(gaih_inet): Little code cleanup. Move variable h into gethosts macro.
[glibc.git] / malloc / malloc.c
blob206be503a824bc1742211162120d6c7a150e0d6c
1 /* Malloc implementation for multiple threads without lock contention.
2 Copyright (C) 1996-2002, 2003, 2004 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Wolfram Gloger <wg@malloc.de>
5 and Doug Lea <dl@cs.oswego.edu>, 2001.
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public License as
9 published by the Free Software Foundation; either version 2.1 of the
10 License, or (at your option) any later version.
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Lesser General Public License for more details.
17 You should have received a copy of the GNU Lesser General Public
18 License along with the GNU C Library; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 This is a version (aka ptmalloc2) of malloc/free/realloc written by
24 Doug Lea and adapted to multiple threads/arenas by Wolfram Gloger.
26 * Version ptmalloc2-20011215
27 $Id$
28 based on:
29 VERSION 2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)
31 Note: There may be an updated version of this malloc obtainable at
32 http://www.malloc.de/malloc/ptmalloc2.tar.gz
33 Check before installing!
35 * Quickstart
37 In order to compile this implementation, a Makefile is provided with
38 the ptmalloc2 distribution, which has pre-defined targets for some
39 popular systems (e.g. "make posix" for Posix threads). All that is
40 typically required with regard to compiler flags is the selection of
41 the thread package via defining one out of USE_PTHREADS, USE_THR or
42 USE_SPROC. Check the thread-m.h file for what effects this has.
43 Many/most systems will additionally require USE_TSD_DATA_HACK to be
44 defined, so this is the default for "make posix".
46 * Why use this malloc?
48 This is not the fastest, most space-conserving, most portable, or
49 most tunable malloc ever written. However it is among the fastest
50 while also being among the most space-conserving, portable and tunable.
51 Consistent balance across these factors results in a good general-purpose
52 allocator for malloc-intensive programs.
54 The main properties of the algorithms are:
55 * For large (>= 512 bytes) requests, it is a pure best-fit allocator,
56 with ties normally decided via FIFO (i.e. least recently used).
57 * For small (<= 64 bytes by default) requests, it is a caching
58 allocator, that maintains pools of quickly recycled chunks.
59 * In between, and for combinations of large and small requests, it does
60 the best it can trying to meet both goals at once.
61 * For very large requests (>= 128KB by default), it relies on system
62 memory mapping facilities, if supported.
64 For a longer but slightly out of date high-level description, see
65 http://gee.cs.oswego.edu/dl/html/malloc.html
67 You may already by default be using a C library containing a malloc
68 that is based on some version of this malloc (for example in
69 linux). You might still want to use the one in this file in order to
70 customize settings or to avoid overheads associated with library
71 versions.
73 * Contents, described in more detail in "description of public routines" below.
75 Standard (ANSI/SVID/...) functions:
76 malloc(size_t n);
77 calloc(size_t n_elements, size_t element_size);
78 free(Void_t* p);
79 realloc(Void_t* p, size_t n);
80 memalign(size_t alignment, size_t n);
81 valloc(size_t n);
82 mallinfo()
83 mallopt(int parameter_number, int parameter_value)
85 Additional functions:
86 independent_calloc(size_t n_elements, size_t size, Void_t* chunks[]);
87 independent_comalloc(size_t n_elements, size_t sizes[], Void_t* chunks[]);
88 pvalloc(size_t n);
89 cfree(Void_t* p);
90 malloc_trim(size_t pad);
91 malloc_usable_size(Void_t* p);
92 malloc_stats();
94 * Vital statistics:
96 Supported pointer representation: 4 or 8 bytes
97 Supported size_t representation: 4 or 8 bytes
98 Note that size_t is allowed to be 4 bytes even if pointers are 8.
99 You can adjust this by defining INTERNAL_SIZE_T
101 Alignment: 2 * sizeof(size_t) (default)
102 (i.e., 8 byte alignment with 4byte size_t). This suffices for
103 nearly all current machines and C compilers. However, you can
104 define MALLOC_ALIGNMENT to be wider than this if necessary.
106 Minimum overhead per allocated chunk: 4 or 8 bytes
107 Each malloced chunk has a hidden word of overhead holding size
108 and status information.
110 Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead)
111 8-byte ptrs: 24/32 bytes (including, 4/8 overhead)
113 When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
114 ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
115 needed; 4 (8) for a trailing size field and 8 (16) bytes for
116 free list pointers. Thus, the minimum allocatable size is
117 16/24/32 bytes.
119 Even a request for zero bytes (i.e., malloc(0)) returns a
120 pointer to something of the minimum allocatable size.
122 The maximum overhead wastage (i.e., number of extra bytes
123 allocated than were requested in malloc) is less than or equal
124 to the minimum size, except for requests >= mmap_threshold that
125 are serviced via mmap(), where the worst case wastage is 2 *
126 sizeof(size_t) bytes plus the remainder from a system page (the
127 minimal mmap unit); typically 4096 or 8192 bytes.
129 Maximum allocated size: 4-byte size_t: 2^32 minus about two pages
130 8-byte size_t: 2^64 minus about two pages
132 It is assumed that (possibly signed) size_t values suffice to
133 represent chunk sizes. `Possibly signed' is due to the fact
134 that `size_t' may be defined on a system as either a signed or
135 an unsigned type. The ISO C standard says that it must be
136 unsigned, but a few systems are known not to adhere to this.
137 Additionally, even when size_t is unsigned, sbrk (which is by
138 default used to obtain memory from system) accepts signed
139 arguments, and may not be able to handle size_t-wide arguments
140 with negative sign bit. Generally, values that would
141 appear as negative after accounting for overhead and alignment
142 are supported only via mmap(), which does not have this
143 limitation.
145 Requests for sizes outside the allowed range will perform an optional
146 failure action and then return null. (Requests may also
147 also fail because a system is out of memory.)
149 Thread-safety: thread-safe unless NO_THREADS is defined
151 Compliance: I believe it is compliant with the 1997 Single Unix Specification
152 (See http://www.opennc.org). Also SVID/XPG, ANSI C, and probably
153 others as well.
155 * Synopsis of compile-time options:
157 People have reported using previous versions of this malloc on all
158 versions of Unix, sometimes by tweaking some of the defines
159 below. It has been tested most extensively on Solaris and
160 Linux. It is also reported to work on WIN32 platforms.
161 People also report using it in stand-alone embedded systems.
163 The implementation is in straight, hand-tuned ANSI C. It is not
164 at all modular. (Sorry!) It uses a lot of macros. To be at all
165 usable, this code should be compiled using an optimizing compiler
166 (for example gcc -O3) that can simplify expressions and control
167 paths. (FAQ: some macros import variables as arguments rather than
168 declare locals because people reported that some debuggers
169 otherwise get confused.)
171 OPTION DEFAULT VALUE
173 Compilation Environment options:
175 __STD_C derived from C compiler defines
176 WIN32 NOT defined
177 HAVE_MEMCPY defined
178 USE_MEMCPY 1 if HAVE_MEMCPY is defined
179 HAVE_MMAP defined as 1
180 MMAP_CLEARS 1
181 HAVE_MREMAP 0 unless linux defined
182 USE_ARENAS the same as HAVE_MMAP
183 malloc_getpagesize derived from system #includes, or 4096 if not
184 HAVE_USR_INCLUDE_MALLOC_H NOT defined
185 LACKS_UNISTD_H NOT defined unless WIN32
186 LACKS_SYS_PARAM_H NOT defined unless WIN32
187 LACKS_SYS_MMAN_H NOT defined unless WIN32
189 Changing default word sizes:
191 INTERNAL_SIZE_T size_t
192 MALLOC_ALIGNMENT 2 * sizeof(INTERNAL_SIZE_T)
194 Configuration and functionality options:
196 USE_DL_PREFIX NOT defined
197 USE_PUBLIC_MALLOC_WRAPPERS NOT defined
198 USE_MALLOC_LOCK NOT defined
199 MALLOC_DEBUG NOT defined
200 REALLOC_ZERO_BYTES_FREES 1
201 MALLOC_FAILURE_ACTION errno = ENOMEM, if __STD_C defined, else no-op
202 TRIM_FASTBINS 0
204 Options for customizing MORECORE:
206 MORECORE sbrk
207 MORECORE_FAILURE -1
208 MORECORE_CONTIGUOUS 1
209 MORECORE_CANNOT_TRIM NOT defined
210 MORECORE_CLEARS 1
211 MMAP_AS_MORECORE_SIZE (1024 * 1024)
213 Tuning options that are also dynamically changeable via mallopt:
215 DEFAULT_MXFAST 64
216 DEFAULT_TRIM_THRESHOLD 128 * 1024
217 DEFAULT_TOP_PAD 0
218 DEFAULT_MMAP_THRESHOLD 128 * 1024
219 DEFAULT_MMAP_MAX 65536
221 There are several other #defined constants and macros that you
222 probably don't want to touch unless you are extending or adapting malloc. */
225 __STD_C should be nonzero if using ANSI-standard C compiler, a C++
226 compiler, or a C compiler sufficiently close to ANSI to get away
227 with it.
230 #ifndef __STD_C
231 #if defined(__STDC__) || defined(__cplusplus)
232 #define __STD_C 1
233 #else
234 #define __STD_C 0
235 #endif
236 #endif /*__STD_C*/
240 Void_t* is the pointer type that malloc should say it returns
243 #ifndef Void_t
244 #if (__STD_C || defined(WIN32))
245 #define Void_t void
246 #else
247 #define Void_t char
248 #endif
249 #endif /*Void_t*/
251 #if __STD_C
252 #include <stddef.h> /* for size_t */
253 #include <stdlib.h> /* for getenv(), abort() */
254 #else
255 #include <sys/types.h>
256 #endif
258 #include <malloc-machine.h>
260 #ifdef __cplusplus
261 extern "C" {
262 #endif
264 /* define LACKS_UNISTD_H if your system does not have a <unistd.h>. */
266 /* #define LACKS_UNISTD_H */
268 #ifndef LACKS_UNISTD_H
269 #include <unistd.h>
270 #endif
272 /* define LACKS_SYS_PARAM_H if your system does not have a <sys/param.h>. */
274 /* #define LACKS_SYS_PARAM_H */
277 #include <stdio.h> /* needed for malloc_stats */
278 #include <errno.h> /* needed for optional MALLOC_FAILURE_ACTION */
280 /* For uintptr_t. */
281 #include <stdint.h>
283 /* For va_arg, va_start, va_end. */
284 #include <stdarg.h>
287 Debugging:
289 Because freed chunks may be overwritten with bookkeeping fields, this
290 malloc will often die when freed memory is overwritten by user
291 programs. This can be very effective (albeit in an annoying way)
292 in helping track down dangling pointers.
294 If you compile with -DMALLOC_DEBUG, a number of assertion checks are
295 enabled that will catch more memory errors. You probably won't be
296 able to make much sense of the actual assertion errors, but they
297 should help you locate incorrectly overwritten memory. The checking
298 is fairly extensive, and will slow down execution
299 noticeably. Calling malloc_stats or mallinfo with MALLOC_DEBUG set
300 will attempt to check every non-mmapped allocated and free chunk in
301 the course of computing the summmaries. (By nature, mmapped regions
302 cannot be checked very much automatically.)
304 Setting MALLOC_DEBUG may also be helpful if you are trying to modify
305 this code. The assertions in the check routines spell out in more
306 detail the assumptions and invariants underlying the algorithms.
308 Setting MALLOC_DEBUG does NOT provide an automated mechanism for
309 checking that all accesses to malloced memory stay within their
310 bounds. However, there are several add-ons and adaptations of this
311 or other mallocs available that do this.
314 #if MALLOC_DEBUG
315 #include <assert.h>
316 #else
317 #undef assert
318 #define assert(x) ((void)0)
319 #endif
323 INTERNAL_SIZE_T is the word-size used for internal bookkeeping
324 of chunk sizes.
326 The default version is the same as size_t.
328 While not strictly necessary, it is best to define this as an
329 unsigned type, even if size_t is a signed type. This may avoid some
330 artificial size limitations on some systems.
332 On a 64-bit machine, you may be able to reduce malloc overhead by
333 defining INTERNAL_SIZE_T to be a 32 bit `unsigned int' at the
334 expense of not being able to handle more than 2^32 of malloced
335 space. If this limitation is acceptable, you are encouraged to set
336 this unless you are on a platform requiring 16byte alignments. In
337 this case the alignment requirements turn out to negate any
338 potential advantages of decreasing size_t word size.
340 Implementors: Beware of the possible combinations of:
341 - INTERNAL_SIZE_T might be signed or unsigned, might be 32 or 64 bits,
342 and might be the same width as int or as long
343 - size_t might have different width and signedness as INTERNAL_SIZE_T
344 - int and long might be 32 or 64 bits, and might be the same width
345 To deal with this, most comparisons and difference computations
346 among INTERNAL_SIZE_Ts should cast them to unsigned long, being
347 aware of the fact that casting an unsigned int to a wider long does
348 not sign-extend. (This also makes checking for negative numbers
349 awkward.) Some of these casts result in harmless compiler warnings
350 on some systems.
353 #ifndef INTERNAL_SIZE_T
354 #define INTERNAL_SIZE_T size_t
355 #endif
357 /* The corresponding word size */
358 #define SIZE_SZ (sizeof(INTERNAL_SIZE_T))
362 MALLOC_ALIGNMENT is the minimum alignment for malloc'ed chunks.
363 It must be a power of two at least 2 * SIZE_SZ, even on machines
364 for which smaller alignments would suffice. It may be defined as
365 larger than this though. Note however that code and data structures
366 are optimized for the case of 8-byte alignment.
370 #ifndef MALLOC_ALIGNMENT
371 #define MALLOC_ALIGNMENT (2 * SIZE_SZ)
372 #endif
374 /* The corresponding bit mask value */
375 #define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1)
380 REALLOC_ZERO_BYTES_FREES should be set if a call to
381 realloc with zero bytes should be the same as a call to free.
382 This is required by the C standard. Otherwise, since this malloc
383 returns a unique pointer for malloc(0), so does realloc(p, 0).
386 #ifndef REALLOC_ZERO_BYTES_FREES
387 #define REALLOC_ZERO_BYTES_FREES 1
388 #endif
391 TRIM_FASTBINS controls whether free() of a very small chunk can
392 immediately lead to trimming. Setting to true (1) can reduce memory
393 footprint, but will almost always slow down programs that use a lot
394 of small chunks.
396 Define this only if you are willing to give up some speed to more
397 aggressively reduce system-level memory footprint when releasing
398 memory in programs that use many small chunks. You can get
399 essentially the same effect by setting MXFAST to 0, but this can
400 lead to even greater slowdowns in programs using many small chunks.
401 TRIM_FASTBINS is an in-between compile-time option, that disables
402 only those chunks bordering topmost memory from being placed in
403 fastbins.
406 #ifndef TRIM_FASTBINS
407 #define TRIM_FASTBINS 0
408 #endif
412 USE_DL_PREFIX will prefix all public routines with the string 'dl'.
413 This is necessary when you only want to use this malloc in one part
414 of a program, using your regular system malloc elsewhere.
417 /* #define USE_DL_PREFIX */
421 Two-phase name translation.
422 All of the actual routines are given mangled names.
423 When wrappers are used, they become the public callable versions.
424 When DL_PREFIX is used, the callable names are prefixed.
427 #ifdef USE_DL_PREFIX
428 #define public_cALLOc dlcalloc
429 #define public_fREe dlfree
430 #define public_cFREe dlcfree
431 #define public_mALLOc dlmalloc
432 #define public_mEMALIGn dlmemalign
433 #define public_rEALLOc dlrealloc
434 #define public_vALLOc dlvalloc
435 #define public_pVALLOc dlpvalloc
436 #define public_mALLINFo dlmallinfo
437 #define public_mALLOPt dlmallopt
438 #define public_mTRIm dlmalloc_trim
439 #define public_mSTATs dlmalloc_stats
440 #define public_mUSABLe dlmalloc_usable_size
441 #define public_iCALLOc dlindependent_calloc
442 #define public_iCOMALLOc dlindependent_comalloc
443 #define public_gET_STATe dlget_state
444 #define public_sET_STATe dlset_state
445 #else /* USE_DL_PREFIX */
446 #ifdef _LIBC
448 /* Special defines for the GNU C library. */
449 #define public_cALLOc __libc_calloc
450 #define public_fREe __libc_free
451 #define public_cFREe __libc_cfree
452 #define public_mALLOc __libc_malloc
453 #define public_mEMALIGn __libc_memalign
454 #define public_rEALLOc __libc_realloc
455 #define public_vALLOc __libc_valloc
456 #define public_pVALLOc __libc_pvalloc
457 #define public_mALLINFo __libc_mallinfo
458 #define public_mALLOPt __libc_mallopt
459 #define public_mTRIm __malloc_trim
460 #define public_mSTATs __malloc_stats
461 #define public_mUSABLe __malloc_usable_size
462 #define public_iCALLOc __libc_independent_calloc
463 #define public_iCOMALLOc __libc_independent_comalloc
464 #define public_gET_STATe __malloc_get_state
465 #define public_sET_STATe __malloc_set_state
466 #define malloc_getpagesize __getpagesize()
467 #define open __open
468 #define mmap __mmap
469 #define munmap __munmap
470 #define mremap __mremap
471 #define mprotect __mprotect
472 #define MORECORE (*__morecore)
473 #define MORECORE_FAILURE 0
475 Void_t * __default_morecore (ptrdiff_t);
476 Void_t *(*__morecore)(ptrdiff_t) = __default_morecore;
478 #else /* !_LIBC */
479 #define public_cALLOc calloc
480 #define public_fREe free
481 #define public_cFREe cfree
482 #define public_mALLOc malloc
483 #define public_mEMALIGn memalign
484 #define public_rEALLOc realloc
485 #define public_vALLOc valloc
486 #define public_pVALLOc pvalloc
487 #define public_mALLINFo mallinfo
488 #define public_mALLOPt mallopt
489 #define public_mTRIm malloc_trim
490 #define public_mSTATs malloc_stats
491 #define public_mUSABLe malloc_usable_size
492 #define public_iCALLOc independent_calloc
493 #define public_iCOMALLOc independent_comalloc
494 #define public_gET_STATe malloc_get_state
495 #define public_sET_STATe malloc_set_state
496 #endif /* _LIBC */
497 #endif /* USE_DL_PREFIX */
499 #ifndef _LIBC
500 #define __builtin_expect(expr, val) (expr)
502 #define fwrite(buf, size, count, fp) _IO_fwrite (buf, size, count, fp)
503 #endif
506 HAVE_MEMCPY should be defined if you are not otherwise using
507 ANSI STD C, but still have memcpy and memset in your C library
508 and want to use them in calloc and realloc. Otherwise simple
509 macro versions are defined below.
511 USE_MEMCPY should be defined as 1 if you actually want to
512 have memset and memcpy called. People report that the macro
513 versions are faster than libc versions on some systems.
515 Even if USE_MEMCPY is set to 1, loops to copy/clear small chunks
516 (of <= 36 bytes) are manually unrolled in realloc and calloc.
519 #define HAVE_MEMCPY
521 #ifndef USE_MEMCPY
522 #ifdef HAVE_MEMCPY
523 #define USE_MEMCPY 1
524 #else
525 #define USE_MEMCPY 0
526 #endif
527 #endif
530 #if (__STD_C || defined(HAVE_MEMCPY))
532 #ifdef _LIBC
533 # include <string.h>
534 #else
535 #ifdef WIN32
536 /* On Win32 memset and memcpy are already declared in windows.h */
537 #else
538 #if __STD_C
539 void* memset(void*, int, size_t);
540 void* memcpy(void*, const void*, size_t);
541 #else
542 Void_t* memset();
543 Void_t* memcpy();
544 #endif
545 #endif
546 #endif
547 #endif
550 MALLOC_FAILURE_ACTION is the action to take before "return 0" when
551 malloc fails to be able to return memory, either because memory is
552 exhausted or because of illegal arguments.
554 By default, sets errno if running on STD_C platform, else does nothing.
557 #ifndef MALLOC_FAILURE_ACTION
558 #if __STD_C
559 #define MALLOC_FAILURE_ACTION \
560 errno = ENOMEM;
562 #else
563 #define MALLOC_FAILURE_ACTION
564 #endif
565 #endif
568 MORECORE-related declarations. By default, rely on sbrk
572 #ifdef LACKS_UNISTD_H
573 #if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
574 #if __STD_C
575 extern Void_t* sbrk(ptrdiff_t);
576 #else
577 extern Void_t* sbrk();
578 #endif
579 #endif
580 #endif
583 MORECORE is the name of the routine to call to obtain more memory
584 from the system. See below for general guidance on writing
585 alternative MORECORE functions, as well as a version for WIN32 and a
586 sample version for pre-OSX macos.
589 #ifndef MORECORE
590 #define MORECORE sbrk
591 #endif
594 MORECORE_FAILURE is the value returned upon failure of MORECORE
595 as well as mmap. Since it cannot be an otherwise valid memory address,
596 and must reflect values of standard sys calls, you probably ought not
597 try to redefine it.
600 #ifndef MORECORE_FAILURE
601 #define MORECORE_FAILURE (-1)
602 #endif
605 If MORECORE_CONTIGUOUS is true, take advantage of fact that
606 consecutive calls to MORECORE with positive arguments always return
607 contiguous increasing addresses. This is true of unix sbrk. Even
608 if not defined, when regions happen to be contiguous, malloc will
609 permit allocations spanning regions obtained from different
610 calls. But defining this when applicable enables some stronger
611 consistency checks and space efficiencies.
614 #ifndef MORECORE_CONTIGUOUS
615 #define MORECORE_CONTIGUOUS 1
616 #endif
619 Define MORECORE_CANNOT_TRIM if your version of MORECORE
620 cannot release space back to the system when given negative
621 arguments. This is generally necessary only if you are using
622 a hand-crafted MORECORE function that cannot handle negative arguments.
625 /* #define MORECORE_CANNOT_TRIM */
627 /* MORECORE_CLEARS (default 1)
628 The degree to which the routine mapped to MORECORE zeroes out
629 memory: never (0), only for newly allocated space (1) or always
630 (2). The distinction between (1) and (2) is necessary because on
631 some systems, if the application first decrements and then
632 increments the break value, the contents of the reallocated space
633 are unspecified.
636 #ifndef MORECORE_CLEARS
637 #define MORECORE_CLEARS 1
638 #endif
642 Define HAVE_MMAP as true to optionally make malloc() use mmap() to
643 allocate very large blocks. These will be returned to the
644 operating system immediately after a free(). Also, if mmap
645 is available, it is used as a backup strategy in cases where
646 MORECORE fails to provide space from system.
648 This malloc is best tuned to work with mmap for large requests.
649 If you do not have mmap, operations involving very large chunks (1MB
650 or so) may be slower than you'd like.
653 #ifndef HAVE_MMAP
654 #define HAVE_MMAP 1
657 Standard unix mmap using /dev/zero clears memory so calloc doesn't
658 need to.
661 #ifndef MMAP_CLEARS
662 #define MMAP_CLEARS 1
663 #endif
665 #else /* no mmap */
666 #ifndef MMAP_CLEARS
667 #define MMAP_CLEARS 0
668 #endif
669 #endif
673 MMAP_AS_MORECORE_SIZE is the minimum mmap size argument to use if
674 sbrk fails, and mmap is used as a backup (which is done only if
675 HAVE_MMAP). The value must be a multiple of page size. This
676 backup strategy generally applies only when systems have "holes" in
677 address space, so sbrk cannot perform contiguous expansion, but
678 there is still space available on system. On systems for which
679 this is known to be useful (i.e. most linux kernels), this occurs
680 only when programs allocate huge amounts of memory. Between this,
681 and the fact that mmap regions tend to be limited, the size should
682 be large, to avoid too many mmap calls and thus avoid running out
683 of kernel resources.
686 #ifndef MMAP_AS_MORECORE_SIZE
687 #define MMAP_AS_MORECORE_SIZE (1024 * 1024)
688 #endif
691 Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
692 large blocks. This is currently only possible on Linux with
693 kernel versions newer than 1.3.77.
696 #ifndef HAVE_MREMAP
697 #ifdef linux
698 #define HAVE_MREMAP 1
699 #else
700 #define HAVE_MREMAP 0
701 #endif
703 #endif /* HAVE_MMAP */
705 /* Define USE_ARENAS to enable support for multiple `arenas'. These
706 are allocated using mmap(), are necessary for threads and
707 occasionally useful to overcome address space limitations affecting
708 sbrk(). */
710 #ifndef USE_ARENAS
711 #define USE_ARENAS HAVE_MMAP
712 #endif
716 The system page size. To the extent possible, this malloc manages
717 memory from the system in page-size units. Note that this value is
718 cached during initialization into a field of malloc_state. So even
719 if malloc_getpagesize is a function, it is only called once.
721 The following mechanics for getpagesize were adapted from bsd/gnu
722 getpagesize.h. If none of the system-probes here apply, a value of
723 4096 is used, which should be OK: If they don't apply, then using
724 the actual value probably doesn't impact performance.
728 #ifndef malloc_getpagesize
730 #ifndef LACKS_UNISTD_H
731 # include <unistd.h>
732 #endif
734 # ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
735 # ifndef _SC_PAGE_SIZE
736 # define _SC_PAGE_SIZE _SC_PAGESIZE
737 # endif
738 # endif
740 # ifdef _SC_PAGE_SIZE
741 # define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
742 # else
743 # if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
744 extern size_t getpagesize();
745 # define malloc_getpagesize getpagesize()
746 # else
747 # ifdef WIN32 /* use supplied emulation of getpagesize */
748 # define malloc_getpagesize getpagesize()
749 # else
750 # ifndef LACKS_SYS_PARAM_H
751 # include <sys/param.h>
752 # endif
753 # ifdef EXEC_PAGESIZE
754 # define malloc_getpagesize EXEC_PAGESIZE
755 # else
756 # ifdef NBPG
757 # ifndef CLSIZE
758 # define malloc_getpagesize NBPG
759 # else
760 # define malloc_getpagesize (NBPG * CLSIZE)
761 # endif
762 # else
763 # ifdef NBPC
764 # define malloc_getpagesize NBPC
765 # else
766 # ifdef PAGESIZE
767 # define malloc_getpagesize PAGESIZE
768 # else /* just guess */
769 # define malloc_getpagesize (4096)
770 # endif
771 # endif
772 # endif
773 # endif
774 # endif
775 # endif
776 # endif
777 #endif
780 This version of malloc supports the standard SVID/XPG mallinfo
781 routine that returns a struct containing usage properties and
782 statistics. It should work on any SVID/XPG compliant system that has
783 a /usr/include/malloc.h defining struct mallinfo. (If you'd like to
784 install such a thing yourself, cut out the preliminary declarations
785 as described above and below and save them in a malloc.h file. But
786 there's no compelling reason to bother to do this.)
788 The main declaration needed is the mallinfo struct that is returned
789 (by-copy) by mallinfo(). The SVID/XPG malloinfo struct contains a
790 bunch of fields that are not even meaningful in this version of
791 malloc. These fields are are instead filled by mallinfo() with
792 other numbers that might be of interest.
794 HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
795 /usr/include/malloc.h file that includes a declaration of struct
796 mallinfo. If so, it is included; else an SVID2/XPG2 compliant
797 version is declared below. These must be precisely the same for
798 mallinfo() to work. The original SVID version of this struct,
799 defined on most systems with mallinfo, declares all fields as
800 ints. But some others define as unsigned long. If your system
801 defines the fields using a type of different width than listed here,
802 you must #include your system version and #define
803 HAVE_USR_INCLUDE_MALLOC_H.
806 /* #define HAVE_USR_INCLUDE_MALLOC_H */
808 #ifdef HAVE_USR_INCLUDE_MALLOC_H
809 #include "/usr/include/malloc.h"
810 #endif
813 /* ---------- description of public routines ------------ */
816 malloc(size_t n)
817 Returns a pointer to a newly allocated chunk of at least n bytes, or null
818 if no space is available. Additionally, on failure, errno is
819 set to ENOMEM on ANSI C systems.
821 If n is zero, malloc returns a minumum-sized chunk. (The minimum
822 size is 16 bytes on most 32bit systems, and 24 or 32 bytes on 64bit
823 systems.) On most systems, size_t is an unsigned type, so calls
824 with negative arguments are interpreted as requests for huge amounts
825 of space, which will often fail. The maximum supported value of n
826 differs across systems, but is in all cases less than the maximum
827 representable value of a size_t.
829 #if __STD_C
830 Void_t* public_mALLOc(size_t);
831 #else
832 Void_t* public_mALLOc();
833 #endif
834 #ifdef libc_hidden_proto
835 libc_hidden_proto (public_mALLOc)
836 #endif
839 free(Void_t* p)
840 Releases the chunk of memory pointed to by p, that had been previously
841 allocated using malloc or a related routine such as realloc.
842 It has no effect if p is null. It can have arbitrary (i.e., bad!)
843 effects if p has already been freed.
845 Unless disabled (using mallopt), freeing very large spaces will
846 when possible, automatically trigger operations that give
847 back unused memory to the system, thus reducing program footprint.
849 #if __STD_C
850 void public_fREe(Void_t*);
851 #else
852 void public_fREe();
853 #endif
854 #ifdef libc_hidden_proto
855 libc_hidden_proto (public_fREe)
856 #endif
859 calloc(size_t n_elements, size_t element_size);
860 Returns a pointer to n_elements * element_size bytes, with all locations
861 set to zero.
863 #if __STD_C
864 Void_t* public_cALLOc(size_t, size_t);
865 #else
866 Void_t* public_cALLOc();
867 #endif
870 realloc(Void_t* p, size_t n)
871 Returns a pointer to a chunk of size n that contains the same data
872 as does chunk p up to the minimum of (n, p's size) bytes, or null
873 if no space is available.
875 The returned pointer may or may not be the same as p. The algorithm
876 prefers extending p when possible, otherwise it employs the
877 equivalent of a malloc-copy-free sequence.
879 If p is null, realloc is equivalent to malloc.
881 If space is not available, realloc returns null, errno is set (if on
882 ANSI) and p is NOT freed.
884 if n is for fewer bytes than already held by p, the newly unused
885 space is lopped off and freed if possible. Unless the #define
886 REALLOC_ZERO_BYTES_FREES is set, realloc with a size argument of
887 zero (re)allocates a minimum-sized chunk.
889 Large chunks that were internally obtained via mmap will always
890 be reallocated using malloc-copy-free sequences unless
891 the system supports MREMAP (currently only linux).
893 The old unix realloc convention of allowing the last-free'd chunk
894 to be used as an argument to realloc is not supported.
896 #if __STD_C
897 Void_t* public_rEALLOc(Void_t*, size_t);
898 #else
899 Void_t* public_rEALLOc();
900 #endif
901 #ifdef libc_hidden_proto
902 libc_hidden_proto (public_rEALLOc)
903 #endif
906 memalign(size_t alignment, size_t n);
907 Returns a pointer to a newly allocated chunk of n bytes, aligned
908 in accord with the alignment argument.
910 The alignment argument should be a power of two. If the argument is
911 not a power of two, the nearest greater power is used.
912 8-byte alignment is guaranteed by normal malloc calls, so don't
913 bother calling memalign with an argument of 8 or less.
915 Overreliance on memalign is a sure way to fragment space.
917 #if __STD_C
918 Void_t* public_mEMALIGn(size_t, size_t);
919 #else
920 Void_t* public_mEMALIGn();
921 #endif
922 #ifdef libc_hidden_proto
923 libc_hidden_proto (public_mEMALIGn)
924 #endif
927 valloc(size_t n);
928 Equivalent to memalign(pagesize, n), where pagesize is the page
929 size of the system. If the pagesize is unknown, 4096 is used.
931 #if __STD_C
932 Void_t* public_vALLOc(size_t);
933 #else
934 Void_t* public_vALLOc();
935 #endif
940 mallopt(int parameter_number, int parameter_value)
941 Sets tunable parameters The format is to provide a
942 (parameter-number, parameter-value) pair. mallopt then sets the
943 corresponding parameter to the argument value if it can (i.e., so
944 long as the value is meaningful), and returns 1 if successful else
945 0. SVID/XPG/ANSI defines four standard param numbers for mallopt,
946 normally defined in malloc.h. Only one of these (M_MXFAST) is used
947 in this malloc. The others (M_NLBLKS, M_GRAIN, M_KEEP) don't apply,
948 so setting them has no effect. But this malloc also supports four
949 other options in mallopt. See below for details. Briefly, supported
950 parameters are as follows (listed defaults are for "typical"
951 configurations).
953 Symbol param # default allowed param values
954 M_MXFAST 1 64 0-80 (0 disables fastbins)
955 M_TRIM_THRESHOLD -1 128*1024 any (-1U disables trimming)
956 M_TOP_PAD -2 0 any
957 M_MMAP_THRESHOLD -3 128*1024 any (or 0 if no MMAP support)
958 M_MMAP_MAX -4 65536 any (0 disables use of mmap)
960 #if __STD_C
961 int public_mALLOPt(int, int);
962 #else
963 int public_mALLOPt();
964 #endif
968 mallinfo()
969 Returns (by copy) a struct containing various summary statistics:
971 arena: current total non-mmapped bytes allocated from system
972 ordblks: the number of free chunks
973 smblks: the number of fastbin blocks (i.e., small chunks that
974 have been freed but not use resused or consolidated)
975 hblks: current number of mmapped regions
976 hblkhd: total bytes held in mmapped regions
977 usmblks: the maximum total allocated space. This will be greater
978 than current total if trimming has occurred.
979 fsmblks: total bytes held in fastbin blocks
980 uordblks: current total allocated space (normal or mmapped)
981 fordblks: total free space
982 keepcost: the maximum number of bytes that could ideally be released
983 back to system via malloc_trim. ("ideally" means that
984 it ignores page restrictions etc.)
986 Because these fields are ints, but internal bookkeeping may
987 be kept as longs, the reported values may wrap around zero and
988 thus be inaccurate.
990 #if __STD_C
991 struct mallinfo public_mALLINFo(void);
992 #else
993 struct mallinfo public_mALLINFo();
994 #endif
997 independent_calloc(size_t n_elements, size_t element_size, Void_t* chunks[]);
999 independent_calloc is similar to calloc, but instead of returning a
1000 single cleared space, it returns an array of pointers to n_elements
1001 independent elements that can hold contents of size elem_size, each
1002 of which starts out cleared, and can be independently freed,
1003 realloc'ed etc. The elements are guaranteed to be adjacently
1004 allocated (this is not guaranteed to occur with multiple callocs or
1005 mallocs), which may also improve cache locality in some
1006 applications.
1008 The "chunks" argument is optional (i.e., may be null, which is
1009 probably the most typical usage). If it is null, the returned array
1010 is itself dynamically allocated and should also be freed when it is
1011 no longer needed. Otherwise, the chunks array must be of at least
1012 n_elements in length. It is filled in with the pointers to the
1013 chunks.
1015 In either case, independent_calloc returns this pointer array, or
1016 null if the allocation failed. If n_elements is zero and "chunks"
1017 is null, it returns a chunk representing an array with zero elements
1018 (which should be freed if not wanted).
1020 Each element must be individually freed when it is no longer
1021 needed. If you'd like to instead be able to free all at once, you
1022 should instead use regular calloc and assign pointers into this
1023 space to represent elements. (In this case though, you cannot
1024 independently free elements.)
1026 independent_calloc simplifies and speeds up implementations of many
1027 kinds of pools. It may also be useful when constructing large data
1028 structures that initially have a fixed number of fixed-sized nodes,
1029 but the number is not known at compile time, and some of the nodes
1030 may later need to be freed. For example:
1032 struct Node { int item; struct Node* next; };
1034 struct Node* build_list() {
1035 struct Node** pool;
1036 int n = read_number_of_nodes_needed();
1037 if (n <= 0) return 0;
1038 pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0);
1039 if (pool == 0) die();
1040 // organize into a linked list...
1041 struct Node* first = pool[0];
1042 for (i = 0; i < n-1; ++i)
1043 pool[i]->next = pool[i+1];
1044 free(pool); // Can now free the array (or not, if it is needed later)
1045 return first;
1048 #if __STD_C
1049 Void_t** public_iCALLOc(size_t, size_t, Void_t**);
1050 #else
1051 Void_t** public_iCALLOc();
1052 #endif
1055 independent_comalloc(size_t n_elements, size_t sizes[], Void_t* chunks[]);
1057 independent_comalloc allocates, all at once, a set of n_elements
1058 chunks with sizes indicated in the "sizes" array. It returns
1059 an array of pointers to these elements, each of which can be
1060 independently freed, realloc'ed etc. The elements are guaranteed to
1061 be adjacently allocated (this is not guaranteed to occur with
1062 multiple callocs or mallocs), which may also improve cache locality
1063 in some applications.
1065 The "chunks" argument is optional (i.e., may be null). If it is null
1066 the returned array is itself dynamically allocated and should also
1067 be freed when it is no longer needed. Otherwise, the chunks array
1068 must be of at least n_elements in length. It is filled in with the
1069 pointers to the chunks.
1071 In either case, independent_comalloc returns this pointer array, or
1072 null if the allocation failed. If n_elements is zero and chunks is
1073 null, it returns a chunk representing an array with zero elements
1074 (which should be freed if not wanted).
1076 Each element must be individually freed when it is no longer
1077 needed. If you'd like to instead be able to free all at once, you
1078 should instead use a single regular malloc, and assign pointers at
1079 particular offsets in the aggregate space. (In this case though, you
1080 cannot independently free elements.)
1082 independent_comallac differs from independent_calloc in that each
1083 element may have a different size, and also that it does not
1084 automatically clear elements.
1086 independent_comalloc can be used to speed up allocation in cases
1087 where several structs or objects must always be allocated at the
1088 same time. For example:
1090 struct Head { ... }
1091 struct Foot { ... }
1093 void send_message(char* msg) {
1094 int msglen = strlen(msg);
1095 size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) };
1096 void* chunks[3];
1097 if (independent_comalloc(3, sizes, chunks) == 0)
1098 die();
1099 struct Head* head = (struct Head*)(chunks[0]);
1100 char* body = (char*)(chunks[1]);
1101 struct Foot* foot = (struct Foot*)(chunks[2]);
1102 // ...
1105 In general though, independent_comalloc is worth using only for
1106 larger values of n_elements. For small values, you probably won't
1107 detect enough difference from series of malloc calls to bother.
1109 Overuse of independent_comalloc can increase overall memory usage,
1110 since it cannot reuse existing noncontiguous small chunks that
1111 might be available for some of the elements.
1113 #if __STD_C
1114 Void_t** public_iCOMALLOc(size_t, size_t*, Void_t**);
1115 #else
1116 Void_t** public_iCOMALLOc();
1117 #endif
1121 pvalloc(size_t n);
1122 Equivalent to valloc(minimum-page-that-holds(n)), that is,
1123 round up n to nearest pagesize.
1125 #if __STD_C
1126 Void_t* public_pVALLOc(size_t);
1127 #else
1128 Void_t* public_pVALLOc();
1129 #endif
1132 cfree(Void_t* p);
1133 Equivalent to free(p).
1135 cfree is needed/defined on some systems that pair it with calloc,
1136 for odd historical reasons (such as: cfree is used in example
1137 code in the first edition of K&R).
1139 #if __STD_C
1140 void public_cFREe(Void_t*);
1141 #else
1142 void public_cFREe();
1143 #endif
1146 malloc_trim(size_t pad);
1148 If possible, gives memory back to the system (via negative
1149 arguments to sbrk) if there is unused memory at the `high' end of
1150 the malloc pool. You can call this after freeing large blocks of
1151 memory to potentially reduce the system-level memory requirements
1152 of a program. However, it cannot guarantee to reduce memory. Under
1153 some allocation patterns, some large free blocks of memory will be
1154 locked between two used chunks, so they cannot be given back to
1155 the system.
1157 The `pad' argument to malloc_trim represents the amount of free
1158 trailing space to leave untrimmed. If this argument is zero,
1159 only the minimum amount of memory to maintain internal data
1160 structures will be left (one page or less). Non-zero arguments
1161 can be supplied to maintain enough trailing space to service
1162 future expected allocations without having to re-obtain memory
1163 from the system.
1165 Malloc_trim returns 1 if it actually released any memory, else 0.
1166 On systems that do not support "negative sbrks", it will always
1167 rreturn 0.
1169 #if __STD_C
1170 int public_mTRIm(size_t);
1171 #else
1172 int public_mTRIm();
1173 #endif
1176 malloc_usable_size(Void_t* p);
1178 Returns the number of bytes you can actually use in
1179 an allocated chunk, which may be more than you requested (although
1180 often not) due to alignment and minimum size constraints.
1181 You can use this many bytes without worrying about
1182 overwriting other allocated objects. This is not a particularly great
1183 programming practice. malloc_usable_size can be more useful in
1184 debugging and assertions, for example:
1186 p = malloc(n);
1187 assert(malloc_usable_size(p) >= 256);
1190 #if __STD_C
1191 size_t public_mUSABLe(Void_t*);
1192 #else
1193 size_t public_mUSABLe();
1194 #endif
1197 malloc_stats();
1198 Prints on stderr the amount of space obtained from the system (both
1199 via sbrk and mmap), the maximum amount (which may be more than
1200 current if malloc_trim and/or munmap got called), and the current
1201 number of bytes allocated via malloc (or realloc, etc) but not yet
1202 freed. Note that this is the number of bytes allocated, not the
1203 number requested. It will be larger than the number requested
1204 because of alignment and bookkeeping overhead. Because it includes
1205 alignment wastage as being in use, this figure may be greater than
1206 zero even when no user-level chunks are allocated.
1208 The reported current and maximum system memory can be inaccurate if
1209 a program makes other calls to system memory allocation functions
1210 (normally sbrk) outside of malloc.
1212 malloc_stats prints only the most commonly interesting statistics.
1213 More information can be obtained by calling mallinfo.
1216 #if __STD_C
1217 void public_mSTATs(void);
1218 #else
1219 void public_mSTATs();
1220 #endif
1223 malloc_get_state(void);
1225 Returns the state of all malloc variables in an opaque data
1226 structure.
1228 #if __STD_C
1229 Void_t* public_gET_STATe(void);
1230 #else
1231 Void_t* public_gET_STATe();
1232 #endif
1235 malloc_set_state(Void_t* state);
1237 Restore the state of all malloc variables from data obtained with
1238 malloc_get_state().
1240 #if __STD_C
1241 int public_sET_STATe(Void_t*);
1242 #else
1243 int public_sET_STATe();
1244 #endif
1246 #ifdef _LIBC
1248 posix_memalign(void **memptr, size_t alignment, size_t size);
1250 POSIX wrapper like memalign(), checking for validity of size.
1252 int __posix_memalign(void **, size_t, size_t);
1253 #endif
1255 /* mallopt tuning options */
1258 M_MXFAST is the maximum request size used for "fastbins", special bins
1259 that hold returned chunks without consolidating their spaces. This
1260 enables future requests for chunks of the same size to be handled
1261 very quickly, but can increase fragmentation, and thus increase the
1262 overall memory footprint of a program.
1264 This malloc manages fastbins very conservatively yet still
1265 efficiently, so fragmentation is rarely a problem for values less
1266 than or equal to the default. The maximum supported value of MXFAST
1267 is 80. You wouldn't want it any higher than this anyway. Fastbins
1268 are designed especially for use with many small structs, objects or
1269 strings -- the default handles structs/objects/arrays with sizes up
1270 to 8 4byte fields, or small strings representing words, tokens,
1271 etc. Using fastbins for larger objects normally worsens
1272 fragmentation without improving speed.
1274 M_MXFAST is set in REQUEST size units. It is internally used in
1275 chunksize units, which adds padding and alignment. You can reduce
1276 M_MXFAST to 0 to disable all use of fastbins. This causes the malloc
1277 algorithm to be a closer approximation of fifo-best-fit in all cases,
1278 not just for larger requests, but will generally cause it to be
1279 slower.
1283 /* M_MXFAST is a standard SVID/XPG tuning option, usually listed in malloc.h */
1284 #ifndef M_MXFAST
1285 #define M_MXFAST 1
1286 #endif
1288 #ifndef DEFAULT_MXFAST
1289 #define DEFAULT_MXFAST 64
1290 #endif
1294 M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
1295 to keep before releasing via malloc_trim in free().
1297 Automatic trimming is mainly useful in long-lived programs.
1298 Because trimming via sbrk can be slow on some systems, and can
1299 sometimes be wasteful (in cases where programs immediately
1300 afterward allocate more large chunks) the value should be high
1301 enough so that your overall system performance would improve by
1302 releasing this much memory.
1304 The trim threshold and the mmap control parameters (see below)
1305 can be traded off with one another. Trimming and mmapping are
1306 two different ways of releasing unused memory back to the
1307 system. Between these two, it is often possible to keep
1308 system-level demands of a long-lived program down to a bare
1309 minimum. For example, in one test suite of sessions measuring
1310 the XF86 X server on Linux, using a trim threshold of 128K and a
1311 mmap threshold of 192K led to near-minimal long term resource
1312 consumption.
1314 If you are using this malloc in a long-lived program, it should
1315 pay to experiment with these values. As a rough guide, you
1316 might set to a value close to the average size of a process
1317 (program) running on your system. Releasing this much memory
1318 would allow such a process to run in memory. Generally, it's
1319 worth it to tune for trimming rather tham memory mapping when a
1320 program undergoes phases where several large chunks are
1321 allocated and released in ways that can reuse each other's
1322 storage, perhaps mixed with phases where there are no such
1323 chunks at all. And in well-behaved long-lived programs,
1324 controlling release of large blocks via trimming versus mapping
1325 is usually faster.
1327 However, in most programs, these parameters serve mainly as
1328 protection against the system-level effects of carrying around
1329 massive amounts of unneeded memory. Since frequent calls to
1330 sbrk, mmap, and munmap otherwise degrade performance, the default
1331 parameters are set to relatively high values that serve only as
1332 safeguards.
1334 The trim value It must be greater than page size to have any useful
1335 effect. To disable trimming completely, you can set to
1336 (unsigned long)(-1)
1338 Trim settings interact with fastbin (MXFAST) settings: Unless
1339 TRIM_FASTBINS is defined, automatic trimming never takes place upon
1340 freeing a chunk with size less than or equal to MXFAST. Trimming is
1341 instead delayed until subsequent freeing of larger chunks. However,
1342 you can still force an attempted trim by calling malloc_trim.
1344 Also, trimming is not generally possible in cases where
1345 the main arena is obtained via mmap.
1347 Note that the trick some people use of mallocing a huge space and
1348 then freeing it at program startup, in an attempt to reserve system
1349 memory, doesn't have the intended effect under automatic trimming,
1350 since that memory will immediately be returned to the system.
1353 #define M_TRIM_THRESHOLD -1
1355 #ifndef DEFAULT_TRIM_THRESHOLD
1356 #define DEFAULT_TRIM_THRESHOLD (128 * 1024)
1357 #endif
1360 M_TOP_PAD is the amount of extra `padding' space to allocate or
1361 retain whenever sbrk is called. It is used in two ways internally:
1363 * When sbrk is called to extend the top of the arena to satisfy
1364 a new malloc request, this much padding is added to the sbrk
1365 request.
1367 * When malloc_trim is called automatically from free(),
1368 it is used as the `pad' argument.
1370 In both cases, the actual amount of padding is rounded
1371 so that the end of the arena is always a system page boundary.
1373 The main reason for using padding is to avoid calling sbrk so
1374 often. Having even a small pad greatly reduces the likelihood
1375 that nearly every malloc request during program start-up (or
1376 after trimming) will invoke sbrk, which needlessly wastes
1377 time.
1379 Automatic rounding-up to page-size units is normally sufficient
1380 to avoid measurable overhead, so the default is 0. However, in
1381 systems where sbrk is relatively slow, it can pay to increase
1382 this value, at the expense of carrying around more memory than
1383 the program needs.
1386 #define M_TOP_PAD -2
1388 #ifndef DEFAULT_TOP_PAD
1389 #define DEFAULT_TOP_PAD (0)
1390 #endif
1393 M_MMAP_THRESHOLD is the request size threshold for using mmap()
1394 to service a request. Requests of at least this size that cannot
1395 be allocated using already-existing space will be serviced via mmap.
1396 (If enough normal freed space already exists it is used instead.)
1398 Using mmap segregates relatively large chunks of memory so that
1399 they can be individually obtained and released from the host
1400 system. A request serviced through mmap is never reused by any
1401 other request (at least not directly; the system may just so
1402 happen to remap successive requests to the same locations).
1404 Segregating space in this way has the benefits that:
1406 1. Mmapped space can ALWAYS be individually released back
1407 to the system, which helps keep the system level memory
1408 demands of a long-lived program low.
1409 2. Mapped memory can never become `locked' between
1410 other chunks, as can happen with normally allocated chunks, which
1411 means that even trimming via malloc_trim would not release them.
1412 3. On some systems with "holes" in address spaces, mmap can obtain
1413 memory that sbrk cannot.
1415 However, it has the disadvantages that:
1417 1. The space cannot be reclaimed, consolidated, and then
1418 used to service later requests, as happens with normal chunks.
1419 2. It can lead to more wastage because of mmap page alignment
1420 requirements
1421 3. It causes malloc performance to be more dependent on host
1422 system memory management support routines which may vary in
1423 implementation quality and may impose arbitrary
1424 limitations. Generally, servicing a request via normal
1425 malloc steps is faster than going through a system's mmap.
1427 The advantages of mmap nearly always outweigh disadvantages for
1428 "large" chunks, but the value of "large" varies across systems. The
1429 default is an empirically derived value that works well in most
1430 systems.
1433 #define M_MMAP_THRESHOLD -3
1435 #ifndef DEFAULT_MMAP_THRESHOLD
1436 #define DEFAULT_MMAP_THRESHOLD (128 * 1024)
1437 #endif
1440 M_MMAP_MAX is the maximum number of requests to simultaneously
1441 service using mmap. This parameter exists because
1442 some systems have a limited number of internal tables for
1443 use by mmap, and using more than a few of them may degrade
1444 performance.
1446 The default is set to a value that serves only as a safeguard.
1447 Setting to 0 disables use of mmap for servicing large requests. If
1448 HAVE_MMAP is not set, the default value is 0, and attempts to set it
1449 to non-zero values in mallopt will fail.
1452 #define M_MMAP_MAX -4
1454 #ifndef DEFAULT_MMAP_MAX
1455 #if HAVE_MMAP
1456 #define DEFAULT_MMAP_MAX (65536)
1457 #else
1458 #define DEFAULT_MMAP_MAX (0)
1459 #endif
1460 #endif
1462 #ifdef __cplusplus
1463 } /* end of extern "C" */
1464 #endif
1466 #include <malloc.h>
1468 #ifndef BOUNDED_N
1469 #define BOUNDED_N(ptr, sz) (ptr)
1470 #endif
1471 #ifndef RETURN_ADDRESS
1472 #define RETURN_ADDRESS(X_) (NULL)
1473 #endif
1475 /* On some platforms we can compile internal, not exported functions better.
1476 Let the environment provide a macro and define it to be empty if it
1477 is not available. */
1478 #ifndef internal_function
1479 # define internal_function
1480 #endif
1482 /* Forward declarations. */
1483 struct malloc_chunk;
1484 typedef struct malloc_chunk* mchunkptr;
1486 /* Internal routines. */
1488 #if __STD_C
1490 Void_t* _int_malloc(mstate, size_t);
1491 void _int_free(mstate, Void_t*);
1492 Void_t* _int_realloc(mstate, Void_t*, size_t);
1493 Void_t* _int_memalign(mstate, size_t, size_t);
1494 Void_t* _int_valloc(mstate, size_t);
1495 static Void_t* _int_pvalloc(mstate, size_t);
1496 /*static Void_t* cALLOc(size_t, size_t);*/
1497 static Void_t** _int_icalloc(mstate, size_t, size_t, Void_t**);
1498 static Void_t** _int_icomalloc(mstate, size_t, size_t*, Void_t**);
1499 static int mTRIm(size_t);
1500 static size_t mUSABLe(Void_t*);
1501 static void mSTATs(void);
1502 static int mALLOPt(int, int);
1503 static struct mallinfo mALLINFo(mstate);
1504 static void malloc_printf_nc(int action, const char *template, ...);
1506 static Void_t* internal_function mem2mem_check(Void_t *p, size_t sz);
1507 static int internal_function top_check(void);
1508 static void internal_function munmap_chunk(mchunkptr p);
1509 #if HAVE_MREMAP
1510 static mchunkptr internal_function mremap_chunk(mchunkptr p, size_t new_size);
1511 #endif
1513 static Void_t* malloc_check(size_t sz, const Void_t *caller);
1514 static void free_check(Void_t* mem, const Void_t *caller);
1515 static Void_t* realloc_check(Void_t* oldmem, size_t bytes,
1516 const Void_t *caller);
1517 static Void_t* memalign_check(size_t alignment, size_t bytes,
1518 const Void_t *caller);
1519 #ifndef NO_THREADS
1520 # ifdef _LIBC
1521 # if USE___THREAD || (defined USE_TLS && !defined SHARED)
1522 /* These routines are never needed in this configuration. */
1523 # define NO_STARTER
1524 # endif
1525 # endif
1526 # ifdef NO_STARTER
1527 # undef NO_STARTER
1528 # else
1529 static Void_t* malloc_starter(size_t sz, const Void_t *caller);
1530 static Void_t* memalign_starter(size_t aln, size_t sz, const Void_t *caller);
1531 static void free_starter(Void_t* mem, const Void_t *caller);
1532 # endif
1533 static Void_t* malloc_atfork(size_t sz, const Void_t *caller);
1534 static void free_atfork(Void_t* mem, const Void_t *caller);
1535 #endif
1537 #else
1539 Void_t* _int_malloc();
1540 void _int_free();
1541 Void_t* _int_realloc();
1542 Void_t* _int_memalign();
1543 Void_t* _int_valloc();
1544 Void_t* _int_pvalloc();
1545 /*static Void_t* cALLOc();*/
1546 static Void_t** _int_icalloc();
1547 static Void_t** _int_icomalloc();
1548 static int mTRIm();
1549 static size_t mUSABLe();
1550 static void mSTATs();
1551 static int mALLOPt();
1552 static struct mallinfo mALLINFo();
1554 #endif
1559 /* ------------- Optional versions of memcopy ---------------- */
1562 #if USE_MEMCPY
1565 Note: memcpy is ONLY invoked with non-overlapping regions,
1566 so the (usually slower) memmove is not needed.
1569 #define MALLOC_COPY(dest, src, nbytes) memcpy(dest, src, nbytes)
1570 #define MALLOC_ZERO(dest, nbytes) memset(dest, 0, nbytes)
1572 #else /* !USE_MEMCPY */
1574 /* Use Duff's device for good zeroing/copying performance. */
1576 #define MALLOC_ZERO(charp, nbytes) \
1577 do { \
1578 INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp); \
1579 unsigned long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T); \
1580 long mcn; \
1581 if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \
1582 switch (mctmp) { \
1583 case 0: for(;;) { *mzp++ = 0; \
1584 case 7: *mzp++ = 0; \
1585 case 6: *mzp++ = 0; \
1586 case 5: *mzp++ = 0; \
1587 case 4: *mzp++ = 0; \
1588 case 3: *mzp++ = 0; \
1589 case 2: *mzp++ = 0; \
1590 case 1: *mzp++ = 0; if(mcn <= 0) break; mcn--; } \
1592 } while(0)
1594 #define MALLOC_COPY(dest,src,nbytes) \
1595 do { \
1596 INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src; \
1597 INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest; \
1598 unsigned long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T); \
1599 long mcn; \
1600 if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \
1601 switch (mctmp) { \
1602 case 0: for(;;) { *mcdst++ = *mcsrc++; \
1603 case 7: *mcdst++ = *mcsrc++; \
1604 case 6: *mcdst++ = *mcsrc++; \
1605 case 5: *mcdst++ = *mcsrc++; \
1606 case 4: *mcdst++ = *mcsrc++; \
1607 case 3: *mcdst++ = *mcsrc++; \
1608 case 2: *mcdst++ = *mcsrc++; \
1609 case 1: *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; } \
1611 } while(0)
1613 #endif
1615 /* ------------------ MMAP support ------------------ */
1618 #if HAVE_MMAP
1620 #include <fcntl.h>
1621 #ifndef LACKS_SYS_MMAN_H
1622 #include <sys/mman.h>
1623 #endif
1625 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
1626 # define MAP_ANONYMOUS MAP_ANON
1627 #endif
1628 #if !defined(MAP_FAILED)
1629 # define MAP_FAILED ((char*)-1)
1630 #endif
1632 #ifndef MAP_NORESERVE
1633 # ifdef MAP_AUTORESRV
1634 # define MAP_NORESERVE MAP_AUTORESRV
1635 # else
1636 # define MAP_NORESERVE 0
1637 # endif
1638 #endif
1641 Nearly all versions of mmap support MAP_ANONYMOUS,
1642 so the following is unlikely to be needed, but is
1643 supplied just in case.
1646 #ifndef MAP_ANONYMOUS
1648 static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
1650 #define MMAP(addr, size, prot, flags) ((dev_zero_fd < 0) ? \
1651 (dev_zero_fd = open("/dev/zero", O_RDWR), \
1652 mmap((addr), (size), (prot), (flags), dev_zero_fd, 0)) : \
1653 mmap((addr), (size), (prot), (flags), dev_zero_fd, 0))
1655 #else
1657 #define MMAP(addr, size, prot, flags) \
1658 (mmap((addr), (size), (prot), (flags)|MAP_ANONYMOUS, -1, 0))
1660 #endif
1663 #endif /* HAVE_MMAP */
1667 ----------------------- Chunk representations -----------------------
1672 This struct declaration is misleading (but accurate and necessary).
1673 It declares a "view" into memory allowing access to necessary
1674 fields at known offsets from a given base. See explanation below.
1677 struct malloc_chunk {
1679 INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
1680 INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */
1682 struct malloc_chunk* fd; /* double links -- used only if free. */
1683 struct malloc_chunk* bk;
1688 malloc_chunk details:
1690 (The following includes lightly edited explanations by Colin Plumb.)
1692 Chunks of memory are maintained using a `boundary tag' method as
1693 described in e.g., Knuth or Standish. (See the paper by Paul
1694 Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
1695 survey of such techniques.) Sizes of free chunks are stored both
1696 in the front of each chunk and at the end. This makes
1697 consolidating fragmented chunks into bigger chunks very fast. The
1698 size fields also hold bits representing whether chunks are free or
1699 in use.
1701 An allocated chunk looks like this:
1704 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1705 | Size of previous chunk, if allocated | |
1706 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1707 | Size of chunk, in bytes |P|
1708 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1709 | User data starts here... .
1711 . (malloc_usable_space() bytes) .
1713 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1714 | Size of chunk |
1715 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1718 Where "chunk" is the front of the chunk for the purpose of most of
1719 the malloc code, but "mem" is the pointer that is returned to the
1720 user. "Nextchunk" is the beginning of the next contiguous chunk.
1722 Chunks always begin on even word boundries, so the mem portion
1723 (which is returned to the user) is also on an even word boundary, and
1724 thus at least double-word aligned.
1726 Free chunks are stored in circular doubly-linked lists, and look like this:
1728 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1729 | Size of previous chunk |
1730 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1731 `head:' | Size of chunk, in bytes |P|
1732 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1733 | Forward pointer to next chunk in list |
1734 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1735 | Back pointer to previous chunk in list |
1736 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1737 | Unused space (may be 0 bytes long) .
1740 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1741 `foot:' | Size of chunk, in bytes |
1742 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1744 The P (PREV_INUSE) bit, stored in the unused low-order bit of the
1745 chunk size (which is always a multiple of two words), is an in-use
1746 bit for the *previous* chunk. If that bit is *clear*, then the
1747 word before the current chunk size contains the previous chunk
1748 size, and can be used to find the front of the previous chunk.
1749 The very first chunk allocated always has this bit set,
1750 preventing access to non-existent (or non-owned) memory. If
1751 prev_inuse is set for any given chunk, then you CANNOT determine
1752 the size of the previous chunk, and might even get a memory
1753 addressing fault when trying to do so.
1755 Note that the `foot' of the current chunk is actually represented
1756 as the prev_size of the NEXT chunk. This makes it easier to
1757 deal with alignments etc but can be very confusing when trying
1758 to extend or adapt this code.
1760 The two exceptions to all this are
1762 1. The special chunk `top' doesn't bother using the
1763 trailing size field since there is no next contiguous chunk
1764 that would have to index off it. After initialization, `top'
1765 is forced to always exist. If it would become less than
1766 MINSIZE bytes long, it is replenished.
1768 2. Chunks allocated via mmap, which have the second-lowest-order
1769 bit (IS_MMAPPED) set in their size fields. Because they are
1770 allocated one-by-one, each must contain its own trailing size field.
1775 ---------- Size and alignment checks and conversions ----------
1778 /* conversion from malloc headers to user pointers, and back */
1780 #define chunk2mem(p) ((Void_t*)((char*)(p) + 2*SIZE_SZ))
1781 #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
1783 /* The smallest possible chunk */
1784 #define MIN_CHUNK_SIZE (sizeof(struct malloc_chunk))
1786 /* The smallest size we can malloc is an aligned minimal chunk */
1788 #define MINSIZE \
1789 (unsigned long)(((MIN_CHUNK_SIZE+MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK))
1791 /* Check if m has acceptable alignment */
1793 #define aligned_OK(m) (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
1797 Check if a request is so large that it would wrap around zero when
1798 padded and aligned. To simplify some other code, the bound is made
1799 low enough so that adding MINSIZE will also not wrap around zero.
1802 #define REQUEST_OUT_OF_RANGE(req) \
1803 ((unsigned long)(req) >= \
1804 (unsigned long)(INTERNAL_SIZE_T)(-2 * MINSIZE))
1806 /* pad request bytes into a usable size -- internal version */
1808 #define request2size(req) \
1809 (((req) + SIZE_SZ + MALLOC_ALIGN_MASK < MINSIZE) ? \
1810 MINSIZE : \
1811 ((req) + SIZE_SZ + MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK)
1813 /* Same, except also perform argument check */
1815 #define checked_request2size(req, sz) \
1816 if (REQUEST_OUT_OF_RANGE(req)) { \
1817 MALLOC_FAILURE_ACTION; \
1818 return 0; \
1820 (sz) = request2size(req);
1823 --------------- Physical chunk operations ---------------
1827 /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
1828 #define PREV_INUSE 0x1
1830 /* extract inuse bit of previous chunk */
1831 #define prev_inuse(p) ((p)->size & PREV_INUSE)
1834 /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
1835 #define IS_MMAPPED 0x2
1837 /* check for mmap()'ed chunk */
1838 #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
1841 /* size field is or'ed with NON_MAIN_ARENA if the chunk was obtained
1842 from a non-main arena. This is only set immediately before handing
1843 the chunk to the user, if necessary. */
1844 #define NON_MAIN_ARENA 0x4
1846 /* check for chunk from non-main arena */
1847 #define chunk_non_main_arena(p) ((p)->size & NON_MAIN_ARENA)
1851 Bits to mask off when extracting size
1853 Note: IS_MMAPPED is intentionally not masked off from size field in
1854 macros for which mmapped chunks should never be seen. This should
1855 cause helpful core dumps to occur if it is tried by accident by
1856 people extending or adapting this malloc.
1858 #define SIZE_BITS (PREV_INUSE|IS_MMAPPED|NON_MAIN_ARENA)
1860 /* Get size, ignoring use bits */
1861 #define chunksize(p) ((p)->size & ~(SIZE_BITS))
1864 /* Ptr to next physical malloc_chunk. */
1865 #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~SIZE_BITS) ))
1867 /* Ptr to previous physical malloc_chunk */
1868 #define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
1870 /* Treat space at ptr + offset as a chunk */
1871 #define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
1873 /* extract p's inuse bit */
1874 #define inuse(p)\
1875 ((((mchunkptr)(((char*)(p))+((p)->size & ~SIZE_BITS)))->size) & PREV_INUSE)
1877 /* set/clear chunk as being inuse without otherwise disturbing */
1878 #define set_inuse(p)\
1879 ((mchunkptr)(((char*)(p)) + ((p)->size & ~SIZE_BITS)))->size |= PREV_INUSE
1881 #define clear_inuse(p)\
1882 ((mchunkptr)(((char*)(p)) + ((p)->size & ~SIZE_BITS)))->size &= ~(PREV_INUSE)
1885 /* check/set/clear inuse bits in known places */
1886 #define inuse_bit_at_offset(p, s)\
1887 (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
1889 #define set_inuse_bit_at_offset(p, s)\
1890 (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
1892 #define clear_inuse_bit_at_offset(p, s)\
1893 (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
1896 /* Set size at head, without disturbing its use bit */
1897 #define set_head_size(p, s) ((p)->size = (((p)->size & SIZE_BITS) | (s)))
1899 /* Set size/use field */
1900 #define set_head(p, s) ((p)->size = (s))
1902 /* Set size at footer (only when chunk is not in use) */
1903 #define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
1907 -------------------- Internal data structures --------------------
1909 All internal state is held in an instance of malloc_state defined
1910 below. There are no other static variables, except in two optional
1911 cases:
1912 * If USE_MALLOC_LOCK is defined, the mALLOC_MUTEx declared above.
1913 * If HAVE_MMAP is true, but mmap doesn't support
1914 MAP_ANONYMOUS, a dummy file descriptor for mmap.
1916 Beware of lots of tricks that minimize the total bookkeeping space
1917 requirements. The result is a little over 1K bytes (for 4byte
1918 pointers and size_t.)
1922 Bins
1924 An array of bin headers for free chunks. Each bin is doubly
1925 linked. The bins are approximately proportionally (log) spaced.
1926 There are a lot of these bins (128). This may look excessive, but
1927 works very well in practice. Most bins hold sizes that are
1928 unusual as malloc request sizes, but are more usual for fragments
1929 and consolidated sets of chunks, which is what these bins hold, so
1930 they can be found quickly. All procedures maintain the invariant
1931 that no consolidated chunk physically borders another one, so each
1932 chunk in a list is known to be preceeded and followed by either
1933 inuse chunks or the ends of memory.
1935 Chunks in bins are kept in size order, with ties going to the
1936 approximately least recently used chunk. Ordering isn't needed
1937 for the small bins, which all contain the same-sized chunks, but
1938 facilitates best-fit allocation for larger chunks. These lists
1939 are just sequential. Keeping them in order almost never requires
1940 enough traversal to warrant using fancier ordered data
1941 structures.
1943 Chunks of the same size are linked with the most
1944 recently freed at the front, and allocations are taken from the
1945 back. This results in LRU (FIFO) allocation order, which tends
1946 to give each chunk an equal opportunity to be consolidated with
1947 adjacent freed chunks, resulting in larger free chunks and less
1948 fragmentation.
1950 To simplify use in double-linked lists, each bin header acts
1951 as a malloc_chunk. This avoids special-casing for headers.
1952 But to conserve space and improve locality, we allocate
1953 only the fd/bk pointers of bins, and then use repositioning tricks
1954 to treat these as the fields of a malloc_chunk*.
1957 typedef struct malloc_chunk* mbinptr;
1959 /* addressing -- note that bin_at(0) does not exist */
1960 #define bin_at(m, i) ((mbinptr)((char*)&((m)->bins[(i)<<1]) - (SIZE_SZ<<1)))
1962 /* analog of ++bin */
1963 #define next_bin(b) ((mbinptr)((char*)(b) + (sizeof(mchunkptr)<<1)))
1965 /* Reminders about list directionality within bins */
1966 #define first(b) ((b)->fd)
1967 #define last(b) ((b)->bk)
1969 /* Take a chunk off a bin list */
1970 #define unlink(P, BK, FD) { \
1971 FD = P->fd; \
1972 BK = P->bk; \
1973 if (__builtin_expect (FD->bk != P || BK->fd != P, 0)) \
1974 malloc_printf_nc (check_action, \
1975 "corrupted double-linked list at %p!\n", P); \
1976 FD->bk = BK; \
1977 BK->fd = FD; \
1981 Indexing
1983 Bins for sizes < 512 bytes contain chunks of all the same size, spaced
1984 8 bytes apart. Larger bins are approximately logarithmically spaced:
1986 64 bins of size 8
1987 32 bins of size 64
1988 16 bins of size 512
1989 8 bins of size 4096
1990 4 bins of size 32768
1991 2 bins of size 262144
1992 1 bin of size what's left
1994 There is actually a little bit of slop in the numbers in bin_index
1995 for the sake of speed. This makes no difference elsewhere.
1997 The bins top out around 1MB because we expect to service large
1998 requests via mmap.
2001 #define NBINS 128
2002 #define NSMALLBINS 64
2003 #define SMALLBIN_WIDTH 8
2004 #define MIN_LARGE_SIZE 512
2006 #define in_smallbin_range(sz) \
2007 ((unsigned long)(sz) < (unsigned long)MIN_LARGE_SIZE)
2009 #define smallbin_index(sz) (((unsigned)(sz)) >> 3)
2011 #define largebin_index(sz) \
2012 (((((unsigned long)(sz)) >> 6) <= 32)? 56 + (((unsigned long)(sz)) >> 6): \
2013 ((((unsigned long)(sz)) >> 9) <= 20)? 91 + (((unsigned long)(sz)) >> 9): \
2014 ((((unsigned long)(sz)) >> 12) <= 10)? 110 + (((unsigned long)(sz)) >> 12): \
2015 ((((unsigned long)(sz)) >> 15) <= 4)? 119 + (((unsigned long)(sz)) >> 15): \
2016 ((((unsigned long)(sz)) >> 18) <= 2)? 124 + (((unsigned long)(sz)) >> 18): \
2017 126)
2019 #define bin_index(sz) \
2020 ((in_smallbin_range(sz)) ? smallbin_index(sz) : largebin_index(sz))
2024 Unsorted chunks
2026 All remainders from chunk splits, as well as all returned chunks,
2027 are first placed in the "unsorted" bin. They are then placed
2028 in regular bins after malloc gives them ONE chance to be used before
2029 binning. So, basically, the unsorted_chunks list acts as a queue,
2030 with chunks being placed on it in free (and malloc_consolidate),
2031 and taken off (to be either used or placed in bins) in malloc.
2033 The NON_MAIN_ARENA flag is never set for unsorted chunks, so it
2034 does not have to be taken into account in size comparisons.
2037 /* The otherwise unindexable 1-bin is used to hold unsorted chunks. */
2038 #define unsorted_chunks(M) (bin_at(M, 1))
2043 The top-most available chunk (i.e., the one bordering the end of
2044 available memory) is treated specially. It is never included in
2045 any bin, is used only if no other chunk is available, and is
2046 released back to the system if it is very large (see
2047 M_TRIM_THRESHOLD). Because top initially
2048 points to its own bin with initial zero size, thus forcing
2049 extension on the first malloc request, we avoid having any special
2050 code in malloc to check whether it even exists yet. But we still
2051 need to do so when getting memory from system, so we make
2052 initial_top treat the bin as a legal but unusable chunk during the
2053 interval between initialization and the first call to
2054 sYSMALLOc. (This is somewhat delicate, since it relies on
2055 the 2 preceding words to be zero during this interval as well.)
2058 /* Conveniently, the unsorted bin can be used as dummy top on first call */
2059 #define initial_top(M) (unsorted_chunks(M))
2062 Binmap
2064 To help compensate for the large number of bins, a one-level index
2065 structure is used for bin-by-bin searching. `binmap' is a
2066 bitvector recording whether bins are definitely empty so they can
2067 be skipped over during during traversals. The bits are NOT always
2068 cleared as soon as bins are empty, but instead only
2069 when they are noticed to be empty during traversal in malloc.
2072 /* Conservatively use 32 bits per map word, even if on 64bit system */
2073 #define BINMAPSHIFT 5
2074 #define BITSPERMAP (1U << BINMAPSHIFT)
2075 #define BINMAPSIZE (NBINS / BITSPERMAP)
2077 #define idx2block(i) ((i) >> BINMAPSHIFT)
2078 #define idx2bit(i) ((1U << ((i) & ((1U << BINMAPSHIFT)-1))))
2080 #define mark_bin(m,i) ((m)->binmap[idx2block(i)] |= idx2bit(i))
2081 #define unmark_bin(m,i) ((m)->binmap[idx2block(i)] &= ~(idx2bit(i)))
2082 #define get_binmap(m,i) ((m)->binmap[idx2block(i)] & idx2bit(i))
2085 Fastbins
2087 An array of lists holding recently freed small chunks. Fastbins
2088 are not doubly linked. It is faster to single-link them, and
2089 since chunks are never removed from the middles of these lists,
2090 double linking is not necessary. Also, unlike regular bins, they
2091 are not even processed in FIFO order (they use faster LIFO) since
2092 ordering doesn't much matter in the transient contexts in which
2093 fastbins are normally used.
2095 Chunks in fastbins keep their inuse bit set, so they cannot
2096 be consolidated with other free chunks. malloc_consolidate
2097 releases all chunks in fastbins and consolidates them with
2098 other free chunks.
2101 typedef struct malloc_chunk* mfastbinptr;
2103 /* offset 2 to use otherwise unindexable first 2 bins */
2104 #define fastbin_index(sz) ((((unsigned int)(sz)) >> 3) - 2)
2106 /* The maximum fastbin request size we support */
2107 #define MAX_FAST_SIZE 80
2109 #define NFASTBINS (fastbin_index(request2size(MAX_FAST_SIZE))+1)
2112 FASTBIN_CONSOLIDATION_THRESHOLD is the size of a chunk in free()
2113 that triggers automatic consolidation of possibly-surrounding
2114 fastbin chunks. This is a heuristic, so the exact value should not
2115 matter too much. It is defined at half the default trim threshold as a
2116 compromise heuristic to only attempt consolidation if it is likely
2117 to lead to trimming. However, it is not dynamically tunable, since
2118 consolidation reduces fragmentation surrounding large chunks even
2119 if trimming is not used.
2122 #define FASTBIN_CONSOLIDATION_THRESHOLD (65536UL)
2125 Since the lowest 2 bits in max_fast don't matter in size comparisons,
2126 they are used as flags.
2130 FASTCHUNKS_BIT held in max_fast indicates that there are probably
2131 some fastbin chunks. It is set true on entering a chunk into any
2132 fastbin, and cleared only in malloc_consolidate.
2134 The truth value is inverted so that have_fastchunks will be true
2135 upon startup (since statics are zero-filled), simplifying
2136 initialization checks.
2139 #define FASTCHUNKS_BIT (1U)
2141 #define have_fastchunks(M) (((M)->max_fast & FASTCHUNKS_BIT) == 0)
2142 #define clear_fastchunks(M) ((M)->max_fast |= FASTCHUNKS_BIT)
2143 #define set_fastchunks(M) ((M)->max_fast &= ~FASTCHUNKS_BIT)
2146 NONCONTIGUOUS_BIT indicates that MORECORE does not return contiguous
2147 regions. Otherwise, contiguity is exploited in merging together,
2148 when possible, results from consecutive MORECORE calls.
2150 The initial value comes from MORECORE_CONTIGUOUS, but is
2151 changed dynamically if mmap is ever used as an sbrk substitute.
2154 #define NONCONTIGUOUS_BIT (2U)
2156 #define contiguous(M) (((M)->max_fast & NONCONTIGUOUS_BIT) == 0)
2157 #define noncontiguous(M) (((M)->max_fast & NONCONTIGUOUS_BIT) != 0)
2158 #define set_noncontiguous(M) ((M)->max_fast |= NONCONTIGUOUS_BIT)
2159 #define set_contiguous(M) ((M)->max_fast &= ~NONCONTIGUOUS_BIT)
2162 Set value of max_fast.
2163 Use impossibly small value if 0.
2164 Precondition: there are no existing fastbin chunks.
2165 Setting the value clears fastchunk bit but preserves noncontiguous bit.
2168 #define set_max_fast(M, s) \
2169 (M)->max_fast = (((s) == 0)? SMALLBIN_WIDTH: request2size(s)) | \
2170 FASTCHUNKS_BIT | \
2171 ((M)->max_fast & NONCONTIGUOUS_BIT)
2175 ----------- Internal state representation and initialization -----------
2178 struct malloc_state {
2179 /* Serialize access. */
2180 mutex_t mutex;
2182 /* Statistics for locking. Only used if THREAD_STATS is defined. */
2183 long stat_lock_direct, stat_lock_loop, stat_lock_wait;
2184 long pad0_[1]; /* try to give the mutex its own cacheline */
2186 /* The maximum chunk size to be eligible for fastbin */
2187 INTERNAL_SIZE_T max_fast; /* low 2 bits used as flags */
2189 /* Fastbins */
2190 mfastbinptr fastbins[NFASTBINS];
2192 /* Base of the topmost chunk -- not otherwise kept in a bin */
2193 mchunkptr top;
2195 /* The remainder from the most recent split of a small request */
2196 mchunkptr last_remainder;
2198 /* Normal bins packed as described above */
2199 mchunkptr bins[NBINS * 2];
2201 /* Bitmap of bins */
2202 unsigned int binmap[BINMAPSIZE];
2204 /* Linked list */
2205 struct malloc_state *next;
2207 /* Memory allocated from the system in this arena. */
2208 INTERNAL_SIZE_T system_mem;
2209 INTERNAL_SIZE_T max_system_mem;
2212 struct malloc_par {
2213 /* Tunable parameters */
2214 unsigned long trim_threshold;
2215 INTERNAL_SIZE_T top_pad;
2216 INTERNAL_SIZE_T mmap_threshold;
2218 /* Memory map support */
2219 int n_mmaps;
2220 int n_mmaps_max;
2221 int max_n_mmaps;
2223 /* Cache malloc_getpagesize */
2224 unsigned int pagesize;
2226 /* Statistics */
2227 INTERNAL_SIZE_T mmapped_mem;
2228 /*INTERNAL_SIZE_T sbrked_mem;*/
2229 /*INTERNAL_SIZE_T max_sbrked_mem;*/
2230 INTERNAL_SIZE_T max_mmapped_mem;
2231 INTERNAL_SIZE_T max_total_mem; /* only kept for NO_THREADS */
2233 /* First address handed out by MORECORE/sbrk. */
2234 char* sbrk_base;
2237 /* There are several instances of this struct ("arenas") in this
2238 malloc. If you are adapting this malloc in a way that does NOT use
2239 a static or mmapped malloc_state, you MUST explicitly zero-fill it
2240 before using. This malloc relies on the property that malloc_state
2241 is initialized to all zeroes (as is true of C statics). */
2243 static struct malloc_state main_arena;
2245 /* There is only one instance of the malloc parameters. */
2247 static struct malloc_par mp_;
2250 Initialize a malloc_state struct.
2252 This is called only from within malloc_consolidate, which needs
2253 be called in the same contexts anyway. It is never called directly
2254 outside of malloc_consolidate because some optimizing compilers try
2255 to inline it at all call points, which turns out not to be an
2256 optimization at all. (Inlining it in malloc_consolidate is fine though.)
2259 #if __STD_C
2260 static void malloc_init_state(mstate av)
2261 #else
2262 static void malloc_init_state(av) mstate av;
2263 #endif
2265 int i;
2266 mbinptr bin;
2268 /* Establish circular links for normal bins */
2269 for (i = 1; i < NBINS; ++i) {
2270 bin = bin_at(av,i);
2271 bin->fd = bin->bk = bin;
2274 #if MORECORE_CONTIGUOUS
2275 if (av != &main_arena)
2276 #endif
2277 set_noncontiguous(av);
2279 set_max_fast(av, DEFAULT_MXFAST);
2281 av->top = initial_top(av);
2285 Other internal utilities operating on mstates
2288 #if __STD_C
2289 static Void_t* sYSMALLOc(INTERNAL_SIZE_T, mstate);
2290 static int sYSTRIm(size_t, mstate);
2291 static void malloc_consolidate(mstate);
2292 static Void_t** iALLOc(mstate, size_t, size_t*, int, Void_t**);
2293 #else
2294 static Void_t* sYSMALLOc();
2295 static int sYSTRIm();
2296 static void malloc_consolidate();
2297 static Void_t** iALLOc();
2298 #endif
2301 /* -------------- Early definitions for debugging hooks ---------------- */
2303 /* Define and initialize the hook variables. These weak definitions must
2304 appear before any use of the variables in a function (arena.c uses one). */
2305 #ifndef weak_variable
2306 #ifndef _LIBC
2307 #define weak_variable /**/
2308 #else
2309 /* In GNU libc we want the hook variables to be weak definitions to
2310 avoid a problem with Emacs. */
2311 #define weak_variable weak_function
2312 #endif
2313 #endif
2315 /* Forward declarations. */
2316 static Void_t* malloc_hook_ini __MALLOC_P ((size_t sz,
2317 const __malloc_ptr_t caller));
2318 static Void_t* realloc_hook_ini __MALLOC_P ((Void_t* ptr, size_t sz,
2319 const __malloc_ptr_t caller));
2320 static Void_t* memalign_hook_ini __MALLOC_P ((size_t alignment, size_t sz,
2321 const __malloc_ptr_t caller));
2323 void weak_variable (*__malloc_initialize_hook) __MALLOC_P ((void)) = NULL;
2324 void weak_variable (*__free_hook) __MALLOC_P ((__malloc_ptr_t __ptr,
2325 const __malloc_ptr_t)) = NULL;
2326 __malloc_ptr_t weak_variable (*__malloc_hook)
2327 __MALLOC_P ((size_t __size, const __malloc_ptr_t)) = malloc_hook_ini;
2328 __malloc_ptr_t weak_variable (*__realloc_hook)
2329 __MALLOC_P ((__malloc_ptr_t __ptr, size_t __size, const __malloc_ptr_t))
2330 = realloc_hook_ini;
2331 __malloc_ptr_t weak_variable (*__memalign_hook)
2332 __MALLOC_P ((size_t __alignment, size_t __size, const __malloc_ptr_t))
2333 = memalign_hook_ini;
2334 void weak_variable (*__after_morecore_hook) __MALLOC_P ((void)) = NULL;
2337 /* ---------------- Error behavior ------------------------------------ */
2339 #ifndef DEFAULT_CHECK_ACTION
2340 #define DEFAULT_CHECK_ACTION 3
2341 #endif
2343 static int check_action = DEFAULT_CHECK_ACTION;
2346 /* ------------------- Support for multiple arenas -------------------- */
2347 #include "arena.c"
2350 Debugging support
2352 These routines make a number of assertions about the states
2353 of data structures that should be true at all times. If any
2354 are not true, it's very likely that a user program has somehow
2355 trashed memory. (It's also possible that there is a coding error
2356 in malloc. In which case, please report it!)
2359 #if ! MALLOC_DEBUG
2361 #define check_chunk(A,P)
2362 #define check_free_chunk(A,P)
2363 #define check_inuse_chunk(A,P)
2364 #define check_remalloced_chunk(A,P,N)
2365 #define check_malloced_chunk(A,P,N)
2366 #define check_malloc_state(A)
2368 #else
2370 #define check_chunk(A,P) do_check_chunk(A,P)
2371 #define check_free_chunk(A,P) do_check_free_chunk(A,P)
2372 #define check_inuse_chunk(A,P) do_check_inuse_chunk(A,P)
2373 #define check_remalloced_chunk(A,P,N) do_check_remalloced_chunk(A,P,N)
2374 #define check_malloced_chunk(A,P,N) do_check_malloced_chunk(A,P,N)
2375 #define check_malloc_state(A) do_check_malloc_state(A)
2378 Properties of all chunks
2381 #if __STD_C
2382 static void do_check_chunk(mstate av, mchunkptr p)
2383 #else
2384 static void do_check_chunk(av, p) mstate av; mchunkptr p;
2385 #endif
2387 unsigned long sz = chunksize(p);
2388 /* min and max possible addresses assuming contiguous allocation */
2389 char* max_address = (char*)(av->top) + chunksize(av->top);
2390 char* min_address = max_address - av->system_mem;
2392 if (!chunk_is_mmapped(p)) {
2394 /* Has legal address ... */
2395 if (p != av->top) {
2396 if (contiguous(av)) {
2397 assert(((char*)p) >= min_address);
2398 assert(((char*)p + sz) <= ((char*)(av->top)));
2401 else {
2402 /* top size is always at least MINSIZE */
2403 assert((unsigned long)(sz) >= MINSIZE);
2404 /* top predecessor always marked inuse */
2405 assert(prev_inuse(p));
2409 else {
2410 #if HAVE_MMAP
2411 /* address is outside main heap */
2412 if (contiguous(av) && av->top != initial_top(av)) {
2413 assert(((char*)p) < min_address || ((char*)p) > max_address);
2415 /* chunk is page-aligned */
2416 assert(((p->prev_size + sz) & (mp_.pagesize-1)) == 0);
2417 /* mem is aligned */
2418 assert(aligned_OK(chunk2mem(p)));
2419 #else
2420 /* force an appropriate assert violation if debug set */
2421 assert(!chunk_is_mmapped(p));
2422 #endif
2427 Properties of free chunks
2430 #if __STD_C
2431 static void do_check_free_chunk(mstate av, mchunkptr p)
2432 #else
2433 static void do_check_free_chunk(av, p) mstate av; mchunkptr p;
2434 #endif
2436 INTERNAL_SIZE_T sz = p->size & ~(PREV_INUSE|NON_MAIN_ARENA);
2437 mchunkptr next = chunk_at_offset(p, sz);
2439 do_check_chunk(av, p);
2441 /* Chunk must claim to be free ... */
2442 assert(!inuse(p));
2443 assert (!chunk_is_mmapped(p));
2445 /* Unless a special marker, must have OK fields */
2446 if ((unsigned long)(sz) >= MINSIZE)
2448 assert((sz & MALLOC_ALIGN_MASK) == 0);
2449 assert(aligned_OK(chunk2mem(p)));
2450 /* ... matching footer field */
2451 assert(next->prev_size == sz);
2452 /* ... and is fully consolidated */
2453 assert(prev_inuse(p));
2454 assert (next == av->top || inuse(next));
2456 /* ... and has minimally sane links */
2457 assert(p->fd->bk == p);
2458 assert(p->bk->fd == p);
2460 else /* markers are always of size SIZE_SZ */
2461 assert(sz == SIZE_SZ);
2465 Properties of inuse chunks
2468 #if __STD_C
2469 static void do_check_inuse_chunk(mstate av, mchunkptr p)
2470 #else
2471 static void do_check_inuse_chunk(av, p) mstate av; mchunkptr p;
2472 #endif
2474 mchunkptr next;
2476 do_check_chunk(av, p);
2478 if (chunk_is_mmapped(p))
2479 return; /* mmapped chunks have no next/prev */
2481 /* Check whether it claims to be in use ... */
2482 assert(inuse(p));
2484 next = next_chunk(p);
2486 /* ... and is surrounded by OK chunks.
2487 Since more things can be checked with free chunks than inuse ones,
2488 if an inuse chunk borders them and debug is on, it's worth doing them.
2490 if (!prev_inuse(p)) {
2491 /* Note that we cannot even look at prev unless it is not inuse */
2492 mchunkptr prv = prev_chunk(p);
2493 assert(next_chunk(prv) == p);
2494 do_check_free_chunk(av, prv);
2497 if (next == av->top) {
2498 assert(prev_inuse(next));
2499 assert(chunksize(next) >= MINSIZE);
2501 else if (!inuse(next))
2502 do_check_free_chunk(av, next);
2506 Properties of chunks recycled from fastbins
2509 #if __STD_C
2510 static void do_check_remalloced_chunk(mstate av, mchunkptr p, INTERNAL_SIZE_T s)
2511 #else
2512 static void do_check_remalloced_chunk(av, p, s)
2513 mstate av; mchunkptr p; INTERNAL_SIZE_T s;
2514 #endif
2516 INTERNAL_SIZE_T sz = p->size & ~(PREV_INUSE|NON_MAIN_ARENA);
2518 if (!chunk_is_mmapped(p)) {
2519 assert(av == arena_for_chunk(p));
2520 if (chunk_non_main_arena(p))
2521 assert(av != &main_arena);
2522 else
2523 assert(av == &main_arena);
2526 do_check_inuse_chunk(av, p);
2528 /* Legal size ... */
2529 assert((sz & MALLOC_ALIGN_MASK) == 0);
2530 assert((unsigned long)(sz) >= MINSIZE);
2531 /* ... and alignment */
2532 assert(aligned_OK(chunk2mem(p)));
2533 /* chunk is less than MINSIZE more than request */
2534 assert((long)(sz) - (long)(s) >= 0);
2535 assert((long)(sz) - (long)(s + MINSIZE) < 0);
2539 Properties of nonrecycled chunks at the point they are malloced
2542 #if __STD_C
2543 static void do_check_malloced_chunk(mstate av, mchunkptr p, INTERNAL_SIZE_T s)
2544 #else
2545 static void do_check_malloced_chunk(av, p, s)
2546 mstate av; mchunkptr p; INTERNAL_SIZE_T s;
2547 #endif
2549 /* same as recycled case ... */
2550 do_check_remalloced_chunk(av, p, s);
2553 ... plus, must obey implementation invariant that prev_inuse is
2554 always true of any allocated chunk; i.e., that each allocated
2555 chunk borders either a previously allocated and still in-use
2556 chunk, or the base of its memory arena. This is ensured
2557 by making all allocations from the the `lowest' part of any found
2558 chunk. This does not necessarily hold however for chunks
2559 recycled via fastbins.
2562 assert(prev_inuse(p));
2567 Properties of malloc_state.
2569 This may be useful for debugging malloc, as well as detecting user
2570 programmer errors that somehow write into malloc_state.
2572 If you are extending or experimenting with this malloc, you can
2573 probably figure out how to hack this routine to print out or
2574 display chunk addresses, sizes, bins, and other instrumentation.
2577 static void do_check_malloc_state(mstate av)
2579 int i;
2580 mchunkptr p;
2581 mchunkptr q;
2582 mbinptr b;
2583 unsigned int binbit;
2584 int empty;
2585 unsigned int idx;
2586 INTERNAL_SIZE_T size;
2587 unsigned long total = 0;
2588 int max_fast_bin;
2590 /* internal size_t must be no wider than pointer type */
2591 assert(sizeof(INTERNAL_SIZE_T) <= sizeof(char*));
2593 /* alignment is a power of 2 */
2594 assert((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-1)) == 0);
2596 /* cannot run remaining checks until fully initialized */
2597 if (av->top == 0 || av->top == initial_top(av))
2598 return;
2600 /* pagesize is a power of 2 */
2601 assert((mp_.pagesize & (mp_.pagesize-1)) == 0);
2603 /* A contiguous main_arena is consistent with sbrk_base. */
2604 if (av == &main_arena && contiguous(av))
2605 assert((char*)mp_.sbrk_base + av->system_mem ==
2606 (char*)av->top + chunksize(av->top));
2608 /* properties of fastbins */
2610 /* max_fast is in allowed range */
2611 assert((av->max_fast & ~1) <= request2size(MAX_FAST_SIZE));
2613 max_fast_bin = fastbin_index(av->max_fast);
2615 for (i = 0; i < NFASTBINS; ++i) {
2616 p = av->fastbins[i];
2618 /* all bins past max_fast are empty */
2619 if (i > max_fast_bin)
2620 assert(p == 0);
2622 while (p != 0) {
2623 /* each chunk claims to be inuse */
2624 do_check_inuse_chunk(av, p);
2625 total += chunksize(p);
2626 /* chunk belongs in this bin */
2627 assert(fastbin_index(chunksize(p)) == i);
2628 p = p->fd;
2632 if (total != 0)
2633 assert(have_fastchunks(av));
2634 else if (!have_fastchunks(av))
2635 assert(total == 0);
2637 /* check normal bins */
2638 for (i = 1; i < NBINS; ++i) {
2639 b = bin_at(av,i);
2641 /* binmap is accurate (except for bin 1 == unsorted_chunks) */
2642 if (i >= 2) {
2643 binbit = get_binmap(av,i);
2644 empty = last(b) == b;
2645 if (!binbit)
2646 assert(empty);
2647 else if (!empty)
2648 assert(binbit);
2651 for (p = last(b); p != b; p = p->bk) {
2652 /* each chunk claims to be free */
2653 do_check_free_chunk(av, p);
2654 size = chunksize(p);
2655 total += size;
2656 if (i >= 2) {
2657 /* chunk belongs in bin */
2658 idx = bin_index(size);
2659 assert(idx == i);
2660 /* lists are sorted */
2661 assert(p->bk == b ||
2662 (unsigned long)chunksize(p->bk) >= (unsigned long)chunksize(p));
2664 /* chunk is followed by a legal chain of inuse chunks */
2665 for (q = next_chunk(p);
2666 (q != av->top && inuse(q) &&
2667 (unsigned long)(chunksize(q)) >= MINSIZE);
2668 q = next_chunk(q))
2669 do_check_inuse_chunk(av, q);
2673 /* top chunk is OK */
2674 check_chunk(av, av->top);
2676 /* sanity checks for statistics */
2678 #ifdef NO_THREADS
2679 assert(total <= (unsigned long)(mp_.max_total_mem));
2680 assert(mp_.n_mmaps >= 0);
2681 #endif
2682 assert(mp_.n_mmaps <= mp_.n_mmaps_max);
2683 assert(mp_.n_mmaps <= mp_.max_n_mmaps);
2685 assert((unsigned long)(av->system_mem) <=
2686 (unsigned long)(av->max_system_mem));
2688 assert((unsigned long)(mp_.mmapped_mem) <=
2689 (unsigned long)(mp_.max_mmapped_mem));
2691 #ifdef NO_THREADS
2692 assert((unsigned long)(mp_.max_total_mem) >=
2693 (unsigned long)(mp_.mmapped_mem) + (unsigned long)(av->system_mem));
2694 #endif
2696 #endif
2699 /* ----------------- Support for debugging hooks -------------------- */
2700 #include "hooks.c"
2703 /* ----------- Routines dealing with system allocation -------------- */
2706 sysmalloc handles malloc cases requiring more memory from the system.
2707 On entry, it is assumed that av->top does not have enough
2708 space to service request for nb bytes, thus requiring that av->top
2709 be extended or replaced.
2712 #if __STD_C
2713 static Void_t* sYSMALLOc(INTERNAL_SIZE_T nb, mstate av)
2714 #else
2715 static Void_t* sYSMALLOc(nb, av) INTERNAL_SIZE_T nb; mstate av;
2716 #endif
2718 mchunkptr old_top; /* incoming value of av->top */
2719 INTERNAL_SIZE_T old_size; /* its size */
2720 char* old_end; /* its end address */
2722 long size; /* arg to first MORECORE or mmap call */
2723 char* brk; /* return value from MORECORE */
2725 long correction; /* arg to 2nd MORECORE call */
2726 char* snd_brk; /* 2nd return val */
2728 INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of new space */
2729 INTERNAL_SIZE_T end_misalign; /* partial page left at end of new space */
2730 char* aligned_brk; /* aligned offset into brk */
2732 mchunkptr p; /* the allocated/returned chunk */
2733 mchunkptr remainder; /* remainder from allocation */
2734 unsigned long remainder_size; /* its size */
2736 unsigned long sum; /* for updating stats */
2738 size_t pagemask = mp_.pagesize - 1;
2741 #if HAVE_MMAP
2744 If have mmap, and the request size meets the mmap threshold, and
2745 the system supports mmap, and there are few enough currently
2746 allocated mmapped regions, try to directly map this request
2747 rather than expanding top.
2750 if ((unsigned long)(nb) >= (unsigned long)(mp_.mmap_threshold) &&
2751 (mp_.n_mmaps < mp_.n_mmaps_max)) {
2753 char* mm; /* return value from mmap call*/
2756 Round up size to nearest page. For mmapped chunks, the overhead
2757 is one SIZE_SZ unit larger than for normal chunks, because there
2758 is no following chunk whose prev_size field could be used.
2760 size = (nb + SIZE_SZ + MALLOC_ALIGN_MASK + pagemask) & ~pagemask;
2762 /* Don't try if size wraps around 0 */
2763 if ((unsigned long)(size) > (unsigned long)(nb)) {
2765 mm = (char*)(MMAP(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE));
2767 if (mm != MAP_FAILED) {
2770 The offset to the start of the mmapped region is stored
2771 in the prev_size field of the chunk. This allows us to adjust
2772 returned start address to meet alignment requirements here
2773 and in memalign(), and still be able to compute proper
2774 address argument for later munmap in free() and realloc().
2777 front_misalign = (INTERNAL_SIZE_T)chunk2mem(mm) & MALLOC_ALIGN_MASK;
2778 if (front_misalign > 0) {
2779 correction = MALLOC_ALIGNMENT - front_misalign;
2780 p = (mchunkptr)(mm + correction);
2781 p->prev_size = correction;
2782 set_head(p, (size - correction) |IS_MMAPPED);
2784 else {
2785 p = (mchunkptr)mm;
2786 set_head(p, size|IS_MMAPPED);
2789 /* update statistics */
2791 if (++mp_.n_mmaps > mp_.max_n_mmaps)
2792 mp_.max_n_mmaps = mp_.n_mmaps;
2794 sum = mp_.mmapped_mem += size;
2795 if (sum > (unsigned long)(mp_.max_mmapped_mem))
2796 mp_.max_mmapped_mem = sum;
2797 #ifdef NO_THREADS
2798 sum += av->system_mem;
2799 if (sum > (unsigned long)(mp_.max_total_mem))
2800 mp_.max_total_mem = sum;
2801 #endif
2803 check_chunk(av, p);
2805 return chunk2mem(p);
2809 #endif
2811 /* Record incoming configuration of top */
2813 old_top = av->top;
2814 old_size = chunksize(old_top);
2815 old_end = (char*)(chunk_at_offset(old_top, old_size));
2817 brk = snd_brk = (char*)(MORECORE_FAILURE);
2820 If not the first time through, we require old_size to be
2821 at least MINSIZE and to have prev_inuse set.
2824 assert((old_top == initial_top(av) && old_size == 0) ||
2825 ((unsigned long) (old_size) >= MINSIZE &&
2826 prev_inuse(old_top) &&
2827 ((unsigned long)old_end & pagemask) == 0));
2829 /* Precondition: not enough current space to satisfy nb request */
2830 assert((unsigned long)(old_size) < (unsigned long)(nb + MINSIZE));
2832 /* Precondition: all fastbins are consolidated */
2833 assert(!have_fastchunks(av));
2836 if (av != &main_arena) {
2838 heap_info *old_heap, *heap;
2839 size_t old_heap_size;
2841 /* First try to extend the current heap. */
2842 old_heap = heap_for_ptr(old_top);
2843 old_heap_size = old_heap->size;
2844 if (grow_heap(old_heap, MINSIZE + nb - old_size) == 0) {
2845 av->system_mem += old_heap->size - old_heap_size;
2846 arena_mem += old_heap->size - old_heap_size;
2847 #if 0
2848 if(mmapped_mem + arena_mem + sbrked_mem > max_total_mem)
2849 max_total_mem = mmapped_mem + arena_mem + sbrked_mem;
2850 #endif
2851 set_head(old_top, (((char *)old_heap + old_heap->size) - (char *)old_top)
2852 | PREV_INUSE);
2854 else if ((heap = new_heap(nb + (MINSIZE + sizeof(*heap)), mp_.top_pad))) {
2855 /* Use a newly allocated heap. */
2856 heap->ar_ptr = av;
2857 heap->prev = old_heap;
2858 av->system_mem += heap->size;
2859 arena_mem += heap->size;
2860 #if 0
2861 if((unsigned long)(mmapped_mem + arena_mem + sbrked_mem) > max_total_mem)
2862 max_total_mem = mmapped_mem + arena_mem + sbrked_mem;
2863 #endif
2864 /* Set up the new top. */
2865 top(av) = chunk_at_offset(heap, sizeof(*heap));
2866 set_head(top(av), (heap->size - sizeof(*heap)) | PREV_INUSE);
2868 /* Setup fencepost and free the old top chunk. */
2869 /* The fencepost takes at least MINSIZE bytes, because it might
2870 become the top chunk again later. Note that a footer is set
2871 up, too, although the chunk is marked in use. */
2872 old_size -= MINSIZE;
2873 set_head(chunk_at_offset(old_top, old_size + 2*SIZE_SZ), 0|PREV_INUSE);
2874 if (old_size >= MINSIZE) {
2875 set_head(chunk_at_offset(old_top, old_size), (2*SIZE_SZ)|PREV_INUSE);
2876 set_foot(chunk_at_offset(old_top, old_size), (2*SIZE_SZ));
2877 set_head(old_top, old_size|PREV_INUSE|NON_MAIN_ARENA);
2878 _int_free(av, chunk2mem(old_top));
2879 } else {
2880 set_head(old_top, (old_size + 2*SIZE_SZ)|PREV_INUSE);
2881 set_foot(old_top, (old_size + 2*SIZE_SZ));
2885 } else { /* av == main_arena */
2888 /* Request enough space for nb + pad + overhead */
2890 size = nb + mp_.top_pad + MINSIZE;
2893 If contiguous, we can subtract out existing space that we hope to
2894 combine with new space. We add it back later only if
2895 we don't actually get contiguous space.
2898 if (contiguous(av))
2899 size -= old_size;
2902 Round to a multiple of page size.
2903 If MORECORE is not contiguous, this ensures that we only call it
2904 with whole-page arguments. And if MORECORE is contiguous and
2905 this is not first time through, this preserves page-alignment of
2906 previous calls. Otherwise, we correct to page-align below.
2909 size = (size + pagemask) & ~pagemask;
2912 Don't try to call MORECORE if argument is so big as to appear
2913 negative. Note that since mmap takes size_t arg, it may succeed
2914 below even if we cannot call MORECORE.
2917 if (size > 0)
2918 brk = (char*)(MORECORE(size));
2920 if (brk != (char*)(MORECORE_FAILURE)) {
2921 /* Call the `morecore' hook if necessary. */
2922 if (__after_morecore_hook)
2923 (*__after_morecore_hook) ();
2924 } else {
2926 If have mmap, try using it as a backup when MORECORE fails or
2927 cannot be used. This is worth doing on systems that have "holes" in
2928 address space, so sbrk cannot extend to give contiguous space, but
2929 space is available elsewhere. Note that we ignore mmap max count
2930 and threshold limits, since the space will not be used as a
2931 segregated mmap region.
2934 #if HAVE_MMAP
2935 /* Cannot merge with old top, so add its size back in */
2936 if (contiguous(av))
2937 size = (size + old_size + pagemask) & ~pagemask;
2939 /* If we are relying on mmap as backup, then use larger units */
2940 if ((unsigned long)(size) < (unsigned long)(MMAP_AS_MORECORE_SIZE))
2941 size = MMAP_AS_MORECORE_SIZE;
2943 /* Don't try if size wraps around 0 */
2944 if ((unsigned long)(size) > (unsigned long)(nb)) {
2946 char *mbrk = (char*)(MMAP(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE));
2948 if (mbrk != MAP_FAILED) {
2950 /* We do not need, and cannot use, another sbrk call to find end */
2951 brk = mbrk;
2952 snd_brk = brk + size;
2955 Record that we no longer have a contiguous sbrk region.
2956 After the first time mmap is used as backup, we do not
2957 ever rely on contiguous space since this could incorrectly
2958 bridge regions.
2960 set_noncontiguous(av);
2963 #endif
2966 if (brk != (char*)(MORECORE_FAILURE)) {
2967 if (mp_.sbrk_base == 0)
2968 mp_.sbrk_base = brk;
2969 av->system_mem += size;
2972 If MORECORE extends previous space, we can likewise extend top size.
2975 if (brk == old_end && snd_brk == (char*)(MORECORE_FAILURE))
2976 set_head(old_top, (size + old_size) | PREV_INUSE);
2978 else if (contiguous(av) && old_size && brk < old_end) {
2979 /* Oops! Someone else killed our space.. Can't touch anything. */
2980 assert(0);
2984 Otherwise, make adjustments:
2986 * If the first time through or noncontiguous, we need to call sbrk
2987 just to find out where the end of memory lies.
2989 * We need to ensure that all returned chunks from malloc will meet
2990 MALLOC_ALIGNMENT
2992 * If there was an intervening foreign sbrk, we need to adjust sbrk
2993 request size to account for fact that we will not be able to
2994 combine new space with existing space in old_top.
2996 * Almost all systems internally allocate whole pages at a time, in
2997 which case we might as well use the whole last page of request.
2998 So we allocate enough more memory to hit a page boundary now,
2999 which in turn causes future contiguous calls to page-align.
3002 else {
3003 front_misalign = 0;
3004 end_misalign = 0;
3005 correction = 0;
3006 aligned_brk = brk;
3008 /* handle contiguous cases */
3009 if (contiguous(av)) {
3011 /* Count foreign sbrk as system_mem. */
3012 if (old_size)
3013 av->system_mem += brk - old_end;
3015 /* Guarantee alignment of first new chunk made from this space */
3017 front_misalign = (INTERNAL_SIZE_T)chunk2mem(brk) & MALLOC_ALIGN_MASK;
3018 if (front_misalign > 0) {
3021 Skip over some bytes to arrive at an aligned position.
3022 We don't need to specially mark these wasted front bytes.
3023 They will never be accessed anyway because
3024 prev_inuse of av->top (and any chunk created from its start)
3025 is always true after initialization.
3028 correction = MALLOC_ALIGNMENT - front_misalign;
3029 aligned_brk += correction;
3033 If this isn't adjacent to existing space, then we will not
3034 be able to merge with old_top space, so must add to 2nd request.
3037 correction += old_size;
3039 /* Extend the end address to hit a page boundary */
3040 end_misalign = (INTERNAL_SIZE_T)(brk + size + correction);
3041 correction += ((end_misalign + pagemask) & ~pagemask) - end_misalign;
3043 assert(correction >= 0);
3044 snd_brk = (char*)(MORECORE(correction));
3047 If can't allocate correction, try to at least find out current
3048 brk. It might be enough to proceed without failing.
3050 Note that if second sbrk did NOT fail, we assume that space
3051 is contiguous with first sbrk. This is a safe assumption unless
3052 program is multithreaded but doesn't use locks and a foreign sbrk
3053 occurred between our first and second calls.
3056 if (snd_brk == (char*)(MORECORE_FAILURE)) {
3057 correction = 0;
3058 snd_brk = (char*)(MORECORE(0));
3059 } else
3060 /* Call the `morecore' hook if necessary. */
3061 if (__after_morecore_hook)
3062 (*__after_morecore_hook) ();
3065 /* handle non-contiguous cases */
3066 else {
3067 /* MORECORE/mmap must correctly align */
3068 assert(((unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK) == 0);
3070 /* Find out current end of memory */
3071 if (snd_brk == (char*)(MORECORE_FAILURE)) {
3072 snd_brk = (char*)(MORECORE(0));
3076 /* Adjust top based on results of second sbrk */
3077 if (snd_brk != (char*)(MORECORE_FAILURE)) {
3078 av->top = (mchunkptr)aligned_brk;
3079 set_head(av->top, (snd_brk - aligned_brk + correction) | PREV_INUSE);
3080 av->system_mem += correction;
3083 If not the first time through, we either have a
3084 gap due to foreign sbrk or a non-contiguous region. Insert a
3085 double fencepost at old_top to prevent consolidation with space
3086 we don't own. These fenceposts are artificial chunks that are
3087 marked as inuse and are in any case too small to use. We need
3088 two to make sizes and alignments work out.
3091 if (old_size != 0) {
3093 Shrink old_top to insert fenceposts, keeping size a
3094 multiple of MALLOC_ALIGNMENT. We know there is at least
3095 enough space in old_top to do this.
3097 old_size = (old_size - 4*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
3098 set_head(old_top, old_size | PREV_INUSE);
3101 Note that the following assignments completely overwrite
3102 old_top when old_size was previously MINSIZE. This is
3103 intentional. We need the fencepost, even if old_top otherwise gets
3104 lost.
3106 chunk_at_offset(old_top, old_size )->size =
3107 (2*SIZE_SZ)|PREV_INUSE;
3109 chunk_at_offset(old_top, old_size + 2*SIZE_SZ)->size =
3110 (2*SIZE_SZ)|PREV_INUSE;
3112 /* If possible, release the rest. */
3113 if (old_size >= MINSIZE) {
3114 _int_free(av, chunk2mem(old_top));
3121 /* Update statistics */
3122 #ifdef NO_THREADS
3123 sum = av->system_mem + mp_.mmapped_mem;
3124 if (sum > (unsigned long)(mp_.max_total_mem))
3125 mp_.max_total_mem = sum;
3126 #endif
3130 } /* if (av != &main_arena) */
3132 if ((unsigned long)av->system_mem > (unsigned long)(av->max_system_mem))
3133 av->max_system_mem = av->system_mem;
3134 check_malloc_state(av);
3136 /* finally, do the allocation */
3137 p = av->top;
3138 size = chunksize(p);
3140 /* check that one of the above allocation paths succeeded */
3141 if ((unsigned long)(size) >= (unsigned long)(nb + MINSIZE)) {
3142 remainder_size = size - nb;
3143 remainder = chunk_at_offset(p, nb);
3144 av->top = remainder;
3145 set_head(p, nb | PREV_INUSE | (av != &main_arena ? NON_MAIN_ARENA : 0));
3146 set_head(remainder, remainder_size | PREV_INUSE);
3147 check_malloced_chunk(av, p, nb);
3148 return chunk2mem(p);
3151 /* catch all failure paths */
3152 MALLOC_FAILURE_ACTION;
3153 return 0;
3158 sYSTRIm is an inverse of sorts to sYSMALLOc. It gives memory back
3159 to the system (via negative arguments to sbrk) if there is unused
3160 memory at the `high' end of the malloc pool. It is called
3161 automatically by free() when top space exceeds the trim
3162 threshold. It is also called by the public malloc_trim routine. It
3163 returns 1 if it actually released any memory, else 0.
3166 #if __STD_C
3167 static int sYSTRIm(size_t pad, mstate av)
3168 #else
3169 static int sYSTRIm(pad, av) size_t pad; mstate av;
3170 #endif
3172 long top_size; /* Amount of top-most memory */
3173 long extra; /* Amount to release */
3174 long released; /* Amount actually released */
3175 char* current_brk; /* address returned by pre-check sbrk call */
3176 char* new_brk; /* address returned by post-check sbrk call */
3177 size_t pagesz;
3179 pagesz = mp_.pagesize;
3180 top_size = chunksize(av->top);
3182 /* Release in pagesize units, keeping at least one page */
3183 extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
3185 if (extra > 0) {
3188 Only proceed if end of memory is where we last set it.
3189 This avoids problems if there were foreign sbrk calls.
3191 current_brk = (char*)(MORECORE(0));
3192 if (current_brk == (char*)(av->top) + top_size) {
3195 Attempt to release memory. We ignore MORECORE return value,
3196 and instead call again to find out where new end of memory is.
3197 This avoids problems if first call releases less than we asked,
3198 of if failure somehow altered brk value. (We could still
3199 encounter problems if it altered brk in some very bad way,
3200 but the only thing we can do is adjust anyway, which will cause
3201 some downstream failure.)
3204 MORECORE(-extra);
3205 /* Call the `morecore' hook if necessary. */
3206 if (__after_morecore_hook)
3207 (*__after_morecore_hook) ();
3208 new_brk = (char*)(MORECORE(0));
3210 if (new_brk != (char*)MORECORE_FAILURE) {
3211 released = (long)(current_brk - new_brk);
3213 if (released != 0) {
3214 /* Success. Adjust top. */
3215 av->system_mem -= released;
3216 set_head(av->top, (top_size - released) | PREV_INUSE);
3217 check_malloc_state(av);
3218 return 1;
3223 return 0;
3226 #ifdef HAVE_MMAP
3228 static void
3229 internal_function
3230 #if __STD_C
3231 munmap_chunk(mchunkptr p)
3232 #else
3233 munmap_chunk(p) mchunkptr p;
3234 #endif
3236 INTERNAL_SIZE_T size = chunksize(p);
3237 int ret;
3239 assert (chunk_is_mmapped(p));
3240 #if 0
3241 assert(! ((char*)p >= mp_.sbrk_base && (char*)p < mp_.sbrk_base + mp_.sbrked_mem));
3242 assert((mp_.n_mmaps > 0));
3243 #endif
3244 assert(((p->prev_size + size) & (mp_.pagesize-1)) == 0);
3246 mp_.n_mmaps--;
3247 mp_.mmapped_mem -= (size + p->prev_size);
3249 ret = munmap((char *)p - p->prev_size, size + p->prev_size);
3251 /* munmap returns non-zero on failure */
3252 assert(ret == 0);
3255 #if HAVE_MREMAP
3257 static mchunkptr
3258 internal_function
3259 #if __STD_C
3260 mremap_chunk(mchunkptr p, size_t new_size)
3261 #else
3262 mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
3263 #endif
3265 size_t page_mask = mp_.pagesize - 1;
3266 INTERNAL_SIZE_T offset = p->prev_size;
3267 INTERNAL_SIZE_T size = chunksize(p);
3268 char *cp;
3270 assert (chunk_is_mmapped(p));
3271 #if 0
3272 assert(! ((char*)p >= mp_.sbrk_base && (char*)p < mp_.sbrk_base + mp_.sbrked_mem));
3273 assert((mp_.n_mmaps > 0));
3274 #endif
3275 assert(((size + offset) & (mp_.pagesize-1)) == 0);
3277 /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
3278 new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
3280 cp = (char *)mremap((char *)p - offset, size + offset, new_size,
3281 MREMAP_MAYMOVE);
3283 if (cp == MAP_FAILED) return 0;
3285 p = (mchunkptr)(cp + offset);
3287 assert(aligned_OK(chunk2mem(p)));
3289 assert((p->prev_size == offset));
3290 set_head(p, (new_size - offset)|IS_MMAPPED);
3292 mp_.mmapped_mem -= size + offset;
3293 mp_.mmapped_mem += new_size;
3294 if ((unsigned long)mp_.mmapped_mem > (unsigned long)mp_.max_mmapped_mem)
3295 mp_.max_mmapped_mem = mp_.mmapped_mem;
3296 #ifdef NO_THREADS
3297 if ((unsigned long)(mp_.mmapped_mem + arena_mem + main_arena.system_mem) >
3298 mp_.max_total_mem)
3299 mp_.max_total_mem = mp_.mmapped_mem + arena_mem + main_arena.system_mem;
3300 #endif
3301 return p;
3304 #endif /* HAVE_MREMAP */
3306 #endif /* HAVE_MMAP */
3308 /*------------------------ Public wrappers. --------------------------------*/
3310 Void_t*
3311 public_mALLOc(size_t bytes)
3313 mstate ar_ptr;
3314 Void_t *victim;
3316 __malloc_ptr_t (*hook) __MALLOC_P ((size_t, __const __malloc_ptr_t)) =
3317 __malloc_hook;
3318 if (hook != NULL)
3319 return (*hook)(bytes, RETURN_ADDRESS (0));
3321 arena_get(ar_ptr, bytes);
3322 if(!ar_ptr)
3323 return 0;
3324 victim = _int_malloc(ar_ptr, bytes);
3325 if(!victim) {
3326 /* Maybe the failure is due to running out of mmapped areas. */
3327 if(ar_ptr != &main_arena) {
3328 (void)mutex_unlock(&ar_ptr->mutex);
3329 (void)mutex_lock(&main_arena.mutex);
3330 victim = _int_malloc(&main_arena, bytes);
3331 (void)mutex_unlock(&main_arena.mutex);
3332 } else {
3333 #if USE_ARENAS
3334 /* ... or sbrk() has failed and there is still a chance to mmap() */
3335 ar_ptr = arena_get2(ar_ptr->next ? ar_ptr : 0, bytes);
3336 (void)mutex_unlock(&main_arena.mutex);
3337 if(ar_ptr) {
3338 victim = _int_malloc(ar_ptr, bytes);
3339 (void)mutex_unlock(&ar_ptr->mutex);
3341 #endif
3343 } else
3344 (void)mutex_unlock(&ar_ptr->mutex);
3345 assert(!victim || chunk_is_mmapped(mem2chunk(victim)) ||
3346 ar_ptr == arena_for_chunk(mem2chunk(victim)));
3347 return victim;
3349 #ifdef libc_hidden_def
3350 libc_hidden_def(public_mALLOc)
3351 #endif
3353 void
3354 public_fREe(Void_t* mem)
3356 mstate ar_ptr;
3357 mchunkptr p; /* chunk corresponding to mem */
3359 void (*hook) __MALLOC_P ((__malloc_ptr_t, __const __malloc_ptr_t)) =
3360 __free_hook;
3361 if (hook != NULL) {
3362 (*hook)(mem, RETURN_ADDRESS (0));
3363 return;
3366 if (mem == 0) /* free(0) has no effect */
3367 return;
3369 p = mem2chunk(mem);
3371 #if HAVE_MMAP
3372 if (chunk_is_mmapped(p)) /* release mmapped memory. */
3374 munmap_chunk(p);
3375 return;
3377 #endif
3379 ar_ptr = arena_for_chunk(p);
3380 #if THREAD_STATS
3381 if(!mutex_trylock(&ar_ptr->mutex))
3382 ++(ar_ptr->stat_lock_direct);
3383 else {
3384 (void)mutex_lock(&ar_ptr->mutex);
3385 ++(ar_ptr->stat_lock_wait);
3387 #else
3388 (void)mutex_lock(&ar_ptr->mutex);
3389 #endif
3390 _int_free(ar_ptr, mem);
3391 (void)mutex_unlock(&ar_ptr->mutex);
3393 #ifdef libc_hidden_def
3394 libc_hidden_def (public_fREe)
3395 #endif
3397 Void_t*
3398 public_rEALLOc(Void_t* oldmem, size_t bytes)
3400 mstate ar_ptr;
3401 INTERNAL_SIZE_T nb; /* padded request size */
3403 mchunkptr oldp; /* chunk corresponding to oldmem */
3404 INTERNAL_SIZE_T oldsize; /* its size */
3406 Void_t* newp; /* chunk to return */
3408 __malloc_ptr_t (*hook) __MALLOC_P ((__malloc_ptr_t, size_t,
3409 __const __malloc_ptr_t)) =
3410 __realloc_hook;
3411 if (hook != NULL)
3412 return (*hook)(oldmem, bytes, RETURN_ADDRESS (0));
3414 #if REALLOC_ZERO_BYTES_FREES
3415 if (bytes == 0 && oldmem != NULL) { public_fREe(oldmem); return 0; }
3416 #endif
3418 /* realloc of null is supposed to be same as malloc */
3419 if (oldmem == 0) return public_mALLOc(bytes);
3421 oldp = mem2chunk(oldmem);
3422 oldsize = chunksize(oldp);
3424 checked_request2size(bytes, nb);
3426 #if HAVE_MMAP
3427 if (chunk_is_mmapped(oldp))
3429 Void_t* newmem;
3431 #if HAVE_MREMAP
3432 newp = mremap_chunk(oldp, nb);
3433 if(newp) return chunk2mem(newp);
3434 #endif
3435 /* Note the extra SIZE_SZ overhead. */
3436 if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
3437 /* Must alloc, copy, free. */
3438 newmem = public_mALLOc(bytes);
3439 if (newmem == 0) return 0; /* propagate failure */
3440 MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
3441 munmap_chunk(oldp);
3442 return newmem;
3444 #endif
3446 ar_ptr = arena_for_chunk(oldp);
3447 #if THREAD_STATS
3448 if(!mutex_trylock(&ar_ptr->mutex))
3449 ++(ar_ptr->stat_lock_direct);
3450 else {
3451 (void)mutex_lock(&ar_ptr->mutex);
3452 ++(ar_ptr->stat_lock_wait);
3454 #else
3455 (void)mutex_lock(&ar_ptr->mutex);
3456 #endif
3458 #ifndef NO_THREADS
3459 /* As in malloc(), remember this arena for the next allocation. */
3460 tsd_setspecific(arena_key, (Void_t *)ar_ptr);
3461 #endif
3463 newp = _int_realloc(ar_ptr, oldmem, bytes);
3465 (void)mutex_unlock(&ar_ptr->mutex);
3466 assert(!newp || chunk_is_mmapped(mem2chunk(newp)) ||
3467 ar_ptr == arena_for_chunk(mem2chunk(newp)));
3468 return newp;
3470 #ifdef libc_hidden_def
3471 libc_hidden_def (public_rEALLOc)
3472 #endif
3474 Void_t*
3475 public_mEMALIGn(size_t alignment, size_t bytes)
3477 mstate ar_ptr;
3478 Void_t *p;
3480 __malloc_ptr_t (*hook) __MALLOC_PMT ((size_t, size_t,
3481 __const __malloc_ptr_t)) =
3482 __memalign_hook;
3483 if (hook != NULL)
3484 return (*hook)(alignment, bytes, RETURN_ADDRESS (0));
3486 /* If need less alignment than we give anyway, just relay to malloc */
3487 if (alignment <= MALLOC_ALIGNMENT) return public_mALLOc(bytes);
3489 /* Otherwise, ensure that it is at least a minimum chunk size */
3490 if (alignment < MINSIZE) alignment = MINSIZE;
3492 arena_get(ar_ptr, bytes + alignment + MINSIZE);
3493 if(!ar_ptr)
3494 return 0;
3495 p = _int_memalign(ar_ptr, alignment, bytes);
3496 (void)mutex_unlock(&ar_ptr->mutex);
3497 if(!p) {
3498 /* Maybe the failure is due to running out of mmapped areas. */
3499 if(ar_ptr != &main_arena) {
3500 (void)mutex_lock(&main_arena.mutex);
3501 p = _int_memalign(&main_arena, alignment, bytes);
3502 (void)mutex_unlock(&main_arena.mutex);
3503 } else {
3504 #if USE_ARENAS
3505 /* ... or sbrk() has failed and there is still a chance to mmap() */
3506 ar_ptr = arena_get2(ar_ptr->next ? ar_ptr : 0, bytes);
3507 if(ar_ptr) {
3508 p = _int_memalign(ar_ptr, alignment, bytes);
3509 (void)mutex_unlock(&ar_ptr->mutex);
3511 #endif
3514 assert(!p || chunk_is_mmapped(mem2chunk(p)) ||
3515 ar_ptr == arena_for_chunk(mem2chunk(p)));
3516 return p;
3518 #ifdef libc_hidden_def
3519 libc_hidden_def (public_mEMALIGn)
3520 #endif
3522 Void_t*
3523 public_vALLOc(size_t bytes)
3525 mstate ar_ptr;
3526 Void_t *p;
3528 if(__malloc_initialized < 0)
3529 ptmalloc_init ();
3530 arena_get(ar_ptr, bytes + mp_.pagesize + MINSIZE);
3531 if(!ar_ptr)
3532 return 0;
3533 p = _int_valloc(ar_ptr, bytes);
3534 (void)mutex_unlock(&ar_ptr->mutex);
3535 return p;
3538 Void_t*
3539 public_pVALLOc(size_t bytes)
3541 mstate ar_ptr;
3542 Void_t *p;
3544 if(__malloc_initialized < 0)
3545 ptmalloc_init ();
3546 arena_get(ar_ptr, bytes + 2*mp_.pagesize + MINSIZE);
3547 p = _int_pvalloc(ar_ptr, bytes);
3548 (void)mutex_unlock(&ar_ptr->mutex);
3549 return p;
3552 Void_t*
3553 public_cALLOc(size_t n, size_t elem_size)
3555 mstate av;
3556 mchunkptr oldtop, p;
3557 INTERNAL_SIZE_T bytes, sz, csz, oldtopsize;
3558 Void_t* mem;
3559 unsigned long clearsize;
3560 unsigned long nclears;
3561 INTERNAL_SIZE_T* d;
3562 __malloc_ptr_t (*hook) __MALLOC_PMT ((size_t, __const __malloc_ptr_t)) =
3563 __malloc_hook;
3565 /* size_t is unsigned so the behavior on overflow is defined. */
3566 bytes = n * elem_size;
3567 #define HALF_INTERNAL_SIZE_T \
3568 (((INTERNAL_SIZE_T) 1) << (8 * sizeof (INTERNAL_SIZE_T) / 2))
3569 if (__builtin_expect ((n | elem_size) >= HALF_INTERNAL_SIZE_T, 0)) {
3570 if (elem_size != 0 && bytes / elem_size != n) {
3571 MALLOC_FAILURE_ACTION;
3572 return 0;
3576 if (hook != NULL) {
3577 sz = bytes;
3578 mem = (*hook)(sz, RETURN_ADDRESS (0));
3579 if(mem == 0)
3580 return 0;
3581 #ifdef HAVE_MEMCPY
3582 return memset(mem, 0, sz);
3583 #else
3584 while(sz > 0) ((char*)mem)[--sz] = 0; /* rather inefficient */
3585 return mem;
3586 #endif
3589 sz = bytes;
3591 arena_get(av, sz);
3592 if(!av)
3593 return 0;
3595 /* Check if we hand out the top chunk, in which case there may be no
3596 need to clear. */
3597 #if MORECORE_CLEARS
3598 oldtop = top(av);
3599 oldtopsize = chunksize(top(av));
3600 #if MORECORE_CLEARS < 2
3601 /* Only newly allocated memory is guaranteed to be cleared. */
3602 if (av == &main_arena &&
3603 oldtopsize < mp_.sbrk_base + av->max_system_mem - (char *)oldtop)
3604 oldtopsize = (mp_.sbrk_base + av->max_system_mem - (char *)oldtop);
3605 #endif
3606 #endif
3607 mem = _int_malloc(av, sz);
3609 /* Only clearing follows, so we can unlock early. */
3610 (void)mutex_unlock(&av->mutex);
3612 assert(!mem || chunk_is_mmapped(mem2chunk(mem)) ||
3613 av == arena_for_chunk(mem2chunk(mem)));
3615 if (mem == 0) {
3616 /* Maybe the failure is due to running out of mmapped areas. */
3617 if(av != &main_arena) {
3618 (void)mutex_lock(&main_arena.mutex);
3619 mem = _int_malloc(&main_arena, sz);
3620 (void)mutex_unlock(&main_arena.mutex);
3621 } else {
3622 #if USE_ARENAS
3623 /* ... or sbrk() has failed and there is still a chance to mmap() */
3624 (void)mutex_lock(&main_arena.mutex);
3625 av = arena_get2(av->next ? av : 0, sz);
3626 (void)mutex_unlock(&main_arena.mutex);
3627 if(av) {
3628 mem = _int_malloc(av, sz);
3629 (void)mutex_unlock(&av->mutex);
3631 #endif
3633 if (mem == 0) return 0;
3635 p = mem2chunk(mem);
3637 /* Two optional cases in which clearing not necessary */
3638 #if HAVE_MMAP
3639 if (chunk_is_mmapped(p))
3640 return mem;
3641 #endif
3643 csz = chunksize(p);
3645 #if MORECORE_CLEARS
3646 if (p == oldtop && csz > oldtopsize) {
3647 /* clear only the bytes from non-freshly-sbrked memory */
3648 csz = oldtopsize;
3650 #endif
3652 /* Unroll clear of <= 36 bytes (72 if 8byte sizes). We know that
3653 contents have an odd number of INTERNAL_SIZE_T-sized words;
3654 minimally 3. */
3655 d = (INTERNAL_SIZE_T*)mem;
3656 clearsize = csz - SIZE_SZ;
3657 nclears = clearsize / sizeof(INTERNAL_SIZE_T);
3658 assert(nclears >= 3);
3660 if (nclears > 9)
3661 MALLOC_ZERO(d, clearsize);
3663 else {
3664 *(d+0) = 0;
3665 *(d+1) = 0;
3666 *(d+2) = 0;
3667 if (nclears > 4) {
3668 *(d+3) = 0;
3669 *(d+4) = 0;
3670 if (nclears > 6) {
3671 *(d+5) = 0;
3672 *(d+6) = 0;
3673 if (nclears > 8) {
3674 *(d+7) = 0;
3675 *(d+8) = 0;
3681 return mem;
3684 Void_t**
3685 public_iCALLOc(size_t n, size_t elem_size, Void_t** chunks)
3687 mstate ar_ptr;
3688 Void_t** m;
3690 arena_get(ar_ptr, n*elem_size);
3691 if(!ar_ptr)
3692 return 0;
3694 m = _int_icalloc(ar_ptr, n, elem_size, chunks);
3695 (void)mutex_unlock(&ar_ptr->mutex);
3696 return m;
3699 Void_t**
3700 public_iCOMALLOc(size_t n, size_t sizes[], Void_t** chunks)
3702 mstate ar_ptr;
3703 Void_t** m;
3705 arena_get(ar_ptr, 0);
3706 if(!ar_ptr)
3707 return 0;
3709 m = _int_icomalloc(ar_ptr, n, sizes, chunks);
3710 (void)mutex_unlock(&ar_ptr->mutex);
3711 return m;
3714 #ifndef _LIBC
3716 void
3717 public_cFREe(Void_t* m)
3719 public_fREe(m);
3722 #endif /* _LIBC */
3725 public_mTRIm(size_t s)
3727 int result;
3729 (void)mutex_lock(&main_arena.mutex);
3730 result = mTRIm(s);
3731 (void)mutex_unlock(&main_arena.mutex);
3732 return result;
3735 size_t
3736 public_mUSABLe(Void_t* m)
3738 size_t result;
3740 result = mUSABLe(m);
3741 return result;
3744 void
3745 public_mSTATs()
3747 mSTATs();
3750 struct mallinfo public_mALLINFo()
3752 struct mallinfo m;
3754 if(__malloc_initialized < 0)
3755 ptmalloc_init ();
3756 (void)mutex_lock(&main_arena.mutex);
3757 m = mALLINFo(&main_arena);
3758 (void)mutex_unlock(&main_arena.mutex);
3759 return m;
3763 public_mALLOPt(int p, int v)
3765 int result;
3766 result = mALLOPt(p, v);
3767 return result;
3771 ------------------------------ malloc ------------------------------
3774 Void_t*
3775 _int_malloc(mstate av, size_t bytes)
3777 INTERNAL_SIZE_T nb; /* normalized request size */
3778 unsigned int idx; /* associated bin index */
3779 mbinptr bin; /* associated bin */
3780 mfastbinptr* fb; /* associated fastbin */
3782 mchunkptr victim; /* inspected/selected chunk */
3783 INTERNAL_SIZE_T size; /* its size */
3784 int victim_index; /* its bin index */
3786 mchunkptr remainder; /* remainder from a split */
3787 unsigned long remainder_size; /* its size */
3789 unsigned int block; /* bit map traverser */
3790 unsigned int bit; /* bit map traverser */
3791 unsigned int map; /* current word of binmap */
3793 mchunkptr fwd; /* misc temp for linking */
3794 mchunkptr bck; /* misc temp for linking */
3797 Convert request size to internal form by adding SIZE_SZ bytes
3798 overhead plus possibly more to obtain necessary alignment and/or
3799 to obtain a size of at least MINSIZE, the smallest allocatable
3800 size. Also, checked_request2size traps (returning 0) request sizes
3801 that are so large that they wrap around zero when padded and
3802 aligned.
3805 checked_request2size(bytes, nb);
3808 If the size qualifies as a fastbin, first check corresponding bin.
3809 This code is safe to execute even if av is not yet initialized, so we
3810 can try it without checking, which saves some time on this fast path.
3813 if ((unsigned long)(nb) <= (unsigned long)(av->max_fast)) {
3814 fb = &(av->fastbins[(fastbin_index(nb))]);
3815 if ( (victim = *fb) != 0) {
3816 *fb = victim->fd;
3817 check_remalloced_chunk(av, victim, nb);
3818 return chunk2mem(victim);
3823 If a small request, check regular bin. Since these "smallbins"
3824 hold one size each, no searching within bins is necessary.
3825 (For a large request, we need to wait until unsorted chunks are
3826 processed to find best fit. But for small ones, fits are exact
3827 anyway, so we can check now, which is faster.)
3830 if (in_smallbin_range(nb)) {
3831 idx = smallbin_index(nb);
3832 bin = bin_at(av,idx);
3834 if ( (victim = last(bin)) != bin) {
3835 if (victim == 0) /* initialization check */
3836 malloc_consolidate(av);
3837 else {
3838 bck = victim->bk;
3839 set_inuse_bit_at_offset(victim, nb);
3840 bin->bk = bck;
3841 bck->fd = bin;
3843 if (av != &main_arena)
3844 victim->size |= NON_MAIN_ARENA;
3845 check_malloced_chunk(av, victim, nb);
3846 return chunk2mem(victim);
3852 If this is a large request, consolidate fastbins before continuing.
3853 While it might look excessive to kill all fastbins before
3854 even seeing if there is space available, this avoids
3855 fragmentation problems normally associated with fastbins.
3856 Also, in practice, programs tend to have runs of either small or
3857 large requests, but less often mixtures, so consolidation is not
3858 invoked all that often in most programs. And the programs that
3859 it is called frequently in otherwise tend to fragment.
3862 else {
3863 idx = largebin_index(nb);
3864 if (have_fastchunks(av))
3865 malloc_consolidate(av);
3869 Process recently freed or remaindered chunks, taking one only if
3870 it is exact fit, or, if this a small request, the chunk is remainder from
3871 the most recent non-exact fit. Place other traversed chunks in
3872 bins. Note that this step is the only place in any routine where
3873 chunks are placed in bins.
3875 The outer loop here is needed because we might not realize until
3876 near the end of malloc that we should have consolidated, so must
3877 do so and retry. This happens at most once, and only when we would
3878 otherwise need to expand memory to service a "small" request.
3881 for(;;) {
3883 while ( (victim = unsorted_chunks(av)->bk) != unsorted_chunks(av)) {
3884 bck = victim->bk;
3885 size = chunksize(victim);
3888 If a small request, try to use last remainder if it is the
3889 only chunk in unsorted bin. This helps promote locality for
3890 runs of consecutive small requests. This is the only
3891 exception to best-fit, and applies only when there is
3892 no exact fit for a small chunk.
3895 if (in_smallbin_range(nb) &&
3896 bck == unsorted_chunks(av) &&
3897 victim == av->last_remainder &&
3898 (unsigned long)(size) > (unsigned long)(nb + MINSIZE)) {
3900 /* split and reattach remainder */
3901 remainder_size = size - nb;
3902 remainder = chunk_at_offset(victim, nb);
3903 unsorted_chunks(av)->bk = unsorted_chunks(av)->fd = remainder;
3904 av->last_remainder = remainder;
3905 remainder->bk = remainder->fd = unsorted_chunks(av);
3907 set_head(victim, nb | PREV_INUSE |
3908 (av != &main_arena ? NON_MAIN_ARENA : 0));
3909 set_head(remainder, remainder_size | PREV_INUSE);
3910 set_foot(remainder, remainder_size);
3912 check_malloced_chunk(av, victim, nb);
3913 return chunk2mem(victim);
3916 /* remove from unsorted list */
3917 unsorted_chunks(av)->bk = bck;
3918 bck->fd = unsorted_chunks(av);
3920 /* Take now instead of binning if exact fit */
3922 if (size == nb) {
3923 set_inuse_bit_at_offset(victim, size);
3924 if (av != &main_arena)
3925 victim->size |= NON_MAIN_ARENA;
3926 check_malloced_chunk(av, victim, nb);
3927 return chunk2mem(victim);
3930 /* place chunk in bin */
3932 if (in_smallbin_range(size)) {
3933 victim_index = smallbin_index(size);
3934 bck = bin_at(av, victim_index);
3935 fwd = bck->fd;
3937 else {
3938 victim_index = largebin_index(size);
3939 bck = bin_at(av, victim_index);
3940 fwd = bck->fd;
3942 /* maintain large bins in sorted order */
3943 if (fwd != bck) {
3944 /* Or with inuse bit to speed comparisons */
3945 size |= PREV_INUSE;
3946 /* if smaller than smallest, bypass loop below */
3947 assert((bck->bk->size & NON_MAIN_ARENA) == 0);
3948 if ((unsigned long)(size) <= (unsigned long)(bck->bk->size)) {
3949 fwd = bck;
3950 bck = bck->bk;
3952 else {
3953 assert((fwd->size & NON_MAIN_ARENA) == 0);
3954 while ((unsigned long)(size) < (unsigned long)(fwd->size)) {
3955 fwd = fwd->fd;
3956 assert((fwd->size & NON_MAIN_ARENA) == 0);
3958 bck = fwd->bk;
3963 mark_bin(av, victim_index);
3964 victim->bk = bck;
3965 victim->fd = fwd;
3966 fwd->bk = victim;
3967 bck->fd = victim;
3971 If a large request, scan through the chunks of current bin in
3972 sorted order to find smallest that fits. This is the only step
3973 where an unbounded number of chunks might be scanned without doing
3974 anything useful with them. However the lists tend to be short.
3977 if (!in_smallbin_range(nb)) {
3978 bin = bin_at(av, idx);
3980 /* skip scan if empty or largest chunk is too small */
3981 if ((victim = last(bin)) != bin &&
3982 (unsigned long)(first(bin)->size) >= (unsigned long)(nb)) {
3984 while (((unsigned long)(size = chunksize(victim)) <
3985 (unsigned long)(nb)))
3986 victim = victim->bk;
3988 remainder_size = size - nb;
3989 unlink(victim, bck, fwd);
3991 /* Exhaust */
3992 if (remainder_size < MINSIZE) {
3993 set_inuse_bit_at_offset(victim, size);
3994 if (av != &main_arena)
3995 victim->size |= NON_MAIN_ARENA;
3996 check_malloced_chunk(av, victim, nb);
3997 return chunk2mem(victim);
3999 /* Split */
4000 else {
4001 remainder = chunk_at_offset(victim, nb);
4002 unsorted_chunks(av)->bk = unsorted_chunks(av)->fd = remainder;
4003 remainder->bk = remainder->fd = unsorted_chunks(av);
4004 set_head(victim, nb | PREV_INUSE |
4005 (av != &main_arena ? NON_MAIN_ARENA : 0));
4006 set_head(remainder, remainder_size | PREV_INUSE);
4007 set_foot(remainder, remainder_size);
4008 check_malloced_chunk(av, victim, nb);
4009 return chunk2mem(victim);
4015 Search for a chunk by scanning bins, starting with next largest
4016 bin. This search is strictly by best-fit; i.e., the smallest
4017 (with ties going to approximately the least recently used) chunk
4018 that fits is selected.
4020 The bitmap avoids needing to check that most blocks are nonempty.
4021 The particular case of skipping all bins during warm-up phases
4022 when no chunks have been returned yet is faster than it might look.
4025 ++idx;
4026 bin = bin_at(av,idx);
4027 block = idx2block(idx);
4028 map = av->binmap[block];
4029 bit = idx2bit(idx);
4031 for (;;) {
4033 /* Skip rest of block if there are no more set bits in this block. */
4034 if (bit > map || bit == 0) {
4035 do {
4036 if (++block >= BINMAPSIZE) /* out of bins */
4037 goto use_top;
4038 } while ( (map = av->binmap[block]) == 0);
4040 bin = bin_at(av, (block << BINMAPSHIFT));
4041 bit = 1;
4044 /* Advance to bin with set bit. There must be one. */
4045 while ((bit & map) == 0) {
4046 bin = next_bin(bin);
4047 bit <<= 1;
4048 assert(bit != 0);
4051 /* Inspect the bin. It is likely to be non-empty */
4052 victim = last(bin);
4054 /* If a false alarm (empty bin), clear the bit. */
4055 if (victim == bin) {
4056 av->binmap[block] = map &= ~bit; /* Write through */
4057 bin = next_bin(bin);
4058 bit <<= 1;
4061 else {
4062 size = chunksize(victim);
4064 /* We know the first chunk in this bin is big enough to use. */
4065 assert((unsigned long)(size) >= (unsigned long)(nb));
4067 remainder_size = size - nb;
4069 /* unlink */
4070 bck = victim->bk;
4071 bin->bk = bck;
4072 bck->fd = bin;
4074 /* Exhaust */
4075 if (remainder_size < MINSIZE) {
4076 set_inuse_bit_at_offset(victim, size);
4077 if (av != &main_arena)
4078 victim->size |= NON_MAIN_ARENA;
4079 check_malloced_chunk(av, victim, nb);
4080 return chunk2mem(victim);
4083 /* Split */
4084 else {
4085 remainder = chunk_at_offset(victim, nb);
4087 unsorted_chunks(av)->bk = unsorted_chunks(av)->fd = remainder;
4088 remainder->bk = remainder->fd = unsorted_chunks(av);
4089 /* advertise as last remainder */
4090 if (in_smallbin_range(nb))
4091 av->last_remainder = remainder;
4093 set_head(victim, nb | PREV_INUSE |
4094 (av != &main_arena ? NON_MAIN_ARENA : 0));
4095 set_head(remainder, remainder_size | PREV_INUSE);
4096 set_foot(remainder, remainder_size);
4097 check_malloced_chunk(av, victim, nb);
4098 return chunk2mem(victim);
4103 use_top:
4105 If large enough, split off the chunk bordering the end of memory
4106 (held in av->top). Note that this is in accord with the best-fit
4107 search rule. In effect, av->top is treated as larger (and thus
4108 less well fitting) than any other available chunk since it can
4109 be extended to be as large as necessary (up to system
4110 limitations).
4112 We require that av->top always exists (i.e., has size >=
4113 MINSIZE) after initialization, so if it would otherwise be
4114 exhuasted by current request, it is replenished. (The main
4115 reason for ensuring it exists is that we may need MINSIZE space
4116 to put in fenceposts in sysmalloc.)
4119 victim = av->top;
4120 size = chunksize(victim);
4122 if ((unsigned long)(size) >= (unsigned long)(nb + MINSIZE)) {
4123 remainder_size = size - nb;
4124 remainder = chunk_at_offset(victim, nb);
4125 av->top = remainder;
4126 set_head(victim, nb | PREV_INUSE |
4127 (av != &main_arena ? NON_MAIN_ARENA : 0));
4128 set_head(remainder, remainder_size | PREV_INUSE);
4130 check_malloced_chunk(av, victim, nb);
4131 return chunk2mem(victim);
4135 If there is space available in fastbins, consolidate and retry,
4136 to possibly avoid expanding memory. This can occur only if nb is
4137 in smallbin range so we didn't consolidate upon entry.
4140 else if (have_fastchunks(av)) {
4141 assert(in_smallbin_range(nb));
4142 malloc_consolidate(av);
4143 idx = smallbin_index(nb); /* restore original bin index */
4147 Otherwise, relay to handle system-dependent cases
4149 else
4150 return sYSMALLOc(nb, av);
4155 ------------------------------ free ------------------------------
4158 void
4159 _int_free(mstate av, Void_t* mem)
4161 mchunkptr p; /* chunk corresponding to mem */
4162 INTERNAL_SIZE_T size; /* its size */
4163 mfastbinptr* fb; /* associated fastbin */
4164 mchunkptr nextchunk; /* next contiguous chunk */
4165 INTERNAL_SIZE_T nextsize; /* its size */
4166 int nextinuse; /* true if nextchunk is used */
4167 INTERNAL_SIZE_T prevsize; /* size of previous contiguous chunk */
4168 mchunkptr bck; /* misc temp for linking */
4169 mchunkptr fwd; /* misc temp for linking */
4172 /* free(0) has no effect */
4173 if (mem != 0) {
4174 p = mem2chunk(mem);
4175 size = chunksize(p);
4177 /* Little security check which won't hurt performance: the
4178 allocator never wrapps around at the end of the address space.
4179 Therefore we can exclude some size values which might appear
4180 here by accident or by "design" from some intruder. */
4181 if (__builtin_expect ((uintptr_t) p > (uintptr_t) -size, 0))
4183 malloc_printf_nc (check_action, "free(): invalid pointer %p!\n", mem);
4184 return;
4187 check_inuse_chunk(av, p);
4190 If eligible, place chunk on a fastbin so it can be found
4191 and used quickly in malloc.
4194 if ((unsigned long)(size) <= (unsigned long)(av->max_fast)
4196 #if TRIM_FASTBINS
4198 If TRIM_FASTBINS set, don't place chunks
4199 bordering top into fastbins
4201 && (chunk_at_offset(p, size) != av->top)
4202 #endif
4205 set_fastchunks(av);
4206 fb = &(av->fastbins[fastbin_index(size)]);
4207 p->fd = *fb;
4208 *fb = p;
4212 Consolidate other non-mmapped chunks as they arrive.
4215 else if (!chunk_is_mmapped(p)) {
4216 nextchunk = chunk_at_offset(p, size);
4217 nextsize = chunksize(nextchunk);
4218 assert(nextsize > 0);
4220 /* consolidate backward */
4221 if (!prev_inuse(p)) {
4222 prevsize = p->prev_size;
4223 size += prevsize;
4224 p = chunk_at_offset(p, -((long) prevsize));
4225 unlink(p, bck, fwd);
4228 if (nextchunk != av->top) {
4229 /* get and clear inuse bit */
4230 nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
4232 /* consolidate forward */
4233 if (!nextinuse) {
4234 unlink(nextchunk, bck, fwd);
4235 size += nextsize;
4236 } else
4237 clear_inuse_bit_at_offset(nextchunk, 0);
4240 Place the chunk in unsorted chunk list. Chunks are
4241 not placed into regular bins until after they have
4242 been given one chance to be used in malloc.
4245 bck = unsorted_chunks(av);
4246 fwd = bck->fd;
4247 p->bk = bck;
4248 p->fd = fwd;
4249 bck->fd = p;
4250 fwd->bk = p;
4252 set_head(p, size | PREV_INUSE);
4253 set_foot(p, size);
4255 check_free_chunk(av, p);
4259 If the chunk borders the current high end of memory,
4260 consolidate into top
4263 else {
4264 size += nextsize;
4265 set_head(p, size | PREV_INUSE);
4266 av->top = p;
4267 check_chunk(av, p);
4271 If freeing a large space, consolidate possibly-surrounding
4272 chunks. Then, if the total unused topmost memory exceeds trim
4273 threshold, ask malloc_trim to reduce top.
4275 Unless max_fast is 0, we don't know if there are fastbins
4276 bordering top, so we cannot tell for sure whether threshold
4277 has been reached unless fastbins are consolidated. But we
4278 don't want to consolidate on each free. As a compromise,
4279 consolidation is performed if FASTBIN_CONSOLIDATION_THRESHOLD
4280 is reached.
4283 if ((unsigned long)(size) >= FASTBIN_CONSOLIDATION_THRESHOLD) {
4284 if (have_fastchunks(av))
4285 malloc_consolidate(av);
4287 if (av == &main_arena) {
4288 #ifndef MORECORE_CANNOT_TRIM
4289 if ((unsigned long)(chunksize(av->top)) >=
4290 (unsigned long)(mp_.trim_threshold))
4291 sYSTRIm(mp_.top_pad, av);
4292 #endif
4293 } else {
4294 /* Always try heap_trim(), even if the top chunk is not
4295 large, because the corresponding heap might go away. */
4296 heap_info *heap = heap_for_ptr(top(av));
4298 assert(heap->ar_ptr == av);
4299 heap_trim(heap, mp_.top_pad);
4305 If the chunk was allocated via mmap, release via munmap(). Note
4306 that if HAVE_MMAP is false but chunk_is_mmapped is true, then
4307 user must have overwritten memory. There's nothing we can do to
4308 catch this error unless MALLOC_DEBUG is set, in which case
4309 check_inuse_chunk (above) will have triggered error.
4312 else {
4313 #if HAVE_MMAP
4314 int ret;
4315 INTERNAL_SIZE_T offset = p->prev_size;
4316 mp_.n_mmaps--;
4317 mp_.mmapped_mem -= (size + offset);
4318 ret = munmap((char*)p - offset, size + offset);
4319 /* munmap returns non-zero on failure */
4320 assert(ret == 0);
4321 #endif
4327 ------------------------- malloc_consolidate -------------------------
4329 malloc_consolidate is a specialized version of free() that tears
4330 down chunks held in fastbins. Free itself cannot be used for this
4331 purpose since, among other things, it might place chunks back onto
4332 fastbins. So, instead, we need to use a minor variant of the same
4333 code.
4335 Also, because this routine needs to be called the first time through
4336 malloc anyway, it turns out to be the perfect place to trigger
4337 initialization code.
4340 #if __STD_C
4341 static void malloc_consolidate(mstate av)
4342 #else
4343 static void malloc_consolidate(av) mstate av;
4344 #endif
4346 mfastbinptr* fb; /* current fastbin being consolidated */
4347 mfastbinptr* maxfb; /* last fastbin (for loop control) */
4348 mchunkptr p; /* current chunk being consolidated */
4349 mchunkptr nextp; /* next chunk to consolidate */
4350 mchunkptr unsorted_bin; /* bin header */
4351 mchunkptr first_unsorted; /* chunk to link to */
4353 /* These have same use as in free() */
4354 mchunkptr nextchunk;
4355 INTERNAL_SIZE_T size;
4356 INTERNAL_SIZE_T nextsize;
4357 INTERNAL_SIZE_T prevsize;
4358 int nextinuse;
4359 mchunkptr bck;
4360 mchunkptr fwd;
4363 If max_fast is 0, we know that av hasn't
4364 yet been initialized, in which case do so below
4367 if (av->max_fast != 0) {
4368 clear_fastchunks(av);
4370 unsorted_bin = unsorted_chunks(av);
4373 Remove each chunk from fast bin and consolidate it, placing it
4374 then in unsorted bin. Among other reasons for doing this,
4375 placing in unsorted bin avoids needing to calculate actual bins
4376 until malloc is sure that chunks aren't immediately going to be
4377 reused anyway.
4380 maxfb = &(av->fastbins[fastbin_index(av->max_fast)]);
4381 fb = &(av->fastbins[0]);
4382 do {
4383 if ( (p = *fb) != 0) {
4384 *fb = 0;
4386 do {
4387 check_inuse_chunk(av, p);
4388 nextp = p->fd;
4390 /* Slightly streamlined version of consolidation code in free() */
4391 size = p->size & ~(PREV_INUSE|NON_MAIN_ARENA);
4392 nextchunk = chunk_at_offset(p, size);
4393 nextsize = chunksize(nextchunk);
4395 if (!prev_inuse(p)) {
4396 prevsize = p->prev_size;
4397 size += prevsize;
4398 p = chunk_at_offset(p, -((long) prevsize));
4399 unlink(p, bck, fwd);
4402 if (nextchunk != av->top) {
4403 nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
4405 if (!nextinuse) {
4406 size += nextsize;
4407 unlink(nextchunk, bck, fwd);
4408 } else
4409 clear_inuse_bit_at_offset(nextchunk, 0);
4411 first_unsorted = unsorted_bin->fd;
4412 unsorted_bin->fd = p;
4413 first_unsorted->bk = p;
4415 set_head(p, size | PREV_INUSE);
4416 p->bk = unsorted_bin;
4417 p->fd = first_unsorted;
4418 set_foot(p, size);
4421 else {
4422 size += nextsize;
4423 set_head(p, size | PREV_INUSE);
4424 av->top = p;
4427 } while ( (p = nextp) != 0);
4430 } while (fb++ != maxfb);
4432 else {
4433 malloc_init_state(av);
4434 check_malloc_state(av);
4439 ------------------------------ realloc ------------------------------
4442 Void_t*
4443 _int_realloc(mstate av, Void_t* oldmem, size_t bytes)
4445 INTERNAL_SIZE_T nb; /* padded request size */
4447 mchunkptr oldp; /* chunk corresponding to oldmem */
4448 INTERNAL_SIZE_T oldsize; /* its size */
4450 mchunkptr newp; /* chunk to return */
4451 INTERNAL_SIZE_T newsize; /* its size */
4452 Void_t* newmem; /* corresponding user mem */
4454 mchunkptr next; /* next contiguous chunk after oldp */
4456 mchunkptr remainder; /* extra space at end of newp */
4457 unsigned long remainder_size; /* its size */
4459 mchunkptr bck; /* misc temp for linking */
4460 mchunkptr fwd; /* misc temp for linking */
4462 unsigned long copysize; /* bytes to copy */
4463 unsigned int ncopies; /* INTERNAL_SIZE_T words to copy */
4464 INTERNAL_SIZE_T* s; /* copy source */
4465 INTERNAL_SIZE_T* d; /* copy destination */
4468 #if REALLOC_ZERO_BYTES_FREES
4469 if (bytes == 0) {
4470 _int_free(av, oldmem);
4471 return 0;
4473 #endif
4475 /* realloc of null is supposed to be same as malloc */
4476 if (oldmem == 0) return _int_malloc(av, bytes);
4478 checked_request2size(bytes, nb);
4480 oldp = mem2chunk(oldmem);
4481 oldsize = chunksize(oldp);
4483 check_inuse_chunk(av, oldp);
4485 if (!chunk_is_mmapped(oldp)) {
4487 if ((unsigned long)(oldsize) >= (unsigned long)(nb)) {
4488 /* already big enough; split below */
4489 newp = oldp;
4490 newsize = oldsize;
4493 else {
4494 next = chunk_at_offset(oldp, oldsize);
4496 /* Try to expand forward into top */
4497 if (next == av->top &&
4498 (unsigned long)(newsize = oldsize + chunksize(next)) >=
4499 (unsigned long)(nb + MINSIZE)) {
4500 set_head_size(oldp, nb | (av != &main_arena ? NON_MAIN_ARENA : 0));
4501 av->top = chunk_at_offset(oldp, nb);
4502 set_head(av->top, (newsize - nb) | PREV_INUSE);
4503 check_inuse_chunk(av, oldp);
4504 return chunk2mem(oldp);
4507 /* Try to expand forward into next chunk; split off remainder below */
4508 else if (next != av->top &&
4509 !inuse(next) &&
4510 (unsigned long)(newsize = oldsize + chunksize(next)) >=
4511 (unsigned long)(nb)) {
4512 newp = oldp;
4513 unlink(next, bck, fwd);
4516 /* allocate, copy, free */
4517 else {
4518 newmem = _int_malloc(av, nb - MALLOC_ALIGN_MASK);
4519 if (newmem == 0)
4520 return 0; /* propagate failure */
4522 newp = mem2chunk(newmem);
4523 newsize = chunksize(newp);
4526 Avoid copy if newp is next chunk after oldp.
4528 if (newp == next) {
4529 newsize += oldsize;
4530 newp = oldp;
4532 else {
4534 Unroll copy of <= 36 bytes (72 if 8byte sizes)
4535 We know that contents have an odd number of
4536 INTERNAL_SIZE_T-sized words; minimally 3.
4539 copysize = oldsize - SIZE_SZ;
4540 s = (INTERNAL_SIZE_T*)(oldmem);
4541 d = (INTERNAL_SIZE_T*)(newmem);
4542 ncopies = copysize / sizeof(INTERNAL_SIZE_T);
4543 assert(ncopies >= 3);
4545 if (ncopies > 9)
4546 MALLOC_COPY(d, s, copysize);
4548 else {
4549 *(d+0) = *(s+0);
4550 *(d+1) = *(s+1);
4551 *(d+2) = *(s+2);
4552 if (ncopies > 4) {
4553 *(d+3) = *(s+3);
4554 *(d+4) = *(s+4);
4555 if (ncopies > 6) {
4556 *(d+5) = *(s+5);
4557 *(d+6) = *(s+6);
4558 if (ncopies > 8) {
4559 *(d+7) = *(s+7);
4560 *(d+8) = *(s+8);
4566 _int_free(av, oldmem);
4567 check_inuse_chunk(av, newp);
4568 return chunk2mem(newp);
4573 /* If possible, free extra space in old or extended chunk */
4575 assert((unsigned long)(newsize) >= (unsigned long)(nb));
4577 remainder_size = newsize - nb;
4579 if (remainder_size < MINSIZE) { /* not enough extra to split off */
4580 set_head_size(newp, newsize | (av != &main_arena ? NON_MAIN_ARENA : 0));
4581 set_inuse_bit_at_offset(newp, newsize);
4583 else { /* split remainder */
4584 remainder = chunk_at_offset(newp, nb);
4585 set_head_size(newp, nb | (av != &main_arena ? NON_MAIN_ARENA : 0));
4586 set_head(remainder, remainder_size | PREV_INUSE |
4587 (av != &main_arena ? NON_MAIN_ARENA : 0));
4588 /* Mark remainder as inuse so free() won't complain */
4589 set_inuse_bit_at_offset(remainder, remainder_size);
4590 _int_free(av, chunk2mem(remainder));
4593 check_inuse_chunk(av, newp);
4594 return chunk2mem(newp);
4598 Handle mmap cases
4601 else {
4602 #if HAVE_MMAP
4604 #if HAVE_MREMAP
4605 INTERNAL_SIZE_T offset = oldp->prev_size;
4606 size_t pagemask = mp_.pagesize - 1;
4607 char *cp;
4608 unsigned long sum;
4610 /* Note the extra SIZE_SZ overhead */
4611 newsize = (nb + offset + SIZE_SZ + pagemask) & ~pagemask;
4613 /* don't need to remap if still within same page */
4614 if (oldsize == newsize - offset)
4615 return oldmem;
4617 cp = (char*)mremap((char*)oldp - offset, oldsize + offset, newsize, 1);
4619 if (cp != MAP_FAILED) {
4621 newp = (mchunkptr)(cp + offset);
4622 set_head(newp, (newsize - offset)|IS_MMAPPED);
4624 assert(aligned_OK(chunk2mem(newp)));
4625 assert((newp->prev_size == offset));
4627 /* update statistics */
4628 sum = mp_.mmapped_mem += newsize - oldsize;
4629 if (sum > (unsigned long)(mp_.max_mmapped_mem))
4630 mp_.max_mmapped_mem = sum;
4631 #ifdef NO_THREADS
4632 sum += main_arena.system_mem;
4633 if (sum > (unsigned long)(mp_.max_total_mem))
4634 mp_.max_total_mem = sum;
4635 #endif
4637 return chunk2mem(newp);
4639 #endif
4641 /* Note the extra SIZE_SZ overhead. */
4642 if ((unsigned long)(oldsize) >= (unsigned long)(nb + SIZE_SZ))
4643 newmem = oldmem; /* do nothing */
4644 else {
4645 /* Must alloc, copy, free. */
4646 newmem = _int_malloc(av, nb - MALLOC_ALIGN_MASK);
4647 if (newmem != 0) {
4648 MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
4649 _int_free(av, oldmem);
4652 return newmem;
4654 #else
4655 /* If !HAVE_MMAP, but chunk_is_mmapped, user must have overwritten mem */
4656 check_malloc_state(av);
4657 MALLOC_FAILURE_ACTION;
4658 return 0;
4659 #endif
4664 ------------------------------ memalign ------------------------------
4667 Void_t*
4668 _int_memalign(mstate av, size_t alignment, size_t bytes)
4670 INTERNAL_SIZE_T nb; /* padded request size */
4671 char* m; /* memory returned by malloc call */
4672 mchunkptr p; /* corresponding chunk */
4673 char* brk; /* alignment point within p */
4674 mchunkptr newp; /* chunk to return */
4675 INTERNAL_SIZE_T newsize; /* its size */
4676 INTERNAL_SIZE_T leadsize; /* leading space before alignment point */
4677 mchunkptr remainder; /* spare room at end to split off */
4678 unsigned long remainder_size; /* its size */
4679 INTERNAL_SIZE_T size;
4681 /* If need less alignment than we give anyway, just relay to malloc */
4683 if (alignment <= MALLOC_ALIGNMENT) return _int_malloc(av, bytes);
4685 /* Otherwise, ensure that it is at least a minimum chunk size */
4687 if (alignment < MINSIZE) alignment = MINSIZE;
4689 /* Make sure alignment is power of 2 (in case MINSIZE is not). */
4690 if ((alignment & (alignment - 1)) != 0) {
4691 size_t a = MALLOC_ALIGNMENT * 2;
4692 while ((unsigned long)a < (unsigned long)alignment) a <<= 1;
4693 alignment = a;
4696 checked_request2size(bytes, nb);
4699 Strategy: find a spot within that chunk that meets the alignment
4700 request, and then possibly free the leading and trailing space.
4704 /* Call malloc with worst case padding to hit alignment. */
4706 m = (char*)(_int_malloc(av, nb + alignment + MINSIZE));
4708 if (m == 0) return 0; /* propagate failure */
4710 p = mem2chunk(m);
4712 if ((((unsigned long)(m)) % alignment) != 0) { /* misaligned */
4715 Find an aligned spot inside chunk. Since we need to give back
4716 leading space in a chunk of at least MINSIZE, if the first
4717 calculation places us at a spot with less than MINSIZE leader,
4718 we can move to the next aligned spot -- we've allocated enough
4719 total room so that this is always possible.
4722 brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) &
4723 -((signed long) alignment));
4724 if ((unsigned long)(brk - (char*)(p)) < MINSIZE)
4725 brk += alignment;
4727 newp = (mchunkptr)brk;
4728 leadsize = brk - (char*)(p);
4729 newsize = chunksize(p) - leadsize;
4731 /* For mmapped chunks, just adjust offset */
4732 if (chunk_is_mmapped(p)) {
4733 newp->prev_size = p->prev_size + leadsize;
4734 set_head(newp, newsize|IS_MMAPPED);
4735 return chunk2mem(newp);
4738 /* Otherwise, give back leader, use the rest */
4739 set_head(newp, newsize | PREV_INUSE |
4740 (av != &main_arena ? NON_MAIN_ARENA : 0));
4741 set_inuse_bit_at_offset(newp, newsize);
4742 set_head_size(p, leadsize | (av != &main_arena ? NON_MAIN_ARENA : 0));
4743 _int_free(av, chunk2mem(p));
4744 p = newp;
4746 assert (newsize >= nb &&
4747 (((unsigned long)(chunk2mem(p))) % alignment) == 0);
4750 /* Also give back spare room at the end */
4751 if (!chunk_is_mmapped(p)) {
4752 size = chunksize(p);
4753 if ((unsigned long)(size) > (unsigned long)(nb + MINSIZE)) {
4754 remainder_size = size - nb;
4755 remainder = chunk_at_offset(p, nb);
4756 set_head(remainder, remainder_size | PREV_INUSE |
4757 (av != &main_arena ? NON_MAIN_ARENA : 0));
4758 set_head_size(p, nb);
4759 _int_free(av, chunk2mem(remainder));
4763 check_inuse_chunk(av, p);
4764 return chunk2mem(p);
4767 #if 0
4769 ------------------------------ calloc ------------------------------
4772 #if __STD_C
4773 Void_t* cALLOc(size_t n_elements, size_t elem_size)
4774 #else
4775 Void_t* cALLOc(n_elements, elem_size) size_t n_elements; size_t elem_size;
4776 #endif
4778 mchunkptr p;
4779 unsigned long clearsize;
4780 unsigned long nclears;
4781 INTERNAL_SIZE_T* d;
4783 Void_t* mem = mALLOc(n_elements * elem_size);
4785 if (mem != 0) {
4786 p = mem2chunk(mem);
4788 #if MMAP_CLEARS
4789 if (!chunk_is_mmapped(p)) /* don't need to clear mmapped space */
4790 #endif
4793 Unroll clear of <= 36 bytes (72 if 8byte sizes)
4794 We know that contents have an odd number of
4795 INTERNAL_SIZE_T-sized words; minimally 3.
4798 d = (INTERNAL_SIZE_T*)mem;
4799 clearsize = chunksize(p) - SIZE_SZ;
4800 nclears = clearsize / sizeof(INTERNAL_SIZE_T);
4801 assert(nclears >= 3);
4803 if (nclears > 9)
4804 MALLOC_ZERO(d, clearsize);
4806 else {
4807 *(d+0) = 0;
4808 *(d+1) = 0;
4809 *(d+2) = 0;
4810 if (nclears > 4) {
4811 *(d+3) = 0;
4812 *(d+4) = 0;
4813 if (nclears > 6) {
4814 *(d+5) = 0;
4815 *(d+6) = 0;
4816 if (nclears > 8) {
4817 *(d+7) = 0;
4818 *(d+8) = 0;
4825 return mem;
4827 #endif /* 0 */
4830 ------------------------- independent_calloc -------------------------
4833 Void_t**
4834 #if __STD_C
4835 _int_icalloc(mstate av, size_t n_elements, size_t elem_size, Void_t* chunks[])
4836 #else
4837 _int_icalloc(av, n_elements, elem_size, chunks)
4838 mstate av; size_t n_elements; size_t elem_size; Void_t* chunks[];
4839 #endif
4841 size_t sz = elem_size; /* serves as 1-element array */
4842 /* opts arg of 3 means all elements are same size, and should be cleared */
4843 return iALLOc(av, n_elements, &sz, 3, chunks);
4847 ------------------------- independent_comalloc -------------------------
4850 Void_t**
4851 #if __STD_C
4852 _int_icomalloc(mstate av, size_t n_elements, size_t sizes[], Void_t* chunks[])
4853 #else
4854 _int_icomalloc(av, n_elements, sizes, chunks)
4855 mstate av; size_t n_elements; size_t sizes[]; Void_t* chunks[];
4856 #endif
4858 return iALLOc(av, n_elements, sizes, 0, chunks);
4863 ------------------------------ ialloc ------------------------------
4864 ialloc provides common support for independent_X routines, handling all of
4865 the combinations that can result.
4867 The opts arg has:
4868 bit 0 set if all elements are same size (using sizes[0])
4869 bit 1 set if elements should be zeroed
4873 static Void_t**
4874 #if __STD_C
4875 iALLOc(mstate av, size_t n_elements, size_t* sizes, int opts, Void_t* chunks[])
4876 #else
4877 iALLOc(av, n_elements, sizes, opts, chunks)
4878 mstate av; size_t n_elements; size_t* sizes; int opts; Void_t* chunks[];
4879 #endif
4881 INTERNAL_SIZE_T element_size; /* chunksize of each element, if all same */
4882 INTERNAL_SIZE_T contents_size; /* total size of elements */
4883 INTERNAL_SIZE_T array_size; /* request size of pointer array */
4884 Void_t* mem; /* malloced aggregate space */
4885 mchunkptr p; /* corresponding chunk */
4886 INTERNAL_SIZE_T remainder_size; /* remaining bytes while splitting */
4887 Void_t** marray; /* either "chunks" or malloced ptr array */
4888 mchunkptr array_chunk; /* chunk for malloced ptr array */
4889 int mmx; /* to disable mmap */
4890 INTERNAL_SIZE_T size;
4891 INTERNAL_SIZE_T size_flags;
4892 size_t i;
4894 /* Ensure initialization/consolidation */
4895 if (have_fastchunks(av)) malloc_consolidate(av);
4897 /* compute array length, if needed */
4898 if (chunks != 0) {
4899 if (n_elements == 0)
4900 return chunks; /* nothing to do */
4901 marray = chunks;
4902 array_size = 0;
4904 else {
4905 /* if empty req, must still return chunk representing empty array */
4906 if (n_elements == 0)
4907 return (Void_t**) _int_malloc(av, 0);
4908 marray = 0;
4909 array_size = request2size(n_elements * (sizeof(Void_t*)));
4912 /* compute total element size */
4913 if (opts & 0x1) { /* all-same-size */
4914 element_size = request2size(*sizes);
4915 contents_size = n_elements * element_size;
4917 else { /* add up all the sizes */
4918 element_size = 0;
4919 contents_size = 0;
4920 for (i = 0; i != n_elements; ++i)
4921 contents_size += request2size(sizes[i]);
4924 /* subtract out alignment bytes from total to minimize overallocation */
4925 size = contents_size + array_size - MALLOC_ALIGN_MASK;
4928 Allocate the aggregate chunk.
4929 But first disable mmap so malloc won't use it, since
4930 we would not be able to later free/realloc space internal
4931 to a segregated mmap region.
4933 mmx = mp_.n_mmaps_max; /* disable mmap */
4934 mp_.n_mmaps_max = 0;
4935 mem = _int_malloc(av, size);
4936 mp_.n_mmaps_max = mmx; /* reset mmap */
4937 if (mem == 0)
4938 return 0;
4940 p = mem2chunk(mem);
4941 assert(!chunk_is_mmapped(p));
4942 remainder_size = chunksize(p);
4944 if (opts & 0x2) { /* optionally clear the elements */
4945 MALLOC_ZERO(mem, remainder_size - SIZE_SZ - array_size);
4948 size_flags = PREV_INUSE | (av != &main_arena ? NON_MAIN_ARENA : 0);
4950 /* If not provided, allocate the pointer array as final part of chunk */
4951 if (marray == 0) {
4952 array_chunk = chunk_at_offset(p, contents_size);
4953 marray = (Void_t**) (chunk2mem(array_chunk));
4954 set_head(array_chunk, (remainder_size - contents_size) | size_flags);
4955 remainder_size = contents_size;
4958 /* split out elements */
4959 for (i = 0; ; ++i) {
4960 marray[i] = chunk2mem(p);
4961 if (i != n_elements-1) {
4962 if (element_size != 0)
4963 size = element_size;
4964 else
4965 size = request2size(sizes[i]);
4966 remainder_size -= size;
4967 set_head(p, size | size_flags);
4968 p = chunk_at_offset(p, size);
4970 else { /* the final element absorbs any overallocation slop */
4971 set_head(p, remainder_size | size_flags);
4972 break;
4976 #if MALLOC_DEBUG
4977 if (marray != chunks) {
4978 /* final element must have exactly exhausted chunk */
4979 if (element_size != 0)
4980 assert(remainder_size == element_size);
4981 else
4982 assert(remainder_size == request2size(sizes[i]));
4983 check_inuse_chunk(av, mem2chunk(marray));
4986 for (i = 0; i != n_elements; ++i)
4987 check_inuse_chunk(av, mem2chunk(marray[i]));
4988 #endif
4990 return marray;
4995 ------------------------------ valloc ------------------------------
4998 Void_t*
4999 #if __STD_C
5000 _int_valloc(mstate av, size_t bytes)
5001 #else
5002 _int_valloc(av, bytes) mstate av; size_t bytes;
5003 #endif
5005 /* Ensure initialization/consolidation */
5006 if (have_fastchunks(av)) malloc_consolidate(av);
5007 return _int_memalign(av, mp_.pagesize, bytes);
5011 ------------------------------ pvalloc ------------------------------
5015 Void_t*
5016 #if __STD_C
5017 _int_pvalloc(mstate av, size_t bytes)
5018 #else
5019 _int_pvalloc(av, bytes) mstate av, size_t bytes;
5020 #endif
5022 size_t pagesz;
5024 /* Ensure initialization/consolidation */
5025 if (have_fastchunks(av)) malloc_consolidate(av);
5026 pagesz = mp_.pagesize;
5027 return _int_memalign(av, pagesz, (bytes + pagesz - 1) & ~(pagesz - 1));
5032 ------------------------------ malloc_trim ------------------------------
5035 #if __STD_C
5036 int mTRIm(size_t pad)
5037 #else
5038 int mTRIm(pad) size_t pad;
5039 #endif
5041 mstate av = &main_arena; /* already locked */
5043 /* Ensure initialization/consolidation */
5044 malloc_consolidate(av);
5046 #ifndef MORECORE_CANNOT_TRIM
5047 return sYSTRIm(pad, av);
5048 #else
5049 return 0;
5050 #endif
5055 ------------------------- malloc_usable_size -------------------------
5058 #if __STD_C
5059 size_t mUSABLe(Void_t* mem)
5060 #else
5061 size_t mUSABLe(mem) Void_t* mem;
5062 #endif
5064 mchunkptr p;
5065 if (mem != 0) {
5066 p = mem2chunk(mem);
5067 if (chunk_is_mmapped(p))
5068 return chunksize(p) - 2*SIZE_SZ;
5069 else if (inuse(p))
5070 return chunksize(p) - SIZE_SZ;
5072 return 0;
5076 ------------------------------ mallinfo ------------------------------
5079 struct mallinfo mALLINFo(mstate av)
5081 struct mallinfo mi;
5082 size_t i;
5083 mbinptr b;
5084 mchunkptr p;
5085 INTERNAL_SIZE_T avail;
5086 INTERNAL_SIZE_T fastavail;
5087 int nblocks;
5088 int nfastblocks;
5090 /* Ensure initialization */
5091 if (av->top == 0) malloc_consolidate(av);
5093 check_malloc_state(av);
5095 /* Account for top */
5096 avail = chunksize(av->top);
5097 nblocks = 1; /* top always exists */
5099 /* traverse fastbins */
5100 nfastblocks = 0;
5101 fastavail = 0;
5103 for (i = 0; i < NFASTBINS; ++i) {
5104 for (p = av->fastbins[i]; p != 0; p = p->fd) {
5105 ++nfastblocks;
5106 fastavail += chunksize(p);
5110 avail += fastavail;
5112 /* traverse regular bins */
5113 for (i = 1; i < NBINS; ++i) {
5114 b = bin_at(av, i);
5115 for (p = last(b); p != b; p = p->bk) {
5116 ++nblocks;
5117 avail += chunksize(p);
5121 mi.smblks = nfastblocks;
5122 mi.ordblks = nblocks;
5123 mi.fordblks = avail;
5124 mi.uordblks = av->system_mem - avail;
5125 mi.arena = av->system_mem;
5126 mi.hblks = mp_.n_mmaps;
5127 mi.hblkhd = mp_.mmapped_mem;
5128 mi.fsmblks = fastavail;
5129 mi.keepcost = chunksize(av->top);
5130 mi.usmblks = mp_.max_total_mem;
5131 return mi;
5135 ------------------------------ malloc_stats ------------------------------
5138 void mSTATs()
5140 int i;
5141 mstate ar_ptr;
5142 struct mallinfo mi;
5143 unsigned int in_use_b = mp_.mmapped_mem, system_b = in_use_b;
5144 #if THREAD_STATS
5145 long stat_lock_direct = 0, stat_lock_loop = 0, stat_lock_wait = 0;
5146 #endif
5148 if(__malloc_initialized < 0)
5149 ptmalloc_init ();
5150 #ifdef _LIBC
5151 _IO_flockfile (stderr);
5152 int old_flags2 = ((_IO_FILE *) stderr)->_flags2;
5153 ((_IO_FILE *) stderr)->_flags2 |= _IO_FLAGS2_NOTCANCEL;
5154 #endif
5155 for (i=0, ar_ptr = &main_arena;; i++) {
5156 (void)mutex_lock(&ar_ptr->mutex);
5157 mi = mALLINFo(ar_ptr);
5158 fprintf(stderr, "Arena %d:\n", i);
5159 fprintf(stderr, "system bytes = %10u\n", (unsigned int)mi.arena);
5160 fprintf(stderr, "in use bytes = %10u\n", (unsigned int)mi.uordblks);
5161 #if MALLOC_DEBUG > 1
5162 if (i > 0)
5163 dump_heap(heap_for_ptr(top(ar_ptr)));
5164 #endif
5165 system_b += mi.arena;
5166 in_use_b += mi.uordblks;
5167 #if THREAD_STATS
5168 stat_lock_direct += ar_ptr->stat_lock_direct;
5169 stat_lock_loop += ar_ptr->stat_lock_loop;
5170 stat_lock_wait += ar_ptr->stat_lock_wait;
5171 #endif
5172 (void)mutex_unlock(&ar_ptr->mutex);
5173 ar_ptr = ar_ptr->next;
5174 if(ar_ptr == &main_arena) break;
5176 #if HAVE_MMAP
5177 fprintf(stderr, "Total (incl. mmap):\n");
5178 #else
5179 fprintf(stderr, "Total:\n");
5180 #endif
5181 fprintf(stderr, "system bytes = %10u\n", system_b);
5182 fprintf(stderr, "in use bytes = %10u\n", in_use_b);
5183 #ifdef NO_THREADS
5184 fprintf(stderr, "max system bytes = %10u\n", (unsigned int)mp_.max_total_mem);
5185 #endif
5186 #if HAVE_MMAP
5187 fprintf(stderr, "max mmap regions = %10u\n", (unsigned int)mp_.max_n_mmaps);
5188 fprintf(stderr, "max mmap bytes = %10lu\n",
5189 (unsigned long)mp_.max_mmapped_mem);
5190 #endif
5191 #if THREAD_STATS
5192 fprintf(stderr, "heaps created = %10d\n", stat_n_heaps);
5193 fprintf(stderr, "locked directly = %10ld\n", stat_lock_direct);
5194 fprintf(stderr, "locked in loop = %10ld\n", stat_lock_loop);
5195 fprintf(stderr, "locked waiting = %10ld\n", stat_lock_wait);
5196 fprintf(stderr, "locked total = %10ld\n",
5197 stat_lock_direct + stat_lock_loop + stat_lock_wait);
5198 #endif
5199 #ifdef _LIBC
5200 ((_IO_FILE *) stderr)->_flags2 |= old_flags2;
5201 _IO_funlockfile (stderr);
5202 #endif
5207 ------------------------------ mallopt ------------------------------
5210 #if __STD_C
5211 int mALLOPt(int param_number, int value)
5212 #else
5213 int mALLOPt(param_number, value) int param_number; int value;
5214 #endif
5216 mstate av = &main_arena;
5217 int res = 1;
5219 if(__malloc_initialized < 0)
5220 ptmalloc_init ();
5221 (void)mutex_lock(&av->mutex);
5222 /* Ensure initialization/consolidation */
5223 malloc_consolidate(av);
5225 switch(param_number) {
5226 case M_MXFAST:
5227 if (value >= 0 && value <= MAX_FAST_SIZE) {
5228 set_max_fast(av, value);
5230 else
5231 res = 0;
5232 break;
5234 case M_TRIM_THRESHOLD:
5235 mp_.trim_threshold = value;
5236 break;
5238 case M_TOP_PAD:
5239 mp_.top_pad = value;
5240 break;
5242 case M_MMAP_THRESHOLD:
5243 #if USE_ARENAS
5244 /* Forbid setting the threshold too high. */
5245 if((unsigned long)value > HEAP_MAX_SIZE/2)
5246 res = 0;
5247 else
5248 #endif
5249 mp_.mmap_threshold = value;
5250 break;
5252 case M_MMAP_MAX:
5253 #if !HAVE_MMAP
5254 if (value != 0)
5255 res = 0;
5256 else
5257 #endif
5258 mp_.n_mmaps_max = value;
5259 break;
5261 case M_CHECK_ACTION:
5262 check_action = value;
5263 break;
5265 (void)mutex_unlock(&av->mutex);
5266 return res;
5271 -------------------- Alternative MORECORE functions --------------------
5276 General Requirements for MORECORE.
5278 The MORECORE function must have the following properties:
5280 If MORECORE_CONTIGUOUS is false:
5282 * MORECORE must allocate in multiples of pagesize. It will
5283 only be called with arguments that are multiples of pagesize.
5285 * MORECORE(0) must return an address that is at least
5286 MALLOC_ALIGNMENT aligned. (Page-aligning always suffices.)
5288 else (i.e. If MORECORE_CONTIGUOUS is true):
5290 * Consecutive calls to MORECORE with positive arguments
5291 return increasing addresses, indicating that space has been
5292 contiguously extended.
5294 * MORECORE need not allocate in multiples of pagesize.
5295 Calls to MORECORE need not have args of multiples of pagesize.
5297 * MORECORE need not page-align.
5299 In either case:
5301 * MORECORE may allocate more memory than requested. (Or even less,
5302 but this will generally result in a malloc failure.)
5304 * MORECORE must not allocate memory when given argument zero, but
5305 instead return one past the end address of memory from previous
5306 nonzero call. This malloc does NOT call MORECORE(0)
5307 until at least one call with positive arguments is made, so
5308 the initial value returned is not important.
5310 * Even though consecutive calls to MORECORE need not return contiguous
5311 addresses, it must be OK for malloc'ed chunks to span multiple
5312 regions in those cases where they do happen to be contiguous.
5314 * MORECORE need not handle negative arguments -- it may instead
5315 just return MORECORE_FAILURE when given negative arguments.
5316 Negative arguments are always multiples of pagesize. MORECORE
5317 must not misinterpret negative args as large positive unsigned
5318 args. You can suppress all such calls from even occurring by defining
5319 MORECORE_CANNOT_TRIM,
5321 There is some variation across systems about the type of the
5322 argument to sbrk/MORECORE. If size_t is unsigned, then it cannot
5323 actually be size_t, because sbrk supports negative args, so it is
5324 normally the signed type of the same width as size_t (sometimes
5325 declared as "intptr_t", and sometimes "ptrdiff_t"). It doesn't much
5326 matter though. Internally, we use "long" as arguments, which should
5327 work across all reasonable possibilities.
5329 Additionally, if MORECORE ever returns failure for a positive
5330 request, and HAVE_MMAP is true, then mmap is used as a noncontiguous
5331 system allocator. This is a useful backup strategy for systems with
5332 holes in address spaces -- in this case sbrk cannot contiguously
5333 expand the heap, but mmap may be able to map noncontiguous space.
5335 If you'd like mmap to ALWAYS be used, you can define MORECORE to be
5336 a function that always returns MORECORE_FAILURE.
5338 If you are using this malloc with something other than sbrk (or its
5339 emulation) to supply memory regions, you probably want to set
5340 MORECORE_CONTIGUOUS as false. As an example, here is a custom
5341 allocator kindly contributed for pre-OSX macOS. It uses virtually
5342 but not necessarily physically contiguous non-paged memory (locked
5343 in, present and won't get swapped out). You can use it by
5344 uncommenting this section, adding some #includes, and setting up the
5345 appropriate defines above:
5347 #define MORECORE osMoreCore
5348 #define MORECORE_CONTIGUOUS 0
5350 There is also a shutdown routine that should somehow be called for
5351 cleanup upon program exit.
5353 #define MAX_POOL_ENTRIES 100
5354 #define MINIMUM_MORECORE_SIZE (64 * 1024)
5355 static int next_os_pool;
5356 void *our_os_pools[MAX_POOL_ENTRIES];
5358 void *osMoreCore(int size)
5360 void *ptr = 0;
5361 static void *sbrk_top = 0;
5363 if (size > 0)
5365 if (size < MINIMUM_MORECORE_SIZE)
5366 size = MINIMUM_MORECORE_SIZE;
5367 if (CurrentExecutionLevel() == kTaskLevel)
5368 ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
5369 if (ptr == 0)
5371 return (void *) MORECORE_FAILURE;
5373 // save ptrs so they can be freed during cleanup
5374 our_os_pools[next_os_pool] = ptr;
5375 next_os_pool++;
5376 ptr = (void *) ((((unsigned long) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
5377 sbrk_top = (char *) ptr + size;
5378 return ptr;
5380 else if (size < 0)
5382 // we don't currently support shrink behavior
5383 return (void *) MORECORE_FAILURE;
5385 else
5387 return sbrk_top;
5391 // cleanup any allocated memory pools
5392 // called as last thing before shutting down driver
5394 void osCleanupMem(void)
5396 void **ptr;
5398 for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
5399 if (*ptr)
5401 PoolDeallocate(*ptr);
5402 *ptr = 0;
5409 /* Helper code. */
5411 static void
5412 malloc_printf_nc(int action, const char *template, ...)
5414 if (action & 1)
5416 #ifdef _LIBC
5417 _IO_flockfile (stderr);
5418 int old_flags2 = ((_IO_FILE *) stderr)->_flags2;
5419 ((_IO_FILE *) stderr)->_flags2 |= _IO_FLAGS2_NOTCANCEL;
5420 #endif
5422 va_list ap;
5423 va_start (ap, template);
5425 vfprintf (stderr, template, ap);
5427 va_end (ap);
5429 #ifdef _LIBC
5430 ((_IO_FILE *) stderr)->_flags2 |= old_flags2;
5431 _IO_funlockfile (stderr);
5432 #endif
5434 if (action & 2)
5435 abort ();
5438 #ifdef _LIBC
5439 # include <sys/param.h>
5441 /* We need a wrapper function for one of the additions of POSIX. */
5443 __posix_memalign (void **memptr, size_t alignment, size_t size)
5445 void *mem;
5446 __malloc_ptr_t (*hook) __MALLOC_PMT ((size_t, size_t,
5447 __const __malloc_ptr_t)) =
5448 __memalign_hook;
5450 /* Test whether the SIZE argument is valid. It must be a power of
5451 two multiple of sizeof (void *). */
5452 if (alignment % sizeof (void *) != 0
5453 || !powerof2 (alignment / sizeof (void *)) != 0
5454 || alignment == 0)
5455 return EINVAL;
5457 /* Call the hook here, so that caller is posix_memalign's caller
5458 and not posix_memalign itself. */
5459 if (hook != NULL)
5460 mem = (*hook)(alignment, size, RETURN_ADDRESS (0));
5461 else
5462 mem = public_mEMALIGn (alignment, size);
5464 if (mem != NULL) {
5465 *memptr = mem;
5466 return 0;
5469 return ENOMEM;
5471 weak_alias (__posix_memalign, posix_memalign)
5473 strong_alias (__libc_calloc, __calloc) weak_alias (__libc_calloc, calloc)
5474 strong_alias (__libc_free, __cfree) weak_alias (__libc_free, cfree)
5475 strong_alias (__libc_free, __free) strong_alias (__libc_free, free)
5476 strong_alias (__libc_malloc, __malloc) strong_alias (__libc_malloc, malloc)
5477 strong_alias (__libc_memalign, __memalign)
5478 weak_alias (__libc_memalign, memalign)
5479 strong_alias (__libc_realloc, __realloc) strong_alias (__libc_realloc, realloc)
5480 strong_alias (__libc_valloc, __valloc) weak_alias (__libc_valloc, valloc)
5481 strong_alias (__libc_pvalloc, __pvalloc) weak_alias (__libc_pvalloc, pvalloc)
5482 strong_alias (__libc_mallinfo, __mallinfo)
5483 weak_alias (__libc_mallinfo, mallinfo)
5484 strong_alias (__libc_mallopt, __mallopt) weak_alias (__libc_mallopt, mallopt)
5486 weak_alias (__malloc_stats, malloc_stats)
5487 weak_alias (__malloc_usable_size, malloc_usable_size)
5488 weak_alias (__malloc_trim, malloc_trim)
5489 weak_alias (__malloc_get_state, malloc_get_state)
5490 weak_alias (__malloc_set_state, malloc_set_state)
5492 #endif /* _LIBC */
5494 /* ------------------------------------------------------------
5495 History:
5497 [see ftp://g.oswego.edu/pub/misc/malloc.c for the history of dlmalloc]
5501 * Local variables:
5502 * c-basic-offset: 2
5503 * End: