1 /* Return arc hyperbolic sine for a complex float type, with the
2 imaginary part of the result possibly adjusted for use in
3 computing other functions.
4 Copyright (C) 1997-2023 Free Software Foundation, Inc.
5 This file is part of the GNU C Library.
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Lesser General Public License for more details.
17 You should have received a copy of the GNU Lesser General Public
18 License along with the GNU C Library; if not, see
19 <https://www.gnu.org/licenses/>. */
23 #include <math_private.h>
24 #include <math-underflow.h>
27 /* Return the complex inverse hyperbolic sine of finite nonzero Z,
28 with the imaginary part of the result subtracted from pi/2 if ADJ
32 M_DECL_FUNC (__kernel_casinh
) (CFLOAT x
, int adj
)
38 /* Avoid cancellation by reducing to the first quadrant. */
39 rx
= M_FABS (__real__ x
);
40 ix
= M_FABS (__imag__ x
);
42 if (rx
>= 1 / M_EPSILON
|| ix
>= 1 / M_EPSILON
)
44 /* For large x in the first quadrant, x + csqrt (1 + x * x)
45 is sufficiently close to 2 * x to make no significant
46 difference to the result; avoid possible overflow from
47 the squaring and addition. */
54 __real__ y
= M_COPYSIGN (__imag__ y
, __imag__ x
);
58 res
= M_SUF (__clog
) (y
);
59 __real__ res
+= M_MLIT (M_LN2
);
61 else if (rx
>= M_LIT (0.5) && ix
< M_EPSILON
/ 8)
63 FLOAT s
= M_HYPOT (1, rx
);
65 __real__ res
= M_LOG (rx
+ s
);
67 __imag__ res
= M_ATAN2 (s
, __imag__ x
);
69 __imag__ res
= M_ATAN2 (ix
, s
);
71 else if (rx
< M_EPSILON
/ 8 && ix
>= M_LIT (1.5))
73 FLOAT s
= M_SQRT ((ix
+ 1) * (ix
- 1));
75 __real__ res
= M_LOG (ix
+ s
);
77 __imag__ res
= M_ATAN2 (rx
, M_COPYSIGN (s
, __imag__ x
));
79 __imag__ res
= M_ATAN2 (s
, rx
);
81 else if (ix
> 1 && ix
< M_LIT (1.5) && rx
< M_LIT (0.5))
83 if (rx
< M_EPSILON
* M_EPSILON
)
85 FLOAT ix2m1
= (ix
+ 1) * (ix
- 1);
86 FLOAT s
= M_SQRT (ix2m1
);
88 __real__ res
= M_LOG1P (2 * (ix2m1
+ ix
* s
)) / 2;
90 __imag__ res
= M_ATAN2 (rx
, M_COPYSIGN (s
, __imag__ x
));
92 __imag__ res
= M_ATAN2 (s
, rx
);
96 FLOAT ix2m1
= (ix
+ 1) * (ix
- 1);
98 FLOAT f
= rx2
* (2 + rx2
+ 2 * ix
* ix
);
99 FLOAT d
= M_SQRT (ix2m1
* ix2m1
+ f
);
100 FLOAT dp
= d
+ ix2m1
;
102 FLOAT r1
= M_SQRT ((dm
+ rx2
) / 2);
103 FLOAT r2
= rx
* ix
/ r1
;
105 __real__ res
= M_LOG1P (rx2
+ dp
+ 2 * (rx
* r1
+ ix
* r2
)) / 2;
107 __imag__ res
= M_ATAN2 (rx
+ r1
, M_COPYSIGN (ix
+ r2
, __imag__ x
));
109 __imag__ res
= M_ATAN2 (ix
+ r2
, rx
+ r1
);
112 else if (ix
== 1 && rx
< M_LIT (0.5))
114 if (rx
< M_EPSILON
/ 8)
116 __real__ res
= M_LOG1P (2 * (rx
+ M_SQRT (rx
))) / 2;
118 __imag__ res
= M_ATAN2 (M_SQRT (rx
), M_COPYSIGN (1, __imag__ x
));
120 __imag__ res
= M_ATAN2 (1, M_SQRT (rx
));
124 FLOAT d
= rx
* M_SQRT (4 + rx
* rx
);
125 FLOAT s1
= M_SQRT ((d
+ rx
* rx
) / 2);
126 FLOAT s2
= M_SQRT ((d
- rx
* rx
) / 2);
128 __real__ res
= M_LOG1P (rx
* rx
+ d
+ 2 * (rx
* s1
+ s2
)) / 2;
130 __imag__ res
= M_ATAN2 (rx
+ s1
, M_COPYSIGN (1 + s2
, __imag__ x
));
132 __imag__ res
= M_ATAN2 (1 + s2
, rx
+ s1
);
135 else if (ix
< 1 && rx
< M_LIT (0.5))
139 if (rx
< M_EPSILON
* M_EPSILON
)
141 FLOAT onemix2
= (1 + ix
) * (1 - ix
);
142 FLOAT s
= M_SQRT (onemix2
);
144 __real__ res
= M_LOG1P (2 * rx
/ s
) / 2;
146 __imag__ res
= M_ATAN2 (s
, __imag__ x
);
148 __imag__ res
= M_ATAN2 (ix
, s
);
152 FLOAT onemix2
= (1 + ix
) * (1 - ix
);
154 FLOAT f
= rx2
* (2 + rx2
+ 2 * ix
* ix
);
155 FLOAT d
= M_SQRT (onemix2
* onemix2
+ f
);
156 FLOAT dp
= d
+ onemix2
;
158 FLOAT r1
= M_SQRT ((dp
+ rx2
) / 2);
159 FLOAT r2
= rx
* ix
/ r1
;
161 __real__ res
= M_LOG1P (rx2
+ dm
+ 2 * (rx
* r1
+ ix
* r2
)) / 2;
163 __imag__ res
= M_ATAN2 (rx
+ r1
, M_COPYSIGN (ix
+ r2
,
166 __imag__ res
= M_ATAN2 (ix
+ r2
, rx
+ r1
);
171 FLOAT s
= M_HYPOT (1, rx
);
173 __real__ res
= M_LOG1P (2 * rx
* (rx
+ s
)) / 2;
175 __imag__ res
= M_ATAN2 (s
, __imag__ x
);
177 __imag__ res
= M_ATAN2 (ix
, s
);
179 math_check_force_underflow_nonneg (__real__ res
);
183 __real__ y
= (rx
- ix
) * (rx
+ ix
) + 1;
184 __imag__ y
= 2 * rx
* ix
;
186 y
= M_SUF (__csqrt
) (y
);
193 FLOAT t
= __real__ y
;
194 __real__ y
= M_COPYSIGN (__imag__ y
, __imag__ x
);
198 res
= M_SUF (__clog
) (y
);
201 /* Give results the correct sign for the original argument. */
202 __real__ res
= M_COPYSIGN (__real__ res
, __real__ x
);
203 __imag__ res
= M_COPYSIGN (__imag__ res
, (adj
? 1 : __imag__ x
));