Consolidate non cancellable read call
[glibc.git] / math / tgmath.h
blob019f072e3ee6407887ecd8d53783f8d51d1b2f67
1 /* Copyright (C) 1997-2017 Free Software Foundation, Inc.
2 This file is part of the GNU C Library.
4 The GNU C Library is free software; you can redistribute it and/or
5 modify it under the terms of the GNU Lesser General Public
6 License as published by the Free Software Foundation; either
7 version 2.1 of the License, or (at your option) any later version.
9 The GNU C Library is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 Lesser General Public License for more details.
14 You should have received a copy of the GNU Lesser General Public
15 License along with the GNU C Library; if not, see
16 <http://www.gnu.org/licenses/>. */
19 * ISO C99 Standard: 7.22 Type-generic math <tgmath.h>
22 #ifndef _TGMATH_H
23 #define _TGMATH_H 1
25 #define __GLIBC_INTERNAL_STARTING_HEADER_IMPLEMENTATION
26 #include <bits/libc-header-start.h>
28 /* Include the needed headers. */
29 #include <bits/floatn.h>
30 #include <math.h>
31 #include <complex.h>
34 /* Since `complex' is currently not really implemented in most C compilers
35 and if it is implemented, the implementations differ. This makes it
36 quite difficult to write a generic implementation of this header. We
37 do not try this for now and instead concentrate only on GNU CC. Once
38 we have more information support for other compilers might follow. */
40 #if __GNUC_PREREQ (2, 7)
42 # ifdef __NO_LONG_DOUBLE_MATH
43 # define __tgml(fct) fct
44 # else
45 # define __tgml(fct) fct ## l
46 # endif
48 /* This is ugly but unless gcc gets appropriate builtins we have to do
49 something like this. Don't ask how it works. */
51 /* 1 if 'type' is a floating type, 0 if 'type' is an integer type.
52 Allows for _Bool. Expands to an integer constant expression. */
53 # if __GNUC_PREREQ (3, 1)
54 # define __floating_type(type) \
55 (__builtin_classify_type ((type) 0) == 8 \
56 || (__builtin_classify_type ((type) 0) == 9 \
57 && __builtin_classify_type (__real__ ((type) 0)) == 8))
58 # else
59 # define __floating_type(type) (((type) 0.25) && ((type) 0.25 - 1))
60 # endif
62 /* The tgmath real type for T, where E is 0 if T is an integer type and
63 1 for a floating type. */
64 # define __tgmath_real_type_sub(T, E) \
65 __typeof__ (*(0 ? (__typeof__ (0 ? (double *) 0 : (void *) (E))) 0 \
66 : (__typeof__ (0 ? (T *) 0 : (void *) (!(E)))) 0))
68 /* The tgmath real type of EXPR. */
69 # define __tgmath_real_type(expr) \
70 __tgmath_real_type_sub (__typeof__ ((__typeof__ (+(expr))) 0), \
71 __floating_type (__typeof__ (+(expr))))
73 /* Expand to text that checks if ARG_COMB has type _Float128, and if
74 so calls the appropriately suffixed FCT (which may include a cast),
75 or FCT and CFCT for complex functions, with arguments ARG_CALL. */
76 # if __HAVE_FLOAT128 && __GLIBC_USE (IEC_60559_TYPES_EXT)
77 # define __TGMATH_F128(arg_comb, fct, arg_call) \
78 __builtin_types_compatible_p (__typeof (+(arg_comb)), _Float128) \
79 ? fct ## f128 arg_call :
80 # define __TGMATH_CF128(arg_comb, fct, cfct, arg_call) \
81 __builtin_types_compatible_p (__typeof (+__real__ (arg_comb)), _Float128) \
82 ? (sizeof (+__real__ (arg_comb)) == sizeof (+(arg_comb)) \
83 ? fct ## f128 arg_call \
84 : cfct ## f128 arg_call) :
85 # else
86 # define __TGMATH_F128(arg_comb, fct, arg_call) /* Nothing. */
87 # define __TGMATH_CF128(arg_comb, fct, cfct, arg_call) /* Nothing. */
88 # endif
91 /* We have two kinds of generic macros: to support functions which are
92 only defined on real valued parameters and those which are defined
93 for complex functions as well. */
94 # define __TGMATH_UNARY_REAL_ONLY(Val, Fct) \
95 (__extension__ ((sizeof (+(Val)) == sizeof (double) \
96 || __builtin_classify_type (Val) != 8) \
97 ? (__tgmath_real_type (Val)) Fct (Val) \
98 : (sizeof (+(Val)) == sizeof (float)) \
99 ? (__tgmath_real_type (Val)) Fct##f (Val) \
100 : __TGMATH_F128 ((Val), (__tgmath_real_type (Val)) Fct, \
101 (Val)) \
102 (__tgmath_real_type (Val)) __tgml(Fct) (Val)))
104 # define __TGMATH_UNARY_REAL_RET_ONLY(Val, Fct) \
105 (__extension__ ((sizeof (+(Val)) == sizeof (double) \
106 || __builtin_classify_type (Val) != 8) \
107 ? Fct (Val) \
108 : (sizeof (+(Val)) == sizeof (float)) \
109 ? Fct##f (Val) \
110 : __TGMATH_F128 ((Val), Fct, (Val)) \
111 __tgml(Fct) (Val)))
113 # define __TGMATH_BINARY_FIRST_REAL_ONLY(Val1, Val2, Fct) \
114 (__extension__ ((sizeof (+(Val1)) == sizeof (double) \
115 || __builtin_classify_type (Val1) != 8) \
116 ? (__tgmath_real_type (Val1)) Fct (Val1, Val2) \
117 : (sizeof (+(Val1)) == sizeof (float)) \
118 ? (__tgmath_real_type (Val1)) Fct##f (Val1, Val2) \
119 : __TGMATH_F128 ((Val1), (__tgmath_real_type (Val1)) Fct, \
120 (Val1, Val2)) \
121 (__tgmath_real_type (Val1)) __tgml(Fct) (Val1, Val2)))
123 # define __TGMATH_BINARY_FIRST_REAL_STD_ONLY(Val1, Val2, Fct) \
124 (__extension__ ((sizeof (+(Val1)) == sizeof (double) \
125 || __builtin_classify_type (Val1) != 8) \
126 ? (__tgmath_real_type (Val1)) Fct (Val1, Val2) \
127 : (sizeof (+(Val1)) == sizeof (float)) \
128 ? (__tgmath_real_type (Val1)) Fct##f (Val1, Val2) \
129 : (__tgmath_real_type (Val1)) __tgml(Fct) (Val1, Val2)))
131 # define __TGMATH_BINARY_REAL_ONLY(Val1, Val2, Fct) \
132 (__extension__ ((sizeof ((Val1) + (Val2)) > sizeof (double) \
133 && __builtin_classify_type ((Val1) + (Val2)) == 8) \
134 ? __TGMATH_F128 ((Val1) + (Val2), \
135 (__typeof \
136 ((__tgmath_real_type (Val1)) 0 \
137 + (__tgmath_real_type (Val2)) 0)) Fct, \
138 (Val1, Val2)) \
139 (__typeof ((__tgmath_real_type (Val1)) 0 \
140 + (__tgmath_real_type (Val2)) 0)) \
141 __tgml(Fct) (Val1, Val2) \
142 : (sizeof (+(Val1)) == sizeof (double) \
143 || sizeof (+(Val2)) == sizeof (double) \
144 || __builtin_classify_type (Val1) != 8 \
145 || __builtin_classify_type (Val2) != 8) \
146 ? (__typeof ((__tgmath_real_type (Val1)) 0 \
147 + (__tgmath_real_type (Val2)) 0)) \
148 Fct (Val1, Val2) \
149 : (__typeof ((__tgmath_real_type (Val1)) 0 \
150 + (__tgmath_real_type (Val2)) 0)) \
151 Fct##f (Val1, Val2)))
153 # define __TGMATH_BINARY_REAL_STD_ONLY(Val1, Val2, Fct) \
154 (__extension__ ((sizeof ((Val1) + (Val2)) > sizeof (double) \
155 && __builtin_classify_type ((Val1) + (Val2)) == 8) \
156 ? (__typeof ((__tgmath_real_type (Val1)) 0 \
157 + (__tgmath_real_type (Val2)) 0)) \
158 __tgml(Fct) (Val1, Val2) \
159 : (sizeof (+(Val1)) == sizeof (double) \
160 || sizeof (+(Val2)) == sizeof (double) \
161 || __builtin_classify_type (Val1) != 8 \
162 || __builtin_classify_type (Val2) != 8) \
163 ? (__typeof ((__tgmath_real_type (Val1)) 0 \
164 + (__tgmath_real_type (Val2)) 0)) \
165 Fct (Val1, Val2) \
166 : (__typeof ((__tgmath_real_type (Val1)) 0 \
167 + (__tgmath_real_type (Val2)) 0)) \
168 Fct##f (Val1, Val2)))
170 # define __TGMATH_BINARY_REAL_RET_ONLY(Val1, Val2, Fct) \
171 (__extension__ ((sizeof ((Val1) + (Val2)) > sizeof (double) \
172 && __builtin_classify_type ((Val1) + (Val2)) == 8) \
173 ? __TGMATH_F128 ((Val1) + (Val2), Fct, (Val1, Val2)) \
174 __tgml(Fct) (Val1, Val2) \
175 : (sizeof (+(Val1)) == sizeof (double) \
176 || sizeof (+(Val2)) == sizeof (double) \
177 || __builtin_classify_type (Val1) != 8 \
178 || __builtin_classify_type (Val2) != 8) \
179 ? Fct (Val1, Val2) \
180 : Fct##f (Val1, Val2)))
182 # define __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY(Val1, Val2, Val3, Fct) \
183 (__extension__ ((sizeof ((Val1) + (Val2)) > sizeof (double) \
184 && __builtin_classify_type ((Val1) + (Val2)) == 8) \
185 ? __TGMATH_F128 ((Val1) + (Val2), \
186 (__typeof \
187 ((__tgmath_real_type (Val1)) 0 \
188 + (__tgmath_real_type (Val2)) 0)) Fct, \
189 (Val1, Val2, Val3)) \
190 (__typeof ((__tgmath_real_type (Val1)) 0 \
191 + (__tgmath_real_type (Val2)) 0)) \
192 __tgml(Fct) (Val1, Val2, Val3) \
193 : (sizeof (+(Val1)) == sizeof (double) \
194 || sizeof (+(Val2)) == sizeof (double) \
195 || __builtin_classify_type (Val1) != 8 \
196 || __builtin_classify_type (Val2) != 8) \
197 ? (__typeof ((__tgmath_real_type (Val1)) 0 \
198 + (__tgmath_real_type (Val2)) 0)) \
199 Fct (Val1, Val2, Val3) \
200 : (__typeof ((__tgmath_real_type (Val1)) 0 \
201 + (__tgmath_real_type (Val2)) 0)) \
202 Fct##f (Val1, Val2, Val3)))
204 # define __TGMATH_TERNARY_REAL_ONLY(Val1, Val2, Val3, Fct) \
205 (__extension__ ((sizeof ((Val1) + (Val2) + (Val3)) > sizeof (double) \
206 && __builtin_classify_type ((Val1) + (Val2) + (Val3)) \
207 == 8) \
208 ? __TGMATH_F128 ((Val1) + (Val2) + (Val3), \
209 (__typeof \
210 ((__tgmath_real_type (Val1)) 0 \
211 + (__tgmath_real_type (Val2)) 0 \
212 + (__tgmath_real_type (Val3)) 0)) Fct, \
213 (Val1, Val2, Val3)) \
214 (__typeof ((__tgmath_real_type (Val1)) 0 \
215 + (__tgmath_real_type (Val2)) 0 \
216 + (__tgmath_real_type (Val3)) 0)) \
217 __tgml(Fct) (Val1, Val2, Val3) \
218 : (sizeof (+(Val1)) == sizeof (double) \
219 || sizeof (+(Val2)) == sizeof (double) \
220 || sizeof (+(Val3)) == sizeof (double) \
221 || __builtin_classify_type (Val1) != 8 \
222 || __builtin_classify_type (Val2) != 8 \
223 || __builtin_classify_type (Val3) != 8) \
224 ? (__typeof ((__tgmath_real_type (Val1)) 0 \
225 + (__tgmath_real_type (Val2)) 0 \
226 + (__tgmath_real_type (Val3)) 0)) \
227 Fct (Val1, Val2, Val3) \
228 : (__typeof ((__tgmath_real_type (Val1)) 0 \
229 + (__tgmath_real_type (Val2)) 0 \
230 + (__tgmath_real_type (Val3)) 0)) \
231 Fct##f (Val1, Val2, Val3)))
233 # define __TGMATH_TERNARY_FIRST_REAL_RET_ONLY(Val1, Val2, Val3, Fct) \
234 (__extension__ ((sizeof (+(Val1)) == sizeof (double) \
235 || __builtin_classify_type (Val1) != 8) \
236 ? Fct (Val1, Val2, Val3) \
237 : (sizeof (+(Val1)) == sizeof (float)) \
238 ? Fct##f (Val1, Val2, Val3) \
239 : __TGMATH_F128 ((Val1), Fct, (Val1, Val2, Val3)) \
240 __tgml(Fct) (Val1, Val2, Val3)))
242 /* XXX This definition has to be changed as soon as the compiler understands
243 the imaginary keyword. */
244 # define __TGMATH_UNARY_REAL_IMAG(Val, Fct, Cfct) \
245 (__extension__ ((sizeof (+__real__ (Val)) == sizeof (double) \
246 || __builtin_classify_type (__real__ (Val)) != 8) \
247 ? ((sizeof (+__real__ (Val)) == sizeof (+(Val))) \
248 ? (__tgmath_real_type (Val)) Fct (Val) \
249 : (__tgmath_real_type (Val)) Cfct (Val)) \
250 : (sizeof (+__real__ (Val)) == sizeof (float)) \
251 ? ((sizeof (+__real__ (Val)) == sizeof (+(Val))) \
252 ? (__tgmath_real_type (Val)) Fct##f (Val) \
253 : (__tgmath_real_type (Val)) Cfct##f (Val)) \
254 : __TGMATH_CF128 ((Val), (__tgmath_real_type (Val)) Fct, \
255 (__tgmath_real_type (Val)) Cfct, \
256 (Val)) \
257 ((sizeof (+__real__ (Val)) == sizeof (+(Val))) \
258 ? (__tgmath_real_type (Val)) __tgml(Fct) (Val) \
259 : (__tgmath_real_type (Val)) __tgml(Cfct) (Val))))
261 # define __TGMATH_UNARY_IMAG(Val, Cfct) \
262 (__extension__ ((sizeof (+__real__ (Val)) == sizeof (double) \
263 || __builtin_classify_type (__real__ (Val)) != 8) \
264 ? (__typeof__ ((__tgmath_real_type (Val)) 0 \
265 + _Complex_I)) Cfct (Val) \
266 : (sizeof (+__real__ (Val)) == sizeof (float)) \
267 ? (__typeof__ ((__tgmath_real_type (Val)) 0 \
268 + _Complex_I)) Cfct##f (Val) \
269 : __TGMATH_F128 (__real__ (Val), \
270 (__typeof__ \
271 ((__tgmath_real_type (Val)) 0 \
272 + _Complex_I)) Cfct, (Val)) \
273 (__typeof__ ((__tgmath_real_type (Val)) 0 \
274 + _Complex_I)) __tgml(Cfct) (Val)))
276 /* XXX This definition has to be changed as soon as the compiler understands
277 the imaginary keyword. */
278 # define __TGMATH_UNARY_REAL_IMAG_RET_REAL(Val, Fct, Cfct) \
279 (__extension__ ((sizeof (+__real__ (Val)) == sizeof (double) \
280 || __builtin_classify_type (__real__ (Val)) != 8) \
281 ? ((sizeof (+__real__ (Val)) == sizeof (+(Val))) \
282 ? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
283 Fct (Val) \
284 : (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
285 Cfct (Val)) \
286 : (sizeof (+__real__ (Val)) == sizeof (float)) \
287 ? ((sizeof (+__real__ (Val)) == sizeof (+(Val))) \
288 ? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
289 Fct##f (Val) \
290 : (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
291 Cfct##f (Val)) \
292 : __TGMATH_CF128 ((Val), \
293 (__typeof__ \
294 (__real__ \
295 (__tgmath_real_type (Val)) 0)) Fct, \
296 (__typeof__ \
297 (__real__ \
298 (__tgmath_real_type (Val)) 0)) Cfct, \
299 (Val)) \
300 ((sizeof (+__real__ (Val)) == sizeof (+(Val))) \
301 ? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0)) \
302 __tgml(Fct) (Val) \
303 : (__typeof__ (__real__ (__tgmath_real_type (Val)) 0)) \
304 __tgml(Cfct) (Val))))
306 /* XXX This definition has to be changed as soon as the compiler understands
307 the imaginary keyword. */
308 # define __TGMATH_BINARY_REAL_IMAG(Val1, Val2, Fct, Cfct) \
309 (__extension__ ((sizeof (__real__ (Val1) \
310 + __real__ (Val2)) > sizeof (double) \
311 && __builtin_classify_type (__real__ (Val1) \
312 + __real__ (Val2)) == 8) \
313 ? __TGMATH_CF128 ((Val1) + (Val2), \
314 (__typeof \
315 ((__tgmath_real_type (Val1)) 0 \
316 + (__tgmath_real_type (Val2)) 0)) \
317 Fct, \
318 (__typeof \
319 ((__tgmath_real_type (Val1)) 0 \
320 + (__tgmath_real_type (Val2)) 0)) \
321 Cfct, \
322 (Val1, Val2)) \
323 ((sizeof (+__real__ (Val1)) == sizeof (+(Val1)) \
324 && sizeof (+__real__ (Val2)) == sizeof (+(Val2))) \
325 ? (__typeof ((__tgmath_real_type (Val1)) 0 \
326 + (__tgmath_real_type (Val2)) 0)) \
327 __tgml(Fct) (Val1, Val2) \
328 : (__typeof ((__tgmath_real_type (Val1)) 0 \
329 + (__tgmath_real_type (Val2)) 0)) \
330 __tgml(Cfct) (Val1, Val2)) \
331 : (sizeof (+__real__ (Val1)) == sizeof (double) \
332 || sizeof (+__real__ (Val2)) == sizeof (double) \
333 || __builtin_classify_type (__real__ (Val1)) != 8 \
334 || __builtin_classify_type (__real__ (Val2)) != 8) \
335 ? ((sizeof (+__real__ (Val1)) == sizeof (+(Val1)) \
336 && sizeof (+__real__ (Val2)) == sizeof (+(Val2))) \
337 ? (__typeof ((__tgmath_real_type (Val1)) 0 \
338 + (__tgmath_real_type (Val2)) 0)) \
339 Fct (Val1, Val2) \
340 : (__typeof ((__tgmath_real_type (Val1)) 0 \
341 + (__tgmath_real_type (Val2)) 0)) \
342 Cfct (Val1, Val2)) \
343 : ((sizeof (+__real__ (Val1)) == sizeof (+(Val1)) \
344 && sizeof (+__real__ (Val2)) == sizeof (+(Val2))) \
345 ? (__typeof ((__tgmath_real_type (Val1)) 0 \
346 + (__tgmath_real_type (Val2)) 0)) \
347 Fct##f (Val1, Val2) \
348 : (__typeof ((__tgmath_real_type (Val1)) 0 \
349 + (__tgmath_real_type (Val2)) 0)) \
350 Cfct##f (Val1, Val2))))
351 #else
352 # error "Unsupported compiler; you cannot use <tgmath.h>"
353 #endif
356 /* Unary functions defined for real and complex values. */
359 /* Trigonometric functions. */
361 /* Arc cosine of X. */
362 #define acos(Val) __TGMATH_UNARY_REAL_IMAG (Val, acos, cacos)
363 /* Arc sine of X. */
364 #define asin(Val) __TGMATH_UNARY_REAL_IMAG (Val, asin, casin)
365 /* Arc tangent of X. */
366 #define atan(Val) __TGMATH_UNARY_REAL_IMAG (Val, atan, catan)
367 /* Arc tangent of Y/X. */
368 #define atan2(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, atan2)
370 /* Cosine of X. */
371 #define cos(Val) __TGMATH_UNARY_REAL_IMAG (Val, cos, ccos)
372 /* Sine of X. */
373 #define sin(Val) __TGMATH_UNARY_REAL_IMAG (Val, sin, csin)
374 /* Tangent of X. */
375 #define tan(Val) __TGMATH_UNARY_REAL_IMAG (Val, tan, ctan)
378 /* Hyperbolic functions. */
380 /* Hyperbolic arc cosine of X. */
381 #define acosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, acosh, cacosh)
382 /* Hyperbolic arc sine of X. */
383 #define asinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, asinh, casinh)
384 /* Hyperbolic arc tangent of X. */
385 #define atanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, atanh, catanh)
387 /* Hyperbolic cosine of X. */
388 #define cosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, cosh, ccosh)
389 /* Hyperbolic sine of X. */
390 #define sinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, sinh, csinh)
391 /* Hyperbolic tangent of X. */
392 #define tanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, tanh, ctanh)
395 /* Exponential and logarithmic functions. */
397 /* Exponential function of X. */
398 #define exp(Val) __TGMATH_UNARY_REAL_IMAG (Val, exp, cexp)
400 /* Break VALUE into a normalized fraction and an integral power of 2. */
401 #define frexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, frexp)
403 /* X times (two to the EXP power). */
404 #define ldexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, ldexp)
406 /* Natural logarithm of X. */
407 #define log(Val) __TGMATH_UNARY_REAL_IMAG (Val, log, clog)
409 /* Base-ten logarithm of X. */
410 #ifdef __USE_GNU
411 # define log10(Val) __TGMATH_UNARY_REAL_IMAG (Val, log10, clog10)
412 #else
413 # define log10(Val) __TGMATH_UNARY_REAL_ONLY (Val, log10)
414 #endif
416 /* Return exp(X) - 1. */
417 #define expm1(Val) __TGMATH_UNARY_REAL_ONLY (Val, expm1)
419 /* Return log(1 + X). */
420 #define log1p(Val) __TGMATH_UNARY_REAL_ONLY (Val, log1p)
422 /* Return the base 2 signed integral exponent of X. */
423 #define logb(Val) __TGMATH_UNARY_REAL_ONLY (Val, logb)
425 /* Compute base-2 exponential of X. */
426 #define exp2(Val) __TGMATH_UNARY_REAL_ONLY (Val, exp2)
428 /* Compute base-2 logarithm of X. */
429 #define log2(Val) __TGMATH_UNARY_REAL_ONLY (Val, log2)
432 /* Power functions. */
434 /* Return X to the Y power. */
435 #define pow(Val1, Val2) __TGMATH_BINARY_REAL_IMAG (Val1, Val2, pow, cpow)
437 /* Return the square root of X. */
438 #define sqrt(Val) __TGMATH_UNARY_REAL_IMAG (Val, sqrt, csqrt)
440 /* Return `sqrt(X*X + Y*Y)'. */
441 #define hypot(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, hypot)
443 /* Return the cube root of X. */
444 #define cbrt(Val) __TGMATH_UNARY_REAL_ONLY (Val, cbrt)
447 /* Nearest integer, absolute value, and remainder functions. */
449 /* Smallest integral value not less than X. */
450 #define ceil(Val) __TGMATH_UNARY_REAL_ONLY (Val, ceil)
452 /* Absolute value of X. */
453 #define fabs(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, fabs, cabs)
455 /* Largest integer not greater than X. */
456 #define floor(Val) __TGMATH_UNARY_REAL_ONLY (Val, floor)
458 /* Floating-point modulo remainder of X/Y. */
459 #define fmod(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmod)
461 /* Round X to integral valuein floating-point format using current
462 rounding direction, but do not raise inexact exception. */
463 #define nearbyint(Val) __TGMATH_UNARY_REAL_ONLY (Val, nearbyint)
465 /* Round X to nearest integral value, rounding halfway cases away from
466 zero. */
467 #define round(Val) __TGMATH_UNARY_REAL_ONLY (Val, round)
469 /* Round X to the integral value in floating-point format nearest but
470 not larger in magnitude. */
471 #define trunc(Val) __TGMATH_UNARY_REAL_ONLY (Val, trunc)
473 /* Compute remainder of X and Y and put in *QUO a value with sign of x/y
474 and magnitude congruent `mod 2^n' to the magnitude of the integral
475 quotient x/y, with n >= 3. */
476 #define remquo(Val1, Val2, Val3) \
477 __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY (Val1, Val2, Val3, remquo)
479 /* Round X to nearest integral value according to current rounding
480 direction. */
481 #define lrint(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, lrint)
482 #define llrint(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, llrint)
484 /* Round X to nearest integral value, rounding halfway cases away from
485 zero. */
486 #define lround(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, lround)
487 #define llround(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, llround)
490 /* Return X with its signed changed to Y's. */
491 #define copysign(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, copysign)
493 /* Error and gamma functions. */
494 #define erf(Val) __TGMATH_UNARY_REAL_ONLY (Val, erf)
495 #define erfc(Val) __TGMATH_UNARY_REAL_ONLY (Val, erfc)
496 #define tgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, tgamma)
497 #define lgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, lgamma)
500 /* Return the integer nearest X in the direction of the
501 prevailing rounding mode. */
502 #define rint(Val) __TGMATH_UNARY_REAL_ONLY (Val, rint)
504 #if __GLIBC_USE (IEC_60559_BFP_EXT)
505 /* Return X - epsilon. */
506 # define nextdown(Val) __TGMATH_UNARY_REAL_ONLY (Val, nextdown)
507 /* Return X + epsilon. */
508 # define nextup(Val) __TGMATH_UNARY_REAL_ONLY (Val, nextup)
509 #endif
511 /* Return X + epsilon if X < Y, X - epsilon if X > Y. */
512 #define nextafter(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, nextafter)
513 #define nexttoward(Val1, Val2) \
514 __TGMATH_BINARY_FIRST_REAL_STD_ONLY (Val1, Val2, nexttoward)
516 /* Return the remainder of integer divison X / Y with infinite precision. */
517 #define remainder(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, remainder)
519 /* Return X times (2 to the Nth power). */
520 #ifdef __USE_MISC
521 # define scalb(Val1, Val2) __TGMATH_BINARY_REAL_STD_ONLY (Val1, Val2, scalb)
522 #endif
524 /* Return X times (2 to the Nth power). */
525 #define scalbn(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbn)
527 /* Return X times (2 to the Nth power). */
528 #define scalbln(Val1, Val2) \
529 __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbln)
531 /* Return the binary exponent of X, which must be nonzero. */
532 #define ilogb(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, ilogb)
535 /* Return positive difference between X and Y. */
536 #define fdim(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fdim)
538 /* Return maximum numeric value from X and Y. */
539 #define fmax(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmax)
541 /* Return minimum numeric value from X and Y. */
542 #define fmin(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmin)
545 /* Multiply-add function computed as a ternary operation. */
546 #define fma(Val1, Val2, Val3) \
547 __TGMATH_TERNARY_REAL_ONLY (Val1, Val2, Val3, fma)
549 #if __GLIBC_USE (IEC_60559_BFP_EXT)
550 /* Round X to nearest integer value, rounding halfway cases to even. */
551 # define roundeven(Val) __TGMATH_UNARY_REAL_ONLY (Val, roundeven)
553 # define fromfp(Val1, Val2, Val3) \
554 __TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, fromfp)
556 # define ufromfp(Val1, Val2, Val3) \
557 __TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, ufromfp)
559 # define fromfpx(Val1, Val2, Val3) \
560 __TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, fromfpx)
562 # define ufromfpx(Val1, Val2, Val3) \
563 __TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, ufromfpx)
565 /* Like ilogb, but returning long int. */
566 # define llogb(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, llogb)
568 /* Return value with maximum magnitude. */
569 # define fmaxmag(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmaxmag)
571 /* Return value with minimum magnitude. */
572 # define fminmag(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fminmag)
574 /* Total order operation. */
575 # define totalorder(Val1, Val2) \
576 __TGMATH_BINARY_REAL_RET_ONLY (Val1, Val2, totalorder)
578 /* Total order operation on absolute values. */
579 # define totalordermag(Val1, Val2) \
580 __TGMATH_BINARY_REAL_RET_ONLY (Val1, Val2, totalordermag)
581 #endif
584 /* Absolute value, conjugates, and projection. */
586 /* Argument value of Z. */
587 #define carg(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, carg, carg)
589 /* Complex conjugate of Z. */
590 #define conj(Val) __TGMATH_UNARY_IMAG (Val, conj)
592 /* Projection of Z onto the Riemann sphere. */
593 #define cproj(Val) __TGMATH_UNARY_IMAG (Val, cproj)
596 /* Decomposing complex values. */
598 /* Imaginary part of Z. */
599 #define cimag(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, cimag, cimag)
601 /* Real part of Z. */
602 #define creal(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, creal, creal)
604 #endif /* tgmath.h */