Update.
[glibc.git] / posix / regex.c
blob2c967297a5a6efd4e62d3f271dbcd0b942fc4752
1 /* Extended regular expression matching and search library,
2 version 0.12.
3 (Implements POSIX draft P1003.2/D11.2, except for some of the
4 internationalization features.)
5 Copyright (C) 1993-1999, 2000 Free Software Foundation, Inc.
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Library General Public License as
9 published by the Free Software Foundation; either version 2 of the
10 License, or (at your option) any later version.
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Library General Public License for more details.
17 You should have received a copy of the GNU Library General Public
18 License along with the GNU C Library; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* AIX requires this to be the first thing in the file. */
23 #if defined _AIX && !defined REGEX_MALLOC
24 #pragma alloca
25 #endif
27 #undef _GNU_SOURCE
28 #define _GNU_SOURCE
30 #ifdef HAVE_CONFIG_H
31 # include <config.h>
32 #endif
34 #ifndef PARAMS
35 # if defined __GNUC__ || (defined __STDC__ && __STDC__)
36 # define PARAMS(args) args
37 # else
38 # define PARAMS(args) ()
39 # endif /* GCC. */
40 #endif /* Not PARAMS. */
42 #if defined STDC_HEADERS && !defined emacs
43 # include <stddef.h>
44 #else
45 /* We need this for `regex.h', and perhaps for the Emacs include files. */
46 # include <sys/types.h>
47 #endif
49 #define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
51 /* For platform which support the ISO C amendement 1 functionality we
52 support user defined character classes. */
53 #if defined _LIBC || WIDE_CHAR_SUPPORT
54 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
55 # include <wchar.h>
56 # include <wctype.h>
57 #endif
59 #ifdef _LIBC
60 /* We have to keep the namespace clean. */
61 # define regfree(preg) __regfree (preg)
62 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
63 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
64 # define regerror(errcode, preg, errbuf, errbuf_size) \
65 __regerror(errcode, preg, errbuf, errbuf_size)
66 # define re_set_registers(bu, re, nu, st, en) \
67 __re_set_registers (bu, re, nu, st, en)
68 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
69 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
70 # define re_match(bufp, string, size, pos, regs) \
71 __re_match (bufp, string, size, pos, regs)
72 # define re_search(bufp, string, size, startpos, range, regs) \
73 __re_search (bufp, string, size, startpos, range, regs)
74 # define re_compile_pattern(pattern, length, bufp) \
75 __re_compile_pattern (pattern, length, bufp)
76 # define re_set_syntax(syntax) __re_set_syntax (syntax)
77 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
78 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
79 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
81 # define btowc __btowc
83 /* We are also using some library internals. */
84 # include <locale/localeinfo.h>
85 # include <locale/elem-hash.h>
86 # include <langinfo.h>
87 #endif
89 /* This is for other GNU distributions with internationalized messages. */
90 #if HAVE_LIBINTL_H || defined _LIBC
91 # include <libintl.h>
92 #else
93 # define gettext(msgid) (msgid)
94 #endif
96 #ifndef gettext_noop
97 /* This define is so xgettext can find the internationalizable
98 strings. */
99 # define gettext_noop(String) String
100 #endif
102 /* The `emacs' switch turns on certain matching commands
103 that make sense only in Emacs. */
104 #ifdef emacs
106 # include "lisp.h"
107 # include "buffer.h"
108 # include "syntax.h"
110 #else /* not emacs */
112 /* If we are not linking with Emacs proper,
113 we can't use the relocating allocator
114 even if config.h says that we can. */
115 # undef REL_ALLOC
117 # if defined STDC_HEADERS || defined _LIBC
118 # include <stdlib.h>
119 # else
120 char *malloc ();
121 char *realloc ();
122 # endif
124 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
125 If nothing else has been done, use the method below. */
126 # ifdef INHIBIT_STRING_HEADER
127 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
128 # if !defined bzero && !defined bcopy
129 # undef INHIBIT_STRING_HEADER
130 # endif
131 # endif
132 # endif
134 /* This is the normal way of making sure we have a bcopy and a bzero.
135 This is used in most programs--a few other programs avoid this
136 by defining INHIBIT_STRING_HEADER. */
137 # ifndef INHIBIT_STRING_HEADER
138 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
139 # include <string.h>
140 # ifndef bzero
141 # ifndef _LIBC
142 # define bzero(s, n) (memset (s, '\0', n), (s))
143 # else
144 # define bzero(s, n) __bzero (s, n)
145 # endif
146 # endif
147 # else
148 # include <strings.h>
149 # ifndef memcmp
150 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
151 # endif
152 # ifndef memcpy
153 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
154 # endif
155 # endif
156 # endif
158 /* Define the syntax stuff for \<, \>, etc. */
160 /* This must be nonzero for the wordchar and notwordchar pattern
161 commands in re_match_2. */
162 # ifndef Sword
163 # define Sword 1
164 # endif
166 # ifdef SWITCH_ENUM_BUG
167 # define SWITCH_ENUM_CAST(x) ((int)(x))
168 # else
169 # define SWITCH_ENUM_CAST(x) (x)
170 # endif
172 #endif /* not emacs */
174 #if defined _LIBC || HAVE_LIMITS_H
175 # include <limits.h>
176 #endif
178 #ifndef MB_LEN_MAX
179 # define MB_LEN_MAX 1
180 #endif
182 /* Get the interface, including the syntax bits. */
183 #include <regex.h>
185 /* isalpha etc. are used for the character classes. */
186 #include <ctype.h>
188 /* Jim Meyering writes:
190 "... Some ctype macros are valid only for character codes that
191 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
192 using /bin/cc or gcc but without giving an ansi option). So, all
193 ctype uses should be through macros like ISPRINT... If
194 STDC_HEADERS is defined, then autoconf has verified that the ctype
195 macros don't need to be guarded with references to isascii. ...
196 Defining isascii to 1 should let any compiler worth its salt
197 eliminate the && through constant folding."
198 Solaris defines some of these symbols so we must undefine them first. */
200 #undef ISASCII
201 #if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
202 # define ISASCII(c) 1
203 #else
204 # define ISASCII(c) isascii(c)
205 #endif
207 #ifdef isblank
208 # define ISBLANK(c) (ISASCII (c) && isblank (c))
209 #else
210 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
211 #endif
212 #ifdef isgraph
213 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
214 #else
215 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
216 #endif
218 #undef ISPRINT
219 #define ISPRINT(c) (ISASCII (c) && isprint (c))
220 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
221 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
222 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
223 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
224 #define ISLOWER(c) (ISASCII (c) && islower (c))
225 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
226 #define ISSPACE(c) (ISASCII (c) && isspace (c))
227 #define ISUPPER(c) (ISASCII (c) && isupper (c))
228 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
230 #ifdef _tolower
231 # define TOLOWER(c) _tolower(c)
232 #else
233 # define TOLOWER(c) tolower(c)
234 #endif
236 #ifndef NULL
237 # define NULL (void *)0
238 #endif
240 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
241 since ours (we hope) works properly with all combinations of
242 machines, compilers, `char' and `unsigned char' argument types.
243 (Per Bothner suggested the basic approach.) */
244 #undef SIGN_EXTEND_CHAR
245 #if __STDC__
246 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
247 #else /* not __STDC__ */
248 /* As in Harbison and Steele. */
249 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
250 #endif
252 #ifndef emacs
253 /* How many characters in the character set. */
254 # define CHAR_SET_SIZE 256
256 # ifdef SYNTAX_TABLE
258 extern char *re_syntax_table;
260 # else /* not SYNTAX_TABLE */
262 static char re_syntax_table[CHAR_SET_SIZE];
264 static void
265 init_syntax_once ()
267 register int c;
268 static int done = 0;
270 if (done)
271 return;
272 bzero (re_syntax_table, sizeof re_syntax_table);
274 for (c = 0; c < CHAR_SET_SIZE; ++c)
275 if (ISALNUM (c))
276 re_syntax_table[c] = Sword;
278 re_syntax_table['_'] = Sword;
280 done = 1;
283 # endif /* not SYNTAX_TABLE */
285 # define SYNTAX(c) re_syntax_table[(unsigned char) (c)]
287 #endif /* emacs */
289 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
290 use `alloca' instead of `malloc'. This is because using malloc in
291 re_search* or re_match* could cause memory leaks when C-g is used in
292 Emacs; also, malloc is slower and causes storage fragmentation. On
293 the other hand, malloc is more portable, and easier to debug.
295 Because we sometimes use alloca, some routines have to be macros,
296 not functions -- `alloca'-allocated space disappears at the end of the
297 function it is called in. */
299 #ifdef REGEX_MALLOC
301 # define REGEX_ALLOCATE malloc
302 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
303 # define REGEX_FREE free
305 #else /* not REGEX_MALLOC */
307 /* Emacs already defines alloca, sometimes. */
308 # ifndef alloca
310 /* Make alloca work the best possible way. */
311 # ifdef __GNUC__
312 # define alloca __builtin_alloca
313 # else /* not __GNUC__ */
314 # if HAVE_ALLOCA_H
315 # include <alloca.h>
316 # endif /* HAVE_ALLOCA_H */
317 # endif /* not __GNUC__ */
319 # endif /* not alloca */
321 # define REGEX_ALLOCATE alloca
323 /* Assumes a `char *destination' variable. */
324 # define REGEX_REALLOCATE(source, osize, nsize) \
325 (destination = (char *) alloca (nsize), \
326 memcpy (destination, source, osize))
328 /* No need to do anything to free, after alloca. */
329 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
331 #endif /* not REGEX_MALLOC */
333 /* Define how to allocate the failure stack. */
335 #if defined REL_ALLOC && defined REGEX_MALLOC
337 # define REGEX_ALLOCATE_STACK(size) \
338 r_alloc (&failure_stack_ptr, (size))
339 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
340 r_re_alloc (&failure_stack_ptr, (nsize))
341 # define REGEX_FREE_STACK(ptr) \
342 r_alloc_free (&failure_stack_ptr)
344 #else /* not using relocating allocator */
346 # ifdef REGEX_MALLOC
348 # define REGEX_ALLOCATE_STACK malloc
349 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
350 # define REGEX_FREE_STACK free
352 # else /* not REGEX_MALLOC */
354 # define REGEX_ALLOCATE_STACK alloca
356 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
357 REGEX_REALLOCATE (source, osize, nsize)
358 /* No need to explicitly free anything. */
359 # define REGEX_FREE_STACK(arg)
361 # endif /* not REGEX_MALLOC */
362 #endif /* not using relocating allocator */
365 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
366 `string1' or just past its end. This works if PTR is NULL, which is
367 a good thing. */
368 #define FIRST_STRING_P(ptr) \
369 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
371 /* (Re)Allocate N items of type T using malloc, or fail. */
372 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
373 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
374 #define RETALLOC_IF(addr, n, t) \
375 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
376 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
378 #define BYTEWIDTH 8 /* In bits. */
380 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
382 #undef MAX
383 #undef MIN
384 #define MAX(a, b) ((a) > (b) ? (a) : (b))
385 #define MIN(a, b) ((a) < (b) ? (a) : (b))
387 typedef char boolean;
388 #define false 0
389 #define true 1
391 static int re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
392 const char *string1, int size1,
393 const char *string2, int size2,
394 int pos,
395 struct re_registers *regs,
396 int stop));
398 /* These are the command codes that appear in compiled regular
399 expressions. Some opcodes are followed by argument bytes. A
400 command code can specify any interpretation whatsoever for its
401 arguments. Zero bytes may appear in the compiled regular expression. */
403 typedef enum
405 no_op = 0,
407 /* Succeed right away--no more backtracking. */
408 succeed,
410 /* Followed by one byte giving n, then by n literal bytes. */
411 exactn,
413 /* Matches any (more or less) character. */
414 anychar,
416 /* Matches any one char belonging to specified set. First
417 following byte is number of bitmap bytes. Then come bytes
418 for a bitmap saying which chars are in. Bits in each byte
419 are ordered low-bit-first. A character is in the set if its
420 bit is 1. A character too large to have a bit in the map is
421 automatically not in the set. */
422 charset,
424 /* Same parameters as charset, but match any character that is
425 not one of those specified. */
426 charset_not,
428 /* Start remembering the text that is matched, for storing in a
429 register. Followed by one byte with the register number, in
430 the range 0 to one less than the pattern buffer's re_nsub
431 field. Then followed by one byte with the number of groups
432 inner to this one. (This last has to be part of the
433 start_memory only because we need it in the on_failure_jump
434 of re_match_2.) */
435 start_memory,
437 /* Stop remembering the text that is matched and store it in a
438 memory register. Followed by one byte with the register
439 number, in the range 0 to one less than `re_nsub' in the
440 pattern buffer, and one byte with the number of inner groups,
441 just like `start_memory'. (We need the number of inner
442 groups here because we don't have any easy way of finding the
443 corresponding start_memory when we're at a stop_memory.) */
444 stop_memory,
446 /* Match a duplicate of something remembered. Followed by one
447 byte containing the register number. */
448 duplicate,
450 /* Fail unless at beginning of line. */
451 begline,
453 /* Fail unless at end of line. */
454 endline,
456 /* Succeeds if at beginning of buffer (if emacs) or at beginning
457 of string to be matched (if not). */
458 begbuf,
460 /* Analogously, for end of buffer/string. */
461 endbuf,
463 /* Followed by two byte relative address to which to jump. */
464 jump,
466 /* Same as jump, but marks the end of an alternative. */
467 jump_past_alt,
469 /* Followed by two-byte relative address of place to resume at
470 in case of failure. */
471 on_failure_jump,
473 /* Like on_failure_jump, but pushes a placeholder instead of the
474 current string position when executed. */
475 on_failure_keep_string_jump,
477 /* Throw away latest failure point and then jump to following
478 two-byte relative address. */
479 pop_failure_jump,
481 /* Change to pop_failure_jump if know won't have to backtrack to
482 match; otherwise change to jump. This is used to jump
483 back to the beginning of a repeat. If what follows this jump
484 clearly won't match what the repeat does, such that we can be
485 sure that there is no use backtracking out of repetitions
486 already matched, then we change it to a pop_failure_jump.
487 Followed by two-byte address. */
488 maybe_pop_jump,
490 /* Jump to following two-byte address, and push a dummy failure
491 point. This failure point will be thrown away if an attempt
492 is made to use it for a failure. A `+' construct makes this
493 before the first repeat. Also used as an intermediary kind
494 of jump when compiling an alternative. */
495 dummy_failure_jump,
497 /* Push a dummy failure point and continue. Used at the end of
498 alternatives. */
499 push_dummy_failure,
501 /* Followed by two-byte relative address and two-byte number n.
502 After matching N times, jump to the address upon failure. */
503 succeed_n,
505 /* Followed by two-byte relative address, and two-byte number n.
506 Jump to the address N times, then fail. */
507 jump_n,
509 /* Set the following two-byte relative address to the
510 subsequent two-byte number. The address *includes* the two
511 bytes of number. */
512 set_number_at,
514 wordchar, /* Matches any word-constituent character. */
515 notwordchar, /* Matches any char that is not a word-constituent. */
517 wordbeg, /* Succeeds if at word beginning. */
518 wordend, /* Succeeds if at word end. */
520 wordbound, /* Succeeds if at a word boundary. */
521 notwordbound /* Succeeds if not at a word boundary. */
523 #ifdef emacs
524 ,before_dot, /* Succeeds if before point. */
525 at_dot, /* Succeeds if at point. */
526 after_dot, /* Succeeds if after point. */
528 /* Matches any character whose syntax is specified. Followed by
529 a byte which contains a syntax code, e.g., Sword. */
530 syntaxspec,
532 /* Matches any character whose syntax is not that specified. */
533 notsyntaxspec
534 #endif /* emacs */
535 } re_opcode_t;
537 /* Common operations on the compiled pattern. */
539 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
541 #define STORE_NUMBER(destination, number) \
542 do { \
543 (destination)[0] = (number) & 0377; \
544 (destination)[1] = (number) >> 8; \
545 } while (0)
547 /* Same as STORE_NUMBER, except increment DESTINATION to
548 the byte after where the number is stored. Therefore, DESTINATION
549 must be an lvalue. */
551 #define STORE_NUMBER_AND_INCR(destination, number) \
552 do { \
553 STORE_NUMBER (destination, number); \
554 (destination) += 2; \
555 } while (0)
557 /* Put into DESTINATION a number stored in two contiguous bytes starting
558 at SOURCE. */
560 #define EXTRACT_NUMBER(destination, source) \
561 do { \
562 (destination) = *(source) & 0377; \
563 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
564 } while (0)
566 #ifdef DEBUG
567 static void extract_number _RE_ARGS ((int *dest, unsigned char *source));
568 static void
569 extract_number (dest, source)
570 int *dest;
571 unsigned char *source;
573 int temp = SIGN_EXTEND_CHAR (*(source + 1));
574 *dest = *source & 0377;
575 *dest += temp << 8;
578 # ifndef EXTRACT_MACROS /* To debug the macros. */
579 # undef EXTRACT_NUMBER
580 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
581 # endif /* not EXTRACT_MACROS */
583 #endif /* DEBUG */
585 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
586 SOURCE must be an lvalue. */
588 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
589 do { \
590 EXTRACT_NUMBER (destination, source); \
591 (source) += 2; \
592 } while (0)
594 #ifdef DEBUG
595 static void extract_number_and_incr _RE_ARGS ((int *destination,
596 unsigned char **source));
597 static void
598 extract_number_and_incr (destination, source)
599 int *destination;
600 unsigned char **source;
602 extract_number (destination, *source);
603 *source += 2;
606 # ifndef EXTRACT_MACROS
607 # undef EXTRACT_NUMBER_AND_INCR
608 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
609 extract_number_and_incr (&dest, &src)
610 # endif /* not EXTRACT_MACROS */
612 #endif /* DEBUG */
614 /* If DEBUG is defined, Regex prints many voluminous messages about what
615 it is doing (if the variable `debug' is nonzero). If linked with the
616 main program in `iregex.c', you can enter patterns and strings
617 interactively. And if linked with the main program in `main.c' and
618 the other test files, you can run the already-written tests. */
620 #ifdef DEBUG
622 /* We use standard I/O for debugging. */
623 # include <stdio.h>
625 /* It is useful to test things that ``must'' be true when debugging. */
626 # include <assert.h>
628 static int debug;
630 # define DEBUG_STATEMENT(e) e
631 # define DEBUG_PRINT1(x) if (debug) printf (x)
632 # define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
633 # define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
634 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
635 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
636 if (debug) print_partial_compiled_pattern (s, e)
637 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
638 if (debug) print_double_string (w, s1, sz1, s2, sz2)
641 /* Print the fastmap in human-readable form. */
643 void
644 print_fastmap (fastmap)
645 char *fastmap;
647 unsigned was_a_range = 0;
648 unsigned i = 0;
650 while (i < (1 << BYTEWIDTH))
652 if (fastmap[i++])
654 was_a_range = 0;
655 putchar (i - 1);
656 while (i < (1 << BYTEWIDTH) && fastmap[i])
658 was_a_range = 1;
659 i++;
661 if (was_a_range)
663 printf ("-");
664 putchar (i - 1);
668 putchar ('\n');
672 /* Print a compiled pattern string in human-readable form, starting at
673 the START pointer into it and ending just before the pointer END. */
675 void
676 print_partial_compiled_pattern (start, end)
677 unsigned char *start;
678 unsigned char *end;
680 int mcnt, mcnt2;
681 unsigned char *p1;
682 unsigned char *p = start;
683 unsigned char *pend = end;
685 if (start == NULL)
687 printf ("(null)\n");
688 return;
691 /* Loop over pattern commands. */
692 while (p < pend)
694 #ifdef _LIBC
695 printf ("%t:\t", p - start);
696 #else
697 printf ("%ld:\t", (long int) (p - start));
698 #endif
700 switch ((re_opcode_t) *p++)
702 case no_op:
703 printf ("/no_op");
704 break;
706 case exactn:
707 mcnt = *p++;
708 printf ("/exactn/%d", mcnt);
711 putchar ('/');
712 putchar (*p++);
714 while (--mcnt);
715 break;
717 case start_memory:
718 mcnt = *p++;
719 printf ("/start_memory/%d/%d", mcnt, *p++);
720 break;
722 case stop_memory:
723 mcnt = *p++;
724 printf ("/stop_memory/%d/%d", mcnt, *p++);
725 break;
727 case duplicate:
728 printf ("/duplicate/%d", *p++);
729 break;
731 case anychar:
732 printf ("/anychar");
733 break;
735 case charset:
736 case charset_not:
738 register int c, last = -100;
739 register int in_range = 0;
741 printf ("/charset [%s",
742 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
744 assert (p + *p < pend);
746 for (c = 0; c < 256; c++)
747 if (c / 8 < *p
748 && (p[1 + (c/8)] & (1 << (c % 8))))
750 /* Are we starting a range? */
751 if (last + 1 == c && ! in_range)
753 putchar ('-');
754 in_range = 1;
756 /* Have we broken a range? */
757 else if (last + 1 != c && in_range)
759 putchar (last);
760 in_range = 0;
763 if (! in_range)
764 putchar (c);
766 last = c;
769 if (in_range)
770 putchar (last);
772 putchar (']');
774 p += 1 + *p;
776 break;
778 case begline:
779 printf ("/begline");
780 break;
782 case endline:
783 printf ("/endline");
784 break;
786 case on_failure_jump:
787 extract_number_and_incr (&mcnt, &p);
788 #ifdef _LIBC
789 printf ("/on_failure_jump to %t", p + mcnt - start);
790 #else
791 printf ("/on_failure_jump to %ld", (long int) (p + mcnt - start));
792 #endif
793 break;
795 case on_failure_keep_string_jump:
796 extract_number_and_incr (&mcnt, &p);
797 #ifdef _LIBC
798 printf ("/on_failure_keep_string_jump to %t", p + mcnt - start);
799 #else
800 printf ("/on_failure_keep_string_jump to %ld",
801 (long int) (p + mcnt - start));
802 #endif
803 break;
805 case dummy_failure_jump:
806 extract_number_and_incr (&mcnt, &p);
807 #ifdef _LIBC
808 printf ("/dummy_failure_jump to %t", p + mcnt - start);
809 #else
810 printf ("/dummy_failure_jump to %ld", (long int) (p + mcnt - start));
811 #endif
812 break;
814 case push_dummy_failure:
815 printf ("/push_dummy_failure");
816 break;
818 case maybe_pop_jump:
819 extract_number_and_incr (&mcnt, &p);
820 #ifdef _LIBC
821 printf ("/maybe_pop_jump to %t", p + mcnt - start);
822 #else
823 printf ("/maybe_pop_jump to %ld", (long int) (p + mcnt - start));
824 #endif
825 break;
827 case pop_failure_jump:
828 extract_number_and_incr (&mcnt, &p);
829 #ifdef _LIBC
830 printf ("/pop_failure_jump to %t", p + mcnt - start);
831 #else
832 printf ("/pop_failure_jump to %ld", (long int) (p + mcnt - start));
833 #endif
834 break;
836 case jump_past_alt:
837 extract_number_and_incr (&mcnt, &p);
838 #ifdef _LIBC
839 printf ("/jump_past_alt to %t", p + mcnt - start);
840 #else
841 printf ("/jump_past_alt to %ld", (long int) (p + mcnt - start));
842 #endif
843 break;
845 case jump:
846 extract_number_and_incr (&mcnt, &p);
847 #ifdef _LIBC
848 printf ("/jump to %t", p + mcnt - start);
849 #else
850 printf ("/jump to %ld", (long int) (p + mcnt - start));
851 #endif
852 break;
854 case succeed_n:
855 extract_number_and_incr (&mcnt, &p);
856 p1 = p + mcnt;
857 extract_number_and_incr (&mcnt2, &p);
858 #ifdef _LIBC
859 printf ("/succeed_n to %t, %d times", p1 - start, mcnt2);
860 #else
861 printf ("/succeed_n to %ld, %d times",
862 (long int) (p1 - start), mcnt2);
863 #endif
864 break;
866 case jump_n:
867 extract_number_and_incr (&mcnt, &p);
868 p1 = p + mcnt;
869 extract_number_and_incr (&mcnt2, &p);
870 printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
871 break;
873 case set_number_at:
874 extract_number_and_incr (&mcnt, &p);
875 p1 = p + mcnt;
876 extract_number_and_incr (&mcnt2, &p);
877 #ifdef _LIBC
878 printf ("/set_number_at location %t to %d", p1 - start, mcnt2);
879 #else
880 printf ("/set_number_at location %ld to %d",
881 (long int) (p1 - start), mcnt2);
882 #endif
883 break;
885 case wordbound:
886 printf ("/wordbound");
887 break;
889 case notwordbound:
890 printf ("/notwordbound");
891 break;
893 case wordbeg:
894 printf ("/wordbeg");
895 break;
897 case wordend:
898 printf ("/wordend");
900 # ifdef emacs
901 case before_dot:
902 printf ("/before_dot");
903 break;
905 case at_dot:
906 printf ("/at_dot");
907 break;
909 case after_dot:
910 printf ("/after_dot");
911 break;
913 case syntaxspec:
914 printf ("/syntaxspec");
915 mcnt = *p++;
916 printf ("/%d", mcnt);
917 break;
919 case notsyntaxspec:
920 printf ("/notsyntaxspec");
921 mcnt = *p++;
922 printf ("/%d", mcnt);
923 break;
924 # endif /* emacs */
926 case wordchar:
927 printf ("/wordchar");
928 break;
930 case notwordchar:
931 printf ("/notwordchar");
932 break;
934 case begbuf:
935 printf ("/begbuf");
936 break;
938 case endbuf:
939 printf ("/endbuf");
940 break;
942 default:
943 printf ("?%d", *(p-1));
946 putchar ('\n');
949 #ifdef _LIBC
950 printf ("%t:\tend of pattern.\n", p - start);
951 #else
952 printf ("%ld:\tend of pattern.\n", (long int) (p - start));
953 #endif
957 void
958 print_compiled_pattern (bufp)
959 struct re_pattern_buffer *bufp;
961 unsigned char *buffer = bufp->buffer;
963 print_partial_compiled_pattern (buffer, buffer + bufp->used);
964 printf ("%ld bytes used/%ld bytes allocated.\n",
965 bufp->used, bufp->allocated);
967 if (bufp->fastmap_accurate && bufp->fastmap)
969 printf ("fastmap: ");
970 print_fastmap (bufp->fastmap);
973 #ifdef _LIBC
974 printf ("re_nsub: %Zd\t", bufp->re_nsub);
975 #else
976 printf ("re_nsub: %ld\t", (long int) bufp->re_nsub);
977 #endif
978 printf ("regs_alloc: %d\t", bufp->regs_allocated);
979 printf ("can_be_null: %d\t", bufp->can_be_null);
980 printf ("newline_anchor: %d\n", bufp->newline_anchor);
981 printf ("no_sub: %d\t", bufp->no_sub);
982 printf ("not_bol: %d\t", bufp->not_bol);
983 printf ("not_eol: %d\t", bufp->not_eol);
984 printf ("syntax: %lx\n", bufp->syntax);
985 /* Perhaps we should print the translate table? */
989 void
990 print_double_string (where, string1, size1, string2, size2)
991 const char *where;
992 const char *string1;
993 const char *string2;
994 int size1;
995 int size2;
997 int this_char;
999 if (where == NULL)
1000 printf ("(null)");
1001 else
1003 if (FIRST_STRING_P (where))
1005 for (this_char = where - string1; this_char < size1; this_char++)
1006 putchar (string1[this_char]);
1008 where = string2;
1011 for (this_char = where - string2; this_char < size2; this_char++)
1012 putchar (string2[this_char]);
1016 void
1017 printchar (c)
1018 int c;
1020 putc (c, stderr);
1023 #else /* not DEBUG */
1025 # undef assert
1026 # define assert(e)
1028 # define DEBUG_STATEMENT(e)
1029 # define DEBUG_PRINT1(x)
1030 # define DEBUG_PRINT2(x1, x2)
1031 # define DEBUG_PRINT3(x1, x2, x3)
1032 # define DEBUG_PRINT4(x1, x2, x3, x4)
1033 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1034 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1036 #endif /* not DEBUG */
1038 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1039 also be assigned to arbitrarily: each pattern buffer stores its own
1040 syntax, so it can be changed between regex compilations. */
1041 /* This has no initializer because initialized variables in Emacs
1042 become read-only after dumping. */
1043 reg_syntax_t re_syntax_options;
1046 /* Specify the precise syntax of regexps for compilation. This provides
1047 for compatibility for various utilities which historically have
1048 different, incompatible syntaxes.
1050 The argument SYNTAX is a bit mask comprised of the various bits
1051 defined in regex.h. We return the old syntax. */
1053 reg_syntax_t
1054 re_set_syntax (syntax)
1055 reg_syntax_t syntax;
1057 reg_syntax_t ret = re_syntax_options;
1059 re_syntax_options = syntax;
1060 #ifdef DEBUG
1061 if (syntax & RE_DEBUG)
1062 debug = 1;
1063 else if (debug) /* was on but now is not */
1064 debug = 0;
1065 #endif /* DEBUG */
1066 return ret;
1068 #ifdef _LIBC
1069 weak_alias (__re_set_syntax, re_set_syntax)
1070 #endif
1072 /* This table gives an error message for each of the error codes listed
1073 in regex.h. Obviously the order here has to be same as there.
1074 POSIX doesn't require that we do anything for REG_NOERROR,
1075 but why not be nice? */
1077 static const char re_error_msgid[] =
1079 #define REG_NOERROR_IDX 0
1080 gettext_noop ("Success") /* REG_NOERROR */
1081 "\0"
1082 #define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success")
1083 gettext_noop ("No match") /* REG_NOMATCH */
1084 "\0"
1085 #define REG_BADPAT_IDX (REG_NOMATCH_IDX + sizeof "No match")
1086 gettext_noop ("Invalid regular expression") /* REG_BADPAT */
1087 "\0"
1088 #define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression")
1089 gettext_noop ("Invalid collation character") /* REG_ECOLLATE */
1090 "\0"
1091 #define REG_ECTYPE_IDX (REG_ECOLLATE_IDX + sizeof "Invalid collation character")
1092 gettext_noop ("Invalid character class name") /* REG_ECTYPE */
1093 "\0"
1094 #define REG_EESCAPE_IDX (REG_ECTYPE_IDX + sizeof "Invalid character class name")
1095 gettext_noop ("Trailing backslash") /* REG_EESCAPE */
1096 "\0"
1097 #define REG_ESUBREG_IDX (REG_EESCAPE_IDX + sizeof "Trailing backslash")
1098 gettext_noop ("Invalid back reference") /* REG_ESUBREG */
1099 "\0"
1100 #define REG_EBRACK_IDX (REG_ESUBREG_IDX + sizeof "Invalid back reference")
1101 gettext_noop ("Unmatched [ or [^") /* REG_EBRACK */
1102 "\0"
1103 #define REG_EPAREN_IDX (REG_EBRACK_IDX + sizeof "Unmatched [ or [^")
1104 gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */
1105 "\0"
1106 #define REG_EBRACE_IDX (REG_EPAREN_IDX + sizeof "Unmatched ( or \\(")
1107 gettext_noop ("Unmatched \\{") /* REG_EBRACE */
1108 "\0"
1109 #define REG_BADBR_IDX (REG_EBRACE_IDX + sizeof "Unmatched \\{")
1110 gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */
1111 "\0"
1112 #define REG_ERANGE_IDX (REG_BADBR_IDX + sizeof "Invalid content of \\{\\}")
1113 gettext_noop ("Invalid range end") /* REG_ERANGE */
1114 "\0"
1115 #define REG_ESPACE_IDX (REG_ERANGE_IDX + sizeof "Invalid range end")
1116 gettext_noop ("Memory exhausted") /* REG_ESPACE */
1117 "\0"
1118 #define REG_BADRPT_IDX (REG_ESPACE_IDX + sizeof "Memory exhausted")
1119 gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */
1120 "\0"
1121 #define REG_EEND_IDX (REG_BADRPT_IDX + sizeof "Invalid preceding regular expression")
1122 gettext_noop ("Premature end of regular expression") /* REG_EEND */
1123 "\0"
1124 #define REG_ESIZE_IDX (REG_EEND_IDX + sizeof "Premature end of regular expression")
1125 gettext_noop ("Regular expression too big") /* REG_ESIZE */
1126 "\0"
1127 #define REG_ERPAREN_IDX (REG_ESIZE_IDX + sizeof "Regular expression too big")
1128 gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
1131 static const size_t re_error_msgid_idx[] =
1133 REG_NOERROR_IDX,
1134 REG_NOMATCH_IDX,
1135 REG_BADPAT_IDX,
1136 REG_ECOLLATE_IDX,
1137 REG_ECTYPE_IDX,
1138 REG_EESCAPE_IDX,
1139 REG_ESUBREG_IDX,
1140 REG_EBRACK_IDX,
1141 REG_EPAREN_IDX,
1142 REG_EBRACE_IDX,
1143 REG_BADBR_IDX,
1144 REG_ERANGE_IDX,
1145 REG_ESPACE_IDX,
1146 REG_BADRPT_IDX,
1147 REG_EEND_IDX,
1148 REG_ESIZE_IDX,
1149 REG_ERPAREN_IDX
1152 /* Avoiding alloca during matching, to placate r_alloc. */
1154 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1155 searching and matching functions should not call alloca. On some
1156 systems, alloca is implemented in terms of malloc, and if we're
1157 using the relocating allocator routines, then malloc could cause a
1158 relocation, which might (if the strings being searched are in the
1159 ralloc heap) shift the data out from underneath the regexp
1160 routines.
1162 Here's another reason to avoid allocation: Emacs
1163 processes input from X in a signal handler; processing X input may
1164 call malloc; if input arrives while a matching routine is calling
1165 malloc, then we're scrod. But Emacs can't just block input while
1166 calling matching routines; then we don't notice interrupts when
1167 they come in. So, Emacs blocks input around all regexp calls
1168 except the matching calls, which it leaves unprotected, in the
1169 faith that they will not malloc. */
1171 /* Normally, this is fine. */
1172 #define MATCH_MAY_ALLOCATE
1174 /* When using GNU C, we are not REALLY using the C alloca, no matter
1175 what config.h may say. So don't take precautions for it. */
1176 #ifdef __GNUC__
1177 # undef C_ALLOCA
1178 #endif
1180 /* The match routines may not allocate if (1) they would do it with malloc
1181 and (2) it's not safe for them to use malloc.
1182 Note that if REL_ALLOC is defined, matching would not use malloc for the
1183 failure stack, but we would still use it for the register vectors;
1184 so REL_ALLOC should not affect this. */
1185 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1186 # undef MATCH_MAY_ALLOCATE
1187 #endif
1190 /* Failure stack declarations and macros; both re_compile_fastmap and
1191 re_match_2 use a failure stack. These have to be macros because of
1192 REGEX_ALLOCATE_STACK. */
1195 /* Number of failure points for which to initially allocate space
1196 when matching. If this number is exceeded, we allocate more
1197 space, so it is not a hard limit. */
1198 #ifndef INIT_FAILURE_ALLOC
1199 # define INIT_FAILURE_ALLOC 5
1200 #endif
1202 /* Roughly the maximum number of failure points on the stack. Would be
1203 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1204 This is a variable only so users of regex can assign to it; we never
1205 change it ourselves. */
1207 #ifdef INT_IS_16BIT
1209 # if defined MATCH_MAY_ALLOCATE
1210 /* 4400 was enough to cause a crash on Alpha OSF/1,
1211 whose default stack limit is 2mb. */
1212 long int re_max_failures = 4000;
1213 # else
1214 long int re_max_failures = 2000;
1215 # endif
1217 union fail_stack_elt
1219 unsigned char *pointer;
1220 long int integer;
1223 typedef union fail_stack_elt fail_stack_elt_t;
1225 typedef struct
1227 fail_stack_elt_t *stack;
1228 unsigned long int size;
1229 unsigned long int avail; /* Offset of next open position. */
1230 } fail_stack_type;
1232 #else /* not INT_IS_16BIT */
1234 # if defined MATCH_MAY_ALLOCATE
1235 /* 4400 was enough to cause a crash on Alpha OSF/1,
1236 whose default stack limit is 2mb. */
1237 int re_max_failures = 20000;
1238 # else
1239 int re_max_failures = 2000;
1240 # endif
1242 union fail_stack_elt
1244 unsigned char *pointer;
1245 int integer;
1248 typedef union fail_stack_elt fail_stack_elt_t;
1250 typedef struct
1252 fail_stack_elt_t *stack;
1253 unsigned size;
1254 unsigned avail; /* Offset of next open position. */
1255 } fail_stack_type;
1257 #endif /* INT_IS_16BIT */
1259 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1260 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1261 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1264 /* Define macros to initialize and free the failure stack.
1265 Do `return -2' if the alloc fails. */
1267 #ifdef MATCH_MAY_ALLOCATE
1268 # define INIT_FAIL_STACK() \
1269 do { \
1270 fail_stack.stack = (fail_stack_elt_t *) \
1271 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1273 if (fail_stack.stack == NULL) \
1274 return -2; \
1276 fail_stack.size = INIT_FAILURE_ALLOC; \
1277 fail_stack.avail = 0; \
1278 } while (0)
1280 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1281 #else
1282 # define INIT_FAIL_STACK() \
1283 do { \
1284 fail_stack.avail = 0; \
1285 } while (0)
1287 # define RESET_FAIL_STACK()
1288 #endif
1291 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1293 Return 1 if succeeds, and 0 if either ran out of memory
1294 allocating space for it or it was already too large.
1296 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1298 #define DOUBLE_FAIL_STACK(fail_stack) \
1299 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1300 ? 0 \
1301 : ((fail_stack).stack = (fail_stack_elt_t *) \
1302 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1303 (fail_stack).size * sizeof (fail_stack_elt_t), \
1304 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
1306 (fail_stack).stack == NULL \
1307 ? 0 \
1308 : ((fail_stack).size <<= 1, \
1309 1)))
1312 /* Push pointer POINTER on FAIL_STACK.
1313 Return 1 if was able to do so and 0 if ran out of memory allocating
1314 space to do so. */
1315 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1316 ((FAIL_STACK_FULL () \
1317 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1318 ? 0 \
1319 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1322 /* Push a pointer value onto the failure stack.
1323 Assumes the variable `fail_stack'. Probably should only
1324 be called from within `PUSH_FAILURE_POINT'. */
1325 #define PUSH_FAILURE_POINTER(item) \
1326 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1328 /* This pushes an integer-valued item onto the failure stack.
1329 Assumes the variable `fail_stack'. Probably should only
1330 be called from within `PUSH_FAILURE_POINT'. */
1331 #define PUSH_FAILURE_INT(item) \
1332 fail_stack.stack[fail_stack.avail++].integer = (item)
1334 /* Push a fail_stack_elt_t value onto the failure stack.
1335 Assumes the variable `fail_stack'. Probably should only
1336 be called from within `PUSH_FAILURE_POINT'. */
1337 #define PUSH_FAILURE_ELT(item) \
1338 fail_stack.stack[fail_stack.avail++] = (item)
1340 /* These three POP... operations complement the three PUSH... operations.
1341 All assume that `fail_stack' is nonempty. */
1342 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1343 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1344 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1346 /* Used to omit pushing failure point id's when we're not debugging. */
1347 #ifdef DEBUG
1348 # define DEBUG_PUSH PUSH_FAILURE_INT
1349 # define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1350 #else
1351 # define DEBUG_PUSH(item)
1352 # define DEBUG_POP(item_addr)
1353 #endif
1356 /* Push the information about the state we will need
1357 if we ever fail back to it.
1359 Requires variables fail_stack, regstart, regend, reg_info, and
1360 num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination'
1361 be declared.
1363 Does `return FAILURE_CODE' if runs out of memory. */
1365 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1366 do { \
1367 char *destination; \
1368 /* Must be int, so when we don't save any registers, the arithmetic \
1369 of 0 + -1 isn't done as unsigned. */ \
1370 /* Can't be int, since there is not a shred of a guarantee that int \
1371 is wide enough to hold a value of something to which pointer can \
1372 be assigned */ \
1373 active_reg_t this_reg; \
1375 DEBUG_STATEMENT (failure_id++); \
1376 DEBUG_STATEMENT (nfailure_points_pushed++); \
1377 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1378 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1379 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1381 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1382 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1384 /* Ensure we have enough space allocated for what we will push. */ \
1385 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1387 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1388 return failure_code; \
1390 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1391 (fail_stack).size); \
1392 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1395 /* Push the info, starting with the registers. */ \
1396 DEBUG_PRINT1 ("\n"); \
1398 if (1) \
1399 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1400 this_reg++) \
1402 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1403 DEBUG_STATEMENT (num_regs_pushed++); \
1405 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1406 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1408 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1409 PUSH_FAILURE_POINTER (regend[this_reg]); \
1411 DEBUG_PRINT2 (" info: %p\n ", \
1412 reg_info[this_reg].word.pointer); \
1413 DEBUG_PRINT2 (" match_null=%d", \
1414 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1415 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1416 DEBUG_PRINT2 (" matched_something=%d", \
1417 MATCHED_SOMETHING (reg_info[this_reg])); \
1418 DEBUG_PRINT2 (" ever_matched=%d", \
1419 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1420 DEBUG_PRINT1 ("\n"); \
1421 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1424 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1425 PUSH_FAILURE_INT (lowest_active_reg); \
1427 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1428 PUSH_FAILURE_INT (highest_active_reg); \
1430 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1431 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1432 PUSH_FAILURE_POINTER (pattern_place); \
1434 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1435 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1436 size2); \
1437 DEBUG_PRINT1 ("'\n"); \
1438 PUSH_FAILURE_POINTER (string_place); \
1440 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1441 DEBUG_PUSH (failure_id); \
1442 } while (0)
1444 /* This is the number of items that are pushed and popped on the stack
1445 for each register. */
1446 #define NUM_REG_ITEMS 3
1448 /* Individual items aside from the registers. */
1449 #ifdef DEBUG
1450 # define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1451 #else
1452 # define NUM_NONREG_ITEMS 4
1453 #endif
1455 /* We push at most this many items on the stack. */
1456 /* We used to use (num_regs - 1), which is the number of registers
1457 this regexp will save; but that was changed to 5
1458 to avoid stack overflow for a regexp with lots of parens. */
1459 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1461 /* We actually push this many items. */
1462 #define NUM_FAILURE_ITEMS \
1463 (((0 \
1464 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1465 * NUM_REG_ITEMS) \
1466 + NUM_NONREG_ITEMS)
1468 /* How many items can still be added to the stack without overflowing it. */
1469 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1472 /* Pops what PUSH_FAIL_STACK pushes.
1474 We restore into the parameters, all of which should be lvalues:
1475 STR -- the saved data position.
1476 PAT -- the saved pattern position.
1477 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1478 REGSTART, REGEND -- arrays of string positions.
1479 REG_INFO -- array of information about each subexpression.
1481 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1482 `pend', `string1', `size1', `string2', and `size2'. */
1484 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1486 DEBUG_STATEMENT (unsigned failure_id;) \
1487 active_reg_t this_reg; \
1488 const unsigned char *string_temp; \
1490 assert (!FAIL_STACK_EMPTY ()); \
1492 /* Remove failure points and point to how many regs pushed. */ \
1493 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1494 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1495 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1497 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1499 DEBUG_POP (&failure_id); \
1500 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1502 /* If the saved string location is NULL, it came from an \
1503 on_failure_keep_string_jump opcode, and we want to throw away the \
1504 saved NULL, thus retaining our current position in the string. */ \
1505 string_temp = POP_FAILURE_POINTER (); \
1506 if (string_temp != NULL) \
1507 str = (const char *) string_temp; \
1509 DEBUG_PRINT2 (" Popping string %p: `", str); \
1510 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1511 DEBUG_PRINT1 ("'\n"); \
1513 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1514 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1515 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1517 /* Restore register info. */ \
1518 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1519 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1521 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1522 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1524 if (1) \
1525 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1527 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1529 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1530 DEBUG_PRINT2 (" info: %p\n", \
1531 reg_info[this_reg].word.pointer); \
1533 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1534 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1536 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1537 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1539 else \
1541 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1543 reg_info[this_reg].word.integer = 0; \
1544 regend[this_reg] = 0; \
1545 regstart[this_reg] = 0; \
1547 highest_active_reg = high_reg; \
1550 set_regs_matched_done = 0; \
1551 DEBUG_STATEMENT (nfailure_points_popped++); \
1552 } /* POP_FAILURE_POINT */
1556 /* Structure for per-register (a.k.a. per-group) information.
1557 Other register information, such as the
1558 starting and ending positions (which are addresses), and the list of
1559 inner groups (which is a bits list) are maintained in separate
1560 variables.
1562 We are making a (strictly speaking) nonportable assumption here: that
1563 the compiler will pack our bit fields into something that fits into
1564 the type of `word', i.e., is something that fits into one item on the
1565 failure stack. */
1568 /* Declarations and macros for re_match_2. */
1570 typedef union
1572 fail_stack_elt_t word;
1573 struct
1575 /* This field is one if this group can match the empty string,
1576 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1577 #define MATCH_NULL_UNSET_VALUE 3
1578 unsigned match_null_string_p : 2;
1579 unsigned is_active : 1;
1580 unsigned matched_something : 1;
1581 unsigned ever_matched_something : 1;
1582 } bits;
1583 } register_info_type;
1585 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1586 #define IS_ACTIVE(R) ((R).bits.is_active)
1587 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1588 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1591 /* Call this when have matched a real character; it sets `matched' flags
1592 for the subexpressions which we are currently inside. Also records
1593 that those subexprs have matched. */
1594 #define SET_REGS_MATCHED() \
1595 do \
1597 if (!set_regs_matched_done) \
1599 active_reg_t r; \
1600 set_regs_matched_done = 1; \
1601 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1603 MATCHED_SOMETHING (reg_info[r]) \
1604 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1605 = 1; \
1609 while (0)
1611 /* Registers are set to a sentinel when they haven't yet matched. */
1612 static char reg_unset_dummy;
1613 #define REG_UNSET_VALUE (&reg_unset_dummy)
1614 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1616 /* Subroutine declarations and macros for regex_compile. */
1618 static reg_errcode_t regex_compile _RE_ARGS ((const char *pattern, size_t size,
1619 reg_syntax_t syntax,
1620 struct re_pattern_buffer *bufp));
1621 static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1622 static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1623 int arg1, int arg2));
1624 static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1625 int arg, unsigned char *end));
1626 static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1627 int arg1, int arg2, unsigned char *end));
1628 static boolean at_begline_loc_p _RE_ARGS ((const char *pattern, const char *p,
1629 reg_syntax_t syntax));
1630 static boolean at_endline_loc_p _RE_ARGS ((const char *p, const char *pend,
1631 reg_syntax_t syntax));
1632 static reg_errcode_t compile_range _RE_ARGS ((unsigned int range_start,
1633 const char **p_ptr,
1634 const char *pend,
1635 char *translate,
1636 reg_syntax_t syntax,
1637 unsigned char *b));
1639 /* Fetch the next character in the uncompiled pattern---translating it
1640 if necessary. Also cast from a signed character in the constant
1641 string passed to us by the user to an unsigned char that we can use
1642 as an array index (in, e.g., `translate'). */
1643 #ifndef PATFETCH
1644 # define PATFETCH(c) \
1645 do {if (p == pend) return REG_EEND; \
1646 c = (unsigned char) *p++; \
1647 if (translate) c = (unsigned char) translate[c]; \
1648 } while (0)
1649 #endif
1651 /* Fetch the next character in the uncompiled pattern, with no
1652 translation. */
1653 #define PATFETCH_RAW(c) \
1654 do {if (p == pend) return REG_EEND; \
1655 c = (unsigned char) *p++; \
1656 } while (0)
1658 /* Go backwards one character in the pattern. */
1659 #define PATUNFETCH p--
1662 /* If `translate' is non-null, return translate[D], else just D. We
1663 cast the subscript to translate because some data is declared as
1664 `char *', to avoid warnings when a string constant is passed. But
1665 when we use a character as a subscript we must make it unsigned. */
1666 #ifndef TRANSLATE
1667 # define TRANSLATE(d) \
1668 (translate ? (char) translate[(unsigned char) (d)] : (d))
1669 #endif
1672 /* Macros for outputting the compiled pattern into `buffer'. */
1674 /* If the buffer isn't allocated when it comes in, use this. */
1675 #define INIT_BUF_SIZE 32
1677 /* Make sure we have at least N more bytes of space in buffer. */
1678 #define GET_BUFFER_SPACE(n) \
1679 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
1680 EXTEND_BUFFER ()
1682 /* Make sure we have one more byte of buffer space and then add C to it. */
1683 #define BUF_PUSH(c) \
1684 do { \
1685 GET_BUFFER_SPACE (1); \
1686 *b++ = (unsigned char) (c); \
1687 } while (0)
1690 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1691 #define BUF_PUSH_2(c1, c2) \
1692 do { \
1693 GET_BUFFER_SPACE (2); \
1694 *b++ = (unsigned char) (c1); \
1695 *b++ = (unsigned char) (c2); \
1696 } while (0)
1699 /* As with BUF_PUSH_2, except for three bytes. */
1700 #define BUF_PUSH_3(c1, c2, c3) \
1701 do { \
1702 GET_BUFFER_SPACE (3); \
1703 *b++ = (unsigned char) (c1); \
1704 *b++ = (unsigned char) (c2); \
1705 *b++ = (unsigned char) (c3); \
1706 } while (0)
1709 /* Store a jump with opcode OP at LOC to location TO. We store a
1710 relative address offset by the three bytes the jump itself occupies. */
1711 #define STORE_JUMP(op, loc, to) \
1712 store_op1 (op, loc, (int) ((to) - (loc) - 3))
1714 /* Likewise, for a two-argument jump. */
1715 #define STORE_JUMP2(op, loc, to, arg) \
1716 store_op2 (op, loc, (int) ((to) - (loc) - 3), arg)
1718 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1719 #define INSERT_JUMP(op, loc, to) \
1720 insert_op1 (op, loc, (int) ((to) - (loc) - 3), b)
1722 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1723 #define INSERT_JUMP2(op, loc, to, arg) \
1724 insert_op2 (op, loc, (int) ((to) - (loc) - 3), arg, b)
1727 /* This is not an arbitrary limit: the arguments which represent offsets
1728 into the pattern are two bytes long. So if 2^16 bytes turns out to
1729 be too small, many things would have to change. */
1730 /* Any other compiler which, like MSC, has allocation limit below 2^16
1731 bytes will have to use approach similar to what was done below for
1732 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1733 reallocating to 0 bytes. Such thing is not going to work too well.
1734 You have been warned!! */
1735 #if defined _MSC_VER && !defined WIN32
1736 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
1737 The REALLOC define eliminates a flurry of conversion warnings,
1738 but is not required. */
1739 # define MAX_BUF_SIZE 65500L
1740 # define REALLOC(p,s) realloc ((p), (size_t) (s))
1741 #else
1742 # define MAX_BUF_SIZE (1L << 16)
1743 # define REALLOC(p,s) realloc ((p), (s))
1744 #endif
1746 /* Extend the buffer by twice its current size via realloc and
1747 reset the pointers that pointed into the old block to point to the
1748 correct places in the new one. If extending the buffer results in it
1749 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1750 #if __BOUNDED_POINTERS__
1751 # define MOVE_BUFFER_POINTER(P) \
1752 (__ptrlow (P) += incr, __ptrhigh (P) += incr, __ptrvalue (P) += incr)
1753 # define EXTEND_BUFFER_HIGH_BOUND \
1754 do { \
1755 int incr = bufp->allocated >> 1; \
1756 __ptrhigh b += incr; \
1757 __ptrhigh begalt += incr; \
1758 if (fixup_alt_jump) \
1759 __ptrhigh fixup_alt_jump += incr; \
1760 if (laststart) \
1761 __ptrhigh laststart += incr; \
1762 if (pending_exact) \
1763 __ptrhigh pending_exact += incr; \
1764 } while (0)
1765 #else
1766 # define MOVE_BUFFER_POINTER(P) (P) += incr
1767 # define EXTEND_BUFFER_HIGH_BOUND
1768 #endif
1769 #define EXTEND_BUFFER() \
1770 do { \
1771 unsigned char *old_buffer = bufp->buffer; \
1772 if (bufp->allocated == MAX_BUF_SIZE) \
1773 return REG_ESIZE; \
1774 bufp->allocated <<= 1; \
1775 if (bufp->allocated > MAX_BUF_SIZE) \
1776 bufp->allocated = MAX_BUF_SIZE; \
1777 bufp->buffer = (unsigned char *) REALLOC (bufp->buffer, bufp->allocated);\
1778 if (bufp->buffer == NULL) \
1779 return REG_ESPACE; \
1780 /* If the buffer moved, move all the pointers into it. */ \
1781 if (old_buffer != bufp->buffer) \
1783 int incr = bufp->buffer - old_buffer; \
1784 MOVE_BUFFER_POINTER (b); \
1785 MOVE_BUFFER_POINTER (begalt); \
1786 if (fixup_alt_jump) \
1787 MOVE_BUFFER_POINTER (fixup_alt_jump); \
1788 if (laststart) \
1789 MOVE_BUFFER_POINTER (laststart); \
1790 if (pending_exact) \
1791 MOVE_BUFFER_POINTER (pending_exact); \
1793 EXTEND_BUFFER_HIGH_BOUND; \
1794 } while (0)
1797 /* Since we have one byte reserved for the register number argument to
1798 {start,stop}_memory, the maximum number of groups we can report
1799 things about is what fits in that byte. */
1800 #define MAX_REGNUM 255
1802 /* But patterns can have more than `MAX_REGNUM' registers. We just
1803 ignore the excess. */
1804 typedef unsigned regnum_t;
1807 /* Macros for the compile stack. */
1809 /* Since offsets can go either forwards or backwards, this type needs to
1810 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1811 /* int may be not enough when sizeof(int) == 2. */
1812 typedef long pattern_offset_t;
1814 typedef struct
1816 pattern_offset_t begalt_offset;
1817 pattern_offset_t fixup_alt_jump;
1818 pattern_offset_t inner_group_offset;
1819 pattern_offset_t laststart_offset;
1820 regnum_t regnum;
1821 } compile_stack_elt_t;
1824 typedef struct
1826 compile_stack_elt_t *stack;
1827 unsigned size;
1828 unsigned avail; /* Offset of next open position. */
1829 } compile_stack_type;
1832 #define INIT_COMPILE_STACK_SIZE 32
1834 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1835 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1837 /* The next available element. */
1838 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1841 /* Set the bit for character C in a list. */
1842 #define SET_LIST_BIT(c) \
1843 (b[((unsigned char) (c)) / BYTEWIDTH] \
1844 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1847 /* Get the next unsigned number in the uncompiled pattern. */
1848 #define GET_UNSIGNED_NUMBER(num) \
1849 { if (p != pend) \
1851 PATFETCH (c); \
1852 while ('0' <= c && c <= '9') \
1854 if (num < 0) \
1855 num = 0; \
1856 num = num * 10 + c - '0'; \
1857 if (p == pend) \
1858 break; \
1859 PATFETCH (c); \
1864 #if defined _LIBC || WIDE_CHAR_SUPPORT
1865 /* The GNU C library provides support for user-defined character classes
1866 and the functions from ISO C amendement 1. */
1867 # ifdef CHARCLASS_NAME_MAX
1868 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1869 # else
1870 /* This shouldn't happen but some implementation might still have this
1871 problem. Use a reasonable default value. */
1872 # define CHAR_CLASS_MAX_LENGTH 256
1873 # endif
1875 # ifdef _LIBC
1876 # define IS_CHAR_CLASS(string) __wctype (string)
1877 # else
1878 # define IS_CHAR_CLASS(string) wctype (string)
1879 # endif
1880 #else
1881 # define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1883 # define IS_CHAR_CLASS(string) \
1884 (STREQ (string, "alpha") || STREQ (string, "upper") \
1885 || STREQ (string, "lower") || STREQ (string, "digit") \
1886 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1887 || STREQ (string, "space") || STREQ (string, "print") \
1888 || STREQ (string, "punct") || STREQ (string, "graph") \
1889 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1890 #endif
1892 #ifndef MATCH_MAY_ALLOCATE
1894 /* If we cannot allocate large objects within re_match_2_internal,
1895 we make the fail stack and register vectors global.
1896 The fail stack, we grow to the maximum size when a regexp
1897 is compiled.
1898 The register vectors, we adjust in size each time we
1899 compile a regexp, according to the number of registers it needs. */
1901 static fail_stack_type fail_stack;
1903 /* Size with which the following vectors are currently allocated.
1904 That is so we can make them bigger as needed,
1905 but never make them smaller. */
1906 static int regs_allocated_size;
1908 static const char ** regstart, ** regend;
1909 static const char ** old_regstart, ** old_regend;
1910 static const char **best_regstart, **best_regend;
1911 static register_info_type *reg_info;
1912 static const char **reg_dummy;
1913 static register_info_type *reg_info_dummy;
1915 /* Make the register vectors big enough for NUM_REGS registers,
1916 but don't make them smaller. */
1918 static
1919 regex_grow_registers (num_regs)
1920 int num_regs;
1922 if (num_regs > regs_allocated_size)
1924 RETALLOC_IF (regstart, num_regs, const char *);
1925 RETALLOC_IF (regend, num_regs, const char *);
1926 RETALLOC_IF (old_regstart, num_regs, const char *);
1927 RETALLOC_IF (old_regend, num_regs, const char *);
1928 RETALLOC_IF (best_regstart, num_regs, const char *);
1929 RETALLOC_IF (best_regend, num_regs, const char *);
1930 RETALLOC_IF (reg_info, num_regs, register_info_type);
1931 RETALLOC_IF (reg_dummy, num_regs, const char *);
1932 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1934 regs_allocated_size = num_regs;
1938 #endif /* not MATCH_MAY_ALLOCATE */
1940 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
1941 compile_stack,
1942 regnum_t regnum));
1944 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1945 Returns one of error codes defined in `regex.h', or zero for success.
1947 Assumes the `allocated' (and perhaps `buffer') and `translate'
1948 fields are set in BUFP on entry.
1950 If it succeeds, results are put in BUFP (if it returns an error, the
1951 contents of BUFP are undefined):
1952 `buffer' is the compiled pattern;
1953 `syntax' is set to SYNTAX;
1954 `used' is set to the length of the compiled pattern;
1955 `fastmap_accurate' is zero;
1956 `re_nsub' is the number of subexpressions in PATTERN;
1957 `not_bol' and `not_eol' are zero;
1959 The `fastmap' and `newline_anchor' fields are neither
1960 examined nor set. */
1962 /* Return, freeing storage we allocated. */
1963 #define FREE_STACK_RETURN(value) \
1964 return (free (compile_stack.stack), value)
1966 static reg_errcode_t
1967 regex_compile (pattern, size, syntax, bufp)
1968 const char *pattern;
1969 size_t size;
1970 reg_syntax_t syntax;
1971 struct re_pattern_buffer *bufp;
1973 /* We fetch characters from PATTERN here. Even though PATTERN is
1974 `char *' (i.e., signed), we declare these variables as unsigned, so
1975 they can be reliably used as array indices. */
1976 register unsigned char c, c1;
1978 /* A random temporary spot in PATTERN. */
1979 const char *p1;
1981 /* Points to the end of the buffer, where we should append. */
1982 register unsigned char *b;
1984 /* Keeps track of unclosed groups. */
1985 compile_stack_type compile_stack;
1987 /* Points to the current (ending) position in the pattern. */
1988 const char *p = pattern;
1989 const char *pend = pattern + size;
1991 /* How to translate the characters in the pattern. */
1992 RE_TRANSLATE_TYPE translate = bufp->translate;
1994 /* Address of the count-byte of the most recently inserted `exactn'
1995 command. This makes it possible to tell if a new exact-match
1996 character can be added to that command or if the character requires
1997 a new `exactn' command. */
1998 unsigned char *pending_exact = 0;
2000 /* Address of start of the most recently finished expression.
2001 This tells, e.g., postfix * where to find the start of its
2002 operand. Reset at the beginning of groups and alternatives. */
2003 unsigned char *laststart = 0;
2005 /* Address of beginning of regexp, or inside of last group. */
2006 unsigned char *begalt;
2008 /* Place in the uncompiled pattern (i.e., the {) to
2009 which to go back if the interval is invalid. */
2010 const char *beg_interval;
2012 /* Address of the place where a forward jump should go to the end of
2013 the containing expression. Each alternative of an `or' -- except the
2014 last -- ends with a forward jump of this sort. */
2015 unsigned char *fixup_alt_jump = 0;
2017 /* Counts open-groups as they are encountered. Remembered for the
2018 matching close-group on the compile stack, so the same register
2019 number is put in the stop_memory as the start_memory. */
2020 regnum_t regnum = 0;
2022 #ifdef DEBUG
2023 DEBUG_PRINT1 ("\nCompiling pattern: ");
2024 if (debug)
2026 unsigned debug_count;
2028 for (debug_count = 0; debug_count < size; debug_count++)
2029 putchar (pattern[debug_count]);
2030 putchar ('\n');
2032 #endif /* DEBUG */
2034 /* Initialize the compile stack. */
2035 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2036 if (compile_stack.stack == NULL)
2037 return REG_ESPACE;
2039 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2040 compile_stack.avail = 0;
2042 /* Initialize the pattern buffer. */
2043 bufp->syntax = syntax;
2044 bufp->fastmap_accurate = 0;
2045 bufp->not_bol = bufp->not_eol = 0;
2047 /* Set `used' to zero, so that if we return an error, the pattern
2048 printer (for debugging) will think there's no pattern. We reset it
2049 at the end. */
2050 bufp->used = 0;
2052 /* Always count groups, whether or not bufp->no_sub is set. */
2053 bufp->re_nsub = 0;
2055 #if !defined emacs && !defined SYNTAX_TABLE
2056 /* Initialize the syntax table. */
2057 init_syntax_once ();
2058 #endif
2060 if (bufp->allocated == 0)
2062 if (bufp->buffer)
2063 { /* If zero allocated, but buffer is non-null, try to realloc
2064 enough space. This loses if buffer's address is bogus, but
2065 that is the user's responsibility. */
2066 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2068 else
2069 { /* Caller did not allocate a buffer. Do it for them. */
2070 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2072 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2074 bufp->allocated = INIT_BUF_SIZE;
2077 begalt = b = bufp->buffer;
2079 /* Loop through the uncompiled pattern until we're at the end. */
2080 while (p != pend)
2082 PATFETCH (c);
2084 switch (c)
2086 case '^':
2088 if ( /* If at start of pattern, it's an operator. */
2089 p == pattern + 1
2090 /* If context independent, it's an operator. */
2091 || syntax & RE_CONTEXT_INDEP_ANCHORS
2092 /* Otherwise, depends on what's come before. */
2093 || at_begline_loc_p (pattern, p, syntax))
2094 BUF_PUSH (begline);
2095 else
2096 goto normal_char;
2098 break;
2101 case '$':
2103 if ( /* If at end of pattern, it's an operator. */
2104 p == pend
2105 /* If context independent, it's an operator. */
2106 || syntax & RE_CONTEXT_INDEP_ANCHORS
2107 /* Otherwise, depends on what's next. */
2108 || at_endline_loc_p (p, pend, syntax))
2109 BUF_PUSH (endline);
2110 else
2111 goto normal_char;
2113 break;
2116 case '+':
2117 case '?':
2118 if ((syntax & RE_BK_PLUS_QM)
2119 || (syntax & RE_LIMITED_OPS))
2120 goto normal_char;
2121 handle_plus:
2122 case '*':
2123 /* If there is no previous pattern... */
2124 if (!laststart)
2126 if (syntax & RE_CONTEXT_INVALID_OPS)
2127 FREE_STACK_RETURN (REG_BADRPT);
2128 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2129 goto normal_char;
2133 /* Are we optimizing this jump? */
2134 boolean keep_string_p = false;
2136 /* 1 means zero (many) matches is allowed. */
2137 char zero_times_ok = 0, many_times_ok = 0;
2139 /* If there is a sequence of repetition chars, collapse it
2140 down to just one (the right one). We can't combine
2141 interval operators with these because of, e.g., `a{2}*',
2142 which should only match an even number of `a's. */
2144 for (;;)
2146 zero_times_ok |= c != '+';
2147 many_times_ok |= c != '?';
2149 if (p == pend)
2150 break;
2152 PATFETCH (c);
2154 if (c == '*'
2155 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2158 else if (syntax & RE_BK_PLUS_QM && c == '\\')
2160 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2162 PATFETCH (c1);
2163 if (!(c1 == '+' || c1 == '?'))
2165 PATUNFETCH;
2166 PATUNFETCH;
2167 break;
2170 c = c1;
2172 else
2174 PATUNFETCH;
2175 break;
2178 /* If we get here, we found another repeat character. */
2181 /* Star, etc. applied to an empty pattern is equivalent
2182 to an empty pattern. */
2183 if (!laststart)
2184 break;
2186 /* Now we know whether or not zero matches is allowed
2187 and also whether or not two or more matches is allowed. */
2188 if (many_times_ok)
2189 { /* More than one repetition is allowed, so put in at the
2190 end a backward relative jump from `b' to before the next
2191 jump we're going to put in below (which jumps from
2192 laststart to after this jump).
2194 But if we are at the `*' in the exact sequence `.*\n',
2195 insert an unconditional jump backwards to the .,
2196 instead of the beginning of the loop. This way we only
2197 push a failure point once, instead of every time
2198 through the loop. */
2199 assert (p - 1 > pattern);
2201 /* Allocate the space for the jump. */
2202 GET_BUFFER_SPACE (3);
2204 /* We know we are not at the first character of the pattern,
2205 because laststart was nonzero. And we've already
2206 incremented `p', by the way, to be the character after
2207 the `*'. Do we have to do something analogous here
2208 for null bytes, because of RE_DOT_NOT_NULL? */
2209 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2210 && zero_times_ok
2211 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2212 && !(syntax & RE_DOT_NEWLINE))
2213 { /* We have .*\n. */
2214 STORE_JUMP (jump, b, laststart);
2215 keep_string_p = true;
2217 else
2218 /* Anything else. */
2219 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
2221 /* We've added more stuff to the buffer. */
2222 b += 3;
2225 /* On failure, jump from laststart to b + 3, which will be the
2226 end of the buffer after this jump is inserted. */
2227 GET_BUFFER_SPACE (3);
2228 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2229 : on_failure_jump,
2230 laststart, b + 3);
2231 pending_exact = 0;
2232 b += 3;
2234 if (!zero_times_ok)
2236 /* At least one repetition is required, so insert a
2237 `dummy_failure_jump' before the initial
2238 `on_failure_jump' instruction of the loop. This
2239 effects a skip over that instruction the first time
2240 we hit that loop. */
2241 GET_BUFFER_SPACE (3);
2242 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
2243 b += 3;
2246 break;
2249 case '.':
2250 laststart = b;
2251 BUF_PUSH (anychar);
2252 break;
2255 case '[':
2257 boolean had_char_class = false;
2258 unsigned int range_start = 0xffffffff;
2260 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2262 /* Ensure that we have enough space to push a charset: the
2263 opcode, the length count, and the bitset; 34 bytes in all. */
2264 GET_BUFFER_SPACE (34);
2266 laststart = b;
2268 /* We test `*p == '^' twice, instead of using an if
2269 statement, so we only need one BUF_PUSH. */
2270 BUF_PUSH (*p == '^' ? charset_not : charset);
2271 if (*p == '^')
2272 p++;
2274 /* Remember the first position in the bracket expression. */
2275 p1 = p;
2277 /* Push the number of bytes in the bitmap. */
2278 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2280 /* Clear the whole map. */
2281 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2283 /* charset_not matches newline according to a syntax bit. */
2284 if ((re_opcode_t) b[-2] == charset_not
2285 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2286 SET_LIST_BIT ('\n');
2288 /* Read in characters and ranges, setting map bits. */
2289 for (;;)
2291 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2293 PATFETCH (c);
2295 /* \ might escape characters inside [...] and [^...]. */
2296 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2298 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2300 PATFETCH (c1);
2301 SET_LIST_BIT (c1);
2302 range_start = c1;
2303 continue;
2306 /* Could be the end of the bracket expression. If it's
2307 not (i.e., when the bracket expression is `[]' so
2308 far), the ']' character bit gets set way below. */
2309 if (c == ']' && p != p1 + 1)
2310 break;
2312 /* Look ahead to see if it's a range when the last thing
2313 was a character class. */
2314 if (had_char_class && c == '-' && *p != ']')
2315 FREE_STACK_RETURN (REG_ERANGE);
2317 /* Look ahead to see if it's a range when the last thing
2318 was a character: if this is a hyphen not at the
2319 beginning or the end of a list, then it's the range
2320 operator. */
2321 if (c == '-'
2322 && !(p - 2 >= pattern && p[-2] == '[')
2323 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2324 && *p != ']')
2326 reg_errcode_t ret
2327 = compile_range (range_start, &p, pend, translate,
2328 syntax, b);
2329 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2330 range_start = 0xffffffff;
2333 else if (p[0] == '-' && p[1] != ']')
2334 { /* This handles ranges made up of characters only. */
2335 reg_errcode_t ret;
2337 /* Move past the `-'. */
2338 PATFETCH (c1);
2340 ret = compile_range (c, &p, pend, translate, syntax, b);
2341 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2342 range_start = 0xffffffff;
2345 /* See if we're at the beginning of a possible character
2346 class. */
2348 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2349 { /* Leave room for the null. */
2350 char str[CHAR_CLASS_MAX_LENGTH + 1];
2352 PATFETCH (c);
2353 c1 = 0;
2355 /* If pattern is `[[:'. */
2356 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2358 for (;;)
2360 PATFETCH (c);
2361 if ((c == ':' && *p == ']') || p == pend)
2362 break;
2363 if (c1 < CHAR_CLASS_MAX_LENGTH)
2364 str[c1++] = c;
2365 else
2366 /* This is in any case an invalid class name. */
2367 str[0] = '\0';
2369 str[c1] = '\0';
2371 /* If isn't a word bracketed by `[:' and `:]':
2372 undo the ending character, the letters, and leave
2373 the leading `:' and `[' (but set bits for them). */
2374 if (c == ':' && *p == ']')
2376 #if defined _LIBC || WIDE_CHAR_SUPPORT
2377 boolean is_lower = STREQ (str, "lower");
2378 boolean is_upper = STREQ (str, "upper");
2379 wctype_t wt;
2380 int ch;
2382 wt = IS_CHAR_CLASS (str);
2383 if (wt == 0)
2384 FREE_STACK_RETURN (REG_ECTYPE);
2386 /* Throw away the ] at the end of the character
2387 class. */
2388 PATFETCH (c);
2390 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2392 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
2394 # ifdef _LIBC
2395 if (__iswctype (__btowc (ch), wt))
2396 SET_LIST_BIT (ch);
2397 # else
2398 if (iswctype (btowc (ch), wt))
2399 SET_LIST_BIT (ch);
2400 # endif
2402 if (translate && (is_upper || is_lower)
2403 && (ISUPPER (ch) || ISLOWER (ch)))
2404 SET_LIST_BIT (ch);
2407 had_char_class = true;
2408 #else
2409 int ch;
2410 boolean is_alnum = STREQ (str, "alnum");
2411 boolean is_alpha = STREQ (str, "alpha");
2412 boolean is_blank = STREQ (str, "blank");
2413 boolean is_cntrl = STREQ (str, "cntrl");
2414 boolean is_digit = STREQ (str, "digit");
2415 boolean is_graph = STREQ (str, "graph");
2416 boolean is_lower = STREQ (str, "lower");
2417 boolean is_print = STREQ (str, "print");
2418 boolean is_punct = STREQ (str, "punct");
2419 boolean is_space = STREQ (str, "space");
2420 boolean is_upper = STREQ (str, "upper");
2421 boolean is_xdigit = STREQ (str, "xdigit");
2423 if (!IS_CHAR_CLASS (str))
2424 FREE_STACK_RETURN (REG_ECTYPE);
2426 /* Throw away the ] at the end of the character
2427 class. */
2428 PATFETCH (c);
2430 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2432 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2434 /* This was split into 3 if's to
2435 avoid an arbitrary limit in some compiler. */
2436 if ( (is_alnum && ISALNUM (ch))
2437 || (is_alpha && ISALPHA (ch))
2438 || (is_blank && ISBLANK (ch))
2439 || (is_cntrl && ISCNTRL (ch)))
2440 SET_LIST_BIT (ch);
2441 if ( (is_digit && ISDIGIT (ch))
2442 || (is_graph && ISGRAPH (ch))
2443 || (is_lower && ISLOWER (ch))
2444 || (is_print && ISPRINT (ch)))
2445 SET_LIST_BIT (ch);
2446 if ( (is_punct && ISPUNCT (ch))
2447 || (is_space && ISSPACE (ch))
2448 || (is_upper && ISUPPER (ch))
2449 || (is_xdigit && ISXDIGIT (ch)))
2450 SET_LIST_BIT (ch);
2451 if ( translate && (is_upper || is_lower)
2452 && (ISUPPER (ch) || ISLOWER (ch)))
2453 SET_LIST_BIT (ch);
2455 had_char_class = true;
2456 #endif /* libc || wctype.h */
2458 else
2460 c1++;
2461 while (c1--)
2462 PATUNFETCH;
2463 SET_LIST_BIT ('[');
2464 SET_LIST_BIT (':');
2465 range_start = ':';
2466 had_char_class = false;
2469 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '=')
2471 unsigned char str[MB_LEN_MAX + 1];
2472 #ifdef _LIBC
2473 uint32_t nrules =
2474 _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
2475 #endif
2477 PATFETCH (c);
2478 c1 = 0;
2480 /* If pattern is `[[='. */
2481 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2483 for (;;)
2485 PATFETCH (c);
2486 if ((c == '=' && *p == ']') || p == pend)
2487 break;
2488 if (c1 < MB_LEN_MAX)
2489 str[c1++] = c;
2490 else
2491 /* This is in any case an invalid class name. */
2492 str[0] = '\0';
2494 str[c1] = '\0';
2496 if (c == '=' && *p == ']' && str[0] != '\0')
2498 /* If we have no collation data we use the default
2499 collation in which each character is in a class
2500 by itself. It also means that ASCII is the
2501 character set and therefore we cannot have character
2502 with more than one byte in the multibyte
2503 representation. */
2504 #ifdef _LIBC
2505 if (nrules == 0)
2506 #endif
2508 if (c1 != 1)
2509 FREE_STACK_RETURN (REG_ECOLLATE);
2511 /* Throw away the ] at the end of the equivalence
2512 class. */
2513 PATFETCH (c);
2515 /* Set the bit for the character. */
2516 SET_LIST_BIT (str[0]);
2518 #ifdef _LIBC
2519 else
2521 /* Try to match the byte sequence in `str' against
2522 those known to the collate implementation.
2523 First find out whether the bytes in `str' are
2524 actually from exactly one character. */
2525 const int32_t *table;
2526 const unsigned char *weights;
2527 const unsigned char *extra;
2528 const int32_t *indirect;
2529 int32_t idx;
2530 const unsigned char *cp = str;
2531 int ch;
2533 /* This #include defines a local function! */
2534 # include <locale/weight.h>
2536 table = (const int32_t *)
2537 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
2538 weights = (const unsigned char *)
2539 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB);
2540 extra = (const unsigned char *)
2541 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB);
2542 indirect = (const int32_t *)
2543 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB);
2545 idx = findidx (&cp);
2546 if (idx == 0 || cp < str + c1)
2547 /* This is no valid character. */
2548 FREE_STACK_RETURN (REG_ECOLLATE);
2550 /* Throw away the ] at the end of the equivalence
2551 class. */
2552 PATFETCH (c);
2554 /* Now we have to go throught the whole table
2555 and find all characters which have the same
2556 first level weight.
2558 XXX Note that this is not entirely correct.
2559 we would have to match multibyte sequences
2560 but this is not possible with the current
2561 implementation. */
2562 for (ch = 1; ch < 256; ++ch)
2563 /* XXX This test would have to be changed if we
2564 would allow matching multibyte sequences. */
2565 if (table[ch] > 0)
2567 int32_t idx2 = table[ch];
2568 size_t len = weights[idx2];
2570 /* Test whether the lenghts match. */
2571 if (weights[idx] == len)
2573 /* They do. New compare the bytes of
2574 the weight. */
2575 size_t cnt = 0;
2577 while (cnt < len
2578 && (weights[idx + 1 + cnt]
2579 == weights[idx2 + 1 + cnt]))
2580 ++len;
2582 if (cnt == len)
2583 /* They match. Mark the character as
2584 acceptable. */
2585 SET_LIST_BIT (ch);
2589 #endif
2590 had_char_class = true;
2592 else
2594 c1++;
2595 while (c1--)
2596 PATUNFETCH;
2597 SET_LIST_BIT ('[');
2598 SET_LIST_BIT ('=');
2599 range_start = '=';
2600 had_char_class = false;
2603 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '.')
2605 unsigned char str[128]; /* Should be large enough. */
2606 #ifdef _LIBC
2607 uint32_t nrules =
2608 _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
2609 #endif
2611 PATFETCH (c);
2612 c1 = 0;
2614 /* If pattern is `[[='. */
2615 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2617 for (;;)
2619 PATFETCH (c);
2620 if ((c == '.' && *p == ']') || p == pend)
2621 break;
2622 if (c1 < sizeof (str))
2623 str[c1++] = c;
2624 else
2625 /* This is in any case an invalid class name. */
2626 str[0] = '\0';
2628 str[c1] = '\0';
2630 if (c == '.' && *p == ']' && str[0] != '\0')
2632 /* If we have no collation data we use the default
2633 collation in which each character is the name
2634 for its own class which contains only the one
2635 character. It also means that ASCII is the
2636 character set and therefore we cannot have character
2637 with more than one byte in the multibyte
2638 representation. */
2639 #ifdef _LIBC
2640 if (nrules == 0)
2641 #endif
2643 if (c1 != 1)
2644 FREE_STACK_RETURN (REG_ECOLLATE);
2646 /* Throw away the ] at the end of the equivalence
2647 class. */
2648 PATFETCH (c);
2650 /* Set the bit for the character. */
2651 SET_LIST_BIT (str[0]);
2652 range_start = ((const unsigned char *) str)[0];
2654 #ifdef _LIBC
2655 else
2657 /* Try to match the byte sequence in `str' against
2658 those known to the collate implementation.
2659 First find out whether the bytes in `str' are
2660 actually from exactly one character. */
2661 int32_t table_size;
2662 const int32_t *symb_table;
2663 const unsigned char *extra;
2664 int32_t idx;
2665 int32_t elem;
2666 int32_t second;
2667 int32_t hash;
2669 table_size =
2670 _NL_CURRENT_WORD (LC_COLLATE,
2671 _NL_COLLATE_SYMB_HASH_SIZEMB);
2672 symb_table = (const int32_t *)
2673 _NL_CURRENT (LC_COLLATE,
2674 _NL_COLLATE_SYMB_TABLEMB);
2675 extra = (const unsigned char *)
2676 _NL_CURRENT (LC_COLLATE,
2677 _NL_COLLATE_SYMB_EXTRAMB);
2679 /* Locate the character in the hashing table. */
2680 hash = elem_hash (str, c1);
2682 idx = 0;
2683 elem = hash % table_size;
2684 second = hash % (table_size - 2);
2685 while (symb_table[2 * elem] != 0)
2687 /* First compare the hashing value. */
2688 if (symb_table[2 * elem] == hash
2689 && c1 == extra[symb_table[2 * elem + 1]]
2690 && memcmp (str,
2691 &extra[symb_table[2 * elem + 1]
2692 + 1],
2693 c1) == 0)
2695 /* Yep, this is the entry. */
2696 idx = symb_table[2 * elem + 1];
2697 idx += 1 + extra[idx];
2698 break;
2701 /* Next entry. */
2702 elem += second;
2705 if (symb_table[2 * elem] == 0)
2706 /* This is no valid character. */
2707 FREE_STACK_RETURN (REG_ECOLLATE);
2709 /* Throw away the ] at the end of the equivalence
2710 class. */
2711 PATFETCH (c);
2713 /* Now add the multibyte character(s) we found
2714 to the accept list.
2716 XXX Note that this is not entirely correct.
2717 we would have to match multibyte sequences
2718 but this is not possible with the current
2719 implementation. Also, we have to match
2720 collating symbols, which expand to more than
2721 one file, as a whole and not allow the
2722 individual bytes. */
2723 c1 = extra[idx++];
2724 if (c1 == 1)
2725 range_start = extra[idx];
2726 while (c1-- > 0)
2727 SET_LIST_BIT (extra[idx++]);
2729 #endif
2730 had_char_class = false;
2732 else
2734 c1++;
2735 while (c1--)
2736 PATUNFETCH;
2737 SET_LIST_BIT ('[');
2738 SET_LIST_BIT ('.');
2739 range_start = '.';
2740 had_char_class = false;
2743 else
2745 had_char_class = false;
2746 SET_LIST_BIT (c);
2747 range_start = c;
2751 /* Discard any (non)matching list bytes that are all 0 at the
2752 end of the map. Decrease the map-length byte too. */
2753 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2754 b[-1]--;
2755 b += b[-1];
2757 break;
2760 case '(':
2761 if (syntax & RE_NO_BK_PARENS)
2762 goto handle_open;
2763 else
2764 goto normal_char;
2767 case ')':
2768 if (syntax & RE_NO_BK_PARENS)
2769 goto handle_close;
2770 else
2771 goto normal_char;
2774 case '\n':
2775 if (syntax & RE_NEWLINE_ALT)
2776 goto handle_alt;
2777 else
2778 goto normal_char;
2781 case '|':
2782 if (syntax & RE_NO_BK_VBAR)
2783 goto handle_alt;
2784 else
2785 goto normal_char;
2788 case '{':
2789 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2790 goto handle_interval;
2791 else
2792 goto normal_char;
2795 case '\\':
2796 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2798 /* Do not translate the character after the \, so that we can
2799 distinguish, e.g., \B from \b, even if we normally would
2800 translate, e.g., B to b. */
2801 PATFETCH_RAW (c);
2803 switch (c)
2805 case '(':
2806 if (syntax & RE_NO_BK_PARENS)
2807 goto normal_backslash;
2809 handle_open:
2810 bufp->re_nsub++;
2811 regnum++;
2813 if (COMPILE_STACK_FULL)
2815 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2816 compile_stack_elt_t);
2817 if (compile_stack.stack == NULL) return REG_ESPACE;
2819 compile_stack.size <<= 1;
2822 /* These are the values to restore when we hit end of this
2823 group. They are all relative offsets, so that if the
2824 whole pattern moves because of realloc, they will still
2825 be valid. */
2826 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2827 COMPILE_STACK_TOP.fixup_alt_jump
2828 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2829 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2830 COMPILE_STACK_TOP.regnum = regnum;
2832 /* We will eventually replace the 0 with the number of
2833 groups inner to this one. But do not push a
2834 start_memory for groups beyond the last one we can
2835 represent in the compiled pattern. */
2836 if (regnum <= MAX_REGNUM)
2838 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2839 BUF_PUSH_3 (start_memory, regnum, 0);
2842 compile_stack.avail++;
2844 fixup_alt_jump = 0;
2845 laststart = 0;
2846 begalt = b;
2847 /* If we've reached MAX_REGNUM groups, then this open
2848 won't actually generate any code, so we'll have to
2849 clear pending_exact explicitly. */
2850 pending_exact = 0;
2851 break;
2854 case ')':
2855 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2857 if (COMPILE_STACK_EMPTY)
2859 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2860 goto normal_backslash;
2861 else
2862 FREE_STACK_RETURN (REG_ERPAREN);
2865 handle_close:
2866 if (fixup_alt_jump)
2867 { /* Push a dummy failure point at the end of the
2868 alternative for a possible future
2869 `pop_failure_jump' to pop. See comments at
2870 `push_dummy_failure' in `re_match_2'. */
2871 BUF_PUSH (push_dummy_failure);
2873 /* We allocated space for this jump when we assigned
2874 to `fixup_alt_jump', in the `handle_alt' case below. */
2875 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2878 /* See similar code for backslashed left paren above. */
2879 if (COMPILE_STACK_EMPTY)
2881 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2882 goto normal_char;
2883 else
2884 FREE_STACK_RETURN (REG_ERPAREN);
2887 /* Since we just checked for an empty stack above, this
2888 ``can't happen''. */
2889 assert (compile_stack.avail != 0);
2891 /* We don't just want to restore into `regnum', because
2892 later groups should continue to be numbered higher,
2893 as in `(ab)c(de)' -- the second group is #2. */
2894 regnum_t this_group_regnum;
2896 compile_stack.avail--;
2897 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2898 fixup_alt_jump
2899 = COMPILE_STACK_TOP.fixup_alt_jump
2900 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2901 : 0;
2902 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2903 this_group_regnum = COMPILE_STACK_TOP.regnum;
2904 /* If we've reached MAX_REGNUM groups, then this open
2905 won't actually generate any code, so we'll have to
2906 clear pending_exact explicitly. */
2907 pending_exact = 0;
2909 /* We're at the end of the group, so now we know how many
2910 groups were inside this one. */
2911 if (this_group_regnum <= MAX_REGNUM)
2913 unsigned char *inner_group_loc
2914 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2916 *inner_group_loc = regnum - this_group_regnum;
2917 BUF_PUSH_3 (stop_memory, this_group_regnum,
2918 regnum - this_group_regnum);
2921 break;
2924 case '|': /* `\|'. */
2925 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2926 goto normal_backslash;
2927 handle_alt:
2928 if (syntax & RE_LIMITED_OPS)
2929 goto normal_char;
2931 /* Insert before the previous alternative a jump which
2932 jumps to this alternative if the former fails. */
2933 GET_BUFFER_SPACE (3);
2934 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2935 pending_exact = 0;
2936 b += 3;
2938 /* The alternative before this one has a jump after it
2939 which gets executed if it gets matched. Adjust that
2940 jump so it will jump to this alternative's analogous
2941 jump (put in below, which in turn will jump to the next
2942 (if any) alternative's such jump, etc.). The last such
2943 jump jumps to the correct final destination. A picture:
2944 _____ _____
2945 | | | |
2946 | v | v
2947 a | b | c
2949 If we are at `b', then fixup_alt_jump right now points to a
2950 three-byte space after `a'. We'll put in the jump, set
2951 fixup_alt_jump to right after `b', and leave behind three
2952 bytes which we'll fill in when we get to after `c'. */
2954 if (fixup_alt_jump)
2955 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2957 /* Mark and leave space for a jump after this alternative,
2958 to be filled in later either by next alternative or
2959 when know we're at the end of a series of alternatives. */
2960 fixup_alt_jump = b;
2961 GET_BUFFER_SPACE (3);
2962 b += 3;
2964 laststart = 0;
2965 begalt = b;
2966 break;
2969 case '{':
2970 /* If \{ is a literal. */
2971 if (!(syntax & RE_INTERVALS)
2972 /* If we're at `\{' and it's not the open-interval
2973 operator. */
2974 || (syntax & RE_NO_BK_BRACES))
2975 goto normal_backslash;
2977 handle_interval:
2979 /* If got here, then the syntax allows intervals. */
2981 /* At least (most) this many matches must be made. */
2982 int lower_bound = -1, upper_bound = -1;
2984 beg_interval = p - 1;
2986 if (p == pend)
2988 if (!(syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2989 goto unfetch_interval;
2990 else
2991 FREE_STACK_RETURN (REG_EBRACE);
2994 GET_UNSIGNED_NUMBER (lower_bound);
2996 if (c == ',')
2998 GET_UNSIGNED_NUMBER (upper_bound);
2999 if ((!(syntax & RE_NO_BK_BRACES) && c != '\\')
3000 || ((syntax & RE_NO_BK_BRACES) && c != '}'))
3001 FREE_STACK_RETURN (REG_BADBR);
3003 if (upper_bound < 0)
3004 upper_bound = RE_DUP_MAX;
3006 else
3007 /* Interval such as `{1}' => match exactly once. */
3008 upper_bound = lower_bound;
3010 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
3011 || lower_bound > upper_bound)
3013 if (!(syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
3014 goto unfetch_interval;
3015 else
3016 FREE_STACK_RETURN (REG_BADBR);
3019 if (!(syntax & RE_NO_BK_BRACES))
3021 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
3023 PATFETCH (c);
3026 if (c != '}')
3028 if (!(syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
3029 goto unfetch_interval;
3030 else
3031 FREE_STACK_RETURN (REG_BADBR);
3034 /* We just parsed a valid interval. */
3036 /* If it's invalid to have no preceding re. */
3037 if (!laststart)
3039 if (syntax & RE_CONTEXT_INVALID_OPS)
3040 FREE_STACK_RETURN (REG_BADRPT);
3041 else if (syntax & RE_CONTEXT_INDEP_OPS)
3042 laststart = b;
3043 else
3044 goto unfetch_interval;
3047 /* If the upper bound is zero, don't want to succeed at
3048 all; jump from `laststart' to `b + 3', which will be
3049 the end of the buffer after we insert the jump. */
3050 if (upper_bound == 0)
3052 GET_BUFFER_SPACE (3);
3053 INSERT_JUMP (jump, laststart, b + 3);
3054 b += 3;
3057 /* Otherwise, we have a nontrivial interval. When
3058 we're all done, the pattern will look like:
3059 set_number_at <jump count> <upper bound>
3060 set_number_at <succeed_n count> <lower bound>
3061 succeed_n <after jump addr> <succeed_n count>
3062 <body of loop>
3063 jump_n <succeed_n addr> <jump count>
3064 (The upper bound and `jump_n' are omitted if
3065 `upper_bound' is 1, though.) */
3066 else
3067 { /* If the upper bound is > 1, we need to insert
3068 more at the end of the loop. */
3069 unsigned nbytes = 10 + (upper_bound > 1) * 10;
3071 GET_BUFFER_SPACE (nbytes);
3073 /* Initialize lower bound of the `succeed_n', even
3074 though it will be set during matching by its
3075 attendant `set_number_at' (inserted next),
3076 because `re_compile_fastmap' needs to know.
3077 Jump to the `jump_n' we might insert below. */
3078 INSERT_JUMP2 (succeed_n, laststart,
3079 b + 5 + (upper_bound > 1) * 5,
3080 lower_bound);
3081 b += 5;
3083 /* Code to initialize the lower bound. Insert
3084 before the `succeed_n'. The `5' is the last two
3085 bytes of this `set_number_at', plus 3 bytes of
3086 the following `succeed_n'. */
3087 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3088 b += 5;
3090 if (upper_bound > 1)
3091 { /* More than one repetition is allowed, so
3092 append a backward jump to the `succeed_n'
3093 that starts this interval.
3095 When we've reached this during matching,
3096 we'll have matched the interval once, so
3097 jump back only `upper_bound - 1' times. */
3098 STORE_JUMP2 (jump_n, b, laststart + 5,
3099 upper_bound - 1);
3100 b += 5;
3102 /* The location we want to set is the second
3103 parameter of the `jump_n'; that is `b-2' as
3104 an absolute address. `laststart' will be
3105 the `set_number_at' we're about to insert;
3106 `laststart+3' the number to set, the source
3107 for the relative address. But we are
3108 inserting into the middle of the pattern --
3109 so everything is getting moved up by 5.
3110 Conclusion: (b - 2) - (laststart + 3) + 5,
3111 i.e., b - laststart.
3113 We insert this at the beginning of the loop
3114 so that if we fail during matching, we'll
3115 reinitialize the bounds. */
3116 insert_op2 (set_number_at, laststart, b - laststart,
3117 upper_bound - 1, b);
3118 b += 5;
3121 pending_exact = 0;
3122 beg_interval = NULL;
3124 break;
3126 unfetch_interval:
3127 /* If an invalid interval, match the characters as literals. */
3128 assert (beg_interval);
3129 p = beg_interval;
3130 beg_interval = NULL;
3132 /* normal_char and normal_backslash need `c'. */
3133 PATFETCH (c);
3135 if (!(syntax & RE_NO_BK_BRACES))
3137 if (p > pattern && p[-1] == '\\')
3138 goto normal_backslash;
3140 goto normal_char;
3142 #ifdef emacs
3143 /* There is no way to specify the before_dot and after_dot
3144 operators. rms says this is ok. --karl */
3145 case '=':
3146 BUF_PUSH (at_dot);
3147 break;
3149 case 's':
3150 laststart = b;
3151 PATFETCH (c);
3152 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3153 break;
3155 case 'S':
3156 laststart = b;
3157 PATFETCH (c);
3158 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3159 break;
3160 #endif /* emacs */
3163 case 'w':
3164 if (syntax & RE_NO_GNU_OPS)
3165 goto normal_char;
3166 laststart = b;
3167 BUF_PUSH (wordchar);
3168 break;
3171 case 'W':
3172 if (syntax & RE_NO_GNU_OPS)
3173 goto normal_char;
3174 laststart = b;
3175 BUF_PUSH (notwordchar);
3176 break;
3179 case '<':
3180 if (syntax & RE_NO_GNU_OPS)
3181 goto normal_char;
3182 BUF_PUSH (wordbeg);
3183 break;
3185 case '>':
3186 if (syntax & RE_NO_GNU_OPS)
3187 goto normal_char;
3188 BUF_PUSH (wordend);
3189 break;
3191 case 'b':
3192 if (syntax & RE_NO_GNU_OPS)
3193 goto normal_char;
3194 BUF_PUSH (wordbound);
3195 break;
3197 case 'B':
3198 if (syntax & RE_NO_GNU_OPS)
3199 goto normal_char;
3200 BUF_PUSH (notwordbound);
3201 break;
3203 case '`':
3204 if (syntax & RE_NO_GNU_OPS)
3205 goto normal_char;
3206 BUF_PUSH (begbuf);
3207 break;
3209 case '\'':
3210 if (syntax & RE_NO_GNU_OPS)
3211 goto normal_char;
3212 BUF_PUSH (endbuf);
3213 break;
3215 case '1': case '2': case '3': case '4': case '5':
3216 case '6': case '7': case '8': case '9':
3217 if (syntax & RE_NO_BK_REFS)
3218 goto normal_char;
3220 c1 = c - '0';
3222 if (c1 > regnum)
3223 FREE_STACK_RETURN (REG_ESUBREG);
3225 /* Can't back reference to a subexpression if inside of it. */
3226 if (group_in_compile_stack (compile_stack, (regnum_t) c1))
3227 goto normal_char;
3229 laststart = b;
3230 BUF_PUSH_2 (duplicate, c1);
3231 break;
3234 case '+':
3235 case '?':
3236 if (syntax & RE_BK_PLUS_QM)
3237 goto handle_plus;
3238 else
3239 goto normal_backslash;
3241 default:
3242 normal_backslash:
3243 /* You might think it would be useful for \ to mean
3244 not to translate; but if we don't translate it
3245 it will never match anything. */
3246 c = TRANSLATE (c);
3247 goto normal_char;
3249 break;
3252 default:
3253 /* Expects the character in `c'. */
3254 normal_char:
3255 /* If no exactn currently being built. */
3256 if (!pending_exact
3258 /* If last exactn not at current position. */
3259 || pending_exact + *pending_exact + 1 != b
3261 /* We have only one byte following the exactn for the count. */
3262 || *pending_exact == (1 << BYTEWIDTH) - 1
3264 /* If followed by a repetition operator. */
3265 || *p == '*' || *p == '^'
3266 || ((syntax & RE_BK_PLUS_QM)
3267 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
3268 : (*p == '+' || *p == '?'))
3269 || ((syntax & RE_INTERVALS)
3270 && ((syntax & RE_NO_BK_BRACES)
3271 ? *p == '{'
3272 : (p[0] == '\\' && p[1] == '{'))))
3274 /* Start building a new exactn. */
3276 laststart = b;
3278 BUF_PUSH_2 (exactn, 0);
3279 pending_exact = b - 1;
3282 BUF_PUSH (c);
3283 (*pending_exact)++;
3284 break;
3285 } /* switch (c) */
3286 } /* while p != pend */
3289 /* Through the pattern now. */
3291 if (fixup_alt_jump)
3292 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
3294 if (!COMPILE_STACK_EMPTY)
3295 FREE_STACK_RETURN (REG_EPAREN);
3297 /* If we don't want backtracking, force success
3298 the first time we reach the end of the compiled pattern. */
3299 if (syntax & RE_NO_POSIX_BACKTRACKING)
3300 BUF_PUSH (succeed);
3302 free (compile_stack.stack);
3304 /* We have succeeded; set the length of the buffer. */
3305 bufp->used = b - bufp->buffer;
3307 #ifdef DEBUG
3308 if (debug)
3310 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3311 print_compiled_pattern (bufp);
3313 #endif /* DEBUG */
3315 #ifndef MATCH_MAY_ALLOCATE
3316 /* Initialize the failure stack to the largest possible stack. This
3317 isn't necessary unless we're trying to avoid calling alloca in
3318 the search and match routines. */
3320 int num_regs = bufp->re_nsub + 1;
3322 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
3323 is strictly greater than re_max_failures, the largest possible stack
3324 is 2 * re_max_failures failure points. */
3325 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
3327 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
3329 # ifdef emacs
3330 if (! fail_stack.stack)
3331 fail_stack.stack
3332 = (fail_stack_elt_t *) xmalloc (fail_stack.size
3333 * sizeof (fail_stack_elt_t));
3334 else
3335 fail_stack.stack
3336 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
3337 (fail_stack.size
3338 * sizeof (fail_stack_elt_t)));
3339 # else /* not emacs */
3340 if (! fail_stack.stack)
3341 fail_stack.stack
3342 = (fail_stack_elt_t *) malloc (fail_stack.size
3343 * sizeof (fail_stack_elt_t));
3344 else
3345 fail_stack.stack
3346 = (fail_stack_elt_t *) realloc (fail_stack.stack,
3347 (fail_stack.size
3348 * sizeof (fail_stack_elt_t)));
3349 # endif /* not emacs */
3352 regex_grow_registers (num_regs);
3354 #endif /* not MATCH_MAY_ALLOCATE */
3356 return REG_NOERROR;
3357 } /* regex_compile */
3359 /* Subroutines for `regex_compile'. */
3361 /* Store OP at LOC followed by two-byte integer parameter ARG. */
3363 static void
3364 store_op1 (op, loc, arg)
3365 re_opcode_t op;
3366 unsigned char *loc;
3367 int arg;
3369 *loc = (unsigned char) op;
3370 STORE_NUMBER (loc + 1, arg);
3374 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3376 static void
3377 store_op2 (op, loc, arg1, arg2)
3378 re_opcode_t op;
3379 unsigned char *loc;
3380 int arg1, arg2;
3382 *loc = (unsigned char) op;
3383 STORE_NUMBER (loc + 1, arg1);
3384 STORE_NUMBER (loc + 3, arg2);
3388 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3389 for OP followed by two-byte integer parameter ARG. */
3391 static void
3392 insert_op1 (op, loc, arg, end)
3393 re_opcode_t op;
3394 unsigned char *loc;
3395 int arg;
3396 unsigned char *end;
3398 register unsigned char *pfrom = end;
3399 register unsigned char *pto = end + 3;
3401 while (pfrom != loc)
3402 *--pto = *--pfrom;
3404 store_op1 (op, loc, arg);
3408 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3410 static void
3411 insert_op2 (op, loc, arg1, arg2, end)
3412 re_opcode_t op;
3413 unsigned char *loc;
3414 int arg1, arg2;
3415 unsigned char *end;
3417 register unsigned char *pfrom = end;
3418 register unsigned char *pto = end + 5;
3420 while (pfrom != loc)
3421 *--pto = *--pfrom;
3423 store_op2 (op, loc, arg1, arg2);
3427 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3428 after an alternative or a begin-subexpression. We assume there is at
3429 least one character before the ^. */
3431 static boolean
3432 at_begline_loc_p (pattern, p, syntax)
3433 const char *pattern, *p;
3434 reg_syntax_t syntax;
3436 const char *prev = p - 2;
3437 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
3439 return
3440 /* After a subexpression? */
3441 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
3442 /* After an alternative? */
3443 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
3447 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3448 at least one character after the $, i.e., `P < PEND'. */
3450 static boolean
3451 at_endline_loc_p (p, pend, syntax)
3452 const char *p, *pend;
3453 reg_syntax_t syntax;
3455 const char *next = p;
3456 boolean next_backslash = *next == '\\';
3457 const char *next_next = p + 1 < pend ? p + 1 : 0;
3459 return
3460 /* Before a subexpression? */
3461 (syntax & RE_NO_BK_PARENS ? *next == ')'
3462 : next_backslash && next_next && *next_next == ')')
3463 /* Before an alternative? */
3464 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3465 : next_backslash && next_next && *next_next == '|');
3469 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3470 false if it's not. */
3472 static boolean
3473 group_in_compile_stack (compile_stack, regnum)
3474 compile_stack_type compile_stack;
3475 regnum_t regnum;
3477 int this_element;
3479 for (this_element = compile_stack.avail - 1;
3480 this_element >= 0;
3481 this_element--)
3482 if (compile_stack.stack[this_element].regnum == regnum)
3483 return true;
3485 return false;
3489 /* Read the ending character of a range (in a bracket expression) from the
3490 uncompiled pattern *P_PTR (which ends at PEND). We assume the
3491 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
3492 Then we set the translation of all bits between the starting and
3493 ending characters (inclusive) in the compiled pattern B.
3495 Return an error code.
3497 We use these short variable names so we can use the same macros as
3498 `regex_compile' itself. */
3500 static reg_errcode_t
3501 compile_range (range_start_char, p_ptr, pend, translate, syntax, b)
3502 unsigned int range_start_char;
3503 const char **p_ptr, *pend;
3504 RE_TRANSLATE_TYPE translate;
3505 reg_syntax_t syntax;
3506 unsigned char *b;
3508 unsigned this_char;
3510 const char *p = *p_ptr;
3511 reg_errcode_t ret;
3512 char range_start[2];
3513 char range_end[2];
3514 char ch[2];
3516 if (p == pend)
3517 return REG_ERANGE;
3519 /* Fetch the endpoints without translating them; the
3520 appropriate translation is done in the bit-setting loop below. */
3521 range_start[0] = range_start_char;
3522 range_start[1] = '\0';
3523 range_end[0] = p[0];
3524 range_end[1] = '\0';
3526 /* Have to increment the pointer into the pattern string, so the
3527 caller isn't still at the ending character. */
3528 (*p_ptr)++;
3530 /* Report an error if the range is empty and the syntax prohibits this. */
3531 ret = syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
3533 /* Here we see why `this_char' has to be larger than an `unsigned
3534 char' -- we would otherwise go into an infinite loop, since all
3535 characters <= 0xff. */
3536 ch[1] = '\0';
3537 for (this_char = 0; this_char <= (unsigned char) -1; ++this_char)
3539 ch[0] = this_char;
3540 if (strcoll (range_start, ch) <= 0 && strcoll (ch, range_end) <= 0)
3542 SET_LIST_BIT (TRANSLATE (this_char));
3543 ret = REG_NOERROR;
3547 return ret;
3550 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3551 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3552 characters can start a string that matches the pattern. This fastmap
3553 is used by re_search to skip quickly over impossible starting points.
3555 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3556 area as BUFP->fastmap.
3558 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3559 the pattern buffer.
3561 Returns 0 if we succeed, -2 if an internal error. */
3564 re_compile_fastmap (bufp)
3565 struct re_pattern_buffer *bufp;
3567 int j, k;
3568 #ifdef MATCH_MAY_ALLOCATE
3569 fail_stack_type fail_stack;
3570 #endif
3571 #ifndef REGEX_MALLOC
3572 char *destination;
3573 #endif
3575 register char *fastmap = bufp->fastmap;
3576 unsigned char *pattern = bufp->buffer;
3577 unsigned char *p = pattern;
3578 register unsigned char *pend = pattern + bufp->used;
3580 #ifdef REL_ALLOC
3581 /* This holds the pointer to the failure stack, when
3582 it is allocated relocatably. */
3583 fail_stack_elt_t *failure_stack_ptr;
3584 #endif
3586 /* Assume that each path through the pattern can be null until
3587 proven otherwise. We set this false at the bottom of switch
3588 statement, to which we get only if a particular path doesn't
3589 match the empty string. */
3590 boolean path_can_be_null = true;
3592 /* We aren't doing a `succeed_n' to begin with. */
3593 boolean succeed_n_p = false;
3595 assert (fastmap != NULL && p != NULL);
3597 INIT_FAIL_STACK ();
3598 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
3599 bufp->fastmap_accurate = 1; /* It will be when we're done. */
3600 bufp->can_be_null = 0;
3602 while (1)
3604 if (p == pend || *p == succeed)
3606 /* We have reached the (effective) end of pattern. */
3607 if (!FAIL_STACK_EMPTY ())
3609 bufp->can_be_null |= path_can_be_null;
3611 /* Reset for next path. */
3612 path_can_be_null = true;
3614 p = fail_stack.stack[--fail_stack.avail].pointer;
3616 continue;
3618 else
3619 break;
3622 /* We should never be about to go beyond the end of the pattern. */
3623 assert (p < pend);
3625 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3628 /* I guess the idea here is to simply not bother with a fastmap
3629 if a backreference is used, since it's too hard to figure out
3630 the fastmap for the corresponding group. Setting
3631 `can_be_null' stops `re_search_2' from using the fastmap, so
3632 that is all we do. */
3633 case duplicate:
3634 bufp->can_be_null = 1;
3635 goto done;
3638 /* Following are the cases which match a character. These end
3639 with `break'. */
3641 case exactn:
3642 fastmap[p[1]] = 1;
3643 break;
3646 case charset:
3647 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3648 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3649 fastmap[j] = 1;
3650 break;
3653 case charset_not:
3654 /* Chars beyond end of map must be allowed. */
3655 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
3656 fastmap[j] = 1;
3658 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3659 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3660 fastmap[j] = 1;
3661 break;
3664 case wordchar:
3665 for (j = 0; j < (1 << BYTEWIDTH); j++)
3666 if (SYNTAX (j) == Sword)
3667 fastmap[j] = 1;
3668 break;
3671 case notwordchar:
3672 for (j = 0; j < (1 << BYTEWIDTH); j++)
3673 if (SYNTAX (j) != Sword)
3674 fastmap[j] = 1;
3675 break;
3678 case anychar:
3680 int fastmap_newline = fastmap['\n'];
3682 /* `.' matches anything ... */
3683 for (j = 0; j < (1 << BYTEWIDTH); j++)
3684 fastmap[j] = 1;
3686 /* ... except perhaps newline. */
3687 if (!(bufp->syntax & RE_DOT_NEWLINE))
3688 fastmap['\n'] = fastmap_newline;
3690 /* Return if we have already set `can_be_null'; if we have,
3691 then the fastmap is irrelevant. Something's wrong here. */
3692 else if (bufp->can_be_null)
3693 goto done;
3695 /* Otherwise, have to check alternative paths. */
3696 break;
3699 #ifdef emacs
3700 case syntaxspec:
3701 k = *p++;
3702 for (j = 0; j < (1 << BYTEWIDTH); j++)
3703 if (SYNTAX (j) == (enum syntaxcode) k)
3704 fastmap[j] = 1;
3705 break;
3708 case notsyntaxspec:
3709 k = *p++;
3710 for (j = 0; j < (1 << BYTEWIDTH); j++)
3711 if (SYNTAX (j) != (enum syntaxcode) k)
3712 fastmap[j] = 1;
3713 break;
3716 /* All cases after this match the empty string. These end with
3717 `continue'. */
3720 case before_dot:
3721 case at_dot:
3722 case after_dot:
3723 continue;
3724 #endif /* emacs */
3727 case no_op:
3728 case begline:
3729 case endline:
3730 case begbuf:
3731 case endbuf:
3732 case wordbound:
3733 case notwordbound:
3734 case wordbeg:
3735 case wordend:
3736 case push_dummy_failure:
3737 continue;
3740 case jump_n:
3741 case pop_failure_jump:
3742 case maybe_pop_jump:
3743 case jump:
3744 case jump_past_alt:
3745 case dummy_failure_jump:
3746 EXTRACT_NUMBER_AND_INCR (j, p);
3747 p += j;
3748 if (j > 0)
3749 continue;
3751 /* Jump backward implies we just went through the body of a
3752 loop and matched nothing. Opcode jumped to should be
3753 `on_failure_jump' or `succeed_n'. Just treat it like an
3754 ordinary jump. For a * loop, it has pushed its failure
3755 point already; if so, discard that as redundant. */
3756 if ((re_opcode_t) *p != on_failure_jump
3757 && (re_opcode_t) *p != succeed_n)
3758 continue;
3760 p++;
3761 EXTRACT_NUMBER_AND_INCR (j, p);
3762 p += j;
3764 /* If what's on the stack is where we are now, pop it. */
3765 if (!FAIL_STACK_EMPTY ()
3766 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
3767 fail_stack.avail--;
3769 continue;
3772 case on_failure_jump:
3773 case on_failure_keep_string_jump:
3774 handle_on_failure_jump:
3775 EXTRACT_NUMBER_AND_INCR (j, p);
3777 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3778 end of the pattern. We don't want to push such a point,
3779 since when we restore it above, entering the switch will
3780 increment `p' past the end of the pattern. We don't need
3781 to push such a point since we obviously won't find any more
3782 fastmap entries beyond `pend'. Such a pattern can match
3783 the null string, though. */
3784 if (p + j < pend)
3786 if (!PUSH_PATTERN_OP (p + j, fail_stack))
3788 RESET_FAIL_STACK ();
3789 return -2;
3792 else
3793 bufp->can_be_null = 1;
3795 if (succeed_n_p)
3797 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
3798 succeed_n_p = false;
3801 continue;
3804 case succeed_n:
3805 /* Get to the number of times to succeed. */
3806 p += 2;
3808 /* Increment p past the n for when k != 0. */
3809 EXTRACT_NUMBER_AND_INCR (k, p);
3810 if (k == 0)
3812 p -= 4;
3813 succeed_n_p = true; /* Spaghetti code alert. */
3814 goto handle_on_failure_jump;
3816 continue;
3819 case set_number_at:
3820 p += 4;
3821 continue;
3824 case start_memory:
3825 case stop_memory:
3826 p += 2;
3827 continue;
3830 default:
3831 abort (); /* We have listed all the cases. */
3832 } /* switch *p++ */
3834 /* Getting here means we have found the possible starting
3835 characters for one path of the pattern -- and that the empty
3836 string does not match. We need not follow this path further.
3837 Instead, look at the next alternative (remembered on the
3838 stack), or quit if no more. The test at the top of the loop
3839 does these things. */
3840 path_can_be_null = false;
3841 p = pend;
3842 } /* while p */
3844 /* Set `can_be_null' for the last path (also the first path, if the
3845 pattern is empty). */
3846 bufp->can_be_null |= path_can_be_null;
3848 done:
3849 RESET_FAIL_STACK ();
3850 return 0;
3851 } /* re_compile_fastmap */
3852 #ifdef _LIBC
3853 weak_alias (__re_compile_fastmap, re_compile_fastmap)
3854 #endif
3856 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3857 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3858 this memory for recording register information. STARTS and ENDS
3859 must be allocated using the malloc library routine, and must each
3860 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3862 If NUM_REGS == 0, then subsequent matches should allocate their own
3863 register data.
3865 Unless this function is called, the first search or match using
3866 PATTERN_BUFFER will allocate its own register data, without
3867 freeing the old data. */
3869 void
3870 re_set_registers (bufp, regs, num_regs, starts, ends)
3871 struct re_pattern_buffer *bufp;
3872 struct re_registers *regs;
3873 unsigned num_regs;
3874 regoff_t *starts, *ends;
3876 if (num_regs)
3878 bufp->regs_allocated = REGS_REALLOCATE;
3879 regs->num_regs = num_regs;
3880 regs->start = starts;
3881 regs->end = ends;
3883 else
3885 bufp->regs_allocated = REGS_UNALLOCATED;
3886 regs->num_regs = 0;
3887 regs->start = regs->end = (regoff_t *) 0;
3890 #ifdef _LIBC
3891 weak_alias (__re_set_registers, re_set_registers)
3892 #endif
3894 /* Searching routines. */
3896 /* Like re_search_2, below, but only one string is specified, and
3897 doesn't let you say where to stop matching. */
3900 re_search (bufp, string, size, startpos, range, regs)
3901 struct re_pattern_buffer *bufp;
3902 const char *string;
3903 int size, startpos, range;
3904 struct re_registers *regs;
3906 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3907 regs, size);
3909 #ifdef _LIBC
3910 weak_alias (__re_search, re_search)
3911 #endif
3914 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3915 virtual concatenation of STRING1 and STRING2, starting first at index
3916 STARTPOS, then at STARTPOS + 1, and so on.
3918 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3920 RANGE is how far to scan while trying to match. RANGE = 0 means try
3921 only at STARTPOS; in general, the last start tried is STARTPOS +
3922 RANGE.
3924 In REGS, return the indices of the virtual concatenation of STRING1
3925 and STRING2 that matched the entire BUFP->buffer and its contained
3926 subexpressions.
3928 Do not consider matching one past the index STOP in the virtual
3929 concatenation of STRING1 and STRING2.
3931 We return either the position in the strings at which the match was
3932 found, -1 if no match, or -2 if error (such as failure
3933 stack overflow). */
3936 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3937 struct re_pattern_buffer *bufp;
3938 const char *string1, *string2;
3939 int size1, size2;
3940 int startpos;
3941 int range;
3942 struct re_registers *regs;
3943 int stop;
3945 int val;
3946 register char *fastmap = bufp->fastmap;
3947 register RE_TRANSLATE_TYPE translate = bufp->translate;
3948 int total_size = size1 + size2;
3949 int endpos = startpos + range;
3951 /* Check for out-of-range STARTPOS. */
3952 if (startpos < 0 || startpos > total_size)
3953 return -1;
3955 /* Fix up RANGE if it might eventually take us outside
3956 the virtual concatenation of STRING1 and STRING2.
3957 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3958 if (endpos < 0)
3959 range = 0 - startpos;
3960 else if (endpos > total_size)
3961 range = total_size - startpos;
3963 /* If the search isn't to be a backwards one, don't waste time in a
3964 search for a pattern that must be anchored. */
3965 if (bufp->used > 0 && range > 0
3966 && ((re_opcode_t) bufp->buffer[0] == begbuf
3967 /* `begline' is like `begbuf' if it cannot match at newlines. */
3968 || ((re_opcode_t) bufp->buffer[0] == begline
3969 && !bufp->newline_anchor)))
3971 if (startpos > 0)
3972 return -1;
3973 else
3974 range = 1;
3977 #ifdef emacs
3978 /* In a forward search for something that starts with \=.
3979 don't keep searching past point. */
3980 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3982 range = PT - startpos;
3983 if (range <= 0)
3984 return -1;
3986 #endif /* emacs */
3988 /* Update the fastmap now if not correct already. */
3989 if (fastmap && !bufp->fastmap_accurate)
3990 if (re_compile_fastmap (bufp) == -2)
3991 return -2;
3993 /* Loop through the string, looking for a place to start matching. */
3994 for (;;)
3996 /* If a fastmap is supplied, skip quickly over characters that
3997 cannot be the start of a match. If the pattern can match the
3998 null string, however, we don't need to skip characters; we want
3999 the first null string. */
4000 if (fastmap && startpos < total_size && !bufp->can_be_null)
4002 if (range > 0) /* Searching forwards. */
4004 register const char *d;
4005 register int lim = 0;
4006 int irange = range;
4008 if (startpos < size1 && startpos + range >= size1)
4009 lim = range - (size1 - startpos);
4011 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
4013 /* Written out as an if-else to avoid testing `translate'
4014 inside the loop. */
4015 if (translate)
4016 while (range > lim
4017 && !fastmap[(unsigned char)
4018 translate[(unsigned char) *d++]])
4019 range--;
4020 else
4021 while (range > lim && !fastmap[(unsigned char) *d++])
4022 range--;
4024 startpos += irange - range;
4026 else /* Searching backwards. */
4028 register char c = (size1 == 0 || startpos >= size1
4029 ? string2[startpos - size1]
4030 : string1[startpos]);
4032 if (!fastmap[(unsigned char) TRANSLATE (c)])
4033 goto advance;
4037 /* If can't match the null string, and that's all we have left, fail. */
4038 if (range >= 0 && startpos == total_size && fastmap
4039 && !bufp->can_be_null)
4040 return -1;
4042 val = re_match_2_internal (bufp, string1, size1, string2, size2,
4043 startpos, regs, stop);
4044 #ifndef REGEX_MALLOC
4045 # ifdef C_ALLOCA
4046 alloca (0);
4047 # endif
4048 #endif
4050 if (val >= 0)
4051 return startpos;
4053 if (val == -2)
4054 return -2;
4056 advance:
4057 if (!range)
4058 break;
4059 else if (range > 0)
4061 range--;
4062 startpos++;
4064 else
4066 range++;
4067 startpos--;
4070 return -1;
4071 } /* re_search_2 */
4072 #ifdef _LIBC
4073 weak_alias (__re_search_2, re_search_2)
4074 #endif
4076 /* This converts PTR, a pointer into one of the search strings `string1'
4077 and `string2' into an offset from the beginning of that string. */
4078 #define POINTER_TO_OFFSET(ptr) \
4079 (FIRST_STRING_P (ptr) \
4080 ? ((regoff_t) ((ptr) - string1)) \
4081 : ((regoff_t) ((ptr) - string2 + size1)))
4083 /* Macros for dealing with the split strings in re_match_2. */
4085 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
4087 /* Call before fetching a character with *d. This switches over to
4088 string2 if necessary. */
4089 #define PREFETCH() \
4090 while (d == dend) \
4092 /* End of string2 => fail. */ \
4093 if (dend == end_match_2) \
4094 goto fail; \
4095 /* End of string1 => advance to string2. */ \
4096 d = string2; \
4097 dend = end_match_2; \
4101 /* Test if at very beginning or at very end of the virtual concatenation
4102 of `string1' and `string2'. If only one string, it's `string2'. */
4103 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
4104 #define AT_STRINGS_END(d) ((d) == end2)
4107 /* Test if D points to a character which is word-constituent. We have
4108 two special cases to check for: if past the end of string1, look at
4109 the first character in string2; and if before the beginning of
4110 string2, look at the last character in string1. */
4111 #define WORDCHAR_P(d) \
4112 (SYNTAX ((d) == end1 ? *string2 \
4113 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
4114 == Sword)
4116 /* Disabled due to a compiler bug -- see comment at case wordbound */
4117 #if 0
4118 /* Test if the character before D and the one at D differ with respect
4119 to being word-constituent. */
4120 #define AT_WORD_BOUNDARY(d) \
4121 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4122 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
4123 #endif
4125 /* Free everything we malloc. */
4126 #ifdef MATCH_MAY_ALLOCATE
4127 # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
4128 # define FREE_VARIABLES() \
4129 do { \
4130 REGEX_FREE_STACK (fail_stack.stack); \
4131 FREE_VAR (regstart); \
4132 FREE_VAR (regend); \
4133 FREE_VAR (old_regstart); \
4134 FREE_VAR (old_regend); \
4135 FREE_VAR (best_regstart); \
4136 FREE_VAR (best_regend); \
4137 FREE_VAR (reg_info); \
4138 FREE_VAR (reg_dummy); \
4139 FREE_VAR (reg_info_dummy); \
4140 } while (0)
4141 #else
4142 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4143 #endif /* not MATCH_MAY_ALLOCATE */
4145 /* These values must meet several constraints. They must not be valid
4146 register values; since we have a limit of 255 registers (because
4147 we use only one byte in the pattern for the register number), we can
4148 use numbers larger than 255. They must differ by 1, because of
4149 NUM_FAILURE_ITEMS above. And the value for the lowest register must
4150 be larger than the value for the highest register, so we do not try
4151 to actually save any registers when none are active. */
4152 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
4153 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
4155 /* Matching routines. */
4157 #ifndef emacs /* Emacs never uses this. */
4158 /* re_match is like re_match_2 except it takes only a single string. */
4161 re_match (bufp, string, size, pos, regs)
4162 struct re_pattern_buffer *bufp;
4163 const char *string;
4164 int size, pos;
4165 struct re_registers *regs;
4167 int result = re_match_2_internal (bufp, NULL, 0, string, size,
4168 pos, regs, size);
4169 # ifndef REGEX_MALLOC
4170 # ifdef C_ALLOCA
4171 alloca (0);
4172 # endif
4173 # endif
4174 return result;
4176 # ifdef _LIBC
4177 weak_alias (__re_match, re_match)
4178 # endif
4179 #endif /* not emacs */
4181 static boolean group_match_null_string_p _RE_ARGS ((unsigned char **p,
4182 unsigned char *end,
4183 register_info_type *reg_info));
4184 static boolean alt_match_null_string_p _RE_ARGS ((unsigned char *p,
4185 unsigned char *end,
4186 register_info_type *reg_info));
4187 static boolean common_op_match_null_string_p _RE_ARGS ((unsigned char **p,
4188 unsigned char *end,
4189 register_info_type *reg_info));
4190 static int bcmp_translate _RE_ARGS ((const char *s1, const char *s2,
4191 int len, char *translate));
4193 /* re_match_2 matches the compiled pattern in BUFP against the
4194 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4195 and SIZE2, respectively). We start matching at POS, and stop
4196 matching at STOP.
4198 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
4199 store offsets for the substring each group matched in REGS. See the
4200 documentation for exactly how many groups we fill.
4202 We return -1 if no match, -2 if an internal error (such as the
4203 failure stack overflowing). Otherwise, we return the length of the
4204 matched substring. */
4207 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4208 struct re_pattern_buffer *bufp;
4209 const char *string1, *string2;
4210 int size1, size2;
4211 int pos;
4212 struct re_registers *regs;
4213 int stop;
4215 int result = re_match_2_internal (bufp, string1, size1, string2, size2,
4216 pos, regs, stop);
4217 #ifndef REGEX_MALLOC
4218 # ifdef C_ALLOCA
4219 alloca (0);
4220 # endif
4221 #endif
4222 return result;
4224 #ifdef _LIBC
4225 weak_alias (__re_match_2, re_match_2)
4226 #endif
4228 /* This is a separate function so that we can force an alloca cleanup
4229 afterwards. */
4230 static int
4231 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
4232 struct re_pattern_buffer *bufp;
4233 const char *string1, *string2;
4234 int size1, size2;
4235 int pos;
4236 struct re_registers *regs;
4237 int stop;
4239 /* General temporaries. */
4240 int mcnt;
4241 unsigned char *p1;
4243 /* Just past the end of the corresponding string. */
4244 const char *end1, *end2;
4246 /* Pointers into string1 and string2, just past the last characters in
4247 each to consider matching. */
4248 const char *end_match_1, *end_match_2;
4250 /* Where we are in the data, and the end of the current string. */
4251 const char *d, *dend;
4253 /* Where we are in the pattern, and the end of the pattern. */
4254 unsigned char *p = bufp->buffer;
4255 register unsigned char *pend = p + bufp->used;
4257 /* Mark the opcode just after a start_memory, so we can test for an
4258 empty subpattern when we get to the stop_memory. */
4259 unsigned char *just_past_start_mem = 0;
4261 /* We use this to map every character in the string. */
4262 RE_TRANSLATE_TYPE translate = bufp->translate;
4264 /* Failure point stack. Each place that can handle a failure further
4265 down the line pushes a failure point on this stack. It consists of
4266 restart, regend, and reg_info for all registers corresponding to
4267 the subexpressions we're currently inside, plus the number of such
4268 registers, and, finally, two char *'s. The first char * is where
4269 to resume scanning the pattern; the second one is where to resume
4270 scanning the strings. If the latter is zero, the failure point is
4271 a ``dummy''; if a failure happens and the failure point is a dummy,
4272 it gets discarded and the next next one is tried. */
4273 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
4274 fail_stack_type fail_stack;
4275 #endif
4276 #ifdef DEBUG
4277 static unsigned failure_id;
4278 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4279 #endif
4281 #ifdef REL_ALLOC
4282 /* This holds the pointer to the failure stack, when
4283 it is allocated relocatably. */
4284 fail_stack_elt_t *failure_stack_ptr;
4285 #endif
4287 /* We fill all the registers internally, independent of what we
4288 return, for use in backreferences. The number here includes
4289 an element for register zero. */
4290 size_t num_regs = bufp->re_nsub + 1;
4292 /* The currently active registers. */
4293 active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4294 active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4296 /* Information on the contents of registers. These are pointers into
4297 the input strings; they record just what was matched (on this
4298 attempt) by a subexpression part of the pattern, that is, the
4299 regnum-th regstart pointer points to where in the pattern we began
4300 matching and the regnum-th regend points to right after where we
4301 stopped matching the regnum-th subexpression. (The zeroth register
4302 keeps track of what the whole pattern matches.) */
4303 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4304 const char **regstart, **regend;
4305 #endif
4307 /* If a group that's operated upon by a repetition operator fails to
4308 match anything, then the register for its start will need to be
4309 restored because it will have been set to wherever in the string we
4310 are when we last see its open-group operator. Similarly for a
4311 register's end. */
4312 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4313 const char **old_regstart, **old_regend;
4314 #endif
4316 /* The is_active field of reg_info helps us keep track of which (possibly
4317 nested) subexpressions we are currently in. The matched_something
4318 field of reg_info[reg_num] helps us tell whether or not we have
4319 matched any of the pattern so far this time through the reg_num-th
4320 subexpression. These two fields get reset each time through any
4321 loop their register is in. */
4322 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
4323 register_info_type *reg_info;
4324 #endif
4326 /* The following record the register info as found in the above
4327 variables when we find a match better than any we've seen before.
4328 This happens as we backtrack through the failure points, which in
4329 turn happens only if we have not yet matched the entire string. */
4330 unsigned best_regs_set = false;
4331 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4332 const char **best_regstart, **best_regend;
4333 #endif
4335 /* Logically, this is `best_regend[0]'. But we don't want to have to
4336 allocate space for that if we're not allocating space for anything
4337 else (see below). Also, we never need info about register 0 for
4338 any of the other register vectors, and it seems rather a kludge to
4339 treat `best_regend' differently than the rest. So we keep track of
4340 the end of the best match so far in a separate variable. We
4341 initialize this to NULL so that when we backtrack the first time
4342 and need to test it, it's not garbage. */
4343 const char *match_end = NULL;
4345 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
4346 int set_regs_matched_done = 0;
4348 /* Used when we pop values we don't care about. */
4349 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4350 const char **reg_dummy;
4351 register_info_type *reg_info_dummy;
4352 #endif
4354 #ifdef DEBUG
4355 /* Counts the total number of registers pushed. */
4356 unsigned num_regs_pushed = 0;
4357 #endif
4359 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
4361 INIT_FAIL_STACK ();
4363 #ifdef MATCH_MAY_ALLOCATE
4364 /* Do not bother to initialize all the register variables if there are
4365 no groups in the pattern, as it takes a fair amount of time. If
4366 there are groups, we include space for register 0 (the whole
4367 pattern), even though we never use it, since it simplifies the
4368 array indexing. We should fix this. */
4369 if (bufp->re_nsub)
4371 regstart = REGEX_TALLOC (num_regs, const char *);
4372 regend = REGEX_TALLOC (num_regs, const char *);
4373 old_regstart = REGEX_TALLOC (num_regs, const char *);
4374 old_regend = REGEX_TALLOC (num_regs, const char *);
4375 best_regstart = REGEX_TALLOC (num_regs, const char *);
4376 best_regend = REGEX_TALLOC (num_regs, const char *);
4377 reg_info = REGEX_TALLOC (num_regs, register_info_type);
4378 reg_dummy = REGEX_TALLOC (num_regs, const char *);
4379 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
4381 if (!(regstart && regend && old_regstart && old_regend && reg_info
4382 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
4384 FREE_VARIABLES ();
4385 return -2;
4388 else
4390 /* We must initialize all our variables to NULL, so that
4391 `FREE_VARIABLES' doesn't try to free them. */
4392 regstart = regend = old_regstart = old_regend = best_regstart
4393 = best_regend = reg_dummy = NULL;
4394 reg_info = reg_info_dummy = (register_info_type *) NULL;
4396 #endif /* MATCH_MAY_ALLOCATE */
4398 /* The starting position is bogus. */
4399 if (pos < 0 || pos > size1 + size2)
4401 FREE_VARIABLES ();
4402 return -1;
4405 /* Initialize subexpression text positions to -1 to mark ones that no
4406 start_memory/stop_memory has been seen for. Also initialize the
4407 register information struct. */
4408 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4410 regstart[mcnt] = regend[mcnt]
4411 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
4413 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
4414 IS_ACTIVE (reg_info[mcnt]) = 0;
4415 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
4416 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
4419 /* We move `string1' into `string2' if the latter's empty -- but not if
4420 `string1' is null. */
4421 if (size2 == 0 && string1 != NULL)
4423 string2 = string1;
4424 size2 = size1;
4425 string1 = 0;
4426 size1 = 0;
4428 end1 = string1 + size1;
4429 end2 = string2 + size2;
4431 /* Compute where to stop matching, within the two strings. */
4432 if (stop <= size1)
4434 end_match_1 = string1 + stop;
4435 end_match_2 = string2;
4437 else
4439 end_match_1 = end1;
4440 end_match_2 = string2 + stop - size1;
4443 /* `p' scans through the pattern as `d' scans through the data.
4444 `dend' is the end of the input string that `d' points within. `d'
4445 is advanced into the following input string whenever necessary, but
4446 this happens before fetching; therefore, at the beginning of the
4447 loop, `d' can be pointing at the end of a string, but it cannot
4448 equal `string2'. */
4449 if (size1 > 0 && pos <= size1)
4451 d = string1 + pos;
4452 dend = end_match_1;
4454 else
4456 d = string2 + pos - size1;
4457 dend = end_match_2;
4460 DEBUG_PRINT1 ("The compiled pattern is:\n");
4461 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4462 DEBUG_PRINT1 ("The string to match is: `");
4463 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4464 DEBUG_PRINT1 ("'\n");
4466 /* This loops over pattern commands. It exits by returning from the
4467 function if the match is complete, or it drops through if the match
4468 fails at this starting point in the input data. */
4469 for (;;)
4471 #ifdef _LIBC
4472 DEBUG_PRINT2 ("\n%p: ", p);
4473 #else
4474 DEBUG_PRINT2 ("\n0x%x: ", p);
4475 #endif
4477 if (p == pend)
4478 { /* End of pattern means we might have succeeded. */
4479 DEBUG_PRINT1 ("end of pattern ... ");
4481 /* If we haven't matched the entire string, and we want the
4482 longest match, try backtracking. */
4483 if (d != end_match_2)
4485 /* 1 if this match ends in the same string (string1 or string2)
4486 as the best previous match. */
4487 boolean same_str_p = (FIRST_STRING_P (match_end)
4488 == MATCHING_IN_FIRST_STRING);
4489 /* 1 if this match is the best seen so far. */
4490 boolean best_match_p;
4492 /* AIX compiler got confused when this was combined
4493 with the previous declaration. */
4494 if (same_str_p)
4495 best_match_p = d > match_end;
4496 else
4497 best_match_p = !MATCHING_IN_FIRST_STRING;
4499 DEBUG_PRINT1 ("backtracking.\n");
4501 if (!FAIL_STACK_EMPTY ())
4502 { /* More failure points to try. */
4504 /* If exceeds best match so far, save it. */
4505 if (!best_regs_set || best_match_p)
4507 best_regs_set = true;
4508 match_end = d;
4510 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4512 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4514 best_regstart[mcnt] = regstart[mcnt];
4515 best_regend[mcnt] = regend[mcnt];
4518 goto fail;
4521 /* If no failure points, don't restore garbage. And if
4522 last match is real best match, don't restore second
4523 best one. */
4524 else if (best_regs_set && !best_match_p)
4526 restore_best_regs:
4527 /* Restore best match. It may happen that `dend ==
4528 end_match_1' while the restored d is in string2.
4529 For example, the pattern `x.*y.*z' against the
4530 strings `x-' and `y-z-', if the two strings are
4531 not consecutive in memory. */
4532 DEBUG_PRINT1 ("Restoring best registers.\n");
4534 d = match_end;
4535 dend = ((d >= string1 && d <= end1)
4536 ? end_match_1 : end_match_2);
4538 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4540 regstart[mcnt] = best_regstart[mcnt];
4541 regend[mcnt] = best_regend[mcnt];
4544 } /* d != end_match_2 */
4546 succeed_label:
4547 DEBUG_PRINT1 ("Accepting match.\n");
4549 /* If caller wants register contents data back, do it. */
4550 if (regs && !bufp->no_sub)
4552 /* Have the register data arrays been allocated? */
4553 if (bufp->regs_allocated == REGS_UNALLOCATED)
4554 { /* No. So allocate them with malloc. We need one
4555 extra element beyond `num_regs' for the `-1' marker
4556 GNU code uses. */
4557 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4558 regs->start = TALLOC (regs->num_regs, regoff_t);
4559 regs->end = TALLOC (regs->num_regs, regoff_t);
4560 if (regs->start == NULL || regs->end == NULL)
4562 FREE_VARIABLES ();
4563 return -2;
4565 bufp->regs_allocated = REGS_REALLOCATE;
4567 else if (bufp->regs_allocated == REGS_REALLOCATE)
4568 { /* Yes. If we need more elements than were already
4569 allocated, reallocate them. If we need fewer, just
4570 leave it alone. */
4571 if (regs->num_regs < num_regs + 1)
4573 regs->num_regs = num_regs + 1;
4574 RETALLOC (regs->start, regs->num_regs, regoff_t);
4575 RETALLOC (regs->end, regs->num_regs, regoff_t);
4576 if (regs->start == NULL || regs->end == NULL)
4578 FREE_VARIABLES ();
4579 return -2;
4583 else
4585 /* These braces fend off a "empty body in an else-statement"
4586 warning under GCC when assert expands to nothing. */
4587 assert (bufp->regs_allocated == REGS_FIXED);
4590 /* Convert the pointer data in `regstart' and `regend' to
4591 indices. Register zero has to be set differently,
4592 since we haven't kept track of any info for it. */
4593 if (regs->num_regs > 0)
4595 regs->start[0] = pos;
4596 regs->end[0] = (MATCHING_IN_FIRST_STRING
4597 ? ((regoff_t) (d - string1))
4598 : ((regoff_t) (d - string2 + size1)));
4601 /* Go through the first `min (num_regs, regs->num_regs)'
4602 registers, since that is all we initialized. */
4603 for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
4604 mcnt++)
4606 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
4607 regs->start[mcnt] = regs->end[mcnt] = -1;
4608 else
4610 regs->start[mcnt]
4611 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
4612 regs->end[mcnt]
4613 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
4617 /* If the regs structure we return has more elements than
4618 were in the pattern, set the extra elements to -1. If
4619 we (re)allocated the registers, this is the case,
4620 because we always allocate enough to have at least one
4621 -1 at the end. */
4622 for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
4623 regs->start[mcnt] = regs->end[mcnt] = -1;
4624 } /* regs && !bufp->no_sub */
4626 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4627 nfailure_points_pushed, nfailure_points_popped,
4628 nfailure_points_pushed - nfailure_points_popped);
4629 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
4631 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
4632 ? string1
4633 : string2 - size1);
4635 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
4637 FREE_VARIABLES ();
4638 return mcnt;
4641 /* Otherwise match next pattern command. */
4642 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4644 /* Ignore these. Used to ignore the n of succeed_n's which
4645 currently have n == 0. */
4646 case no_op:
4647 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4648 break;
4650 case succeed:
4651 DEBUG_PRINT1 ("EXECUTING succeed.\n");
4652 goto succeed_label;
4654 /* Match the next n pattern characters exactly. The following
4655 byte in the pattern defines n, and the n bytes after that
4656 are the characters to match. */
4657 case exactn:
4658 mcnt = *p++;
4659 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
4661 /* This is written out as an if-else so we don't waste time
4662 testing `translate' inside the loop. */
4663 if (translate)
4667 PREFETCH ();
4668 if ((unsigned char) translate[(unsigned char) *d++]
4669 != (unsigned char) *p++)
4670 goto fail;
4672 while (--mcnt);
4674 else
4678 PREFETCH ();
4679 if (*d++ != (char) *p++) goto fail;
4681 while (--mcnt);
4683 SET_REGS_MATCHED ();
4684 break;
4687 /* Match any character except possibly a newline or a null. */
4688 case anychar:
4689 DEBUG_PRINT1 ("EXECUTING anychar.\n");
4691 PREFETCH ();
4693 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
4694 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
4695 goto fail;
4697 SET_REGS_MATCHED ();
4698 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
4699 d++;
4700 break;
4703 case charset:
4704 case charset_not:
4706 register unsigned char c;
4707 boolean not = (re_opcode_t) *(p - 1) == charset_not;
4709 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4711 PREFETCH ();
4712 c = TRANSLATE (*d); /* The character to match. */
4714 /* Cast to `unsigned' instead of `unsigned char' in case the
4715 bit list is a full 32 bytes long. */
4716 if (c < (unsigned) (*p * BYTEWIDTH)
4717 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4718 not = !not;
4720 p += 1 + *p;
4722 if (!not) goto fail;
4724 SET_REGS_MATCHED ();
4725 d++;
4726 break;
4730 /* The beginning of a group is represented by start_memory.
4731 The arguments are the register number in the next byte, and the
4732 number of groups inner to this one in the next. The text
4733 matched within the group is recorded (in the internal
4734 registers data structure) under the register number. */
4735 case start_memory:
4736 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4738 /* Find out if this group can match the empty string. */
4739 p1 = p; /* To send to group_match_null_string_p. */
4741 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4742 REG_MATCH_NULL_STRING_P (reg_info[*p])
4743 = group_match_null_string_p (&p1, pend, reg_info);
4745 /* Save the position in the string where we were the last time
4746 we were at this open-group operator in case the group is
4747 operated upon by a repetition operator, e.g., with `(a*)*b'
4748 against `ab'; then we want to ignore where we are now in
4749 the string in case this attempt to match fails. */
4750 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4751 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4752 : regstart[*p];
4753 DEBUG_PRINT2 (" old_regstart: %d\n",
4754 POINTER_TO_OFFSET (old_regstart[*p]));
4756 regstart[*p] = d;
4757 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4759 IS_ACTIVE (reg_info[*p]) = 1;
4760 MATCHED_SOMETHING (reg_info[*p]) = 0;
4762 /* Clear this whenever we change the register activity status. */
4763 set_regs_matched_done = 0;
4765 /* This is the new highest active register. */
4766 highest_active_reg = *p;
4768 /* If nothing was active before, this is the new lowest active
4769 register. */
4770 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4771 lowest_active_reg = *p;
4773 /* Move past the register number and inner group count. */
4774 p += 2;
4775 just_past_start_mem = p;
4777 break;
4780 /* The stop_memory opcode represents the end of a group. Its
4781 arguments are the same as start_memory's: the register
4782 number, and the number of inner groups. */
4783 case stop_memory:
4784 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
4786 /* We need to save the string position the last time we were at
4787 this close-group operator in case the group is operated
4788 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4789 against `aba'; then we want to ignore where we are now in
4790 the string in case this attempt to match fails. */
4791 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4792 ? REG_UNSET (regend[*p]) ? d : regend[*p]
4793 : regend[*p];
4794 DEBUG_PRINT2 (" old_regend: %d\n",
4795 POINTER_TO_OFFSET (old_regend[*p]));
4797 regend[*p] = d;
4798 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4800 /* This register isn't active anymore. */
4801 IS_ACTIVE (reg_info[*p]) = 0;
4803 /* Clear this whenever we change the register activity status. */
4804 set_regs_matched_done = 0;
4806 /* If this was the only register active, nothing is active
4807 anymore. */
4808 if (lowest_active_reg == highest_active_reg)
4810 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4811 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4813 else
4814 { /* We must scan for the new highest active register, since
4815 it isn't necessarily one less than now: consider
4816 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4817 new highest active register is 1. */
4818 unsigned char r = *p - 1;
4819 while (r > 0 && !IS_ACTIVE (reg_info[r]))
4820 r--;
4822 /* If we end up at register zero, that means that we saved
4823 the registers as the result of an `on_failure_jump', not
4824 a `start_memory', and we jumped to past the innermost
4825 `stop_memory'. For example, in ((.)*) we save
4826 registers 1 and 2 as a result of the *, but when we pop
4827 back to the second ), we are at the stop_memory 1.
4828 Thus, nothing is active. */
4829 if (r == 0)
4831 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4832 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4834 else
4835 highest_active_reg = r;
4838 /* If just failed to match something this time around with a
4839 group that's operated on by a repetition operator, try to
4840 force exit from the ``loop'', and restore the register
4841 information for this group that we had before trying this
4842 last match. */
4843 if ((!MATCHED_SOMETHING (reg_info[*p])
4844 || just_past_start_mem == p - 1)
4845 && (p + 2) < pend)
4847 boolean is_a_jump_n = false;
4849 p1 = p + 2;
4850 mcnt = 0;
4851 switch ((re_opcode_t) *p1++)
4853 case jump_n:
4854 is_a_jump_n = true;
4855 case pop_failure_jump:
4856 case maybe_pop_jump:
4857 case jump:
4858 case dummy_failure_jump:
4859 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4860 if (is_a_jump_n)
4861 p1 += 2;
4862 break;
4864 default:
4865 /* do nothing */ ;
4867 p1 += mcnt;
4869 /* If the next operation is a jump backwards in the pattern
4870 to an on_failure_jump right before the start_memory
4871 corresponding to this stop_memory, exit from the loop
4872 by forcing a failure after pushing on the stack the
4873 on_failure_jump's jump in the pattern, and d. */
4874 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4875 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
4877 /* If this group ever matched anything, then restore
4878 what its registers were before trying this last
4879 failed match, e.g., with `(a*)*b' against `ab' for
4880 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4881 against `aba' for regend[3].
4883 Also restore the registers for inner groups for,
4884 e.g., `((a*)(b*))*' against `aba' (register 3 would
4885 otherwise get trashed). */
4887 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
4889 unsigned r;
4891 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
4893 /* Restore this and inner groups' (if any) registers. */
4894 for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
4895 r++)
4897 regstart[r] = old_regstart[r];
4899 /* xx why this test? */
4900 if (old_regend[r] >= regstart[r])
4901 regend[r] = old_regend[r];
4904 p1++;
4905 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4906 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4908 goto fail;
4912 /* Move past the register number and the inner group count. */
4913 p += 2;
4914 break;
4917 /* \<digit> has been turned into a `duplicate' command which is
4918 followed by the numeric value of <digit> as the register number. */
4919 case duplicate:
4921 register const char *d2, *dend2;
4922 int regno = *p++; /* Get which register to match against. */
4923 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4925 /* Can't back reference a group which we've never matched. */
4926 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4927 goto fail;
4929 /* Where in input to try to start matching. */
4930 d2 = regstart[regno];
4932 /* Where to stop matching; if both the place to start and
4933 the place to stop matching are in the same string, then
4934 set to the place to stop, otherwise, for now have to use
4935 the end of the first string. */
4937 dend2 = ((FIRST_STRING_P (regstart[regno])
4938 == FIRST_STRING_P (regend[regno]))
4939 ? regend[regno] : end_match_1);
4940 for (;;)
4942 /* If necessary, advance to next segment in register
4943 contents. */
4944 while (d2 == dend2)
4946 if (dend2 == end_match_2) break;
4947 if (dend2 == regend[regno]) break;
4949 /* End of string1 => advance to string2. */
4950 d2 = string2;
4951 dend2 = regend[regno];
4953 /* At end of register contents => success */
4954 if (d2 == dend2) break;
4956 /* If necessary, advance to next segment in data. */
4957 PREFETCH ();
4959 /* How many characters left in this segment to match. */
4960 mcnt = dend - d;
4962 /* Want how many consecutive characters we can match in
4963 one shot, so, if necessary, adjust the count. */
4964 if (mcnt > dend2 - d2)
4965 mcnt = dend2 - d2;
4967 /* Compare that many; failure if mismatch, else move
4968 past them. */
4969 if (translate
4970 ? bcmp_translate (d, d2, mcnt, translate)
4971 : memcmp (d, d2, mcnt))
4972 goto fail;
4973 d += mcnt, d2 += mcnt;
4975 /* Do this because we've match some characters. */
4976 SET_REGS_MATCHED ();
4979 break;
4982 /* begline matches the empty string at the beginning of the string
4983 (unless `not_bol' is set in `bufp'), and, if
4984 `newline_anchor' is set, after newlines. */
4985 case begline:
4986 DEBUG_PRINT1 ("EXECUTING begline.\n");
4988 if (AT_STRINGS_BEG (d))
4990 if (!bufp->not_bol) break;
4992 else if (d[-1] == '\n' && bufp->newline_anchor)
4994 break;
4996 /* In all other cases, we fail. */
4997 goto fail;
5000 /* endline is the dual of begline. */
5001 case endline:
5002 DEBUG_PRINT1 ("EXECUTING endline.\n");
5004 if (AT_STRINGS_END (d))
5006 if (!bufp->not_eol) break;
5009 /* We have to ``prefetch'' the next character. */
5010 else if ((d == end1 ? *string2 : *d) == '\n'
5011 && bufp->newline_anchor)
5013 break;
5015 goto fail;
5018 /* Match at the very beginning of the data. */
5019 case begbuf:
5020 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5021 if (AT_STRINGS_BEG (d))
5022 break;
5023 goto fail;
5026 /* Match at the very end of the data. */
5027 case endbuf:
5028 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
5029 if (AT_STRINGS_END (d))
5030 break;
5031 goto fail;
5034 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5035 pushes NULL as the value for the string on the stack. Then
5036 `pop_failure_point' will keep the current value for the
5037 string, instead of restoring it. To see why, consider
5038 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5039 then the . fails against the \n. But the next thing we want
5040 to do is match the \n against the \n; if we restored the
5041 string value, we would be back at the foo.
5043 Because this is used only in specific cases, we don't need to
5044 check all the things that `on_failure_jump' does, to make
5045 sure the right things get saved on the stack. Hence we don't
5046 share its code. The only reason to push anything on the
5047 stack at all is that otherwise we would have to change
5048 `anychar's code to do something besides goto fail in this
5049 case; that seems worse than this. */
5050 case on_failure_keep_string_jump:
5051 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
5053 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5054 #ifdef _LIBC
5055 DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
5056 #else
5057 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
5058 #endif
5060 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
5061 break;
5064 /* Uses of on_failure_jump:
5066 Each alternative starts with an on_failure_jump that points
5067 to the beginning of the next alternative. Each alternative
5068 except the last ends with a jump that in effect jumps past
5069 the rest of the alternatives. (They really jump to the
5070 ending jump of the following alternative, because tensioning
5071 these jumps is a hassle.)
5073 Repeats start with an on_failure_jump that points past both
5074 the repetition text and either the following jump or
5075 pop_failure_jump back to this on_failure_jump. */
5076 case on_failure_jump:
5077 on_failure:
5078 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
5080 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5081 #ifdef _LIBC
5082 DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
5083 #else
5084 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
5085 #endif
5087 /* If this on_failure_jump comes right before a group (i.e.,
5088 the original * applied to a group), save the information
5089 for that group and all inner ones, so that if we fail back
5090 to this point, the group's information will be correct.
5091 For example, in \(a*\)*\1, we need the preceding group,
5092 and in \(zz\(a*\)b*\)\2, we need the inner group. */
5094 /* We can't use `p' to check ahead because we push
5095 a failure point to `p + mcnt' after we do this. */
5096 p1 = p;
5098 /* We need to skip no_op's before we look for the
5099 start_memory in case this on_failure_jump is happening as
5100 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
5101 against aba. */
5102 while (p1 < pend && (re_opcode_t) *p1 == no_op)
5103 p1++;
5105 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
5107 /* We have a new highest active register now. This will
5108 get reset at the start_memory we are about to get to,
5109 but we will have saved all the registers relevant to
5110 this repetition op, as described above. */
5111 highest_active_reg = *(p1 + 1) + *(p1 + 2);
5112 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
5113 lowest_active_reg = *(p1 + 1);
5116 DEBUG_PRINT1 (":\n");
5117 PUSH_FAILURE_POINT (p + mcnt, d, -2);
5118 break;
5121 /* A smart repeat ends with `maybe_pop_jump'.
5122 We change it to either `pop_failure_jump' or `jump'. */
5123 case maybe_pop_jump:
5124 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5125 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
5127 register unsigned char *p2 = p;
5129 /* Compare the beginning of the repeat with what in the
5130 pattern follows its end. If we can establish that there
5131 is nothing that they would both match, i.e., that we
5132 would have to backtrack because of (as in, e.g., `a*a')
5133 then we can change to pop_failure_jump, because we'll
5134 never have to backtrack.
5136 This is not true in the case of alternatives: in
5137 `(a|ab)*' we do need to backtrack to the `ab' alternative
5138 (e.g., if the string was `ab'). But instead of trying to
5139 detect that here, the alternative has put on a dummy
5140 failure point which is what we will end up popping. */
5142 /* Skip over open/close-group commands.
5143 If what follows this loop is a ...+ construct,
5144 look at what begins its body, since we will have to
5145 match at least one of that. */
5146 while (1)
5148 if (p2 + 2 < pend
5149 && ((re_opcode_t) *p2 == stop_memory
5150 || (re_opcode_t) *p2 == start_memory))
5151 p2 += 3;
5152 else if (p2 + 6 < pend
5153 && (re_opcode_t) *p2 == dummy_failure_jump)
5154 p2 += 6;
5155 else
5156 break;
5159 p1 = p + mcnt;
5160 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
5161 to the `maybe_finalize_jump' of this case. Examine what
5162 follows. */
5164 /* If we're at the end of the pattern, we can change. */
5165 if (p2 == pend)
5167 /* Consider what happens when matching ":\(.*\)"
5168 against ":/". I don't really understand this code
5169 yet. */
5170 p[-3] = (unsigned char) pop_failure_jump;
5171 DEBUG_PRINT1
5172 (" End of pattern: change to `pop_failure_jump'.\n");
5175 else if ((re_opcode_t) *p2 == exactn
5176 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
5178 register unsigned char c
5179 = *p2 == (unsigned char) endline ? '\n' : p2[2];
5181 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
5183 p[-3] = (unsigned char) pop_failure_jump;
5184 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
5185 c, p1[5]);
5188 else if ((re_opcode_t) p1[3] == charset
5189 || (re_opcode_t) p1[3] == charset_not)
5191 int not = (re_opcode_t) p1[3] == charset_not;
5193 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
5194 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5195 not = !not;
5197 /* `not' is equal to 1 if c would match, which means
5198 that we can't change to pop_failure_jump. */
5199 if (!not)
5201 p[-3] = (unsigned char) pop_failure_jump;
5202 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
5206 else if ((re_opcode_t) *p2 == charset)
5208 /* We win if the first character of the loop is not part
5209 of the charset. */
5210 if ((re_opcode_t) p1[3] == exactn
5211 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
5212 && (p2[2 + p1[5] / BYTEWIDTH]
5213 & (1 << (p1[5] % BYTEWIDTH)))))
5215 p[-3] = (unsigned char) pop_failure_jump;
5216 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
5219 else if ((re_opcode_t) p1[3] == charset_not)
5221 int idx;
5222 /* We win if the charset_not inside the loop
5223 lists every character listed in the charset after. */
5224 for (idx = 0; idx < (int) p2[1]; idx++)
5225 if (! (p2[2 + idx] == 0
5226 || (idx < (int) p1[4]
5227 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
5228 break;
5230 if (idx == p2[1])
5232 p[-3] = (unsigned char) pop_failure_jump;
5233 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
5236 else if ((re_opcode_t) p1[3] == charset)
5238 int idx;
5239 /* We win if the charset inside the loop
5240 has no overlap with the one after the loop. */
5241 for (idx = 0;
5242 idx < (int) p2[1] && idx < (int) p1[4];
5243 idx++)
5244 if ((p2[2 + idx] & p1[5 + idx]) != 0)
5245 break;
5247 if (idx == p2[1] || idx == p1[4])
5249 p[-3] = (unsigned char) pop_failure_jump;
5250 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
5255 p -= 2; /* Point at relative address again. */
5256 if ((re_opcode_t) p[-1] != pop_failure_jump)
5258 p[-1] = (unsigned char) jump;
5259 DEBUG_PRINT1 (" Match => jump.\n");
5260 goto unconditional_jump;
5262 /* Note fall through. */
5265 /* The end of a simple repeat has a pop_failure_jump back to
5266 its matching on_failure_jump, where the latter will push a
5267 failure point. The pop_failure_jump takes off failure
5268 points put on by this pop_failure_jump's matching
5269 on_failure_jump; we got through the pattern to here from the
5270 matching on_failure_jump, so didn't fail. */
5271 case pop_failure_jump:
5273 /* We need to pass separate storage for the lowest and
5274 highest registers, even though we don't care about the
5275 actual values. Otherwise, we will restore only one
5276 register from the stack, since lowest will == highest in
5277 `pop_failure_point'. */
5278 active_reg_t dummy_low_reg, dummy_high_reg;
5279 unsigned char *pdummy;
5280 const char *sdummy;
5282 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
5283 POP_FAILURE_POINT (sdummy, pdummy,
5284 dummy_low_reg, dummy_high_reg,
5285 reg_dummy, reg_dummy, reg_info_dummy);
5287 /* Note fall through. */
5289 unconditional_jump:
5290 #ifdef _LIBC
5291 DEBUG_PRINT2 ("\n%p: ", p);
5292 #else
5293 DEBUG_PRINT2 ("\n0x%x: ", p);
5294 #endif
5295 /* Note fall through. */
5297 /* Unconditionally jump (without popping any failure points). */
5298 case jump:
5299 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
5300 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5301 p += mcnt; /* Do the jump. */
5302 #ifdef _LIBC
5303 DEBUG_PRINT2 ("(to %p).\n", p);
5304 #else
5305 DEBUG_PRINT2 ("(to 0x%x).\n", p);
5306 #endif
5307 break;
5310 /* We need this opcode so we can detect where alternatives end
5311 in `group_match_null_string_p' et al. */
5312 case jump_past_alt:
5313 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
5314 goto unconditional_jump;
5317 /* Normally, the on_failure_jump pushes a failure point, which
5318 then gets popped at pop_failure_jump. We will end up at
5319 pop_failure_jump, also, and with a pattern of, say, `a+', we
5320 are skipping over the on_failure_jump, so we have to push
5321 something meaningless for pop_failure_jump to pop. */
5322 case dummy_failure_jump:
5323 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
5324 /* It doesn't matter what we push for the string here. What
5325 the code at `fail' tests is the value for the pattern. */
5326 PUSH_FAILURE_POINT (NULL, NULL, -2);
5327 goto unconditional_jump;
5330 /* At the end of an alternative, we need to push a dummy failure
5331 point in case we are followed by a `pop_failure_jump', because
5332 we don't want the failure point for the alternative to be
5333 popped. For example, matching `(a|ab)*' against `aab'
5334 requires that we match the `ab' alternative. */
5335 case push_dummy_failure:
5336 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
5337 /* See comments just above at `dummy_failure_jump' about the
5338 two zeroes. */
5339 PUSH_FAILURE_POINT (NULL, NULL, -2);
5340 break;
5342 /* Have to succeed matching what follows at least n times.
5343 After that, handle like `on_failure_jump'. */
5344 case succeed_n:
5345 EXTRACT_NUMBER (mcnt, p + 2);
5346 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5348 assert (mcnt >= 0);
5349 /* Originally, this is how many times we HAVE to succeed. */
5350 if (mcnt > 0)
5352 mcnt--;
5353 p += 2;
5354 STORE_NUMBER_AND_INCR (p, mcnt);
5355 #ifdef _LIBC
5356 DEBUG_PRINT3 (" Setting %p to %d.\n", p - 2, mcnt);
5357 #else
5358 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p - 2, mcnt);
5359 #endif
5361 else if (mcnt == 0)
5363 #ifdef _LIBC
5364 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n", p+2);
5365 #else
5366 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
5367 #endif
5368 p[2] = (unsigned char) no_op;
5369 p[3] = (unsigned char) no_op;
5370 goto on_failure;
5372 break;
5374 case jump_n:
5375 EXTRACT_NUMBER (mcnt, p + 2);
5376 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5378 /* Originally, this is how many times we CAN jump. */
5379 if (mcnt)
5381 mcnt--;
5382 STORE_NUMBER (p + 2, mcnt);
5383 #ifdef _LIBC
5384 DEBUG_PRINT3 (" Setting %p to %d.\n", p + 2, mcnt);
5385 #else
5386 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p + 2, mcnt);
5387 #endif
5388 goto unconditional_jump;
5390 /* If don't have to jump any more, skip over the rest of command. */
5391 else
5392 p += 4;
5393 break;
5395 case set_number_at:
5397 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
5399 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5400 p1 = p + mcnt;
5401 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5402 #ifdef _LIBC
5403 DEBUG_PRINT3 (" Setting %p to %d.\n", p1, mcnt);
5404 #else
5405 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
5406 #endif
5407 STORE_NUMBER (p1, mcnt);
5408 break;
5411 #if 0
5412 /* The DEC Alpha C compiler 3.x generates incorrect code for the
5413 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
5414 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
5415 macro and introducing temporary variables works around the bug. */
5417 case wordbound:
5418 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
5419 if (AT_WORD_BOUNDARY (d))
5420 break;
5421 goto fail;
5423 case notwordbound:
5424 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
5425 if (AT_WORD_BOUNDARY (d))
5426 goto fail;
5427 break;
5428 #else
5429 case wordbound:
5431 boolean prevchar, thischar;
5433 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
5434 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5435 break;
5437 prevchar = WORDCHAR_P (d - 1);
5438 thischar = WORDCHAR_P (d);
5439 if (prevchar != thischar)
5440 break;
5441 goto fail;
5444 case notwordbound:
5446 boolean prevchar, thischar;
5448 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
5449 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5450 goto fail;
5452 prevchar = WORDCHAR_P (d - 1);
5453 thischar = WORDCHAR_P (d);
5454 if (prevchar != thischar)
5455 goto fail;
5456 break;
5458 #endif
5460 case wordbeg:
5461 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5462 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
5463 break;
5464 goto fail;
5466 case wordend:
5467 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5468 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
5469 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
5470 break;
5471 goto fail;
5473 #ifdef emacs
5474 case before_dot:
5475 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5476 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
5477 goto fail;
5478 break;
5480 case at_dot:
5481 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5482 if (PTR_CHAR_POS ((unsigned char *) d) != point)
5483 goto fail;
5484 break;
5486 case after_dot:
5487 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5488 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
5489 goto fail;
5490 break;
5492 case syntaxspec:
5493 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
5494 mcnt = *p++;
5495 goto matchsyntax;
5497 case wordchar:
5498 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
5499 mcnt = (int) Sword;
5500 matchsyntax:
5501 PREFETCH ();
5502 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5503 d++;
5504 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
5505 goto fail;
5506 SET_REGS_MATCHED ();
5507 break;
5509 case notsyntaxspec:
5510 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
5511 mcnt = *p++;
5512 goto matchnotsyntax;
5514 case notwordchar:
5515 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
5516 mcnt = (int) Sword;
5517 matchnotsyntax:
5518 PREFETCH ();
5519 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5520 d++;
5521 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
5522 goto fail;
5523 SET_REGS_MATCHED ();
5524 break;
5526 #else /* not emacs */
5527 case wordchar:
5528 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
5529 PREFETCH ();
5530 if (!WORDCHAR_P (d))
5531 goto fail;
5532 SET_REGS_MATCHED ();
5533 d++;
5534 break;
5536 case notwordchar:
5537 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
5538 PREFETCH ();
5539 if (WORDCHAR_P (d))
5540 goto fail;
5541 SET_REGS_MATCHED ();
5542 d++;
5543 break;
5544 #endif /* not emacs */
5546 default:
5547 abort ();
5549 continue; /* Successfully executed one pattern command; keep going. */
5552 /* We goto here if a matching operation fails. */
5553 fail:
5554 if (!FAIL_STACK_EMPTY ())
5555 { /* A restart point is known. Restore to that state. */
5556 DEBUG_PRINT1 ("\nFAIL:\n");
5557 POP_FAILURE_POINT (d, p,
5558 lowest_active_reg, highest_active_reg,
5559 regstart, regend, reg_info);
5561 /* If this failure point is a dummy, try the next one. */
5562 if (!p)
5563 goto fail;
5565 /* If we failed to the end of the pattern, don't examine *p. */
5566 assert (p <= pend);
5567 if (p < pend)
5569 boolean is_a_jump_n = false;
5571 /* If failed to a backwards jump that's part of a repetition
5572 loop, need to pop this failure point and use the next one. */
5573 switch ((re_opcode_t) *p)
5575 case jump_n:
5576 is_a_jump_n = true;
5577 case maybe_pop_jump:
5578 case pop_failure_jump:
5579 case jump:
5580 p1 = p + 1;
5581 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5582 p1 += mcnt;
5584 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
5585 || (!is_a_jump_n
5586 && (re_opcode_t) *p1 == on_failure_jump))
5587 goto fail;
5588 break;
5589 default:
5590 /* do nothing */ ;
5594 if (d >= string1 && d <= end1)
5595 dend = end_match_1;
5597 else
5598 break; /* Matching at this starting point really fails. */
5599 } /* for (;;) */
5601 if (best_regs_set)
5602 goto restore_best_regs;
5604 FREE_VARIABLES ();
5606 return -1; /* Failure to match. */
5607 } /* re_match_2 */
5609 /* Subroutine definitions for re_match_2. */
5612 /* We are passed P pointing to a register number after a start_memory.
5614 Return true if the pattern up to the corresponding stop_memory can
5615 match the empty string, and false otherwise.
5617 If we find the matching stop_memory, sets P to point to one past its number.
5618 Otherwise, sets P to an undefined byte less than or equal to END.
5620 We don't handle duplicates properly (yet). */
5622 static boolean
5623 group_match_null_string_p (p, end, reg_info)
5624 unsigned char **p, *end;
5625 register_info_type *reg_info;
5627 int mcnt;
5628 /* Point to after the args to the start_memory. */
5629 unsigned char *p1 = *p + 2;
5631 while (p1 < end)
5633 /* Skip over opcodes that can match nothing, and return true or
5634 false, as appropriate, when we get to one that can't, or to the
5635 matching stop_memory. */
5637 switch ((re_opcode_t) *p1)
5639 /* Could be either a loop or a series of alternatives. */
5640 case on_failure_jump:
5641 p1++;
5642 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5644 /* If the next operation is not a jump backwards in the
5645 pattern. */
5647 if (mcnt >= 0)
5649 /* Go through the on_failure_jumps of the alternatives,
5650 seeing if any of the alternatives cannot match nothing.
5651 The last alternative starts with only a jump,
5652 whereas the rest start with on_failure_jump and end
5653 with a jump, e.g., here is the pattern for `a|b|c':
5655 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5656 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5657 /exactn/1/c
5659 So, we have to first go through the first (n-1)
5660 alternatives and then deal with the last one separately. */
5663 /* Deal with the first (n-1) alternatives, which start
5664 with an on_failure_jump (see above) that jumps to right
5665 past a jump_past_alt. */
5667 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
5669 /* `mcnt' holds how many bytes long the alternative
5670 is, including the ending `jump_past_alt' and
5671 its number. */
5673 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
5674 reg_info))
5675 return false;
5677 /* Move to right after this alternative, including the
5678 jump_past_alt. */
5679 p1 += mcnt;
5681 /* Break if it's the beginning of an n-th alternative
5682 that doesn't begin with an on_failure_jump. */
5683 if ((re_opcode_t) *p1 != on_failure_jump)
5684 break;
5686 /* Still have to check that it's not an n-th
5687 alternative that starts with an on_failure_jump. */
5688 p1++;
5689 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5690 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
5692 /* Get to the beginning of the n-th alternative. */
5693 p1 -= 3;
5694 break;
5698 /* Deal with the last alternative: go back and get number
5699 of the `jump_past_alt' just before it. `mcnt' contains
5700 the length of the alternative. */
5701 EXTRACT_NUMBER (mcnt, p1 - 2);
5703 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
5704 return false;
5706 p1 += mcnt; /* Get past the n-th alternative. */
5707 } /* if mcnt > 0 */
5708 break;
5711 case stop_memory:
5712 assert (p1[1] == **p);
5713 *p = p1 + 2;
5714 return true;
5717 default:
5718 if (!common_op_match_null_string_p (&p1, end, reg_info))
5719 return false;
5721 } /* while p1 < end */
5723 return false;
5724 } /* group_match_null_string_p */
5727 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5728 It expects P to be the first byte of a single alternative and END one
5729 byte past the last. The alternative can contain groups. */
5731 static boolean
5732 alt_match_null_string_p (p, end, reg_info)
5733 unsigned char *p, *end;
5734 register_info_type *reg_info;
5736 int mcnt;
5737 unsigned char *p1 = p;
5739 while (p1 < end)
5741 /* Skip over opcodes that can match nothing, and break when we get
5742 to one that can't. */
5744 switch ((re_opcode_t) *p1)
5746 /* It's a loop. */
5747 case on_failure_jump:
5748 p1++;
5749 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5750 p1 += mcnt;
5751 break;
5753 default:
5754 if (!common_op_match_null_string_p (&p1, end, reg_info))
5755 return false;
5757 } /* while p1 < end */
5759 return true;
5760 } /* alt_match_null_string_p */
5763 /* Deals with the ops common to group_match_null_string_p and
5764 alt_match_null_string_p.
5766 Sets P to one after the op and its arguments, if any. */
5768 static boolean
5769 common_op_match_null_string_p (p, end, reg_info)
5770 unsigned char **p, *end;
5771 register_info_type *reg_info;
5773 int mcnt;
5774 boolean ret;
5775 int reg_no;
5776 unsigned char *p1 = *p;
5778 switch ((re_opcode_t) *p1++)
5780 case no_op:
5781 case begline:
5782 case endline:
5783 case begbuf:
5784 case endbuf:
5785 case wordbeg:
5786 case wordend:
5787 case wordbound:
5788 case notwordbound:
5789 #ifdef emacs
5790 case before_dot:
5791 case at_dot:
5792 case after_dot:
5793 #endif
5794 break;
5796 case start_memory:
5797 reg_no = *p1;
5798 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5799 ret = group_match_null_string_p (&p1, end, reg_info);
5801 /* Have to set this here in case we're checking a group which
5802 contains a group and a back reference to it. */
5804 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
5805 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
5807 if (!ret)
5808 return false;
5809 break;
5811 /* If this is an optimized succeed_n for zero times, make the jump. */
5812 case jump:
5813 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5814 if (mcnt >= 0)
5815 p1 += mcnt;
5816 else
5817 return false;
5818 break;
5820 case succeed_n:
5821 /* Get to the number of times to succeed. */
5822 p1 += 2;
5823 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5825 if (mcnt == 0)
5827 p1 -= 4;
5828 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5829 p1 += mcnt;
5831 else
5832 return false;
5833 break;
5835 case duplicate:
5836 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
5837 return false;
5838 break;
5840 case set_number_at:
5841 p1 += 4;
5843 default:
5844 /* All other opcodes mean we cannot match the empty string. */
5845 return false;
5848 *p = p1;
5849 return true;
5850 } /* common_op_match_null_string_p */
5853 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5854 bytes; nonzero otherwise. */
5856 static int
5857 bcmp_translate (s1, s2, len, translate)
5858 const char *s1, *s2;
5859 register int len;
5860 RE_TRANSLATE_TYPE translate;
5862 register const unsigned char *p1 = (const unsigned char *) s1;
5863 register const unsigned char *p2 = (const unsigned char *) s2;
5864 while (len)
5866 if (translate[*p1++] != translate[*p2++]) return 1;
5867 len--;
5869 return 0;
5872 /* Entry points for GNU code. */
5874 /* re_compile_pattern is the GNU regular expression compiler: it
5875 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5876 Returns 0 if the pattern was valid, otherwise an error string.
5878 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5879 are set in BUFP on entry.
5881 We call regex_compile to do the actual compilation. */
5883 const char *
5884 re_compile_pattern (pattern, length, bufp)
5885 const char *pattern;
5886 size_t length;
5887 struct re_pattern_buffer *bufp;
5889 reg_errcode_t ret;
5891 /* GNU code is written to assume at least RE_NREGS registers will be set
5892 (and at least one extra will be -1). */
5893 bufp->regs_allocated = REGS_UNALLOCATED;
5895 /* And GNU code determines whether or not to get register information
5896 by passing null for the REGS argument to re_match, etc., not by
5897 setting no_sub. */
5898 bufp->no_sub = 0;
5900 /* Match anchors at newline. */
5901 bufp->newline_anchor = 1;
5903 ret = regex_compile (pattern, length, re_syntax_options, bufp);
5905 if (!ret)
5906 return NULL;
5907 return gettext (re_error_msgid + re_error_msgid_idx[(int) ret]);
5909 #ifdef _LIBC
5910 weak_alias (__re_compile_pattern, re_compile_pattern)
5911 #endif
5913 /* Entry points compatible with 4.2 BSD regex library. We don't define
5914 them unless specifically requested. */
5916 #if defined _REGEX_RE_COMP || defined _LIBC
5918 /* BSD has one and only one pattern buffer. */
5919 static struct re_pattern_buffer re_comp_buf;
5921 char *
5922 #ifdef _LIBC
5923 /* Make these definitions weak in libc, so POSIX programs can redefine
5924 these names if they don't use our functions, and still use
5925 regcomp/regexec below without link errors. */
5926 weak_function
5927 #endif
5928 re_comp (s)
5929 const char *s;
5931 reg_errcode_t ret;
5933 if (!s)
5935 if (!re_comp_buf.buffer)
5936 return gettext ("No previous regular expression");
5937 return 0;
5940 if (!re_comp_buf.buffer)
5942 re_comp_buf.buffer = (unsigned char *) malloc (200);
5943 if (re_comp_buf.buffer == NULL)
5944 return (char *) gettext (re_error_msgid
5945 + re_error_msgid_idx[(int) REG_ESPACE]);
5946 re_comp_buf.allocated = 200;
5948 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5949 if (re_comp_buf.fastmap == NULL)
5950 return (char *) gettext (re_error_msgid
5951 + re_error_msgid_idx[(int) REG_ESPACE]);
5954 /* Since `re_exec' always passes NULL for the `regs' argument, we
5955 don't need to initialize the pattern buffer fields which affect it. */
5957 /* Match anchors at newlines. */
5958 re_comp_buf.newline_anchor = 1;
5960 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5962 if (!ret)
5963 return NULL;
5965 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5966 return (char *) gettext (re_error_msgid + re_error_msgid_idx[(int) ret]);
5971 #ifdef _LIBC
5972 weak_function
5973 #endif
5974 re_exec (s)
5975 const char *s;
5977 const int len = strlen (s);
5978 return
5979 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
5982 #endif /* _REGEX_RE_COMP */
5984 /* POSIX.2 functions. Don't define these for Emacs. */
5986 #ifndef emacs
5988 /* regcomp takes a regular expression as a string and compiles it.
5990 PREG is a regex_t *. We do not expect any fields to be initialized,
5991 since POSIX says we shouldn't. Thus, we set
5993 `buffer' to the compiled pattern;
5994 `used' to the length of the compiled pattern;
5995 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5996 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5997 RE_SYNTAX_POSIX_BASIC;
5998 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5999 `fastmap' to an allocated space for the fastmap;
6000 `fastmap_accurate' to zero;
6001 `re_nsub' to the number of subexpressions in PATTERN.
6003 PATTERN is the address of the pattern string.
6005 CFLAGS is a series of bits which affect compilation.
6007 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6008 use POSIX basic syntax.
6010 If REG_NEWLINE is set, then . and [^...] don't match newline.
6011 Also, regexec will try a match beginning after every newline.
6013 If REG_ICASE is set, then we considers upper- and lowercase
6014 versions of letters to be equivalent when matching.
6016 If REG_NOSUB is set, then when PREG is passed to regexec, that
6017 routine will report only success or failure, and nothing about the
6018 registers.
6020 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
6021 the return codes and their meanings.) */
6024 regcomp (preg, pattern, cflags)
6025 regex_t *preg;
6026 const char *pattern;
6027 int cflags;
6029 reg_errcode_t ret;
6030 reg_syntax_t syntax
6031 = (cflags & REG_EXTENDED) ?
6032 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6034 /* regex_compile will allocate the space for the compiled pattern. */
6035 preg->buffer = 0;
6036 preg->allocated = 0;
6037 preg->used = 0;
6039 /* Try to allocate space for the fastmap. */
6040 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
6042 if (cflags & REG_ICASE)
6044 unsigned i;
6046 preg->translate
6047 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
6048 * sizeof (*(RE_TRANSLATE_TYPE)0));
6049 if (preg->translate == NULL)
6050 return (int) REG_ESPACE;
6052 /* Map uppercase characters to corresponding lowercase ones. */
6053 for (i = 0; i < CHAR_SET_SIZE; i++)
6054 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
6056 else
6057 preg->translate = NULL;
6059 /* If REG_NEWLINE is set, newlines are treated differently. */
6060 if (cflags & REG_NEWLINE)
6061 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6062 syntax &= ~RE_DOT_NEWLINE;
6063 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
6064 /* It also changes the matching behavior. */
6065 preg->newline_anchor = 1;
6067 else
6068 preg->newline_anchor = 0;
6070 preg->no_sub = !!(cflags & REG_NOSUB);
6072 /* POSIX says a null character in the pattern terminates it, so we
6073 can use strlen here in compiling the pattern. */
6074 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
6076 /* POSIX doesn't distinguish between an unmatched open-group and an
6077 unmatched close-group: both are REG_EPAREN. */
6078 if (ret == REG_ERPAREN) ret = REG_EPAREN;
6080 if (ret == REG_NOERROR && preg->fastmap)
6082 /* Compute the fastmap now, since regexec cannot modify the pattern
6083 buffer. */
6084 if (re_compile_fastmap (preg) == -2)
6086 /* Some error occurred while computing the fastmap, just forget
6087 about it. */
6088 free (preg->fastmap);
6089 preg->fastmap = NULL;
6093 return (int) ret;
6095 #ifdef _LIBC
6096 weak_alias (__regcomp, regcomp)
6097 #endif
6100 /* regexec searches for a given pattern, specified by PREG, in the
6101 string STRING.
6103 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
6104 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
6105 least NMATCH elements, and we set them to the offsets of the
6106 corresponding matched substrings.
6108 EFLAGS specifies `execution flags' which affect matching: if
6109 REG_NOTBOL is set, then ^ does not match at the beginning of the
6110 string; if REG_NOTEOL is set, then $ does not match at the end.
6112 We return 0 if we find a match and REG_NOMATCH if not. */
6115 regexec (preg, string, nmatch, pmatch, eflags)
6116 const regex_t *preg;
6117 const char *string;
6118 size_t nmatch;
6119 regmatch_t pmatch[];
6120 int eflags;
6122 int ret;
6123 struct re_registers regs;
6124 regex_t private_preg;
6125 int len = strlen (string);
6126 boolean want_reg_info = !preg->no_sub && nmatch > 0;
6128 private_preg = *preg;
6130 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6131 private_preg.not_eol = !!(eflags & REG_NOTEOL);
6133 /* The user has told us exactly how many registers to return
6134 information about, via `nmatch'. We have to pass that on to the
6135 matching routines. */
6136 private_preg.regs_allocated = REGS_FIXED;
6138 if (want_reg_info)
6140 regs.num_regs = nmatch;
6141 regs.start = TALLOC (nmatch * 2, regoff_t);
6142 if (regs.start == NULL)
6143 return (int) REG_NOMATCH;
6144 regs.end = regs.start + nmatch;
6147 /* Perform the searching operation. */
6148 ret = re_search (&private_preg, string, len,
6149 /* start: */ 0, /* range: */ len,
6150 want_reg_info ? &regs : (struct re_registers *) 0);
6152 /* Copy the register information to the POSIX structure. */
6153 if (want_reg_info)
6155 if (ret >= 0)
6157 unsigned r;
6159 for (r = 0; r < nmatch; r++)
6161 pmatch[r].rm_so = regs.start[r];
6162 pmatch[r].rm_eo = regs.end[r];
6166 /* If we needed the temporary register info, free the space now. */
6167 free (regs.start);
6170 /* We want zero return to mean success, unlike `re_search'. */
6171 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6173 #ifdef _LIBC
6174 weak_alias (__regexec, regexec)
6175 #endif
6178 /* Returns a message corresponding to an error code, ERRCODE, returned
6179 from either regcomp or regexec. We don't use PREG here. */
6181 size_t
6182 regerror (errcode, preg, errbuf, errbuf_size)
6183 int errcode;
6184 const regex_t *preg;
6185 char *errbuf;
6186 size_t errbuf_size;
6188 const char *msg;
6189 size_t msg_size;
6191 if (errcode < 0
6192 || errcode >= (int) (sizeof (re_error_msgid_idx)
6193 / sizeof (re_error_msgid_idx[0])))
6194 /* Only error codes returned by the rest of the code should be passed
6195 to this routine. If we are given anything else, or if other regex
6196 code generates an invalid error code, then the program has a bug.
6197 Dump core so we can fix it. */
6198 abort ();
6200 msg = gettext (re_error_msgid + re_error_msgid_idx[errcode]);
6202 msg_size = strlen (msg) + 1; /* Includes the null. */
6204 if (errbuf_size != 0)
6206 if (msg_size > errbuf_size)
6208 #if defined HAVE_MEMPCPY || defined _LIBC
6209 *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
6210 #else
6211 memcpy (errbuf, msg, errbuf_size - 1);
6212 errbuf[errbuf_size - 1] = 0;
6213 #endif
6215 else
6216 memcpy (errbuf, msg, msg_size);
6219 return msg_size;
6221 #ifdef _LIBC
6222 weak_alias (__regerror, regerror)
6223 #endif
6226 /* Free dynamically allocated space used by PREG. */
6228 void
6229 regfree (preg)
6230 regex_t *preg;
6232 if (preg->buffer != NULL)
6233 free (preg->buffer);
6234 preg->buffer = NULL;
6236 preg->allocated = 0;
6237 preg->used = 0;
6239 if (preg->fastmap != NULL)
6240 free (preg->fastmap);
6241 preg->fastmap = NULL;
6242 preg->fastmap_accurate = 0;
6244 if (preg->translate != NULL)
6245 free (preg->translate);
6246 preg->translate = NULL;
6248 #ifdef _LIBC
6249 weak_alias (__regfree, regfree)
6250 #endif
6252 #endif /* not emacs */