Update.
[glibc.git] / stdio-common / printf_fp.c
blob2ec00806d79d01731ee65fd3bd58ddcc9d016e17
1 /* Floating point output for `printf'.
2 Copyright (C) 1995, 1996, 1997, 1998 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995.
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public License as
8 published by the Free Software Foundation; either version 2 of the
9 License, or (at your option) any later version.
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Library General Public License for more details.
16 You should have received a copy of the GNU Library General Public
17 License along with the GNU C Library; see the file COPYING.LIB. If not,
18 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
21 /* The gmp headers need some configuration frobs. */
22 #define HAVE_ALLOCA 1
24 #ifdef USE_IN_LIBIO
25 # include <libioP.h>
26 #else
27 # include <stdio.h>
28 #endif
29 #include <alloca.h>
30 #include <ctype.h>
31 #include <float.h>
32 #include <gmp-mparam.h>
33 #include <stdlib/gmp.h>
34 #include <stdlib/gmp-impl.h>
35 #include <stdlib/longlong.h>
36 #include <stdlib/fpioconst.h>
37 #include <locale/localeinfo.h>
38 #include <limits.h>
39 #include <math.h>
40 #include <printf.h>
41 #include <string.h>
42 #include <unistd.h>
43 #include <stdlib.h>
45 #ifndef NDEBUG
46 # define NDEBUG /* Undefine this for debugging assertions. */
47 #endif
48 #include <assert.h>
50 /* This defines make it possible to use the same code for GNU C library and
51 the GNU I/O library. */
52 #ifdef USE_IN_LIBIO
53 # define PUT(f, s, n) _IO_sputn (f, s, n)
54 # define PAD(f, c, n) _IO_padn (f, c, n)
55 /* We use this file GNU C library and GNU I/O library. So make
56 names equal. */
57 # undef putc
58 # define putc(c, f) _IO_putc_unlocked (c, f)
59 # define size_t _IO_size_t
60 # define FILE _IO_FILE
61 #else /* ! USE_IN_LIBIO */
62 # define PUT(f, s, n) fwrite (s, 1, n, f)
63 # define PAD(f, c, n) __printf_pad (f, c, n)
64 ssize_t __printf_pad __P ((FILE *, char pad, int n)); /* In vfprintf.c. */
65 #endif /* USE_IN_LIBIO */
67 /* Macros for doing the actual output. */
69 #define outchar(ch) \
70 do \
71 { \
72 register const int outc = (ch); \
73 if (putc (outc, fp) == EOF) \
74 return -1; \
75 ++done; \
76 } while (0)
78 #define PRINT(ptr, len) \
79 do \
80 { \
81 register size_t outlen = (len); \
82 if (len > 20) \
83 { \
84 if (PUT (fp, ptr, outlen) != outlen) \
85 return -1; \
86 ptr += outlen; \
87 done += outlen; \
88 } \
89 else \
90 { \
91 while (outlen-- > 0) \
92 outchar (*ptr++); \
93 } \
94 } while (0)
96 #define PADN(ch, len) \
97 do \
98 { \
99 if (PAD (fp, ch, len) != len) \
100 return -1; \
101 done += len; \
103 while (0)
105 /* We use the GNU MP library to handle large numbers.
107 An MP variable occupies a varying number of entries in its array. We keep
108 track of this number for efficiency reasons. Otherwise we would always
109 have to process the whole array. */
110 #define MPN_VAR(name) mp_limb_t *name; mp_size_t name##size
112 #define MPN_ASSIGN(dst,src) \
113 memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t))
114 #define MPN_GE(u,v) \
115 (u##size > v##size || (u##size == v##size && __mpn_cmp (u, v, u##size) >= 0))
117 extern int __isinfl (long double), __isnanl (long double);
119 extern mp_size_t __mpn_extract_double (mp_ptr res_ptr, mp_size_t size,
120 int *expt, int *is_neg,
121 double value);
122 extern mp_size_t __mpn_extract_long_double (mp_ptr res_ptr, mp_size_t size,
123 int *expt, int *is_neg,
124 long double value);
125 extern unsigned int __guess_grouping (unsigned int intdig_max,
126 const char *grouping, wchar_t sepchar);
129 static char *group_number (char *buf, char *bufend, unsigned int intdig_no,
130 const char *grouping, wchar_t thousands_sep)
131 internal_function;
135 __printf_fp (FILE *fp,
136 const struct printf_info *info,
137 const void *const *args)
139 /* The floating-point value to output. */
140 union
142 double dbl;
143 __long_double_t ldbl;
145 fpnum;
147 /* Locale-dependent representation of decimal point. */
148 wchar_t decimal;
150 /* Locale-dependent thousands separator and grouping specification. */
151 wchar_t thousands_sep;
152 const char *grouping;
154 /* "NaN" or "Inf" for the special cases. */
155 const char *special = NULL;
157 /* We need just a few limbs for the input before shifting to the right
158 position. */
159 mp_limb_t fp_input[(LDBL_MANT_DIG + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB];
160 /* We need to shift the contents of fp_input by this amount of bits. */
161 int to_shift = 0;
163 /* The fraction of the floting-point value in question */
164 MPN_VAR(frac);
165 /* and the exponent. */
166 int exponent;
167 /* Sign of the exponent. */
168 int expsign = 0;
169 /* Sign of float number. */
170 int is_neg = 0;
172 /* Scaling factor. */
173 MPN_VAR(scale);
175 /* Temporary bignum value. */
176 MPN_VAR(tmp);
178 /* Digit which is result of last hack_digit() call. */
179 int digit;
181 /* The type of output format that will be used: 'e'/'E' or 'f'. */
182 int type;
184 /* Counter for number of written characters. */
185 int done = 0;
187 /* General helper (carry limb). */
188 mp_limb_t cy;
190 char hack_digit (void)
192 mp_limb_t hi;
194 if (expsign != 0 && type == 'f' && exponent-- > 0)
195 hi = 0;
196 else if (scalesize == 0)
198 hi = frac[fracsize - 1];
199 cy = __mpn_mul_1 (frac, frac, fracsize - 1, 10);
200 frac[fracsize - 1] = cy;
202 else
204 if (fracsize < scalesize)
205 hi = 0;
206 else
208 hi = mpn_divmod (tmp, frac, fracsize, scale, scalesize);
209 tmp[fracsize - scalesize] = hi;
210 hi = tmp[0];
212 fracsize = scalesize;
213 while (fracsize != 0 && frac[fracsize - 1] == 0)
214 --fracsize;
215 if (fracsize == 0)
217 /* We're not prepared for an mpn variable with zero
218 limbs. */
219 fracsize = 1;
220 return '0' + hi;
224 cy = __mpn_mul_1 (frac, frac, fracsize, 10);
225 if (cy != 0)
226 frac[fracsize++] = cy;
229 return '0' + hi;
233 /* Figure out the decimal point character. */
234 if (info->extra == 0)
236 if (mbtowc (&decimal, _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT),
237 strlen (_NL_CURRENT (LC_NUMERIC, DECIMAL_POINT))) <= 0)
238 decimal = (wchar_t) *_NL_CURRENT (LC_NUMERIC, DECIMAL_POINT);
240 else
242 if (mbtowc (&decimal, _NL_CURRENT (LC_MONETARY, MON_DECIMAL_POINT),
243 strlen (_NL_CURRENT (LC_MONETARY, MON_DECIMAL_POINT))) <= 0)
244 decimal = (wchar_t) *_NL_CURRENT (LC_MONETARY, MON_DECIMAL_POINT);
246 /* Give default value. */
247 if (decimal == L'\0')
248 decimal = L'.';
251 if (info->group)
253 if (info->extra == 0)
254 grouping = _NL_CURRENT (LC_NUMERIC, GROUPING);
255 else
256 grouping = _NL_CURRENT (LC_MONETARY, MON_GROUPING);
258 if (*grouping <= 0 || *grouping == CHAR_MAX)
259 grouping = NULL;
260 else
262 /* Figure out the thousands separator character. */
263 if (info->extra == 0)
265 if (mbtowc (&thousands_sep, _NL_CURRENT (LC_NUMERIC,
266 THOUSANDS_SEP),
267 strlen (_NL_CURRENT (LC_NUMERIC, THOUSANDS_SEP)))
268 <= 0)
269 thousands_sep = (wchar_t) *_NL_CURRENT (LC_NUMERIC,
270 THOUSANDS_SEP);
272 else
274 if (mbtowc (&thousands_sep, _NL_CURRENT (LC_MONETARY,
275 MON_THOUSANDS_SEP),
276 strlen (_NL_CURRENT (LC_MONETARY,
277 MON_THOUSANDS_SEP))) <= 0)
278 thousands_sep = (wchar_t) *_NL_CURRENT (LC_MONETARY,
279 MON_THOUSANDS_SEP);
282 if (thousands_sep == L'\0')
283 grouping = NULL;
286 else
287 grouping = NULL;
289 /* Fetch the argument value. */
290 #ifndef __NO_LONG_DOUBLE_MATH
291 if (info->is_long_double && sizeof (long double) > sizeof (double))
293 fpnum.ldbl = *(const long double *) args[0];
295 /* Check for special values: not a number or infinity. */
296 if (__isnanl (fpnum.ldbl))
298 special = isupper (info->spec) ? "NAN" : "nan";
299 is_neg = 0;
301 else if (__isinfl (fpnum.ldbl))
303 special = isupper (info->spec) ? "INF" : "inf";
304 is_neg = fpnum.ldbl < 0;
306 else
308 fracsize = __mpn_extract_long_double (fp_input,
309 (sizeof (fp_input) /
310 sizeof (fp_input[0])),
311 &exponent, &is_neg,
312 fpnum.ldbl);
313 to_shift = 1 + fracsize * BITS_PER_MP_LIMB - LDBL_MANT_DIG;
316 else
317 #endif /* no long double */
319 fpnum.dbl = *(const double *) args[0];
321 /* Check for special values: not a number or infinity. */
322 if (__isnan (fpnum.dbl))
324 special = isupper (info->spec) ? "NAN" : "nan";
325 is_neg = 0;
327 else if (__isinf (fpnum.dbl))
329 special = isupper (info->spec) ? "INF" : "inf";
330 is_neg = fpnum.dbl < 0;
332 else
334 fracsize = __mpn_extract_double (fp_input,
335 (sizeof (fp_input)
336 / sizeof (fp_input[0])),
337 &exponent, &is_neg, fpnum.dbl);
338 to_shift = 1 + fracsize * BITS_PER_MP_LIMB - DBL_MANT_DIG;
342 if (special)
344 int width = info->width;
346 if (is_neg || info->showsign || info->space)
347 --width;
348 width -= 3;
350 if (!info->left && width > 0)
351 PADN (' ', width);
353 if (is_neg)
354 outchar ('-');
355 else if (info->showsign)
356 outchar ('+');
357 else if (info->space)
358 outchar (' ');
360 PRINT (special, 3);
362 if (info->left && width > 0)
363 PADN (' ', width);
365 return done;
369 /* We need three multiprecision variables. Now that we have the exponent
370 of the number we can allocate the needed memory. It would be more
371 efficient to use variables of the fixed maximum size but because this
372 would be really big it could lead to memory problems. */
374 mp_size_t bignum_size = ((ABS (exponent) + BITS_PER_MP_LIMB - 1)
375 / BITS_PER_MP_LIMB + 4) * sizeof (mp_limb_t);
376 frac = (mp_limb_t *) alloca (bignum_size);
377 tmp = (mp_limb_t *) alloca (bignum_size);
378 scale = (mp_limb_t *) alloca (bignum_size);
381 /* We now have to distinguish between numbers with positive and negative
382 exponents because the method used for the one is not applicable/efficient
383 for the other. */
384 scalesize = 0;
385 if (exponent > 2)
387 /* |FP| >= 8.0. */
388 int scaleexpo = 0;
389 int explog = LDBL_MAX_10_EXP_LOG;
390 int exp10 = 0;
391 const struct mp_power *tens = &_fpioconst_pow10[explog + 1];
392 int cnt_h, cnt_l, i;
394 if ((exponent + to_shift) % BITS_PER_MP_LIMB == 0)
396 MPN_COPY_DECR (frac + (exponent + to_shift) / BITS_PER_MP_LIMB,
397 fp_input, fracsize);
398 fracsize += (exponent + to_shift) / BITS_PER_MP_LIMB;
400 else
402 cy = __mpn_lshift (frac + (exponent + to_shift) / BITS_PER_MP_LIMB,
403 fp_input, fracsize,
404 (exponent + to_shift) % BITS_PER_MP_LIMB);
405 fracsize += (exponent + to_shift) / BITS_PER_MP_LIMB;
406 if (cy)
407 frac[fracsize++] = cy;
409 MPN_ZERO (frac, (exponent + to_shift) / BITS_PER_MP_LIMB);
411 assert (tens > &_fpioconst_pow10[0]);
414 --tens;
416 /* The number of the product of two binary numbers with n and m
417 bits respectively has m+n or m+n-1 bits. */
418 if (exponent >= scaleexpo + tens->p_expo - 1)
420 if (scalesize == 0)
421 MPN_ASSIGN (tmp, tens->array);
422 else
424 cy = __mpn_mul (tmp, scale, scalesize,
425 &tens->array[_FPIO_CONST_OFFSET],
426 tens->arraysize - _FPIO_CONST_OFFSET);
427 tmpsize = scalesize + tens->arraysize - _FPIO_CONST_OFFSET;
428 if (cy == 0)
429 --tmpsize;
432 if (MPN_GE (frac, tmp))
434 int cnt;
435 MPN_ASSIGN (scale, tmp);
436 count_leading_zeros (cnt, scale[scalesize - 1]);
437 scaleexpo = (scalesize - 2) * BITS_PER_MP_LIMB - cnt - 1;
438 exp10 |= 1 << explog;
441 --explog;
443 while (tens > &_fpioconst_pow10[0]);
444 exponent = exp10;
446 /* Optimize number representations. We want to represent the numbers
447 with the lowest number of bytes possible without losing any
448 bytes. Also the highest bit in the scaling factor has to be set
449 (this is a requirement of the MPN division routines). */
450 if (scalesize > 0)
452 /* Determine minimum number of zero bits at the end of
453 both numbers. */
454 for (i = 0; scale[i] == 0 && frac[i] == 0; i++)
457 /* Determine number of bits the scaling factor is misplaced. */
458 count_leading_zeros (cnt_h, scale[scalesize - 1]);
460 if (cnt_h == 0)
462 /* The highest bit of the scaling factor is already set. So
463 we only have to remove the trailing empty limbs. */
464 if (i > 0)
466 MPN_COPY_INCR (scale, scale + i, scalesize - i);
467 scalesize -= i;
468 MPN_COPY_INCR (frac, frac + i, fracsize - i);
469 fracsize -= i;
472 else
474 if (scale[i] != 0)
476 count_trailing_zeros (cnt_l, scale[i]);
477 if (frac[i] != 0)
479 int cnt_l2;
480 count_trailing_zeros (cnt_l2, frac[i]);
481 if (cnt_l2 < cnt_l)
482 cnt_l = cnt_l2;
485 else
486 count_trailing_zeros (cnt_l, frac[i]);
488 /* Now shift the numbers to their optimal position. */
489 if (i == 0 && BITS_PER_MP_LIMB - cnt_h > cnt_l)
491 /* We cannot save any memory. So just roll both numbers
492 so that the scaling factor has its highest bit set. */
494 (void) __mpn_lshift (scale, scale, scalesize, cnt_h);
495 cy = __mpn_lshift (frac, frac, fracsize, cnt_h);
496 if (cy != 0)
497 frac[fracsize++] = cy;
499 else if (BITS_PER_MP_LIMB - cnt_h <= cnt_l)
501 /* We can save memory by removing the trailing zero limbs
502 and by packing the non-zero limbs which gain another
503 free one. */
505 (void) __mpn_rshift (scale, scale + i, scalesize - i,
506 BITS_PER_MP_LIMB - cnt_h);
507 scalesize -= i + 1;
508 (void) __mpn_rshift (frac, frac + i, fracsize - i,
509 BITS_PER_MP_LIMB - cnt_h);
510 fracsize -= frac[fracsize - i - 1] == 0 ? i + 1 : i;
512 else
514 /* We can only save the memory of the limbs which are zero.
515 The non-zero parts occupy the same number of limbs. */
517 (void) __mpn_rshift (scale, scale + (i - 1),
518 scalesize - (i - 1),
519 BITS_PER_MP_LIMB - cnt_h);
520 scalesize -= i;
521 (void) __mpn_rshift (frac, frac + (i - 1),
522 fracsize - (i - 1),
523 BITS_PER_MP_LIMB - cnt_h);
524 fracsize -= frac[fracsize - (i - 1) - 1] == 0 ? i : i - 1;
529 else if (exponent < 0)
531 /* |FP| < 1.0. */
532 int exp10 = 0;
533 int explog = LDBL_MAX_10_EXP_LOG;
534 const struct mp_power *tens = &_fpioconst_pow10[explog + 1];
535 mp_size_t used_limbs = fracsize - 1;
537 /* Now shift the input value to its right place. */
538 cy = __mpn_lshift (frac, fp_input, fracsize, to_shift);
539 frac[fracsize++] = cy;
540 assert (cy == 1 || (frac[fracsize - 2] == 0 && frac[0] == 0));
542 expsign = 1;
543 exponent = -exponent;
545 assert (tens != &_fpioconst_pow10[0]);
548 --tens;
550 if (exponent >= tens->m_expo)
552 int i, incr, cnt_h, cnt_l;
553 mp_limb_t topval[2];
555 /* The __mpn_mul function expects the first argument to be
556 bigger than the second. */
557 if (fracsize < tens->arraysize - _FPIO_CONST_OFFSET)
558 cy = __mpn_mul (tmp, &tens->array[_FPIO_CONST_OFFSET],
559 tens->arraysize - _FPIO_CONST_OFFSET,
560 frac, fracsize);
561 else
562 cy = __mpn_mul (tmp, frac, fracsize,
563 &tens->array[_FPIO_CONST_OFFSET],
564 tens->arraysize - _FPIO_CONST_OFFSET);
565 tmpsize = fracsize + tens->arraysize - _FPIO_CONST_OFFSET;
566 if (cy == 0)
567 --tmpsize;
569 count_leading_zeros (cnt_h, tmp[tmpsize - 1]);
570 incr = (tmpsize - fracsize) * BITS_PER_MP_LIMB
571 + BITS_PER_MP_LIMB - 1 - cnt_h;
573 assert (incr <= tens->p_expo);
575 /* If we increased the exponent by exactly 3 we have to test
576 for overflow. This is done by comparing with 10 shifted
577 to the right position. */
578 if (incr == exponent + 3)
580 if (cnt_h <= BITS_PER_MP_LIMB - 4)
582 topval[0] = 0;
583 topval[1]
584 = ((mp_limb_t) 10) << (BITS_PER_MP_LIMB - 4 - cnt_h);
586 else
588 topval[0] = ((mp_limb_t) 10) << (BITS_PER_MP_LIMB - 4);
589 topval[1] = 0;
590 (void) __mpn_lshift (topval, topval, 2,
591 BITS_PER_MP_LIMB - cnt_h);
595 /* We have to be careful when multiplying the last factor.
596 If the result is greater than 1.0 be have to test it
597 against 10.0. If it is greater or equal to 10.0 the
598 multiplication was not valid. This is because we cannot
599 determine the number of bits in the result in advance. */
600 if (incr < exponent + 3
601 || (incr == exponent + 3 &&
602 (tmp[tmpsize - 1] < topval[1]
603 || (tmp[tmpsize - 1] == topval[1]
604 && tmp[tmpsize - 2] < topval[0]))))
606 /* The factor is right. Adapt binary and decimal
607 exponents. */
608 exponent -= incr;
609 exp10 |= 1 << explog;
611 /* If this factor yields a number greater or equal to
612 1.0, we must not shift the non-fractional digits down. */
613 if (exponent < 0)
614 cnt_h += -exponent;
616 /* Now we optimize the number representation. */
617 for (i = 0; tmp[i] == 0; ++i);
618 if (cnt_h == BITS_PER_MP_LIMB - 1)
620 MPN_COPY (frac, tmp + i, tmpsize - i);
621 fracsize = tmpsize - i;
623 else
625 count_trailing_zeros (cnt_l, tmp[i]);
627 /* Now shift the numbers to their optimal position. */
628 if (i == 0 && BITS_PER_MP_LIMB - 1 - cnt_h > cnt_l)
630 /* We cannot save any memory. Just roll the
631 number so that the leading digit is in a
632 separate limb. */
634 cy = __mpn_lshift (frac, tmp, tmpsize, cnt_h + 1);
635 fracsize = tmpsize + 1;
636 frac[fracsize - 1] = cy;
638 else if (BITS_PER_MP_LIMB - 1 - cnt_h <= cnt_l)
640 (void) __mpn_rshift (frac, tmp + i, tmpsize - i,
641 BITS_PER_MP_LIMB - 1 - cnt_h);
642 fracsize = tmpsize - i;
644 else
646 /* We can only save the memory of the limbs which
647 are zero. The non-zero parts occupy the same
648 number of limbs. */
650 (void) __mpn_rshift (frac, tmp + (i - 1),
651 tmpsize - (i - 1),
652 BITS_PER_MP_LIMB - 1 - cnt_h);
653 fracsize = tmpsize - (i - 1);
656 used_limbs = fracsize - 1;
659 --explog;
661 while (tens != &_fpioconst_pow10[1] && exponent > 0);
662 /* All factors but 10^-1 are tested now. */
663 if (exponent > 0)
665 int cnt_l;
667 cy = __mpn_mul_1 (tmp, frac, fracsize, 10);
668 tmpsize = fracsize;
669 assert (cy == 0 || tmp[tmpsize - 1] < 20);
671 count_trailing_zeros (cnt_l, tmp[0]);
672 if (cnt_l < MIN (4, exponent))
674 cy = __mpn_lshift (frac, tmp, tmpsize,
675 BITS_PER_MP_LIMB - MIN (4, exponent));
676 if (cy != 0)
677 frac[tmpsize++] = cy;
679 else
680 (void) __mpn_rshift (frac, tmp, tmpsize, MIN (4, exponent));
681 fracsize = tmpsize;
682 exp10 |= 1;
683 assert (frac[fracsize - 1] < 10);
685 exponent = exp10;
687 else
689 /* This is a special case. We don't need a factor because the
690 numbers are in the range of 0.0 <= fp < 8.0. We simply
691 shift it to the right place and divide it by 1.0 to get the
692 leading digit. (Of course this division is not really made.) */
693 assert (0 <= exponent && exponent < 3 &&
694 exponent + to_shift < BITS_PER_MP_LIMB);
696 /* Now shift the input value to its right place. */
697 cy = __mpn_lshift (frac, fp_input, fracsize, (exponent + to_shift));
698 frac[fracsize++] = cy;
699 exponent = 0;
703 int width = info->width;
704 char *buffer, *startp, *cp;
705 int chars_needed;
706 int expscale;
707 int intdig_max, intdig_no = 0;
708 int fracdig_min, fracdig_max, fracdig_no = 0;
709 int dig_max;
710 int significant;
712 if (tolower (info->spec) == 'e')
714 type = info->spec;
715 intdig_max = 1;
716 fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec;
717 chars_needed = 1 + 1 + fracdig_max + 1 + 1 + 4;
718 /* d . ddd e +- ddd */
719 dig_max = INT_MAX; /* Unlimited. */
720 significant = 1; /* Does not matter here. */
722 else if (info->spec == 'f')
724 type = 'f';
725 fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec;
726 if (expsign == 0)
728 intdig_max = exponent + 1;
729 /* This can be really big! */ /* XXX Maybe malloc if too big? */
730 chars_needed = exponent + 1 + 1 + fracdig_max;
732 else
734 intdig_max = 1;
735 chars_needed = 1 + 1 + fracdig_max;
737 dig_max = INT_MAX; /* Unlimited. */
738 significant = 1; /* Does not matter here. */
740 else
742 dig_max = info->prec < 0 ? 6 : (info->prec == 0 ? 1 : info->prec);
743 if ((expsign == 0 && exponent >= dig_max)
744 || (expsign != 0 && exponent > 4))
746 type = isupper (info->spec) ? 'E' : 'e';
747 fracdig_max = dig_max - 1;
748 intdig_max = 1;
749 chars_needed = 1 + 1 + fracdig_max + 1 + 1 + 4;
751 else
753 type = 'f';
754 intdig_max = expsign == 0 ? exponent + 1 : 0;
755 fracdig_max = dig_max - intdig_max;
756 /* We need space for the significant digits and perhaps for
757 leading zeros when < 1.0. Pessimistic guess: dig_max. */
758 chars_needed = dig_max + dig_max + 1;
760 fracdig_min = info->alt ? fracdig_max : 0;
761 significant = 0; /* We count significant digits. */
764 if (grouping)
765 /* Guess the number of groups we will make, and thus how
766 many spaces we need for separator characters. */
767 chars_needed += __guess_grouping (intdig_max, grouping, thousands_sep);
769 /* Allocate buffer for output. We need two more because while rounding
770 it is possible that we need two more characters in front of all the
771 other output. */
772 buffer = alloca (2 + chars_needed);
773 cp = startp = buffer + 2; /* Let room for rounding. */
775 /* Do the real work: put digits in allocated buffer. */
776 if (expsign == 0 || type != 'f')
778 assert (expsign == 0 || intdig_max == 1);
779 while (intdig_no < intdig_max)
781 ++intdig_no;
782 *cp++ = hack_digit ();
784 significant = 1;
785 if (info->alt
786 || fracdig_min > 0
787 || (fracdig_max > 0 && (fracsize > 1 || frac[0] != 0)))
788 *cp++ = decimal;
790 else
792 /* |fp| < 1.0 and the selected type is 'f', so put "0."
793 in the buffer. */
794 *cp++ = '0';
795 --exponent;
796 *cp++ = decimal;
799 /* Generate the needed number of fractional digits. */
800 while (fracdig_no < fracdig_min
801 || (fracdig_no < fracdig_max && (fracsize > 1 || frac[0] != 0)))
803 ++fracdig_no;
804 *cp = hack_digit ();
805 if (*cp != '0')
806 significant = 1;
807 else if (significant == 0)
809 ++fracdig_max;
810 if (fracdig_min > 0)
811 ++fracdig_min;
813 ++cp;
816 /* Do rounding. */
817 digit = hack_digit ();
818 if (digit > '4')
820 char *tp = cp;
822 if (digit == '5' && (*(cp - 1) & 1) == 0)
824 /* This is the critical case. */
825 if (fracsize == 1 && frac[0] == 0)
826 /* Rest of the number is zero -> round to even.
827 (IEEE 754-1985 4.1 says this is the default rounding.) */
828 goto do_expo;
829 else if (scalesize == 0)
831 /* Here we have to see whether all limbs are zero since no
832 normalization happened. */
833 size_t lcnt = fracsize;
834 while (lcnt >= 1 && frac[lcnt - 1] == 0)
835 --lcnt;
836 if (lcnt == 0)
837 /* Rest of the number is zero -> round to even.
838 (IEEE 754-1985 4.1 says this is the default rounding.) */
839 goto do_expo;
843 if (fracdig_no > 0)
845 /* Process fractional digits. Terminate if not rounded or
846 radix character is reached. */
847 while (*--tp != decimal && *tp == '9')
848 *tp = '0';
849 if (*tp != decimal)
850 /* Round up. */
851 (*tp)++;
854 if (fracdig_no == 0 || *tp == decimal)
856 /* Round the integer digits. */
857 if (*(tp - 1) == decimal)
858 --tp;
860 while (--tp >= startp && *tp == '9')
861 *tp = '0';
863 if (tp >= startp)
864 /* Round up. */
865 (*tp)++;
866 else
867 /* It is more critical. All digits were 9's. */
869 if (type != 'f')
871 *startp = '1';
872 exponent += expsign == 0 ? 1 : -1;
874 else if (intdig_no == dig_max)
876 /* This is the case where for type %g the number fits
877 really in the range for %f output but after rounding
878 the number of digits is too big. */
879 *--startp = decimal;
880 *--startp = '1';
882 if (info->alt || fracdig_no > 0)
884 /* Overwrite the old radix character. */
885 startp[intdig_no + 2] = '0';
886 ++fracdig_no;
889 fracdig_no += intdig_no;
890 intdig_no = 1;
891 fracdig_max = intdig_max - intdig_no;
892 ++exponent;
893 /* Now we must print the exponent. */
894 type = isupper (info->spec) ? 'E' : 'e';
896 else
898 /* We can simply add another another digit before the
899 radix. */
900 *--startp = '1';
901 ++intdig_no;
904 /* While rounding the number of digits can change.
905 If the number now exceeds the limits remove some
906 fractional digits. */
907 if (intdig_no + fracdig_no > dig_max)
909 cp -= intdig_no + fracdig_no - dig_max;
910 fracdig_no -= intdig_no + fracdig_no - dig_max;
916 do_expo:
917 /* Now remove unnecessary '0' at the end of the string. */
918 while (fracdig_no > fracdig_min && *(cp - 1) == '0')
920 --cp;
921 --fracdig_no;
923 /* If we eliminate all fractional digits we perhaps also can remove
924 the radix character. */
925 if (fracdig_no == 0 && !info->alt && *(cp - 1) == decimal)
926 --cp;
928 if (grouping)
929 /* Add in separator characters, overwriting the same buffer. */
930 cp = group_number (startp, cp, intdig_no, grouping, thousands_sep);
932 /* Write the exponent if it is needed. */
933 if (type != 'f')
935 *cp++ = type;
936 *cp++ = expsign ? '-' : '+';
938 /* Find the magnitude of the exponent. */
939 expscale = 10;
940 while (expscale <= exponent)
941 expscale *= 10;
943 if (exponent < 10)
944 /* Exponent always has at least two digits. */
945 *cp++ = '0';
946 else
949 expscale /= 10;
950 *cp++ = '0' + (exponent / expscale);
951 exponent %= expscale;
953 while (expscale > 10);
954 *cp++ = '0' + exponent;
957 /* Compute number of characters which must be filled with the padding
958 character. */
959 if (is_neg || info->showsign || info->space)
960 --width;
961 width -= cp - startp;
963 if (!info->left && info->pad != '0' && width > 0)
964 PADN (info->pad, width);
966 if (is_neg)
967 outchar ('-');
968 else if (info->showsign)
969 outchar ('+');
970 else if (info->space)
971 outchar (' ');
973 if (!info->left && info->pad == '0' && width > 0)
974 PADN ('0', width);
976 PRINT (startp, cp - startp);
978 if (info->left && width > 0)
979 PADN (info->pad, width);
981 return done;
984 /* Return the number of extra grouping characters that will be inserted
985 into a number with INTDIG_MAX integer digits. */
987 unsigned int
988 __guess_grouping (unsigned int intdig_max, const char *grouping,
989 wchar_t sepchar)
991 unsigned int groups;
993 /* We treat all negative values like CHAR_MAX. */
995 if (*grouping == CHAR_MAX || *grouping <= 0)
996 /* No grouping should be done. */
997 return 0;
999 groups = 0;
1000 while (intdig_max > (unsigned int) *grouping)
1002 ++groups;
1003 intdig_max -= *grouping++;
1005 if (*grouping == CHAR_MAX
1006 #if CHAR_MIN < 0
1007 || *grouping < 0
1008 #endif
1010 /* No more grouping should be done. */
1011 break;
1012 else if (*grouping == 0)
1014 /* Same grouping repeats. */
1015 groups += (intdig_max - 1) / grouping[-1];
1016 break;
1020 return groups;
1023 /* Group the INTDIG_NO integer digits of the number in [BUF,BUFEND).
1024 There is guaranteed enough space past BUFEND to extend it.
1025 Return the new end of buffer. */
1027 static char *
1028 internal_function
1029 group_number (char *buf, char *bufend, unsigned int intdig_no,
1030 const char *grouping, wchar_t thousands_sep)
1032 unsigned int groups = __guess_grouping (intdig_no, grouping, thousands_sep);
1033 char *p;
1035 if (groups == 0)
1036 return bufend;
1038 /* Move the fractional part down. */
1039 memmove (buf + intdig_no + groups, buf + intdig_no,
1040 bufend - (buf + intdig_no));
1042 p = buf + intdig_no + groups - 1;
1045 unsigned int len = *grouping++;
1047 *p-- = buf[--intdig_no];
1048 while (--len > 0);
1049 *p-- = thousands_sep;
1051 if (*grouping == CHAR_MAX
1052 #if CHAR_MIN < 0
1053 || *grouping < 0
1054 #endif
1056 /* No more grouping should be done. */
1057 break;
1058 else if (*grouping == 0)
1059 /* Same grouping repeats. */
1060 --grouping;
1061 } while (intdig_no > (unsigned int) *grouping);
1063 /* Copy the remaining ungrouped digits. */
1065 *p-- = buf[--intdig_no];
1066 while (p > buf);
1068 return bufend + groups;