number we need to hold is 10^n where 2^-n is
167 1/4 ulp of the smallest representable value (that is, n = MANT_DIG
168 - MIN_EXP + 2). Approximate using 10^3 < 2^10. */
169 #define MPNSIZE (howmany (1 + ((MANT_DIG - MIN_EXP + 2) * 10) / 3, \
170 BITS_PER_MP_LIMB) + 2)
171 /* Declare an mpn integer variable that big. */
172 #define MPN_VAR(name) mp_limb_t name[MPNSIZE]; mp_size_t name##size
173 /* Copy an mpn integer value. */
174 #define MPN_ASSIGN(dst, src) \
175 memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t))
178 /* Set errno and return an overflowing value with sign specified by
179 NEGATIVE. */
180 static FLOAT
181 overflow_value (int negative)
183 __set_errno (ERANGE);
184 #if FLT_EVAL_METHOD != 0
185 volatile
186 #endif
187 FLOAT result = (negative ? -MAX_VALUE : MAX_VALUE) * MAX_VALUE;
188 return result;
192 /* Set errno and return an underflowing value with sign specified by
193 NEGATIVE. */
194 static FLOAT
195 underflow_value (int negative)
197 __set_errno (ERANGE);
198 #if FLT_EVAL_METHOD != 0
199 volatile
200 #endif
201 FLOAT result = (negative ? -MIN_VALUE : MIN_VALUE) * MIN_VALUE;
202 return result;
206 /* Return a floating point number of the needed type according to the given
207 multi-precision number after possible rounding. */
208 static FLOAT
209 round_and_return (mp_limb_t *retval, intmax_t exponent, int negative,
210 mp_limb_t round_limb, mp_size_t round_bit, int more_bits)
212 int mode = get_rounding_mode ();
214 if (exponent < MIN_EXP - 1)
216 if (exponent < MIN_EXP - 1 - MANT_DIG)
217 return underflow_value (negative);
219 mp_size_t shift = MIN_EXP - 1 - exponent;
220 bool is_tiny = true;
222 more_bits |= (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0;
223 if (shift == MANT_DIG)
224 /* This is a special case to handle the very seldom case where
225 the mantissa will be empty after the shift. */
227 int i;
229 round_limb = retval[RETURN_LIMB_SIZE - 1];
230 round_bit = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
231 for (i = 0; i < RETURN_LIMB_SIZE - 1; ++i)
232 more_bits |= retval[i] != 0;
233 MPN_ZERO (retval, RETURN_LIMB_SIZE);
235 else if (shift >= BITS_PER_MP_LIMB)
237 int i;
239 round_limb = retval[(shift - 1) / BITS_PER_MP_LIMB];
240 round_bit = (shift - 1) % BITS_PER_MP_LIMB;
241 for (i = 0; i < (shift - 1) / BITS_PER_MP_LIMB; ++i)
242 more_bits |= retval[i] != 0;
243 more_bits |= ((round_limb & ((((mp_limb_t) 1) << round_bit) - 1))
244 != 0);
246 (void) __mpn_rshift (retval, &retval[shift / BITS_PER_MP_LIMB],
247 RETURN_LIMB_SIZE - (shift / BITS_PER_MP_LIMB),
248 shift % BITS_PER_MP_LIMB);
249 MPN_ZERO (&retval[RETURN_LIMB_SIZE - (shift / BITS_PER_MP_LIMB)],
250 shift / BITS_PER_MP_LIMB);
252 else if (shift > 0)
254 if (TININESS_AFTER_ROUNDING && shift == 1)
256 /* Whether the result counts as tiny depends on whether,
257 after rounding to the normal precision, it still has
258 a subnormal exponent. */
259 mp_limb_t retval_normal[RETURN_LIMB_SIZE];
260 if (round_away (negative,
261 (retval[0] & 1) != 0,
262 (round_limb
263 & (((mp_limb_t) 1) << round_bit)) != 0,
264 (more_bits
265 || ((round_limb
266 & ((((mp_limb_t) 1) << round_bit) - 1))
267 != 0)),
268 mode))
270 mp_limb_t cy = __mpn_add_1 (retval_normal, retval,
271 RETURN_LIMB_SIZE, 1);
273 if (((MANT_DIG % BITS_PER_MP_LIMB) == 0 && cy) ||
274 ((MANT_DIG % BITS_PER_MP_LIMB) != 0 &&
275 ((retval_normal[RETURN_LIMB_SIZE - 1]
276 & (((mp_limb_t) 1) << (MANT_DIG % BITS_PER_MP_LIMB)))
277 != 0)))
278 is_tiny = false;
281 round_limb = retval[0];
282 round_bit = shift - 1;
283 (void) __mpn_rshift (retval, retval, RETURN_LIMB_SIZE, shift);
285 /* This is a hook for the m68k long double format, where the
286 exponent bias is the same for normalized and denormalized
287 numbers. */
288 #ifndef DENORM_EXP
289 # define DENORM_EXP (MIN_EXP - 2)
290 #endif
291 exponent = DENORM_EXP;
292 if (is_tiny
293 && ((round_limb & (((mp_limb_t) 1) << round_bit)) != 0
294 || more_bits
295 || (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0))
297 __set_errno (ERANGE);
298 volatile FLOAT force_underflow_exception = MIN_VALUE * MIN_VALUE;
299 (void) force_underflow_exception;
303 if (exponent > MAX_EXP)
304 goto overflow;
306 if (round_away (negative,
307 (retval[0] & 1) != 0,
308 (round_limb & (((mp_limb_t) 1) << round_bit)) != 0,
309 (more_bits
310 || (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0),
311 mode))
313 mp_limb_t cy = __mpn_add_1 (retval, retval, RETURN_LIMB_SIZE, 1);
315 if (((MANT_DIG % BITS_PER_MP_LIMB) == 0 && cy) ||
316 ((MANT_DIG % BITS_PER_MP_LIMB) != 0 &&
317 (retval[RETURN_LIMB_SIZE - 1]
318 & (((mp_limb_t) 1) << (MANT_DIG % BITS_PER_MP_LIMB))) != 0))
320 ++exponent;
321 (void) __mpn_rshift (retval, retval, RETURN_LIMB_SIZE, 1);
322 retval[RETURN_LIMB_SIZE - 1]
323 |= ((mp_limb_t) 1) << ((MANT_DIG - 1) % BITS_PER_MP_LIMB);
325 else if (exponent == DENORM_EXP
326 && (retval[RETURN_LIMB_SIZE - 1]
327 & (((mp_limb_t) 1) << ((MANT_DIG - 1) % BITS_PER_MP_LIMB)))
328 != 0)
329 /* The number was denormalized but now normalized. */
330 exponent = MIN_EXP - 1;
333 if (exponent > MAX_EXP)
334 overflow:
335 return overflow_value (negative);
337 return MPN2FLOAT (retval, exponent, negative);
341 /* Read a multi-precision integer starting at STR with exactly DIGCNT digits
342 into N. Return the size of the number limbs in NSIZE at the first
343 character od the string that is not part of the integer as the function
344 value. If the EXPONENT is small enough to be taken as an additional
345 factor for the resulting number (see code) multiply by it. */
346 static const STRING_TYPE *
347 str_to_mpn (const STRING_TYPE *str, int digcnt, mp_limb_t *n, mp_size_t *nsize,
348 intmax_t *exponent
349 #ifndef USE_WIDE_CHAR
350 , const char *decimal, size_t decimal_len, const char *thousands
351 #endif
355 /* Number of digits for actual limb. */
356 int cnt = 0;
357 mp_limb_t low = 0;
358 mp_limb_t start;
360 *nsize = 0;
361 assert (digcnt > 0);
364 if (cnt == MAX_DIG_PER_LIMB)
366 if (*nsize == 0)
368 n[0] = low;
369 *nsize = 1;
371 else
373 mp_limb_t cy;
374 cy = __mpn_mul_1 (n, n, *nsize, MAX_FAC_PER_LIMB);
375 cy += __mpn_add_1 (n, n, *nsize, low);
376 if (cy != 0)
378 assert (*nsize < MPNSIZE);
379 n[*nsize] = cy;
380 ++(*nsize);
383 cnt = 0;
384 low = 0;
387 /* There might be thousands separators or radix characters in
388 the string. But these all can be ignored because we know the
389 format of the number is correct and we have an exact number
390 of characters to read. */
391 #ifdef USE_WIDE_CHAR
392 if (*str < L'0' || *str > L'9')
393 ++str;
394 #else
395 if (*str < '0' || *str > '9')
397 int inner = 0;
398 if (thousands != NULL && *str == *thousands
399 && ({ for (inner = 1; thousands[inner] != '\0'; ++inner)
400 if (thousands[inner] != str[inner])
401 break;
402 thousands[inner] == '\0'; }))
403 str += inner;
404 else
405 str += decimal_len;
407 #endif
408 low = low * 10 + *str++ - L_('0');
409 ++cnt;
411 while (--digcnt > 0);
413 if (*exponent > 0 && *exponent <= MAX_DIG_PER_LIMB - cnt)
415 low *= _tens_in_limb[*exponent];
416 start = _tens_in_limb[cnt + *exponent];
417 *exponent = 0;
419 else
420 start = _tens_in_limb[cnt];
422 if (*nsize == 0)
424 n[0] = low;
425 *nsize = 1;
427 else
429 mp_limb_t cy;
430 cy = __mpn_mul_1 (n, n, *nsize, start);
431 cy += __mpn_add_1 (n, n, *nsize, low);
432 if (cy != 0)
434 assert (*nsize < MPNSIZE);
435 n[(*nsize)++] = cy;
439 return str;
443 /* Shift {PTR, SIZE} COUNT bits to the left, and fill the vacated bits
444 with the COUNT most significant bits of LIMB.
446 Implemented as a macro, so that __builtin_constant_p works even at -O0.
448 Tege doesn't like this macro so I have to write it here myself. :)
449 --drepper */
450 #define __mpn_lshift_1(ptr, size, count, limb) \
451 do \
453 mp_limb_t *__ptr = (ptr); \
454 if (__builtin_constant_p (count) && count == BITS_PER_MP_LIMB) \
456 mp_size_t i; \
457 for (i = (size) - 1; i > 0; --i) \
458 __ptr[i] = __ptr[i - 1]; \
459 __ptr[0] = (limb); \
461 else \
463 /* We assume count > 0 && count < BITS_PER_MP_LIMB here. */ \
464 unsigned int __count = (count); \
465 (void) __mpn_lshift (__ptr, __ptr, size, __count); \
466 __ptr[0] |= (limb) >> (BITS_PER_MP_LIMB - __count); \
469 while (0)
472 #define INTERNAL(x) INTERNAL1(x)
473 #define INTERNAL1(x) __##x##_internal
474 #ifndef ____STRTOF_INTERNAL
475 # define ____STRTOF_INTERNAL INTERNAL (__STRTOF)
476 #endif
478 /* This file defines a function to check for correct grouping. */
479 #include "grouping.h"
482 /* Return a floating point number with the value of the given string NPTR.
483 Set *ENDPTR to the character after the last used one. If the number is
484 smaller than the smallest representable number, set `errno' to ERANGE and
485 return 0.0. If the number is too big to be represented, set `errno' to
486 ERANGE and return HUGE_VAL with the appropriate sign. */
487 FLOAT
488 ____STRTOF_INTERNAL (nptr, endptr, group, loc)
489 const STRING_TYPE *nptr;
490 STRING_TYPE **endptr;
491 int group;
492 __locale_t loc;
494 int negative; /* The sign of the number. */
495 MPN_VAR (num); /* MP representation of the number. */
496 intmax_t exponent; /* Exponent of the number. */
498 /* Numbers starting `0X' or `0x' have to be processed with base 16. */
499 int base = 10;
501 /* When we have to compute fractional digits we form a fraction with a
502 second multi-precision number (and we sometimes need a second for
503 temporary results). */
504 MPN_VAR (den);
506 /* Representation for the return value. */
507 mp_limb_t retval[RETURN_LIMB_SIZE];
508 /* Number of bits currently in result value. */
509 int bits;
511 /* Running pointer after the last character processed in the string. */
512 const STRING_TYPE *cp, *tp;
513 /* Start of significant part of the number. */
514 const STRING_TYPE *startp, *start_of_digits;
515 /* Points at the character following the integer and fractional digits. */
516 const STRING_TYPE *expp;
517 /* Total number of digit and number of digits in integer part. */
518 size_t dig_no, int_no, lead_zero;
519 /* Contains the last character read. */
520 CHAR_TYPE c;
522 /* We should get wint_t from <stddef.h>, but not all GCC versions define it
523 there. So define it ourselves if it remains undefined. */
524 #ifndef _WINT_T
525 typedef unsigned int wint_t;
526 #endif
527 /* The radix character of the current locale. */
528 #ifdef USE_WIDE_CHAR
529 wchar_t decimal;
530 #else
531 const char *decimal;
532 size_t decimal_len;
533 #endif
534 /* The thousands character of the current locale. */
535 #ifdef USE_WIDE_CHAR
536 wchar_t thousands = L'\0';
537 #else
538 const char *thousands = NULL;
539 #endif
540 /* The numeric grouping specification of the current locale,
541 in the format described in <locale.h>. */
542 const char *grouping;
543 /* Used in several places. */
544 int cnt;
546 struct __locale_data *current = loc->__locales[LC_NUMERIC];
548 if (__glibc_unlikely (group))
550 grouping = _NL_CURRENT (LC_NUMERIC, GROUPING);
551 if (*grouping <= 0 || *grouping == CHAR_MAX)
552 grouping = NULL;
553 else
555 /* Figure out the thousands separator character. */
556 #ifdef USE_WIDE_CHAR
557 thousands = _NL_CURRENT_WORD (LC_NUMERIC,
558 _NL_NUMERIC_THOUSANDS_SEP_WC);
559 if (thousands == L'\0')
560 grouping = NULL;
561 #else
562 thousands = _NL_CURRENT (LC_NUMERIC, THOUSANDS_SEP);
563 if (*thousands == '\0')
565 thousands = NULL;
566 grouping = NULL;
568 #endif
571 else
572 grouping = NULL;
574 /* Find the locale's decimal point character. */
575 #ifdef USE_WIDE_CHAR
576 decimal = _NL_CURRENT_WORD (LC_NUMERIC, _NL_NUMERIC_DECIMAL_POINT_WC);
577 assert (decimal != L'\0');
578 # define decimal_len 1
579 #else
580 decimal = _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT);
581 decimal_len = strlen (decimal);
582 assert (decimal_len > 0);
583 #endif
585 /* Prepare number representation. */
586 exponent = 0;
587 negative = 0;
588 bits = 0;
590 /* Parse string to get maximal legal prefix. We need the number of
591 characters of the integer part, the fractional part and the exponent. */
592 cp = nptr - 1;
593 /* Ignore leading white space. */
595 c = *++cp;
596 while (ISSPACE (c));
598 /* Get sign of the result. */
599 if (c == L_('-'))
601 negative = 1;
602 c = *++cp;
604 else if (c == L_('+'))
605 c = *++cp;
607 /* Return 0.0 if no legal string is found.
608 No character is used even if a sign was found. */
609 #ifdef USE_WIDE_CHAR
610 if (c == (wint_t) decimal
611 && (wint_t) cp[1] >= L'0' && (wint_t) cp[1] <= L'9')
613 /* We accept it. This funny construct is here only to indent
614 the code correctly. */
616 #else
617 for (cnt = 0; decimal[cnt] != '\0'; ++cnt)
618 if (cp[cnt] != decimal[cnt])
619 break;
620 if (decimal[cnt] == '\0' && cp[cnt] >= '0' && cp[cnt] <= '9')
622 /* We accept it. This funny construct is here only to indent
623 the code correctly. */
625 #endif
626 else if (c < L_('0') || c > L_('9'))
628 /* Check for `INF' or `INFINITY'. */
629 CHAR_TYPE lowc = TOLOWER_C (c);
631 if (lowc == L_('i') && STRNCASECMP (cp, L_("inf"), 3) == 0)
633 /* Return +/- infinity. */
634 if (endptr != NULL)
635 *endptr = (STRING_TYPE *)
636 (cp + (STRNCASECMP (cp + 3, L_("inity"), 5) == 0
637 ? 8 : 3));
639 return negative ? -FLOAT_HUGE_VAL : FLOAT_HUGE_VAL;
642 if (lowc == L_('n') && STRNCASECMP (cp, L_("nan"), 3) == 0)
644 /* Return NaN. */
645 FLOAT retval = NAN;
647 cp += 3;
649 /* Match `(n-char-sequence-digit)'. */
650 if (*cp == L_('('))
652 const STRING_TYPE *startp = cp;
654 ++cp;
655 while ((*cp >= L_('0') && *cp <= L_('9'))
656 || ({ CHAR_TYPE lo = TOLOWER (*cp);
657 lo >= L_('a') && lo <= L_('z'); })
658 || *cp == L_('_'));
660 if (*cp != L_(')'))
661 /* The closing brace is missing. Only match the NAN
662 part. */
663 cp = startp;
664 else
666 /* This is a system-dependent way to specify the
667 bitmask used for the NaN. We expect it to be
668 a number which is put in the mantissa of the
669 number. */
670 STRING_TYPE *endp;
671 unsigned long long int mant;
673 mant = STRTOULL (startp + 1, &endp, 0);
674 if (endp == cp)
675 SET_MANTISSA (retval, mant);
677 /* Consume the closing brace. */
678 ++cp;
682 if (endptr != NULL)
683 *endptr = (STRING_TYPE *) cp;
685 return retval;
688 /* It is really a text we do not recognize. */
689 RETURN (0.0, nptr);
692 /* First look whether we are faced with a hexadecimal number. */
693 if (c == L_('0') && TOLOWER (cp[1]) == L_('x'))
695 /* Okay, it is a hexa-decimal number. Remember this and skip
696 the characters. BTW: hexadecimal numbers must not be
697 grouped. */
698 base = 16;
699 cp += 2;
700 c = *cp;
701 grouping = NULL;
704 /* Record the start of the digits, in case we will check their grouping. */
705 start_of_digits = startp = cp;
707 /* Ignore leading zeroes. This helps us to avoid useless computations. */
708 #ifdef USE_WIDE_CHAR
709 while (c == L'0' || ((wint_t) thousands != L'\0' && c == (wint_t) thousands))
710 c = *++cp;
711 #else
712 if (__glibc_likely (thousands == NULL))
713 while (c == '0')
714 c = *++cp;
715 else
717 /* We also have the multibyte thousands string. */
718 while (1)
720 if (c != '0')
722 for (cnt = 0; thousands[cnt] != '\0'; ++cnt)
723 if (thousands[cnt] != cp[cnt])
724 break;
725 if (thousands[cnt] != '\0')
726 break;
727 cp += cnt - 1;
729 c = *++cp;
732 #endif
734 /* If no other digit but a '0' is found the result is 0.0.
735 Return current read pointer. */
736 CHAR_TYPE lowc = TOLOWER (c);
737 if (!((c >= L_('0') && c <= L_('9'))
738 || (base == 16 && lowc >= L_('a') && lowc <= L_('f'))
739 || (
740 #ifdef USE_WIDE_CHAR
741 c == (wint_t) decimal
742 #else
743 ({ for (cnt = 0; decimal[cnt] != '\0'; ++cnt)
744 if (decimal[cnt] != cp[cnt])
745 break;
746 decimal[cnt] == '\0'; })
747 #endif
748 /* '0x.' alone is not a valid hexadecimal number.
749 '.' alone is not valid either, but that has been checked
750 already earlier. */
751 && (base != 16
752 || cp != start_of_digits
753 || (cp[decimal_len] >= L_('0') && cp[decimal_len] <= L_('9'))
754 || ({ CHAR_TYPE lo = TOLOWER (cp[decimal_len]);
755 lo >= L_('a') && lo <= L_('f'); })))
756 || (base == 16 && (cp != start_of_digits
757 && lowc == L_('p')))
758 || (base != 16 && lowc == L_('e'))))
760 #ifdef USE_WIDE_CHAR
761 tp = __correctly_grouped_prefixwc (start_of_digits, cp, thousands,
762 grouping);
763 #else
764 tp = __correctly_grouped_prefixmb (start_of_digits, cp, thousands,
765 grouping);
766 #endif
767 /* If TP is at the start of the digits, there was no correctly
768 grouped prefix of the string; so no number found. */
769 RETURN (negative ? -0.0 : 0.0,
770 tp == start_of_digits ? (base == 16 ? cp - 1 : nptr) : tp);
773 /* Remember first significant digit and read following characters until the
774 decimal point, exponent character or any non-FP number character. */
775 startp = cp;
776 dig_no = 0;
777 while (1)
779 if ((c >= L_('0') && c <= L_('9'))
780 || (base == 16
781 && ({ CHAR_TYPE lo = TOLOWER (c);
782 lo >= L_('a') && lo <= L_('f'); })))
783 ++dig_no;
784 else
786 #ifdef USE_WIDE_CHAR
787 if (__builtin_expect ((wint_t) thousands == L'\0', 1)
788 || c != (wint_t) thousands)
789 /* Not a digit or separator: end of the integer part. */
790 break;
791 #else
792 if (__glibc_likely (thousands == NULL))
793 break;
794 else
796 for (cnt = 0; thousands[cnt] != '\0'; ++cnt)
797 if (thousands[cnt] != cp[cnt])
798 break;
799 if (thousands[cnt] != '\0')
800 break;
801 cp += cnt - 1;
803 #endif
805 c = *++cp;
808 if (__builtin_expect (grouping != NULL, 0) && cp > start_of_digits)
810 /* Check the grouping of the digits. */
811 #ifdef USE_WIDE_CHAR
812 tp = __correctly_grouped_prefixwc (start_of_digits, cp, thousands,
813 grouping);
814 #else
815 tp = __correctly_grouped_prefixmb (start_of_digits, cp, thousands,
816 grouping);
817 #endif
818 if (cp != tp)
820 /* Less than the entire string was correctly grouped. */
822 if (tp == start_of_digits)
823 /* No valid group of numbers at all: no valid number. */
824 RETURN (0.0, nptr);
826 if (tp < startp)
827 /* The number is validly grouped, but consists
828 only of zeroes. The whole value is zero. */
829 RETURN (negative ? -0.0 : 0.0, tp);
831 /* Recompute DIG_NO so we won't read more digits than
832 are properly grouped. */
833 cp = tp;
834 dig_no = 0;
835 for (tp = startp; tp < cp; ++tp)
836 if (*tp >= L_('0') && *tp <= L_('9'))
837 ++dig_no;
839 int_no = dig_no;
840 lead_zero = 0;
842 goto number_parsed;
846 /* We have the number of digits in the integer part. Whether these
847 are all or any is really a fractional digit will be decided
848 later. */
849 int_no = dig_no;
850 lead_zero = int_no == 0 ? (size_t) -1 : 0;
852 /* Read the fractional digits. A special case are the 'american
853 style' numbers like `16.' i.e. with decimal point but without
854 trailing digits. */
855 if (
856 #ifdef USE_WIDE_CHAR
857 c == (wint_t) decimal
858 #else
859 ({ for (cnt = 0; decimal[cnt] != '\0'; ++cnt)
860 if (decimal[cnt] != cp[cnt])
861 break;
862 decimal[cnt] == '\0'; })
863 #endif
866 cp += decimal_len;
867 c = *cp;
868 while ((c >= L_('0') && c <= L_('9')) ||
869 (base == 16 && ({ CHAR_TYPE lo = TOLOWER (c);
870 lo >= L_('a') && lo <= L_('f'); })))
872 if (c != L_('0') && lead_zero == (size_t) -1)
873 lead_zero = dig_no - int_no;
874 ++dig_no;
875 c = *++cp;
878 assert (dig_no <= (uintmax_t) INTMAX_MAX);
880 /* Remember start of exponent (if any). */
881 expp = cp;
883 /* Read exponent. */
884 lowc = TOLOWER (c);
885 if ((base == 16 && lowc == L_('p'))
886 || (base != 16 && lowc == L_('e')))
888 int exp_negative = 0;
890 c = *++cp;
891 if (c == L_('-'))
893 exp_negative = 1;
894 c = *++cp;
896 else if (c == L_('+'))
897 c = *++cp;
899 if (c >= L_('0') && c <= L_('9'))
901 intmax_t exp_limit;
903 /* Get the exponent limit. */
904 if (base == 16)
906 if (exp_negative)
908 assert (int_no <= (uintmax_t) (INTMAX_MAX
909 + MIN_EXP - MANT_DIG) / 4);
910 exp_limit = -MIN_EXP + MANT_DIG + 4 * (intmax_t) int_no;
912 else
914 if (int_no)
916 assert (lead_zero == 0
917 && int_no <= (uintmax_t) INTMAX_MAX / 4);
918 exp_limit = MAX_EXP - 4 * (intmax_t) int_no + 3;
920 else if (lead_zero == (size_t) -1)
922 /* The number is zero and this limit is
923 arbitrary. */
924 exp_limit = MAX_EXP + 3;
926 else
928 assert (lead_zero
929 <= (uintmax_t) (INTMAX_MAX - MAX_EXP - 3) / 4);
930 exp_limit = (MAX_EXP
931 + 4 * (intmax_t) lead_zero
932 + 3);
936 else
938 if (exp_negative)
940 assert (int_no
941 <= (uintmax_t) (INTMAX_MAX + MIN_10_EXP - MANT_DIG));
942 exp_limit = -MIN_10_EXP + MANT_DIG + (intmax_t) int_no;
944 else
946 if (int_no)
948 assert (lead_zero == 0
949 && int_no <= (uintmax_t) INTMAX_MAX);
950 exp_limit = MAX_10_EXP - (intmax_t) int_no + 1;
952 else if (lead_zero == (size_t) -1)
954 /* The number is zero and this limit is
955 arbitrary. */
956 exp_limit = MAX_10_EXP + 1;
958 else
960 assert (lead_zero
961 <= (uintmax_t) (INTMAX_MAX - MAX_10_EXP - 1));
962 exp_limit = MAX_10_EXP + (intmax_t) lead_zero + 1;
967 if (exp_limit < 0)
968 exp_limit = 0;
972 if (__builtin_expect ((exponent > exp_limit / 10
973 || (exponent == exp_limit / 10
974 && c - L_('0') > exp_limit % 10)), 0))
975 /* The exponent is too large/small to represent a valid
976 number. */
978 FLOAT result;
980 /* We have to take care for special situation: a joker
981 might have written "0.0e100000" which is in fact
982 zero. */
983 if (lead_zero == (size_t) -1)
984 result = negative ? -0.0 : 0.0;
985 else
987 /* Overflow or underflow. */
988 result = (exp_negative
989 ? underflow_value (negative)
990 : overflow_value (negative));
993 /* Accept all following digits as part of the exponent. */
995 ++cp;
996 while (*cp >= L_('0') && *cp <= L_('9'));
998 RETURN (result, cp);
999 /* NOTREACHED */
1002 exponent *= 10;
1003 exponent += c - L_('0');
1005 c = *++cp;
1007 while (c >= L_('0') && c <= L_('9'));
1009 if (exp_negative)
1010 exponent = -exponent;
1012 else
1013 cp = expp;
1016 /* We don't want to have to work with trailing zeroes after the radix. */
1017 if (dig_no > int_no)
1019 while (expp[-1] == L_('0'))
1021 --expp;
1022 --dig_no;
1024 assert (dig_no >= int_no);
1027 if (dig_no == int_no && dig_no > 0 && exponent < 0)
1030 while (! (base == 16 ? ISXDIGIT (expp[-1]) : ISDIGIT (expp[-1])))
1031 --expp;
1033 if (expp[-1] != L_('0'))
1034 break;
1036 --expp;
1037 --dig_no;
1038 --int_no;
1039 exponent += base == 16 ? 4 : 1;
1041 while (dig_no > 0 && exponent < 0);
1043 number_parsed:
1045 /* The whole string is parsed. Store the address of the next character. */
1046 if (endptr)
1047 *endptr = (STRING_TYPE *) cp;
1049 if (dig_no == 0)
1050 return negative ? -0.0 : 0.0;
1052 if (lead_zero)
1054 /* Find the decimal point */
1055 #ifdef USE_WIDE_CHAR
1056 while (*startp != decimal)
1057 ++startp;
1058 #else
1059 while (1)
1061 if (*startp == decimal[0])
1063 for (cnt = 1; decimal[cnt] != '\0'; ++cnt)
1064 if (decimal[cnt] != startp[cnt])
1065 break;
1066 if (decimal[cnt] == '\0')
1067 break;
1069 ++startp;
1071 #endif
1072 startp += lead_zero + decimal_len;
1073 assert (lead_zero <= (base == 16
1074 ? (uintmax_t) INTMAX_MAX / 4
1075 : (uintmax_t) INTMAX_MAX));
1076 assert (lead_zero <= (base == 16
1077 ? ((uintmax_t) exponent
1078 - (uintmax_t) INTMAX_MIN) / 4
1079 : ((uintmax_t) exponent - (uintmax_t) INTMAX_MIN)));
1080 exponent -= base == 16 ? 4 * (intmax_t) lead_zero : (intmax_t) lead_zero;
1081 dig_no -= lead_zero;
1084 /* If the BASE is 16 we can use a simpler algorithm. */
1085 if (base == 16)
1087 static const int nbits[16] = { 0, 1, 2, 2, 3, 3, 3, 3,
1088 4, 4, 4, 4, 4, 4, 4, 4 };
1089 int idx = (MANT_DIG - 1) / BITS_PER_MP_LIMB;
1090 int pos = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
1091 mp_limb_t val;
1093 while (!ISXDIGIT (*startp))
1094 ++startp;
1095 while (*startp == L_('0'))
1096 ++startp;
1097 if (ISDIGIT (*startp))
1098 val = *startp++ - L_('0');
1099 else
1100 val = 10 + TOLOWER (*startp++) - L_('a');
1101 bits = nbits[val];
1102 /* We cannot have a leading zero. */
1103 assert (bits != 0);
1105 if (pos + 1 >= 4 || pos + 1 >= bits)
1107 /* We don't have to care for wrapping. This is the normal
1108 case so we add the first clause in the `if' expression as
1109 an optimization. It is a compile-time constant and so does
1110 not cost anything. */
1111 retval[idx] = val << (pos - bits + 1);
1112 pos -= bits;
1114 else
1116 retval[idx--] = val >> (bits - pos - 1);
1117 retval[idx] = val << (BITS_PER_MP_LIMB - (bits - pos - 1));
1118 pos = BITS_PER_MP_LIMB - 1 - (bits - pos - 1);
1121 /* Adjust the exponent for the bits we are shifting in. */
1122 assert (int_no <= (uintmax_t) (exponent < 0
1123 ? (INTMAX_MAX - bits + 1) / 4
1124 : (INTMAX_MAX - exponent - bits + 1) / 4));
1125 exponent += bits - 1 + ((intmax_t) int_no - 1) * 4;
1127 while (--dig_no > 0 && idx >= 0)
1129 if (!ISXDIGIT (*startp))
1130 startp += decimal_len;
1131 if (ISDIGIT (*startp))
1132 val = *startp++ - L_('0');
1133 else
1134 val = 10 + TOLOWER (*startp++) - L_('a');
1136 if (pos + 1 >= 4)
1138 retval[idx] |= val << (pos - 4 + 1);
1139 pos -= 4;
1141 else
1143 retval[idx--] |= val >> (4 - pos - 1);
1144 val <<= BITS_PER_MP_LIMB - (4 - pos - 1);
1145 if (idx < 0)
1147 int rest_nonzero = 0;
1148 while (--dig_no > 0)
1150 if (*startp != L_('0'))
1152 rest_nonzero = 1;
1153 break;
1155 startp++;
1157 return round_and_return (retval, exponent, negative, val,
1158 BITS_PER_MP_LIMB - 1, rest_nonzero);
1161 retval[idx] = val;
1162 pos = BITS_PER_MP_LIMB - 1 - (4 - pos - 1);
1166 /* We ran out of digits. */
1167 MPN_ZERO (retval, idx);
1169 return round_and_return (retval, exponent, negative, 0, 0, 0);
1172 /* Now we have the number of digits in total and the integer digits as well
1173 as the exponent and its sign. We can decide whether the read digits are
1174 really integer digits or belong to the fractional part; i.e. we normalize
1175 123e-2 to 1.23. */
1177 intmax_t incr = (exponent < 0
1178 ? MAX (-(intmax_t) int_no, exponent)
1179 : MIN ((intmax_t) dig_no - (intmax_t) int_no, exponent));
1180 int_no += incr;
1181 exponent -= incr;
1184 if (__glibc_unlikely (exponent > MAX_10_EXP + 1 - (intmax_t) int_no))
1185 return overflow_value (negative);
1187 if (__glibc_unlikely (exponent < MIN_10_EXP - (DIG + 1)))
1188 return underflow_value (negative);
1190 if (int_no > 0)
1192 /* Read the integer part as a multi-precision number to NUM. */
1193 startp = str_to_mpn (startp, int_no, num, &numsize, &exponent
1194 #ifndef USE_WIDE_CHAR
1195 , decimal, decimal_len, thousands
1196 #endif
1199 if (exponent > 0)
1201 /* We now multiply the gained number by the given power of ten. */
1202 mp_limb_t *psrc = num;
1203 mp_limb_t *pdest = den;
1204 int expbit = 1;
1205 const struct mp_power *ttab = &_fpioconst_pow10[0];
1209 if ((exponent & expbit) != 0)
1211 size_t size = ttab->arraysize - _FPIO_CONST_OFFSET;
1212 mp_limb_t cy;
1213 exponent ^= expbit;
1215 /* FIXME: not the whole multiplication has to be
1216 done. If we have the needed number of bits we
1217 only need the information whether more non-zero
1218 bits follow. */
1219 if (numsize >= ttab->arraysize - _FPIO_CONST_OFFSET)
1220 cy = __mpn_mul (pdest, psrc, numsize,
1221 &__tens[ttab->arrayoff
1222 + _FPIO_CONST_OFFSET],
1223 size);
1224 else
1225 cy = __mpn_mul (pdest, &__tens[ttab->arrayoff
1226 + _FPIO_CONST_OFFSET],
1227 size, psrc, numsize);
1228 numsize += size;
1229 if (cy == 0)
1230 --numsize;
1231 (void) SWAP (psrc, pdest);
1233 expbit <<= 1;
1234 ++ttab;
1236 while (exponent != 0);
1238 if (psrc == den)
1239 memcpy (num, den, numsize * sizeof (mp_limb_t));
1242 /* Determine how many bits of the result we already have. */
1243 count_leading_zeros (bits, num[numsize - 1]);
1244 bits = numsize * BITS_PER_MP_LIMB - bits;
1246 /* Now we know the exponent of the number in base two.
1247 Check it against the maximum possible exponent. */
1248 if (__glibc_unlikely (bits > MAX_EXP))
1249 return overflow_value (negative);
1251 /* We have already the first BITS bits of the result. Together with
1252 the information whether more non-zero bits follow this is enough
1253 to determine the result. */
1254 if (bits > MANT_DIG)
1256 int i;
1257 const mp_size_t least_idx = (bits - MANT_DIG) / BITS_PER_MP_LIMB;
1258 const mp_size_t least_bit = (bits - MANT_DIG) % BITS_PER_MP_LIMB;
1259 const mp_size_t round_idx = least_bit == 0 ? least_idx - 1
1260 : least_idx;
1261 const mp_size_t round_bit = least_bit == 0 ? BITS_PER_MP_LIMB - 1
1262 : least_bit - 1;
1264 if (least_bit == 0)
1265 memcpy (retval, &num[least_idx],
1266 RETURN_LIMB_SIZE * sizeof (mp_limb_t));
1267 else
1269 for (i = least_idx; i < numsize - 1; ++i)
1270 retval[i - least_idx] = (num[i] >> least_bit)
1271 | (num[i + 1]
1272 << (BITS_PER_MP_LIMB - least_bit));
1273 if (i - least_idx < RETURN_LIMB_SIZE)
1274 retval[RETURN_LIMB_SIZE - 1] = num[i] >> least_bit;
1277 /* Check whether any limb beside the ones in RETVAL are non-zero. */
1278 for (i = 0; num[i] == 0; ++i)
1281 return round_and_return (retval, bits - 1, negative,
1282 num[round_idx], round_bit,
1283 int_no < dig_no || i < round_idx);
1284 /* NOTREACHED */
1286 else if (dig_no == int_no)
1288 const mp_size_t target_bit = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
1289 const mp_size_t is_bit = (bits - 1) % BITS_PER_MP_LIMB;
1291 if (target_bit == is_bit)
1293 memcpy (&retval[RETURN_LIMB_SIZE - numsize], num,
1294 numsize * sizeof (mp_limb_t));
1295 /* FIXME: the following loop can be avoided if we assume a
1296 maximal MANT_DIG value. */
1297 MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize);
1299 else if (target_bit > is_bit)
1301 (void) __mpn_lshift (&retval[RETURN_LIMB_SIZE - numsize],
1302 num, numsize, target_bit - is_bit);
1303 /* FIXME: the following loop can be avoided if we assume a
1304 maximal MANT_DIG value. */
1305 MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize);
1307 else
1309 mp_limb_t cy;
1310 assert (numsize < RETURN_LIMB_SIZE);
1312 cy = __mpn_rshift (&retval[RETURN_LIMB_SIZE - numsize],
1313 num, numsize, is_bit - target_bit);
1314 retval[RETURN_LIMB_SIZE - numsize - 1] = cy;
1315 /* FIXME: the following loop can be avoided if we assume a
1316 maximal MANT_DIG value. */
1317 MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize - 1);
1320 return round_and_return (retval, bits - 1, negative, 0, 0, 0);
1321 /* NOTREACHED */
1324 /* Store the bits we already have. */
1325 memcpy (retval, num, numsize * sizeof (mp_limb_t));
1326 #if RETURN_LIMB_SIZE > 1
1327 if (numsize < RETURN_LIMB_SIZE)
1328 # if RETURN_LIMB_SIZE == 2
1329 retval[numsize] = 0;
1330 # else
1331 MPN_ZERO (retval + numsize, RETURN_LIMB_SIZE - numsize);
1332 # endif
1333 #endif
1336 /* We have to compute at least some of the fractional digits. */
1338 /* We construct a fraction and the result of the division gives us
1339 the needed digits. The denominator is 1.0 multiplied by the
1340 exponent of the lowest digit; i.e. 0.123 gives 123 / 1000 and
1341 123e-6 gives 123 / 1000000. */
1343 int expbit;
1344 int neg_exp;
1345 int more_bits;
1346 int need_frac_digits;
1347 mp_limb_t cy;
1348 mp_limb_t *psrc = den;
1349 mp_limb_t *pdest = num;
1350 const struct mp_power *ttab = &_fpioconst_pow10[0];
1352 assert (dig_no > int_no
1353 && exponent <= 0
1354 && exponent >= MIN_10_EXP - (DIG + 1));
1356 /* We need to compute MANT_DIG - BITS fractional bits that lie
1357 within the mantissa of the result, the following bit for
1358 rounding, and to know whether any subsequent bit is 0.
1359 Computing a bit with value 2^-n means looking at n digits after
1360 the decimal point. */
1361 if (bits > 0)
1363 /* The bits required are those immediately after the point. */
1364 assert (int_no > 0 && exponent == 0);
1365 need_frac_digits = 1 + MANT_DIG - bits;
1367 else
1369 /* The number is in the form .123eEXPONENT. */
1370 assert (int_no == 0 && *startp != L_('0'));
1371 /* The number is at least 10^(EXPONENT-1), and 10^3 <
1372 2^10. */
1373 int neg_exp_2 = ((1 - exponent) * 10) / 3 + 1;
1374 /* The number is at least 2^-NEG_EXP_2. We need up to
1375 MANT_DIG bits following that bit. */
1376 need_frac_digits = neg_exp_2 + MANT_DIG;
1377 /* However, we never need bits beyond 1/4 ulp of the smallest
1378 representable value. (That 1/4 ulp bit is only needed to
1379 determine tinyness on machines where tinyness is determined
1380 after rounding.) */
1381 if (need_frac_digits > MANT_DIG - MIN_EXP + 2)
1382 need_frac_digits = MANT_DIG - MIN_EXP + 2;
1383 /* At this point, NEED_FRAC_DIGITS is the total number of
1384 digits needed after the point, but some of those may be
1385 leading 0s. */
1386 need_frac_digits += exponent;
1387 /* Any cases underflowing enough that none of the fractional
1388 digits are needed should have been caught earlier (such
1389 cases are on the order of 10^-n or smaller where 2^-n is
1390 the least subnormal). */
1391 assert (need_frac_digits > 0);
1394 if (need_frac_digits > (intmax_t) dig_no - (intmax_t) int_no)
1395 need_frac_digits = (intmax_t) dig_no - (intmax_t) int_no;
1397 if ((intmax_t) dig_no > (intmax_t) int_no + need_frac_digits)
1399 dig_no = int_no + need_frac_digits;
1400 more_bits = 1;
1402 else
1403 more_bits = 0;
1405 neg_exp = (intmax_t) dig_no - (intmax_t) int_no - exponent;
1407 /* Construct the denominator. */
1408 densize = 0;
1409 expbit = 1;
1412 if ((neg_exp & expbit) != 0)
1414 mp_limb_t cy;
1415 neg_exp ^= expbit;
1417 if (densize == 0)
1419 densize = ttab->arraysize - _FPIO_CONST_OFFSET;
1420 memcpy (psrc, &__tens[ttab->arrayoff + _FPIO_CONST_OFFSET],
1421 densize * sizeof (mp_limb_t));
1423 else
1425 cy = __mpn_mul (pdest, &__tens[ttab->arrayoff
1426 + _FPIO_CONST_OFFSET],
1427 ttab->arraysize - _FPIO_CONST_OFFSET,
1428 psrc, densize);
1429 densize += ttab->arraysize - _FPIO_CONST_OFFSET;
1430 if (cy == 0)
1431 --densize;
1432 (void) SWAP (psrc, pdest);
1435 expbit <<= 1;
1436 ++ttab;
1438 while (neg_exp != 0);
1440 if (psrc == num)
1441 memcpy (den, num, densize * sizeof (mp_limb_t));
1443 /* Read the fractional digits from the string. */
1444 (void) str_to_mpn (startp, dig_no - int_no, num, &numsize, &exponent
1445 #ifndef USE_WIDE_CHAR
1446 , decimal, decimal_len, thousands
1447 #endif
1450 /* We now have to shift both numbers so that the highest bit in the
1451 denominator is set. In the same process we copy the numerator to
1452 a high place in the array so that the division constructs the wanted
1453 digits. This is done by a "quasi fix point" number representation.
1455 num: ddddddddddd . 0000000000000000000000
1456 |--- m ---|
1457 den: ddddddddddd n >= m
1458 |--- n ---|
1461 count_leading_zeros (cnt, den[densize - 1]);
1463 if (cnt > 0)
1465 /* Don't call `mpn_shift' with a count of zero since the specification
1466 does not allow this. */
1467 (void) __mpn_lshift (den, den, densize, cnt);
1468 cy = __mpn_lshift (num, num, numsize, cnt);
1469 if (cy != 0)
1470 num[numsize++] = cy;
1473 /* Now we are ready for the division. But it is not necessary to
1474 do a full multi-precision division because we only need a small
1475 number of bits for the result. So we do not use __mpn_divmod
1476 here but instead do the division here by hand and stop whenever
1477 the needed number of bits is reached. The code itself comes
1478 from the GNU MP Library by Torbj\"orn Granlund. */
1480 exponent = bits;
1482 switch (densize)
1484 case 1:
1486 mp_limb_t d, n, quot;
1487 int used = 0;
1489 n = num[0];
1490 d = den[0];
1491 assert (numsize == 1 && n < d);
1495 udiv_qrnnd (quot, n, n, 0, d);
1497 #define got_limb \
1498 if (bits == 0) \
1500 int cnt; \
1501 if (quot == 0) \
1502 cnt = BITS_PER_MP_LIMB; \
1503 else \
1504 count_leading_zeros (cnt, quot); \
1505 exponent -= cnt; \
1506 if (BITS_PER_MP_LIMB - cnt > MANT_DIG) \
1508 used = MANT_DIG + cnt; \
1509 retval[0] = quot >> (BITS_PER_MP_LIMB - used); \
1510 bits = MANT_DIG + 1; \
1512 else \
1514 /* Note that we only clear the second element. */ \
1515 /* The conditional is determined at compile time. */ \
1516 if (RETURN_LIMB_SIZE > 1) \
1517 retval[1] = 0; \
1518 retval[0] = quot; \
1519 bits = -cnt; \
1522 else if (bits + BITS_PER_MP_LIMB <= MANT_DIG) \
1523 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, BITS_PER_MP_LIMB, \
1524 quot); \
1525 else \
1527 used = MANT_DIG - bits; \
1528 if (used > 0) \
1529 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, quot); \
1531 bits += BITS_PER_MP_LIMB
1533 got_limb;
1535 while (bits <= MANT_DIG);
1537 return round_and_return (retval, exponent - 1, negative,
1538 quot, BITS_PER_MP_LIMB - 1 - used,
1539 more_bits || n != 0);
1541 case 2:
1543 mp_limb_t d0, d1, n0, n1;
1544 mp_limb_t quot = 0;
1545 int used = 0;
1547 d0 = den[0];
1548 d1 = den[1];
1550 if (numsize < densize)
1552 if (num[0] >= d1)
1554 /* The numerator of the number occupies fewer bits than
1555 the denominator but the one limb is bigger than the
1556 high limb of the numerator. */
1557 n1 = 0;
1558 n0 = num[0];
1560 else
1562 if (bits <= 0)
1563 exponent -= BITS_PER_MP_LIMB;
1564 else
1566 if (bits + BITS_PER_MP_LIMB <= MANT_DIG)
1567 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE,
1568 BITS_PER_MP_LIMB, 0);
1569 else
1571 used = MANT_DIG - bits;
1572 if (used > 0)
1573 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, 0);
1575 bits += BITS_PER_MP_LIMB;
1577 n1 = num[0];
1578 n0 = 0;
1581 else
1583 n1 = num[1];
1584 n0 = num[0];
1587 while (bits <= MANT_DIG)
1589 mp_limb_t r;
1591 if (n1 == d1)
1593 /* QUOT should be either 111..111 or 111..110. We need
1594 special treatment of this rare case as normal division
1595 would give overflow. */
1596 quot = ~(mp_limb_t) 0;
1598 r = n0 + d1;
1599 if (r < d1) /* Carry in the addition? */
1601 add_ssaaaa (n1, n0, r - d0, 0, 0, d0);
1602 goto have_quot;
1604 n1 = d0 - (d0 != 0);
1605 n0 = -d0;
1607 else
1609 udiv_qrnnd (quot, r, n1, n0, d1);
1610 umul_ppmm (n1, n0, d0, quot);
1613 q_test:
1614 if (n1 > r || (n1 == r && n0 > 0))
1616 /* The estimated QUOT was too large. */
1617 --quot;
1619 sub_ddmmss (n1, n0, n1, n0, 0, d0);
1620 r += d1;
1621 if (r >= d1) /* If not carry, test QUOT again. */
1622 goto q_test;
1624 sub_ddmmss (n1, n0, r, 0, n1, n0);
1626 have_quot:
1627 got_limb;
1630 return round_and_return (retval, exponent - 1, negative,
1631 quot, BITS_PER_MP_LIMB - 1 - used,
1632 more_bits || n1 != 0 || n0 != 0);
1634 default:
1636 int i;
1637 mp_limb_t cy, dX, d1, n0, n1;
1638 mp_limb_t quot = 0;
1639 int used = 0;
1641 dX = den[densize - 1];
1642 d1 = den[densize - 2];
1644 /* The division does not work if the upper limb of the two-limb
1645 numerator is greater than the denominator. */
1646 if (__mpn_cmp (num, &den[densize - numsize], numsize) > 0)
1647 num[numsize++] = 0;
1649 if (numsize < densize)
1651 mp_size_t empty = densize - numsize;
1652 int i;
1654 if (bits <= 0)
1655 exponent -= empty * BITS_PER_MP_LIMB;
1656 else
1658 if (bits + empty * BITS_PER_MP_LIMB <= MANT_DIG)
1660 /* We make a difference here because the compiler
1661 cannot optimize the `else' case that good and
1662 this reflects all currently used FLOAT types
1663 and GMP implementations. */
1664 #if RETURN_LIMB_SIZE <= 2
1665 assert (empty == 1);
1666 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE,
1667 BITS_PER_MP_LIMB, 0);
1668 #else
1669 for (i = RETURN_LIMB_SIZE - 1; i >= empty; --i)
1670 retval[i] = retval[i - empty];
1671 while (i >= 0)
1672 retval[i--] = 0;
1673 #endif
1675 else
1677 used = MANT_DIG - bits;
1678 if (used >= BITS_PER_MP_LIMB)
1680 int i;
1681 (void) __mpn_lshift (&retval[used
1682 / BITS_PER_MP_LIMB],
1683 retval,
1684 (RETURN_LIMB_SIZE
1685 - used / BITS_PER_MP_LIMB),
1686 used % BITS_PER_MP_LIMB);
1687 for (i = used / BITS_PER_MP_LIMB - 1; i >= 0; --i)
1688 retval[i] = 0;
1690 else if (used > 0)
1691 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, 0);
1693 bits += empty * BITS_PER_MP_LIMB;
1695 for (i = numsize; i > 0; --i)
1696 num[i + empty] = num[i - 1];
1697 MPN_ZERO (num, empty + 1);
1699 else
1701 int i;
1702 assert (numsize == densize);
1703 for (i = numsize; i > 0; --i)
1704 num[i] = num[i - 1];
1705 num[0] = 0;
1708 den[densize] = 0;
1709 n0 = num[densize];
1711 while (bits <= MANT_DIG)
1713 if (n0 == dX)
1714 /* This might over-estimate QUOT, but it's probably not
1715 worth the extra code here to find out. */
1716 quot = ~(mp_limb_t) 0;
1717 else
1719 mp_limb_t r;
1721 udiv_qrnnd (quot, r, n0, num[densize - 1], dX);
1722 umul_ppmm (n1, n0, d1, quot);
1724 while (n1 > r || (n1 == r && n0 > num[densize - 2]))
1726 --quot;
1727 r += dX;
1728 if (r < dX) /* I.e. "carry in previous addition?" */
1729 break;
1730 n1 -= n0 < d1;
1731 n0 -= d1;
1735 /* Possible optimization: We already have (q * n0) and (1 * n1)
1736 after the calculation of QUOT. Taking advantage of this, we
1737 could make this loop make two iterations less. */
1739 cy = __mpn_submul_1 (num, den, densize + 1, quot);
1741 if (num[densize] != cy)
1743 cy = __mpn_add_n (num, num, den, densize);
1744 assert (cy != 0);
1745 --quot;
1747 n0 = num[densize] = num[densize - 1];
1748 for (i = densize - 1; i > 0; --i)
1749 num[i] = num[i - 1];
1750 num[0] = 0;
1752 got_limb;
1755 for (i = densize; i >= 0 && num[i] == 0; --i)
1757 return round_and_return (retval, exponent - 1, negative,
1758 quot, BITS_PER_MP_LIMB - 1 - used,
1759 more_bits || i >= 0);
1764 /* NOTREACHED */
1766 #if defined _LIBC && !defined USE_WIDE_CHAR
1767 libc_hidden_def (____STRTOF_INTERNAL)
1768 #endif
1770 /* External user entry point. */
1772 FLOAT
1773 #ifdef weak_function
1774 weak_function
1775 #endif
1776 __STRTOF (nptr, endptr, loc)
1777 const STRING_TYPE *nptr;
1778 STRING_TYPE **endptr;
1779 __locale_t loc;
1781 return ____STRTOF_INTERNAL (nptr, endptr, 0, loc);
1783 #if defined _LIBC
1784 libc_hidden_def (__STRTOF)
1785 libc_hidden_ver (__STRTOF, STRTOF)
1786 #endif
1787 weak_alias (__STRTOF, STRTOF)
1789 #ifdef LONG_DOUBLE_COMPAT
1790 # if LONG_DOUBLE_COMPAT(libc, GLIBC_2_1)
1791 # ifdef USE_WIDE_CHAR
1792 compat_symbol (libc, __wcstod_l, __wcstold_l, GLIBC_2_1);
1793 # else
1794 compat_symbol (libc, __strtod_l, __strtold_l, GLIBC_2_1);
1795 # endif
1796 # endif
1797 # if LONG_DOUBLE_COMPAT(libc, GLIBC_2_3)
1798 # ifdef USE_WIDE_CHAR
1799 compat_symbol (libc, wcstod_l, wcstold_l, GLIBC_2_3);
1800 # else
1801 compat_symbol (libc, strtod_l, strtold_l, GLIBC_2_3);
1802 # endif
1803 # endif
1804 #endif