Update.
[glibc.git] / stdio-common / printf_fp.c
blobe5e3026bce601288682d17185fb1ba16fdddf68c
1 /* Floating point output for `printf'.
2 Copyright (C) 1995, 1996, 1997 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995.
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public License as
8 published by the Free Software Foundation; either version 2 of the
9 License, or (at your option) any later version.
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Library General Public License for more details.
16 You should have received a copy of the GNU Library General Public
17 License along with the GNU C Library; see the file COPYING.LIB. If not,
18 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
21 /* The gmp headers need some configuration frobs. */
22 #define HAVE_ALLOCA 1
24 #ifdef USE_IN_LIBIO
25 # include <libioP.h>
26 #else
27 # include <stdio.h>
28 #endif
29 #include <alloca.h>
30 #include <ctype.h>
31 #include <float.h>
32 #include <gmp-mparam.h>
33 #include <stdlib/gmp.h>
34 #include <stdlib/gmp-impl.h>
35 #include <stdlib/longlong.h>
36 #include <stdlib/fpioconst.h>
37 #include <locale/localeinfo.h>
38 #include <limits.h>
39 #include <math.h>
40 #include <printf.h>
41 #include <string.h>
42 #include <unistd.h>
43 #include <stdlib.h>
45 #ifndef NDEBUG
46 # define NDEBUG /* Undefine this for debugging assertions. */
47 #endif
48 #include <assert.h>
50 /* This defines make it possible to use the same code for GNU C library and
51 the GNU I/O library. */
52 #ifdef USE_IN_LIBIO
53 # define PUT(f, s, n) _IO_sputn (f, s, n)
54 # define PAD(f, c, n) _IO_padn (f, c, n)
55 /* We use this file GNU C library and GNU I/O library. So make
56 names equal. */
57 # undef putc
58 # define putc(c, f) _IO_putc_unlocked (c, f)
59 # define size_t _IO_size_t
60 # define FILE _IO_FILE
61 #else /* ! USE_IN_LIBIO */
62 # define PUT(f, s, n) fwrite (s, 1, n, f)
63 # define PAD(f, c, n) __printf_pad (f, c, n)
64 ssize_t __printf_pad __P ((FILE *, char pad, int n)); /* In vfprintf.c. */
65 #endif /* USE_IN_LIBIO */
67 /* Macros for doing the actual output. */
69 #define outchar(ch) \
70 do \
71 { \
72 register const int outc = (ch); \
73 if (putc (outc, fp) == EOF) \
74 return -1; \
75 ++done; \
76 } while (0)
78 #define PRINT(ptr, len) \
79 do \
80 { \
81 register size_t outlen = (len); \
82 if (len > 20) \
83 { \
84 if (PUT (fp, ptr, outlen) != outlen) \
85 return -1; \
86 ptr += outlen; \
87 done += outlen; \
88 } \
89 else \
90 { \
91 while (outlen-- > 0) \
92 outchar (*ptr++); \
93 } \
94 } while (0)
96 #define PADN(ch, len) \
97 do \
98 { \
99 if (PAD (fp, ch, len) != len) \
100 return -1; \
101 done += len; \
103 while (0)
105 /* We use the GNU MP library to handle large numbers.
107 An MP variable occupies a varying number of entries in its array. We keep
108 track of this number for efficiency reasons. Otherwise we would always
109 have to process the whole array. */
110 #define MPN_VAR(name) mp_limb_t *name; mp_size_t name##size
112 #define MPN_ASSIGN(dst,src) \
113 memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t))
114 #define MPN_GE(u,v) \
115 (u##size > v##size || (u##size == v##size && __mpn_cmp (u, v, u##size) >= 0))
117 extern int __isinfl (long double), __isnanl (long double);
119 extern mp_size_t __mpn_extract_double (mp_ptr res_ptr, mp_size_t size,
120 int *expt, int *is_neg,
121 double value);
122 extern mp_size_t __mpn_extract_long_double (mp_ptr res_ptr, mp_size_t size,
123 int *expt, int *is_neg,
124 long double value);
125 extern unsigned int __guess_grouping (unsigned int intdig_max,
126 const char *grouping, wchar_t sepchar);
129 static char *group_number (char *buf, char *bufend, unsigned int intdig_no,
130 const char *grouping, wchar_t thousands_sep)
131 internal_function;
135 __printf_fp (FILE *fp,
136 const struct printf_info *info,
137 const void *const *args)
139 /* The floating-point value to output. */
140 union
142 double dbl;
143 __long_double_t ldbl;
145 fpnum;
147 /* Locale-dependent representation of decimal point. */
148 wchar_t decimal;
150 /* Locale-dependent thousands separator and grouping specification. */
151 wchar_t thousands_sep;
152 const char *grouping;
154 /* "NaN" or "Inf" for the special cases. */
155 const char *special = NULL;
157 /* We need just a few limbs for the input before shifting to the right
158 position. */
159 mp_limb_t fp_input[(LDBL_MANT_DIG + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB];
160 /* We need to shift the contents of fp_input by this amount of bits. */
161 int to_shift = 0;
163 /* The fraction of the floting-point value in question */
164 MPN_VAR(frac);
165 /* and the exponent. */
166 int exponent;
167 /* Sign of the exponent. */
168 int expsign = 0;
169 /* Sign of float number. */
170 int is_neg = 0;
172 /* Scaling factor. */
173 MPN_VAR(scale);
175 /* Temporary bignum value. */
176 MPN_VAR(tmp);
178 /* Digit which is result of last hack_digit() call. */
179 int digit;
181 /* The type of output format that will be used: 'e'/'E' or 'f'. */
182 int type;
184 /* Counter for number of written characters. */
185 int done = 0;
187 /* General helper (carry limb). */
188 mp_limb_t cy;
190 char hack_digit (void)
192 mp_limb_t hi;
194 if (expsign != 0 && type == 'f' && exponent-- > 0)
195 hi = 0;
196 else if (scalesize == 0)
198 hi = frac[fracsize - 1];
199 cy = __mpn_mul_1 (frac, frac, fracsize - 1, 10);
200 frac[fracsize - 1] = cy;
202 else
204 if (fracsize < scalesize)
205 hi = 0;
206 else
208 hi = mpn_divmod (tmp, frac, fracsize, scale, scalesize);
209 tmp[fracsize - scalesize] = hi;
210 hi = tmp[0];
212 fracsize = scalesize;
213 while (fracsize != 0 && frac[fracsize - 1] == 0)
214 --fracsize;
215 if (fracsize == 0)
217 /* We're not prepared for an mpn variable with zero
218 limbs. */
219 fracsize = 1;
220 return '0' + hi;
224 cy = __mpn_mul_1 (frac, frac, fracsize, 10);
225 if (cy != 0)
226 frac[fracsize++] = cy;
229 return '0' + hi;
233 /* Figure out the decimal point character. */
234 if (info->extra == 0)
236 if (mbtowc (&decimal, _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT),
237 strlen (_NL_CURRENT (LC_NUMERIC, DECIMAL_POINT))) <= 0)
238 decimal = (wchar_t) *_NL_CURRENT (LC_NUMERIC, DECIMAL_POINT);
240 else
242 if (mbtowc (&decimal, _NL_CURRENT (LC_MONETARY, MON_DECIMAL_POINT),
243 strlen (_NL_CURRENT (LC_MONETARY, MON_DECIMAL_POINT))) <= 0)
244 decimal = (wchar_t) *_NL_CURRENT (LC_MONETARY, MON_DECIMAL_POINT);
246 /* Give default value. */
247 if (decimal == L'\0')
248 decimal = L'.';
251 if (info->group)
253 if (info->extra == 0)
254 grouping = _NL_CURRENT (LC_NUMERIC, GROUPING);
255 else
256 grouping = _NL_CURRENT (LC_MONETARY, MON_GROUPING);
258 if (*grouping <= 0 || *grouping == CHAR_MAX)
259 grouping = NULL;
260 else
262 /* Figure out the thousands separator character. */
263 if (info->extra == 0)
265 if (mbtowc (&thousands_sep, _NL_CURRENT (LC_NUMERIC,
266 THOUSANDS_SEP),
267 strlen (_NL_CURRENT (LC_NUMERIC, THOUSANDS_SEP)))
268 <= 0)
269 thousands_sep = (wchar_t) *_NL_CURRENT (LC_NUMERIC,
270 THOUSANDS_SEP);
272 else
274 if (mbtowc (&thousands_sep, _NL_CURRENT (LC_MONETARY,
275 MON_THOUSANDS_SEP),
276 strlen (_NL_CURRENT (LC_MONETARY,
277 MON_THOUSANDS_SEP))) <= 0)
278 thousands_sep = (wchar_t) *_NL_CURRENT (LC_MONETARY,
279 MON_THOUSANDS_SEP);
282 if (thousands_sep == L'\0')
283 grouping = NULL;
286 else
287 grouping = NULL;
289 /* Fetch the argument value. */
290 if (info->is_long_double && sizeof (long double) > sizeof (double))
292 fpnum.ldbl = *(const long double *) args[0];
294 /* Check for special values: not a number or infinity. */
295 if (__isnanl (fpnum.ldbl))
297 special = isupper (info->spec) ? "NAN" : "nan";
298 is_neg = 0;
300 else if (__isinfl (fpnum.ldbl))
302 special = isupper (info->spec) ? "INF" : "inf";
303 is_neg = fpnum.ldbl < 0;
305 else
307 fracsize = __mpn_extract_long_double (fp_input,
308 (sizeof (fp_input) /
309 sizeof (fp_input[0])),
310 &exponent, &is_neg,
311 fpnum.ldbl);
312 to_shift = 1 + fracsize * BITS_PER_MP_LIMB - LDBL_MANT_DIG;
315 else
317 fpnum.dbl = *(const double *) args[0];
319 /* Check for special values: not a number or infinity. */
320 if (__isnan (fpnum.dbl))
322 special = isupper (info->spec) ? "NAN" : "nan";
323 is_neg = 0;
325 else if (__isinf (fpnum.dbl))
327 special = isupper (info->spec) ? "INF" : "inf";
328 is_neg = fpnum.dbl < 0;
330 else
332 fracsize = __mpn_extract_double (fp_input,
333 (sizeof (fp_input)
334 / sizeof (fp_input[0])),
335 &exponent, &is_neg, fpnum.dbl);
336 to_shift = 1 + fracsize * BITS_PER_MP_LIMB - DBL_MANT_DIG;
340 if (special)
342 int width = info->width;
344 if (is_neg || info->showsign || info->space)
345 --width;
346 width -= 3;
348 if (!info->left && width > 0)
349 PADN (' ', width);
351 if (is_neg)
352 outchar ('-');
353 else if (info->showsign)
354 outchar ('+');
355 else if (info->space)
356 outchar (' ');
358 PRINT (special, 3);
360 if (info->left && width > 0)
361 PADN (' ', width);
363 return done;
367 /* We need three multiprecision variables. Now that we have the exponent
368 of the number we can allocate the needed memory. It would be more
369 efficient to use variables of the fixed maximum size but because this
370 would be really big it could lead to memory problems. */
372 mp_size_t bignum_size = ((ABS (exponent) + BITS_PER_MP_LIMB - 1)
373 / BITS_PER_MP_LIMB + 4) * sizeof (mp_limb_t);
374 frac = (mp_limb_t *) alloca (bignum_size);
375 tmp = (mp_limb_t *) alloca (bignum_size);
376 scale = (mp_limb_t *) alloca (bignum_size);
379 /* We now have to distinguish between numbers with positive and negative
380 exponents because the method used for the one is not applicable/efficient
381 for the other. */
382 scalesize = 0;
383 if (exponent > 2)
385 /* |FP| >= 8.0. */
386 int scaleexpo = 0;
387 int explog = LDBL_MAX_10_EXP_LOG;
388 int exp10 = 0;
389 const struct mp_power *tens = &_fpioconst_pow10[explog + 1];
390 int cnt_h, cnt_l, i;
392 if ((exponent + to_shift) % BITS_PER_MP_LIMB == 0)
394 MPN_COPY_DECR (frac + (exponent + to_shift) / BITS_PER_MP_LIMB,
395 fp_input, fracsize);
396 fracsize += (exponent + to_shift) / BITS_PER_MP_LIMB;
398 else
400 cy = __mpn_lshift (frac + (exponent + to_shift) / BITS_PER_MP_LIMB,
401 fp_input, fracsize,
402 (exponent + to_shift) % BITS_PER_MP_LIMB);
403 fracsize += (exponent + to_shift) / BITS_PER_MP_LIMB;
404 if (cy)
405 frac[fracsize++] = cy;
407 MPN_ZERO (frac, (exponent + to_shift) / BITS_PER_MP_LIMB);
409 assert (tens > &_fpioconst_pow10[0]);
412 --tens;
414 /* The number of the product of two binary numbers with n and m
415 bits respectively has m+n or m+n-1 bits. */
416 if (exponent >= scaleexpo + tens->p_expo - 1)
418 if (scalesize == 0)
419 MPN_ASSIGN (tmp, tens->array);
420 else
422 cy = __mpn_mul (tmp, scale, scalesize,
423 &tens->array[_FPIO_CONST_OFFSET],
424 tens->arraysize - _FPIO_CONST_OFFSET);
425 tmpsize = scalesize + tens->arraysize - _FPIO_CONST_OFFSET;
426 if (cy == 0)
427 --tmpsize;
430 if (MPN_GE (frac, tmp))
432 int cnt;
433 MPN_ASSIGN (scale, tmp);
434 count_leading_zeros (cnt, scale[scalesize - 1]);
435 scaleexpo = (scalesize - 2) * BITS_PER_MP_LIMB - cnt - 1;
436 exp10 |= 1 << explog;
439 --explog;
441 while (tens > &_fpioconst_pow10[0]);
442 exponent = exp10;
444 /* Optimize number representations. We want to represent the numbers
445 with the lowest number of bytes possible without losing any
446 bytes. Also the highest bit in the scaling factor has to be set
447 (this is a requirement of the MPN division routines). */
448 if (scalesize > 0)
450 /* Determine minimum number of zero bits at the end of
451 both numbers. */
452 for (i = 0; scale[i] == 0 && frac[i] == 0; i++)
455 /* Determine number of bits the scaling factor is misplaced. */
456 count_leading_zeros (cnt_h, scale[scalesize - 1]);
458 if (cnt_h == 0)
460 /* The highest bit of the scaling factor is already set. So
461 we only have to remove the trailing empty limbs. */
462 if (i > 0)
464 MPN_COPY_INCR (scale, scale + i, scalesize - i);
465 scalesize -= i;
466 MPN_COPY_INCR (frac, frac + i, fracsize - i);
467 fracsize -= i;
470 else
472 if (scale[i] != 0)
474 count_trailing_zeros (cnt_l, scale[i]);
475 if (frac[i] != 0)
477 int cnt_l2;
478 count_trailing_zeros (cnt_l2, frac[i]);
479 if (cnt_l2 < cnt_l)
480 cnt_l = cnt_l2;
483 else
484 count_trailing_zeros (cnt_l, frac[i]);
486 /* Now shift the numbers to their optimal position. */
487 if (i == 0 && BITS_PER_MP_LIMB - cnt_h > cnt_l)
489 /* We cannot save any memory. So just roll both numbers
490 so that the scaling factor has its highest bit set. */
492 (void) __mpn_lshift (scale, scale, scalesize, cnt_h);
493 cy = __mpn_lshift (frac, frac, fracsize, cnt_h);
494 if (cy != 0)
495 frac[fracsize++] = cy;
497 else if (BITS_PER_MP_LIMB - cnt_h <= cnt_l)
499 /* We can save memory by removing the trailing zero limbs
500 and by packing the non-zero limbs which gain another
501 free one. */
503 (void) __mpn_rshift (scale, scale + i, scalesize - i,
504 BITS_PER_MP_LIMB - cnt_h);
505 scalesize -= i + 1;
506 (void) __mpn_rshift (frac, frac + i, fracsize - i,
507 BITS_PER_MP_LIMB - cnt_h);
508 fracsize -= frac[fracsize - i - 1] == 0 ? i + 1 : i;
510 else
512 /* We can only save the memory of the limbs which are zero.
513 The non-zero parts occupy the same number of limbs. */
515 (void) __mpn_rshift (scale, scale + (i - 1),
516 scalesize - (i - 1),
517 BITS_PER_MP_LIMB - cnt_h);
518 scalesize -= i;
519 (void) __mpn_rshift (frac, frac + (i - 1),
520 fracsize - (i - 1),
521 BITS_PER_MP_LIMB - cnt_h);
522 fracsize -= frac[fracsize - (i - 1) - 1] == 0 ? i : i - 1;
527 else if (exponent < 0)
529 /* |FP| < 1.0. */
530 int exp10 = 0;
531 int explog = LDBL_MAX_10_EXP_LOG;
532 const struct mp_power *tens = &_fpioconst_pow10[explog + 1];
533 mp_size_t used_limbs = fracsize - 1;
535 /* Now shift the input value to its right place. */
536 cy = __mpn_lshift (frac, fp_input, fracsize, to_shift);
537 frac[fracsize++] = cy;
538 assert (cy == 1 || (frac[fracsize - 2] == 0 && frac[0] == 0));
540 expsign = 1;
541 exponent = -exponent;
543 assert (tens != &_fpioconst_pow10[0]);
546 --tens;
548 if (exponent >= tens->m_expo)
550 int i, incr, cnt_h, cnt_l;
551 mp_limb_t topval[2];
553 /* The __mpn_mul function expects the first argument to be
554 bigger than the second. */
555 if (fracsize < tens->arraysize - _FPIO_CONST_OFFSET)
556 cy = __mpn_mul (tmp, &tens->array[_FPIO_CONST_OFFSET],
557 tens->arraysize - _FPIO_CONST_OFFSET,
558 frac, fracsize);
559 else
560 cy = __mpn_mul (tmp, frac, fracsize,
561 &tens->array[_FPIO_CONST_OFFSET],
562 tens->arraysize - _FPIO_CONST_OFFSET);
563 tmpsize = fracsize + tens->arraysize - _FPIO_CONST_OFFSET;
564 if (cy == 0)
565 --tmpsize;
567 count_leading_zeros (cnt_h, tmp[tmpsize - 1]);
568 incr = (tmpsize - fracsize) * BITS_PER_MP_LIMB
569 + BITS_PER_MP_LIMB - 1 - cnt_h;
571 assert (incr <= tens->p_expo);
573 /* If we increased the exponent by exactly 3 we have to test
574 for overflow. This is done by comparing with 10 shifted
575 to the right position. */
576 if (incr == exponent + 3)
578 if (cnt_h <= BITS_PER_MP_LIMB - 4)
580 topval[0] = 0;
581 topval[1]
582 = ((mp_limb_t) 10) << (BITS_PER_MP_LIMB - 4 - cnt_h);
584 else
586 topval[0] = ((mp_limb_t) 10) << (BITS_PER_MP_LIMB - 4);
587 topval[1] = 0;
588 (void) __mpn_lshift (topval, topval, 2,
589 BITS_PER_MP_LIMB - cnt_h);
593 /* We have to be careful when multiplying the last factor.
594 If the result is greater than 1.0 be have to test it
595 against 10.0. If it is greater or equal to 10.0 the
596 multiplication was not valid. This is because we cannot
597 determine the number of bits in the result in advance. */
598 if (incr < exponent + 3
599 || (incr == exponent + 3 &&
600 (tmp[tmpsize - 1] < topval[1]
601 || (tmp[tmpsize - 1] == topval[1]
602 && tmp[tmpsize - 2] < topval[0]))))
604 /* The factor is right. Adapt binary and decimal
605 exponents. */
606 exponent -= incr;
607 exp10 |= 1 << explog;
609 /* If this factor yields a number greater or equal to
610 1.0, we must not shift the non-fractional digits down. */
611 if (exponent < 0)
612 cnt_h += -exponent;
614 /* Now we optimize the number representation. */
615 for (i = 0; tmp[i] == 0; ++i);
616 if (cnt_h == BITS_PER_MP_LIMB - 1)
618 MPN_COPY (frac, tmp + i, tmpsize - i);
619 fracsize = tmpsize - i;
621 else
623 count_trailing_zeros (cnt_l, tmp[i]);
625 /* Now shift the numbers to their optimal position. */
626 if (i == 0 && BITS_PER_MP_LIMB - 1 - cnt_h > cnt_l)
628 /* We cannot save any memory. Just roll the
629 number so that the leading digit is in a
630 separate limb. */
632 cy = __mpn_lshift (frac, tmp, tmpsize, cnt_h + 1);
633 fracsize = tmpsize + 1;
634 frac[fracsize - 1] = cy;
636 else if (BITS_PER_MP_LIMB - 1 - cnt_h <= cnt_l)
638 (void) __mpn_rshift (frac, tmp + i, tmpsize - i,
639 BITS_PER_MP_LIMB - 1 - cnt_h);
640 fracsize = tmpsize - i;
642 else
644 /* We can only save the memory of the limbs which
645 are zero. The non-zero parts occupy the same
646 number of limbs. */
648 (void) __mpn_rshift (frac, tmp + (i - 1),
649 tmpsize - (i - 1),
650 BITS_PER_MP_LIMB - 1 - cnt_h);
651 fracsize = tmpsize - (i - 1);
654 used_limbs = fracsize - 1;
657 --explog;
659 while (tens != &_fpioconst_pow10[1] && exponent > 0);
660 /* All factors but 10^-1 are tested now. */
661 if (exponent > 0)
663 int cnt_l;
665 cy = __mpn_mul_1 (tmp, frac, fracsize, 10);
666 tmpsize = fracsize;
667 assert (cy == 0 || tmp[tmpsize - 1] < 20);
669 count_trailing_zeros (cnt_l, tmp[0]);
670 if (cnt_l < MIN (4, exponent))
672 cy = __mpn_lshift (frac, tmp, tmpsize,
673 BITS_PER_MP_LIMB - MIN (4, exponent));
674 if (cy != 0)
675 frac[tmpsize++] = cy;
677 else
678 (void) __mpn_rshift (frac, tmp, tmpsize, MIN (4, exponent));
679 fracsize = tmpsize;
680 exp10 |= 1;
681 assert (frac[fracsize - 1] < 10);
683 exponent = exp10;
685 else
687 /* This is a special case. We don't need a factor because the
688 numbers are in the range of 0.0 <= fp < 8.0. We simply
689 shift it to the right place and divide it by 1.0 to get the
690 leading digit. (Of course this division is not really made.) */
691 assert (0 <= exponent && exponent < 3 &&
692 exponent + to_shift < BITS_PER_MP_LIMB);
694 /* Now shift the input value to its right place. */
695 cy = __mpn_lshift (frac, fp_input, fracsize, (exponent + to_shift));
696 frac[fracsize++] = cy;
697 exponent = 0;
701 int width = info->width;
702 char *buffer, *startp, *cp;
703 int chars_needed;
704 int expscale;
705 int intdig_max, intdig_no = 0;
706 int fracdig_min, fracdig_max, fracdig_no = 0;
707 int dig_max;
708 int significant;
710 if (tolower (info->spec) == 'e')
712 type = info->spec;
713 intdig_max = 1;
714 fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec;
715 chars_needed = 1 + 1 + fracdig_max + 1 + 1 + 4;
716 /* d . ddd e +- ddd */
717 dig_max = INT_MAX; /* Unlimited. */
718 significant = 1; /* Does not matter here. */
720 else if (info->spec == 'f')
722 type = 'f';
723 fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec;
724 if (expsign == 0)
726 intdig_max = exponent + 1;
727 /* This can be really big! */ /* XXX Maybe malloc if too big? */
728 chars_needed = exponent + 1 + 1 + fracdig_max;
730 else
732 intdig_max = 1;
733 chars_needed = 1 + 1 + fracdig_max;
735 dig_max = INT_MAX; /* Unlimited. */
736 significant = 1; /* Does not matter here. */
738 else
740 dig_max = info->prec < 0 ? 6 : (info->prec == 0 ? 1 : info->prec);
741 if ((expsign == 0 && exponent >= dig_max)
742 || (expsign != 0 && exponent > 4))
744 type = isupper (info->spec) ? 'E' : 'e';
745 fracdig_max = dig_max - 1;
746 intdig_max = 1;
747 chars_needed = 1 + 1 + fracdig_max + 1 + 1 + 4;
749 else
751 type = 'f';
752 intdig_max = expsign == 0 ? exponent + 1 : 0;
753 fracdig_max = dig_max - intdig_max;
754 /* We need space for the significant digits and perhaps for
755 leading zeros when < 1.0. Pessimistic guess: dig_max. */
756 chars_needed = dig_max + dig_max + 1;
758 fracdig_min = info->alt ? fracdig_max : 0;
759 significant = 0; /* We count significant digits. */
762 if (grouping)
763 /* Guess the number of groups we will make, and thus how
764 many spaces we need for separator characters. */
765 chars_needed += __guess_grouping (intdig_max, grouping, thousands_sep);
767 /* Allocate buffer for output. We need two more because while rounding
768 it is possible that we need two more characters in front of all the
769 other output. */
770 buffer = alloca (2 + chars_needed);
771 cp = startp = buffer + 2; /* Let room for rounding. */
773 /* Do the real work: put digits in allocated buffer. */
774 if (expsign == 0 || type != 'f')
776 assert (expsign == 0 || intdig_max == 1);
777 while (intdig_no < intdig_max)
779 ++intdig_no;
780 *cp++ = hack_digit ();
782 significant = 1;
783 if (info->alt
784 || fracdig_min > 0
785 || (fracdig_max > 0 && (fracsize > 1 || frac[0] != 0)))
786 *cp++ = decimal;
788 else
790 /* |fp| < 1.0 and the selected type is 'f', so put "0."
791 in the buffer. */
792 *cp++ = '0';
793 --exponent;
794 *cp++ = decimal;
797 /* Generate the needed number of fractional digits. */
798 while (fracdig_no < fracdig_min
799 || (fracdig_no < fracdig_max && (fracsize > 1 || frac[0] != 0)))
801 ++fracdig_no;
802 *cp = hack_digit ();
803 if (*cp != '0')
804 significant = 1;
805 else if (significant == 0)
807 ++fracdig_max;
808 if (fracdig_min > 0)
809 ++fracdig_min;
811 ++cp;
814 /* Do rounding. */
815 digit = hack_digit ();
816 if (digit > '4')
818 char *tp = cp;
820 if (digit == '5' && (*(cp - 1) & 1) == 0)
822 /* This is the critical case. */
823 if (fracsize == 1 && frac[0] == 0)
824 /* Rest of the number is zero -> round to even.
825 (IEEE 754-1985 4.1 says this is the default rounding.) */
826 goto do_expo;
827 else if (scalesize == 0)
829 /* Here we have to see whether all limbs are zero since no
830 normalization happened. */
831 size_t lcnt = fracsize;
832 while (lcnt >= 1 && frac[lcnt - 1] == 0)
833 --lcnt;
834 if (lcnt == 0)
835 /* Rest of the number is zero -> round to even.
836 (IEEE 754-1985 4.1 says this is the default rounding.) */
837 goto do_expo;
841 if (fracdig_no > 0)
843 /* Process fractional digits. Terminate if not rounded or
844 radix character is reached. */
845 while (*--tp != decimal && *tp == '9')
846 *tp = '0';
847 if (*tp != decimal)
848 /* Round up. */
849 (*tp)++;
852 if (fracdig_no == 0 || *tp == decimal)
854 /* Round the integer digits. */
855 if (*(tp - 1) == decimal)
856 --tp;
858 while (--tp >= startp && *tp == '9')
859 *tp = '0';
861 if (tp >= startp)
862 /* Round up. */
863 (*tp)++;
864 else
865 /* It is more critical. All digits were 9's. */
867 if (type != 'f')
869 *startp = '1';
870 exponent += expsign == 0 ? 1 : -1;
872 else if (intdig_no == dig_max)
874 /* This is the case where for type %g the number fits
875 really in the range for %f output but after rounding
876 the number of digits is too big. */
877 *--startp = decimal;
878 *--startp = '1';
880 if (info->alt || fracdig_no > 0)
882 /* Overwrite the old radix character. */
883 startp[intdig_no + 2] = '0';
884 ++fracdig_no;
887 fracdig_no += intdig_no;
888 intdig_no = 1;
889 fracdig_max = intdig_max - intdig_no;
890 ++exponent;
891 /* Now we must print the exponent. */
892 type = isupper (info->spec) ? 'E' : 'e';
894 else
896 /* We can simply add another another digit before the
897 radix. */
898 *--startp = '1';
899 ++intdig_no;
902 /* While rounding the number of digits can change.
903 If the number now exceeds the limits remove some
904 fractional digits. */
905 if (intdig_no + fracdig_no > dig_max)
907 cp -= intdig_no + fracdig_no - dig_max;
908 fracdig_no -= intdig_no + fracdig_no - dig_max;
914 do_expo:
915 /* Now remove unnecessary '0' at the end of the string. */
916 while (fracdig_no > fracdig_min && *(cp - 1) == '0')
918 --cp;
919 --fracdig_no;
921 /* If we eliminate all fractional digits we perhaps also can remove
922 the radix character. */
923 if (fracdig_no == 0 && !info->alt && *(cp - 1) == decimal)
924 --cp;
926 if (grouping)
927 /* Add in separator characters, overwriting the same buffer. */
928 cp = group_number (startp, cp, intdig_no, grouping, thousands_sep);
930 /* Write the exponent if it is needed. */
931 if (type != 'f')
933 *cp++ = type;
934 *cp++ = expsign ? '-' : '+';
936 /* Find the magnitude of the exponent. */
937 expscale = 10;
938 while (expscale <= exponent)
939 expscale *= 10;
941 if (exponent < 10)
942 /* Exponent always has at least two digits. */
943 *cp++ = '0';
944 else
947 expscale /= 10;
948 *cp++ = '0' + (exponent / expscale);
949 exponent %= expscale;
951 while (expscale > 10);
952 *cp++ = '0' + exponent;
955 /* Compute number of characters which must be filled with the padding
956 character. */
957 if (is_neg || info->showsign || info->space)
958 --width;
959 width -= cp - startp;
961 if (!info->left && info->pad != '0' && width > 0)
962 PADN (info->pad, width);
964 if (is_neg)
965 outchar ('-');
966 else if (info->showsign)
967 outchar ('+');
968 else if (info->space)
969 outchar (' ');
971 if (!info->left && info->pad == '0' && width > 0)
972 PADN ('0', width);
974 PRINT (startp, cp - startp);
976 if (info->left && width > 0)
977 PADN (info->pad, width);
979 return done;
982 /* Return the number of extra grouping characters that will be inserted
983 into a number with INTDIG_MAX integer digits. */
985 unsigned int
986 __guess_grouping (unsigned int intdig_max, const char *grouping,
987 wchar_t sepchar)
989 unsigned int groups;
991 /* We treat all negative values like CHAR_MAX. */
993 if (*grouping == CHAR_MAX || *grouping <= 0)
994 /* No grouping should be done. */
995 return 0;
997 groups = 0;
998 while (intdig_max > (unsigned int) *grouping)
1000 ++groups;
1001 intdig_max -= *grouping++;
1003 if (*grouping == CHAR_MAX
1004 #if CHAR_MIN < 0
1005 || *grouping < 0
1006 #endif
1008 /* No more grouping should be done. */
1009 break;
1010 else if (*grouping == 0)
1012 /* Same grouping repeats. */
1013 groups += (intdig_max - 1) / grouping[-1];
1014 break;
1018 return groups;
1021 /* Group the INTDIG_NO integer digits of the number in [BUF,BUFEND).
1022 There is guaranteed enough space past BUFEND to extend it.
1023 Return the new end of buffer. */
1025 static char *
1026 internal_function
1027 group_number (char *buf, char *bufend, unsigned int intdig_no,
1028 const char *grouping, wchar_t thousands_sep)
1030 unsigned int groups = __guess_grouping (intdig_no, grouping, thousands_sep);
1031 char *p;
1033 if (groups == 0)
1034 return bufend;
1036 /* Move the fractional part down. */
1037 memmove (buf + intdig_no + groups, buf + intdig_no,
1038 bufend - (buf + intdig_no));
1040 p = buf + intdig_no + groups - 1;
1043 unsigned int len = *grouping++;
1045 *p-- = buf[--intdig_no];
1046 while (--len > 0);
1047 *p-- = thousands_sep;
1049 if (*grouping == CHAR_MAX
1050 #if CHAR_MIN < 0
1051 || *grouping < 0
1052 #endif
1054 /* No more grouping should be done. */
1055 break;
1056 else if (*grouping == 0)
1057 /* Same grouping repeats. */
1058 --grouping;
1059 } while (intdig_no > (unsigned int) *grouping);
1061 /* Copy the remaining ungrouped digits. */
1063 *p-- = buf[--intdig_no];
1064 while (p > buf);
1066 return bufend + groups;