2007-11-18 Roland McGrath <roland@frob.com>
[glibc.git] / stdlib / strtod_l.c
blob86b408e1fee1d66341c0d9dde06632e73c781b7f
1 /* Convert string representing a number to float value, using given locale.
2 Copyright (C) 1997,1998,2002,2004,2005,2006,2007
3 Free Software Foundation, Inc.
4 This file is part of the GNU C Library.
5 Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Lesser General Public License for more details.
17 You should have received a copy of the GNU Lesser General Public
18 License along with the GNU C Library; if not, write to the Free
19 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
20 02111-1307 USA. */
22 #include <xlocale.h>
24 extern double ____strtod_l_internal (const char *, char **, int, __locale_t);
25 extern unsigned long long int ____strtoull_l_internal (const char *, char **,
26 int, int, __locale_t);
28 /* Configuration part. These macros are defined by `strtold.c',
29 `strtof.c', `wcstod.c', `wcstold.c', and `wcstof.c' to produce the
30 `long double' and `float' versions of the reader. */
31 #ifndef FLOAT
32 # include <math_ldbl_opt.h>
33 # define FLOAT double
34 # define FLT DBL
35 # ifdef USE_WIDE_CHAR
36 # define STRTOF wcstod_l
37 # define __STRTOF __wcstod_l
38 # else
39 # define STRTOF strtod_l
40 # define __STRTOF __strtod_l
41 # endif
42 # define MPN2FLOAT __mpn_construct_double
43 # define FLOAT_HUGE_VAL HUGE_VAL
44 # define SET_MANTISSA(flt, mant) \
45 do { union ieee754_double u; \
46 u.d = (flt); \
47 if ((mant & 0xfffffffffffffULL) == 0) \
48 mant = 0x8000000000000ULL; \
49 u.ieee.mantissa0 = ((mant) >> 32) & 0xfffff; \
50 u.ieee.mantissa1 = (mant) & 0xffffffff; \
51 (flt) = u.d; \
52 } while (0)
53 #endif
54 /* End of configuration part. */
56 #include <ctype.h>
57 #include <errno.h>
58 #include <float.h>
59 #include <ieee754.h>
60 #include "../locale/localeinfo.h"
61 #include <locale.h>
62 #include <math.h>
63 #include <stdlib.h>
64 #include <string.h>
66 /* The gmp headers need some configuration frobs. */
67 #define HAVE_ALLOCA 1
69 /* Include gmp-mparam.h first, such that definitions of _SHORT_LIMB
70 and _LONG_LONG_LIMB in it can take effect into gmp.h. */
71 #include <gmp-mparam.h>
72 #include <gmp.h>
73 #include "gmp-impl.h"
74 #include "longlong.h"
75 #include "fpioconst.h"
77 #define NDEBUG 1
78 #include <assert.h>
81 /* We use this code for the extended locale handling where the
82 function gets as an additional argument the locale which has to be
83 used. To access the values we have to redefine the _NL_CURRENT and
84 _NL_CURRENT_WORD macros. */
85 #undef _NL_CURRENT
86 #define _NL_CURRENT(category, item) \
87 (current->values[_NL_ITEM_INDEX (item)].string)
88 #undef _NL_CURRENT_WORD
89 #define _NL_CURRENT_WORD(category, item) \
90 ((uint32_t) current->values[_NL_ITEM_INDEX (item)].word)
92 #if defined _LIBC || defined HAVE_WCHAR_H
93 # include <wchar.h>
94 #endif
96 #ifdef USE_WIDE_CHAR
97 # include <wctype.h>
98 # define STRING_TYPE wchar_t
99 # define CHAR_TYPE wint_t
100 # define L_(Ch) L##Ch
101 # define ISSPACE(Ch) __iswspace_l ((Ch), loc)
102 # define ISDIGIT(Ch) __iswdigit_l ((Ch), loc)
103 # define ISXDIGIT(Ch) __iswxdigit_l ((Ch), loc)
104 # define TOLOWER(Ch) __towlower_l ((Ch), loc)
105 # define TOLOWER_C(Ch) __towlower_l ((Ch), _nl_C_locobj_ptr)
106 # define STRNCASECMP(S1, S2, N) \
107 __wcsncasecmp_l ((S1), (S2), (N), _nl_C_locobj_ptr)
108 # define STRTOULL(S, E, B) ____wcstoull_l_internal ((S), (E), (B), 0, loc)
109 #else
110 # define STRING_TYPE char
111 # define CHAR_TYPE char
112 # define L_(Ch) Ch
113 # define ISSPACE(Ch) __isspace_l ((Ch), loc)
114 # define ISDIGIT(Ch) __isdigit_l ((Ch), loc)
115 # define ISXDIGIT(Ch) __isxdigit_l ((Ch), loc)
116 # define TOLOWER(Ch) __tolower_l ((Ch), loc)
117 # define TOLOWER_C(Ch) __tolower_l ((Ch), _nl_C_locobj_ptr)
118 # define STRNCASECMP(S1, S2, N) \
119 __strncasecmp_l ((S1), (S2), (N), _nl_C_locobj_ptr)
120 # define STRTOULL(S, E, B) ____strtoull_l_internal ((S), (E), (B), 0, loc)
121 #endif
124 /* Constants we need from float.h; select the set for the FLOAT precision. */
125 #define MANT_DIG PASTE(FLT,_MANT_DIG)
126 #define DIG PASTE(FLT,_DIG)
127 #define MAX_EXP PASTE(FLT,_MAX_EXP)
128 #define MIN_EXP PASTE(FLT,_MIN_EXP)
129 #define MAX_10_EXP PASTE(FLT,_MAX_10_EXP)
130 #define MIN_10_EXP PASTE(FLT,_MIN_10_EXP)
132 /* Extra macros required to get FLT expanded before the pasting. */
133 #define PASTE(a,b) PASTE1(a,b)
134 #define PASTE1(a,b) a##b
136 /* Function to construct a floating point number from an MP integer
137 containing the fraction bits, a base 2 exponent, and a sign flag. */
138 extern FLOAT MPN2FLOAT (mp_srcptr mpn, int exponent, int negative);
140 /* Definitions according to limb size used. */
141 #if BITS_PER_MP_LIMB == 32
142 # define MAX_DIG_PER_LIMB 9
143 # define MAX_FAC_PER_LIMB 1000000000UL
144 #elif BITS_PER_MP_LIMB == 64
145 # define MAX_DIG_PER_LIMB 19
146 # define MAX_FAC_PER_LIMB 10000000000000000000ULL
147 #else
148 # error "mp_limb_t size " BITS_PER_MP_LIMB "not accounted for"
149 #endif
152 /* Local data structure. */
153 static const mp_limb_t _tens_in_limb[MAX_DIG_PER_LIMB + 1] =
154 { 0, 10, 100,
155 1000, 10000, 100000L,
156 1000000L, 10000000L, 100000000L,
157 1000000000L
158 #if BITS_PER_MP_LIMB > 32
159 , 10000000000ULL, 100000000000ULL,
160 1000000000000ULL, 10000000000000ULL, 100000000000000ULL,
161 1000000000000000ULL, 10000000000000000ULL, 100000000000000000ULL,
162 1000000000000000000ULL, 10000000000000000000ULL
163 #endif
164 #if BITS_PER_MP_LIMB > 64
165 #error "Need to expand tens_in_limb table to" MAX_DIG_PER_LIMB
166 #endif
169 #ifndef howmany
170 #define howmany(x,y) (((x)+((y)-1))/(y))
171 #endif
172 #define SWAP(x, y) ({ typeof(x) _tmp = x; x = y; y = _tmp; })
174 #define NDIG (MAX_10_EXP - MIN_10_EXP + 2 * MANT_DIG)
175 #define HEXNDIG ((MAX_EXP - MIN_EXP + 7) / 8 + 2 * MANT_DIG)
176 #define RETURN_LIMB_SIZE howmany (MANT_DIG, BITS_PER_MP_LIMB)
178 #define RETURN(val,end) \
179 do { if (endptr != NULL) *endptr = (STRING_TYPE *) (end); \
180 return val; } while (0)
182 /* Maximum size necessary for mpn integers to hold floating point numbers. */
183 #define MPNSIZE (howmany (MAX_EXP + 2 * MANT_DIG, BITS_PER_MP_LIMB) \
184 + 2)
185 /* Declare an mpn integer variable that big. */
186 #define MPN_VAR(name) mp_limb_t name[MPNSIZE]; mp_size_t name##size
187 /* Copy an mpn integer value. */
188 #define MPN_ASSIGN(dst, src) \
189 memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t))
192 /* Return a floating point number of the needed type according to the given
193 multi-precision number after possible rounding. */
194 static FLOAT
195 round_and_return (mp_limb_t *retval, int exponent, int negative,
196 mp_limb_t round_limb, mp_size_t round_bit, int more_bits)
198 if (exponent < MIN_EXP - 1)
200 mp_size_t shift = MIN_EXP - 1 - exponent;
202 if (shift > MANT_DIG)
204 __set_errno (EDOM);
205 return 0.0;
208 more_bits |= (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0;
209 if (shift == MANT_DIG)
210 /* This is a special case to handle the very seldom case where
211 the mantissa will be empty after the shift. */
213 int i;
215 round_limb = retval[RETURN_LIMB_SIZE - 1];
216 round_bit = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
217 for (i = 0; i < RETURN_LIMB_SIZE; ++i)
218 more_bits |= retval[i] != 0;
219 MPN_ZERO (retval, RETURN_LIMB_SIZE);
221 else if (shift >= BITS_PER_MP_LIMB)
223 int i;
225 round_limb = retval[(shift - 1) / BITS_PER_MP_LIMB];
226 round_bit = (shift - 1) % BITS_PER_MP_LIMB;
227 for (i = 0; i < (shift - 1) / BITS_PER_MP_LIMB; ++i)
228 more_bits |= retval[i] != 0;
229 more_bits |= ((round_limb & ((((mp_limb_t) 1) << round_bit) - 1))
230 != 0);
232 (void) __mpn_rshift (retval, &retval[shift / BITS_PER_MP_LIMB],
233 RETURN_LIMB_SIZE - (shift / BITS_PER_MP_LIMB),
234 shift % BITS_PER_MP_LIMB);
235 MPN_ZERO (&retval[RETURN_LIMB_SIZE - (shift / BITS_PER_MP_LIMB)],
236 shift / BITS_PER_MP_LIMB);
238 else if (shift > 0)
240 round_limb = retval[0];
241 round_bit = shift - 1;
242 (void) __mpn_rshift (retval, retval, RETURN_LIMB_SIZE, shift);
244 /* This is a hook for the m68k long double format, where the
245 exponent bias is the same for normalized and denormalized
246 numbers. */
247 #ifndef DENORM_EXP
248 # define DENORM_EXP (MIN_EXP - 2)
249 #endif
250 exponent = DENORM_EXP;
253 if ((round_limb & (((mp_limb_t) 1) << round_bit)) != 0
254 && (more_bits || (retval[0] & 1) != 0
255 || (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0))
257 mp_limb_t cy = __mpn_add_1 (retval, retval, RETURN_LIMB_SIZE, 1);
259 if (((MANT_DIG % BITS_PER_MP_LIMB) == 0 && cy) ||
260 ((MANT_DIG % BITS_PER_MP_LIMB) != 0 &&
261 (retval[RETURN_LIMB_SIZE - 1]
262 & (((mp_limb_t) 1) << (MANT_DIG % BITS_PER_MP_LIMB))) != 0))
264 ++exponent;
265 (void) __mpn_rshift (retval, retval, RETURN_LIMB_SIZE, 1);
266 retval[RETURN_LIMB_SIZE - 1]
267 |= ((mp_limb_t) 1) << ((MANT_DIG - 1) % BITS_PER_MP_LIMB);
269 else if (exponent == DENORM_EXP
270 && (retval[RETURN_LIMB_SIZE - 1]
271 & (((mp_limb_t) 1) << ((MANT_DIG - 1) % BITS_PER_MP_LIMB)))
272 != 0)
273 /* The number was denormalized but now normalized. */
274 exponent = MIN_EXP - 1;
277 if (exponent > MAX_EXP)
278 return negative ? -FLOAT_HUGE_VAL : FLOAT_HUGE_VAL;
280 return MPN2FLOAT (retval, exponent, negative);
284 /* Read a multi-precision integer starting at STR with exactly DIGCNT digits
285 into N. Return the size of the number limbs in NSIZE at the first
286 character od the string that is not part of the integer as the function
287 value. If the EXPONENT is small enough to be taken as an additional
288 factor for the resulting number (see code) multiply by it. */
289 static const STRING_TYPE *
290 str_to_mpn (const STRING_TYPE *str, int digcnt, mp_limb_t *n, mp_size_t *nsize,
291 int *exponent
292 #ifndef USE_WIDE_CHAR
293 , const char *decimal, size_t decimal_len, const char *thousands
294 #endif
298 /* Number of digits for actual limb. */
299 int cnt = 0;
300 mp_limb_t low = 0;
301 mp_limb_t start;
303 *nsize = 0;
304 assert (digcnt > 0);
307 if (cnt == MAX_DIG_PER_LIMB)
309 if (*nsize == 0)
311 n[0] = low;
312 *nsize = 1;
314 else
316 mp_limb_t cy;
317 cy = __mpn_mul_1 (n, n, *nsize, MAX_FAC_PER_LIMB);
318 cy += __mpn_add_1 (n, n, *nsize, low);
319 if (cy != 0)
321 n[*nsize] = cy;
322 ++(*nsize);
325 cnt = 0;
326 low = 0;
329 /* There might be thousands separators or radix characters in
330 the string. But these all can be ignored because we know the
331 format of the number is correct and we have an exact number
332 of characters to read. */
333 #ifdef USE_WIDE_CHAR
334 if (*str < L'0' || *str > L'9')
335 ++str;
336 #else
337 if (*str < '0' || *str > '9')
339 int inner = 0;
340 if (thousands != NULL && *str == *thousands
341 && ({ for (inner = 1; thousands[inner] != '\0'; ++inner)
342 if (thousands[inner] != str[inner])
343 break;
344 thousands[inner] == '\0'; }))
345 str += inner;
346 else
347 str += decimal_len;
349 #endif
350 low = low * 10 + *str++ - L_('0');
351 ++cnt;
353 while (--digcnt > 0);
355 if (*exponent > 0 && cnt + *exponent <= MAX_DIG_PER_LIMB)
357 low *= _tens_in_limb[*exponent];
358 start = _tens_in_limb[cnt + *exponent];
359 *exponent = 0;
361 else
362 start = _tens_in_limb[cnt];
364 if (*nsize == 0)
366 n[0] = low;
367 *nsize = 1;
369 else
371 mp_limb_t cy;
372 cy = __mpn_mul_1 (n, n, *nsize, start);
373 cy += __mpn_add_1 (n, n, *nsize, low);
374 if (cy != 0)
375 n[(*nsize)++] = cy;
378 return str;
382 /* Shift {PTR, SIZE} COUNT bits to the left, and fill the vacated bits
383 with the COUNT most significant bits of LIMB.
385 Tege doesn't like this function so I have to write it here myself. :)
386 --drepper */
387 static inline void
388 __attribute ((always_inline))
389 __mpn_lshift_1 (mp_limb_t *ptr, mp_size_t size, unsigned int count,
390 mp_limb_t limb)
392 if (__builtin_constant_p (count) && count == BITS_PER_MP_LIMB)
394 /* Optimize the case of shifting by exactly a word:
395 just copy words, with no actual bit-shifting. */
396 mp_size_t i;
397 for (i = size - 1; i > 0; --i)
398 ptr[i] = ptr[i - 1];
399 ptr[0] = limb;
401 else
403 (void) __mpn_lshift (ptr, ptr, size, count);
404 ptr[0] |= limb >> (BITS_PER_MP_LIMB - count);
409 #define INTERNAL(x) INTERNAL1(x)
410 #define INTERNAL1(x) __##x##_internal
411 #ifndef ____STRTOF_INTERNAL
412 # define ____STRTOF_INTERNAL INTERNAL (__STRTOF)
413 #endif
415 /* This file defines a function to check for correct grouping. */
416 #include "grouping.h"
419 /* Return a floating point number with the value of the given string NPTR.
420 Set *ENDPTR to the character after the last used one. If the number is
421 smaller than the smallest representable number, set `errno' to ERANGE and
422 return 0.0. If the number is too big to be represented, set `errno' to
423 ERANGE and return HUGE_VAL with the appropriate sign. */
424 FLOAT
425 ____STRTOF_INTERNAL (nptr, endptr, group, loc)
426 const STRING_TYPE *nptr;
427 STRING_TYPE **endptr;
428 int group;
429 __locale_t loc;
431 int negative; /* The sign of the number. */
432 MPN_VAR (num); /* MP representation of the number. */
433 int exponent; /* Exponent of the number. */
435 /* Numbers starting `0X' or `0x' have to be processed with base 16. */
436 int base = 10;
438 /* When we have to compute fractional digits we form a fraction with a
439 second multi-precision number (and we sometimes need a second for
440 temporary results). */
441 MPN_VAR (den);
443 /* Representation for the return value. */
444 mp_limb_t retval[RETURN_LIMB_SIZE];
445 /* Number of bits currently in result value. */
446 int bits;
448 /* Running pointer after the last character processed in the string. */
449 const STRING_TYPE *cp, *tp;
450 /* Start of significant part of the number. */
451 const STRING_TYPE *startp, *start_of_digits;
452 /* Points at the character following the integer and fractional digits. */
453 const STRING_TYPE *expp;
454 /* Total number of digit and number of digits in integer part. */
455 int dig_no, int_no, lead_zero;
456 /* Contains the last character read. */
457 CHAR_TYPE c;
459 /* We should get wint_t from <stddef.h>, but not all GCC versions define it
460 there. So define it ourselves if it remains undefined. */
461 #ifndef _WINT_T
462 typedef unsigned int wint_t;
463 #endif
464 /* The radix character of the current locale. */
465 #ifdef USE_WIDE_CHAR
466 wchar_t decimal;
467 #else
468 const char *decimal;
469 size_t decimal_len;
470 #endif
471 /* The thousands character of the current locale. */
472 #ifdef USE_WIDE_CHAR
473 wchar_t thousands = L'\0';
474 #else
475 const char *thousands = NULL;
476 #endif
477 /* The numeric grouping specification of the current locale,
478 in the format described in <locale.h>. */
479 const char *grouping;
480 /* Used in several places. */
481 int cnt;
483 struct locale_data *current = loc->__locales[LC_NUMERIC];
485 if (__builtin_expect (group, 0))
487 grouping = _NL_CURRENT (LC_NUMERIC, GROUPING);
488 if (*grouping <= 0 || *grouping == CHAR_MAX)
489 grouping = NULL;
490 else
492 /* Figure out the thousands separator character. */
493 #ifdef USE_WIDE_CHAR
494 thousands = _NL_CURRENT_WORD (LC_NUMERIC,
495 _NL_NUMERIC_THOUSANDS_SEP_WC);
496 if (thousands == L'\0')
497 grouping = NULL;
498 #else
499 thousands = _NL_CURRENT (LC_NUMERIC, THOUSANDS_SEP);
500 if (*thousands == '\0')
502 thousands = NULL;
503 grouping = NULL;
505 #endif
508 else
509 grouping = NULL;
511 /* Find the locale's decimal point character. */
512 #ifdef USE_WIDE_CHAR
513 decimal = _NL_CURRENT_WORD (LC_NUMERIC, _NL_NUMERIC_DECIMAL_POINT_WC);
514 assert (decimal != L'\0');
515 # define decimal_len 1
516 #else
517 decimal = _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT);
518 decimal_len = strlen (decimal);
519 assert (decimal_len > 0);
520 #endif
522 /* Prepare number representation. */
523 exponent = 0;
524 negative = 0;
525 bits = 0;
527 /* Parse string to get maximal legal prefix. We need the number of
528 characters of the integer part, the fractional part and the exponent. */
529 cp = nptr - 1;
530 /* Ignore leading white space. */
532 c = *++cp;
533 while (ISSPACE (c));
535 /* Get sign of the result. */
536 if (c == L_('-'))
538 negative = 1;
539 c = *++cp;
541 else if (c == L_('+'))
542 c = *++cp;
544 /* Return 0.0 if no legal string is found.
545 No character is used even if a sign was found. */
546 #ifdef USE_WIDE_CHAR
547 if (c == (wint_t) decimal
548 && (wint_t) cp[1] >= L'0' && (wint_t) cp[1] <= L'9')
550 /* We accept it. This funny construct is here only to indent
551 the code correctly. */
553 #else
554 for (cnt = 0; decimal[cnt] != '\0'; ++cnt)
555 if (cp[cnt] != decimal[cnt])
556 break;
557 if (decimal[cnt] == '\0' && cp[cnt] >= '0' && cp[cnt] <= '9')
559 /* We accept it. This funny construct is here only to indent
560 the code correctly. */
562 #endif
563 else if (c < L_('0') || c > L_('9'))
565 /* Check for `INF' or `INFINITY'. */
566 CHAR_TYPE lowc = TOLOWER_C (c);
568 if (lowc == L_('i') && STRNCASECMP (cp, L_("inf"), 3) == 0)
570 /* Return +/- infinity. */
571 if (endptr != NULL)
572 *endptr = (STRING_TYPE *)
573 (cp + (STRNCASECMP (cp + 3, L_("inity"), 5) == 0
574 ? 8 : 3));
576 return negative ? -FLOAT_HUGE_VAL : FLOAT_HUGE_VAL;
579 if (lowc == L_('n') && STRNCASECMP (cp, L_("nan"), 3) == 0)
581 /* Return NaN. */
582 FLOAT retval = NAN;
584 cp += 3;
586 /* Match `(n-char-sequence-digit)'. */
587 if (*cp == L_('('))
589 const STRING_TYPE *startp = cp;
591 ++cp;
592 while ((*cp >= L_('0') && *cp <= L_('9'))
593 || ({ CHAR_TYPE lo = TOLOWER (*cp);
594 lo >= L_('a') && lo <= L_('z'); })
595 || *cp == L_('_'));
597 if (*cp != L_(')'))
598 /* The closing brace is missing. Only match the NAN
599 part. */
600 cp = startp;
601 else
603 /* This is a system-dependent way to specify the
604 bitmask used for the NaN. We expect it to be
605 a number which is put in the mantissa of the
606 number. */
607 STRING_TYPE *endp;
608 unsigned long long int mant;
610 mant = STRTOULL (startp + 1, &endp, 0);
611 if (endp == cp)
612 SET_MANTISSA (retval, mant);
616 if (endptr != NULL)
617 *endptr = (STRING_TYPE *) cp;
619 return retval;
622 /* It is really a text we do not recognize. */
623 RETURN (0.0, nptr);
626 /* First look whether we are faced with a hexadecimal number. */
627 if (c == L_('0') && TOLOWER (cp[1]) == L_('x'))
629 /* Okay, it is a hexa-decimal number. Remember this and skip
630 the characters. BTW: hexadecimal numbers must not be
631 grouped. */
632 base = 16;
633 cp += 2;
634 c = *cp;
635 grouping = NULL;
638 /* Record the start of the digits, in case we will check their grouping. */
639 start_of_digits = startp = cp;
641 /* Ignore leading zeroes. This helps us to avoid useless computations. */
642 #ifdef USE_WIDE_CHAR
643 while (c == L'0' || ((wint_t) thousands != L'\0' && c == (wint_t) thousands))
644 c = *++cp;
645 #else
646 if (__builtin_expect (thousands == NULL, 1))
647 while (c == '0')
648 c = *++cp;
649 else
651 /* We also have the multibyte thousands string. */
652 while (1)
654 if (c != '0')
656 for (cnt = 0; thousands[cnt] != '\0'; ++cnt)
657 if (thousands[cnt] != cp[cnt])
658 break;
659 if (thousands[cnt] != '\0')
660 break;
661 cp += cnt - 1;
663 c = *++cp;
666 #endif
668 /* If no other digit but a '0' is found the result is 0.0.
669 Return current read pointer. */
670 CHAR_TYPE lowc = TOLOWER (c);
671 if (!((c >= L_('0') && c <= L_('9'))
672 || (base == 16 && lowc >= L_('a') && lowc <= L_('f'))
673 || (
674 #ifdef USE_WIDE_CHAR
675 c == (wint_t) decimal
676 #else
677 ({ for (cnt = 0; decimal[cnt] != '\0'; ++cnt)
678 if (decimal[cnt] != cp[cnt])
679 break;
680 decimal[cnt] == '\0'; })
681 #endif
682 /* '0x.' alone is not a valid hexadecimal number.
683 '.' alone is not valid either, but that has been checked
684 already earlier. */
685 && (base != 16
686 || cp != start_of_digits
687 || (cp[decimal_len] >= L_('0') && cp[decimal_len] <= L_('9'))
688 || ({ CHAR_TYPE lo = TOLOWER (cp[decimal_len]);
689 lo >= L_('a') && lo <= L_('f'); })))
690 || (base == 16 && (cp != start_of_digits
691 && lowc == L_('p')))
692 || (base != 16 && lowc == L_('e'))))
694 #ifdef USE_WIDE_CHAR
695 tp = __correctly_grouped_prefixwc (start_of_digits, cp, thousands,
696 grouping);
697 #else
698 tp = __correctly_grouped_prefixmb (start_of_digits, cp, thousands,
699 grouping);
700 #endif
701 /* If TP is at the start of the digits, there was no correctly
702 grouped prefix of the string; so no number found. */
703 RETURN (negative ? -0.0 : 0.0,
704 tp == start_of_digits ? (base == 16 ? cp - 1 : nptr) : tp);
707 /* Remember first significant digit and read following characters until the
708 decimal point, exponent character or any non-FP number character. */
709 startp = cp;
710 dig_no = 0;
711 while (1)
713 if ((c >= L_('0') && c <= L_('9'))
714 || (base == 16
715 && ({ CHAR_TYPE lo = TOLOWER (c);
716 lo >= L_('a') && lo <= L_('f'); })))
717 ++dig_no;
718 else
720 #ifdef USE_WIDE_CHAR
721 if (__builtin_expect ((wint_t) thousands == L'\0', 1)
722 || c != (wint_t) thousands)
723 /* Not a digit or separator: end of the integer part. */
724 break;
725 #else
726 if (__builtin_expect (thousands == NULL, 1))
727 break;
728 else
730 for (cnt = 0; thousands[cnt] != '\0'; ++cnt)
731 if (thousands[cnt] != cp[cnt])
732 break;
733 if (thousands[cnt] != '\0')
734 break;
735 cp += cnt - 1;
737 #endif
739 c = *++cp;
742 if (__builtin_expect (grouping != NULL, 0) && cp > start_of_digits)
744 /* Check the grouping of the digits. */
745 #ifdef USE_WIDE_CHAR
746 tp = __correctly_grouped_prefixwc (start_of_digits, cp, thousands,
747 grouping);
748 #else
749 tp = __correctly_grouped_prefixmb (start_of_digits, cp, thousands,
750 grouping);
751 #endif
752 if (cp != tp)
754 /* Less than the entire string was correctly grouped. */
756 if (tp == start_of_digits)
757 /* No valid group of numbers at all: no valid number. */
758 RETURN (0.0, nptr);
760 if (tp < startp)
761 /* The number is validly grouped, but consists
762 only of zeroes. The whole value is zero. */
763 RETURN (negative ? -0.0 : 0.0, tp);
765 /* Recompute DIG_NO so we won't read more digits than
766 are properly grouped. */
767 cp = tp;
768 dig_no = 0;
769 for (tp = startp; tp < cp; ++tp)
770 if (*tp >= L_('0') && *tp <= L_('9'))
771 ++dig_no;
773 int_no = dig_no;
774 lead_zero = 0;
776 goto number_parsed;
780 /* We have the number of digits in the integer part. Whether these
781 are all or any is really a fractional digit will be decided
782 later. */
783 int_no = dig_no;
784 lead_zero = int_no == 0 ? -1 : 0;
786 /* Read the fractional digits. A special case are the 'american
787 style' numbers like `16.' i.e. with decimal point but without
788 trailing digits. */
789 if (
790 #ifdef USE_WIDE_CHAR
791 c == (wint_t) decimal
792 #else
793 ({ for (cnt = 0; decimal[cnt] != '\0'; ++cnt)
794 if (decimal[cnt] != cp[cnt])
795 break;
796 decimal[cnt] == '\0'; })
797 #endif
800 cp += decimal_len;
801 c = *cp;
802 while ((c >= L_('0') && c <= L_('9')) ||
803 (base == 16 && ({ CHAR_TYPE lo = TOLOWER (c);
804 lo >= L_('a') && lo <= L_('f'); })))
806 if (c != L_('0') && lead_zero == -1)
807 lead_zero = dig_no - int_no;
808 ++dig_no;
809 c = *++cp;
813 /* Remember start of exponent (if any). */
814 expp = cp;
816 /* Read exponent. */
817 lowc = TOLOWER (c);
818 if ((base == 16 && lowc == L_('p'))
819 || (base != 16 && lowc == L_('e')))
821 int exp_negative = 0;
823 c = *++cp;
824 if (c == L_('-'))
826 exp_negative = 1;
827 c = *++cp;
829 else if (c == L_('+'))
830 c = *++cp;
832 if (c >= L_('0') && c <= L_('9'))
834 int exp_limit;
836 /* Get the exponent limit. */
837 if (base == 16)
838 exp_limit = (exp_negative ?
839 -MIN_EXP + MANT_DIG + 4 * int_no :
840 MAX_EXP - 4 * int_no + 4 * lead_zero + 3);
841 else
842 exp_limit = (exp_negative ?
843 -MIN_10_EXP + MANT_DIG + int_no :
844 MAX_10_EXP - int_no + lead_zero + 1);
848 exponent *= 10;
849 exponent += c - L_('0');
851 if (__builtin_expect (exponent > exp_limit, 0))
852 /* The exponent is too large/small to represent a valid
853 number. */
855 FLOAT result;
857 /* We have to take care for special situation: a joker
858 might have written "0.0e100000" which is in fact
859 zero. */
860 if (lead_zero == -1)
861 result = negative ? -0.0 : 0.0;
862 else
864 /* Overflow or underflow. */
865 __set_errno (ERANGE);
866 result = (exp_negative ? (negative ? -0.0 : 0.0) :
867 negative ? -FLOAT_HUGE_VAL : FLOAT_HUGE_VAL);
870 /* Accept all following digits as part of the exponent. */
872 ++cp;
873 while (*cp >= L_('0') && *cp <= L_('9'));
875 RETURN (result, cp);
876 /* NOTREACHED */
879 c = *++cp;
881 while (c >= L_('0') && c <= L_('9'));
883 if (exp_negative)
884 exponent = -exponent;
886 else
887 cp = expp;
890 /* We don't want to have to work with trailing zeroes after the radix. */
891 if (dig_no > int_no)
893 while (expp[-1] == L_('0'))
895 --expp;
896 --dig_no;
898 assert (dig_no >= int_no);
901 if (dig_no == int_no && dig_no > 0 && exponent < 0)
904 while (! (base == 16 ? ISXDIGIT (expp[-1]) : ISDIGIT (expp[-1])))
905 --expp;
907 if (expp[-1] != L_('0'))
908 break;
910 --expp;
911 --dig_no;
912 --int_no;
913 exponent += base == 16 ? 4 : 1;
915 while (dig_no > 0 && exponent < 0);
917 number_parsed:
919 /* The whole string is parsed. Store the address of the next character. */
920 if (endptr)
921 *endptr = (STRING_TYPE *) cp;
923 if (dig_no == 0)
924 return negative ? -0.0 : 0.0;
926 if (lead_zero)
928 /* Find the decimal point */
929 #ifdef USE_WIDE_CHAR
930 while (*startp != decimal)
931 ++startp;
932 #else
933 while (1)
935 if (*startp == decimal[0])
937 for (cnt = 1; decimal[cnt] != '\0'; ++cnt)
938 if (decimal[cnt] != startp[cnt])
939 break;
940 if (decimal[cnt] == '\0')
941 break;
943 ++startp;
945 #endif
946 startp += lead_zero + decimal_len;
947 exponent -= base == 16 ? 4 * lead_zero : lead_zero;
948 dig_no -= lead_zero;
951 /* If the BASE is 16 we can use a simpler algorithm. */
952 if (base == 16)
954 static const int nbits[16] = { 0, 1, 2, 2, 3, 3, 3, 3,
955 4, 4, 4, 4, 4, 4, 4, 4 };
956 int idx = (MANT_DIG - 1) / BITS_PER_MP_LIMB;
957 int pos = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
958 mp_limb_t val;
960 while (!ISXDIGIT (*startp))
961 ++startp;
962 while (*startp == L_('0'))
963 ++startp;
964 if (ISDIGIT (*startp))
965 val = *startp++ - L_('0');
966 else
967 val = 10 + TOLOWER (*startp++) - L_('a');
968 bits = nbits[val];
969 /* We cannot have a leading zero. */
970 assert (bits != 0);
972 if (pos + 1 >= 4 || pos + 1 >= bits)
974 /* We don't have to care for wrapping. This is the normal
975 case so we add the first clause in the `if' expression as
976 an optimization. It is a compile-time constant and so does
977 not cost anything. */
978 retval[idx] = val << (pos - bits + 1);
979 pos -= bits;
981 else
983 retval[idx--] = val >> (bits - pos - 1);
984 retval[idx] = val << (BITS_PER_MP_LIMB - (bits - pos - 1));
985 pos = BITS_PER_MP_LIMB - 1 - (bits - pos - 1);
988 /* Adjust the exponent for the bits we are shifting in. */
989 exponent += bits - 1 + (int_no - 1) * 4;
991 while (--dig_no > 0 && idx >= 0)
993 if (!ISXDIGIT (*startp))
994 startp += decimal_len;
995 if (ISDIGIT (*startp))
996 val = *startp++ - L_('0');
997 else
998 val = 10 + TOLOWER (*startp++) - L_('a');
1000 if (pos + 1 >= 4)
1002 retval[idx] |= val << (pos - 4 + 1);
1003 pos -= 4;
1005 else
1007 retval[idx--] |= val >> (4 - pos - 1);
1008 val <<= BITS_PER_MP_LIMB - (4 - pos - 1);
1009 if (idx < 0)
1010 return round_and_return (retval, exponent, negative, val,
1011 BITS_PER_MP_LIMB - 1, dig_no > 0);
1013 retval[idx] = val;
1014 pos = BITS_PER_MP_LIMB - 1 - (4 - pos - 1);
1018 /* We ran out of digits. */
1019 MPN_ZERO (retval, idx);
1021 return round_and_return (retval, exponent, negative, 0, 0, 0);
1024 /* Now we have the number of digits in total and the integer digits as well
1025 as the exponent and its sign. We can decide whether the read digits are
1026 really integer digits or belong to the fractional part; i.e. we normalize
1027 123e-2 to 1.23. */
1029 register int incr = (exponent < 0 ? MAX (-int_no, exponent)
1030 : MIN (dig_no - int_no, exponent));
1031 int_no += incr;
1032 exponent -= incr;
1035 if (__builtin_expect (int_no + exponent > MAX_10_EXP + 1, 0))
1037 __set_errno (ERANGE);
1038 return negative ? -FLOAT_HUGE_VAL : FLOAT_HUGE_VAL;
1041 if (__builtin_expect (exponent < MIN_10_EXP - (DIG + 1), 0))
1043 __set_errno (ERANGE);
1044 return 0.0;
1047 if (int_no > 0)
1049 /* Read the integer part as a multi-precision number to NUM. */
1050 startp = str_to_mpn (startp, int_no, num, &numsize, &exponent
1051 #ifndef USE_WIDE_CHAR
1052 , decimal, decimal_len, thousands
1053 #endif
1056 if (exponent > 0)
1058 /* We now multiply the gained number by the given power of ten. */
1059 mp_limb_t *psrc = num;
1060 mp_limb_t *pdest = den;
1061 int expbit = 1;
1062 const struct mp_power *ttab = &_fpioconst_pow10[0];
1066 if ((exponent & expbit) != 0)
1068 size_t size = ttab->arraysize - _FPIO_CONST_OFFSET;
1069 mp_limb_t cy;
1070 exponent ^= expbit;
1072 /* FIXME: not the whole multiplication has to be
1073 done. If we have the needed number of bits we
1074 only need the information whether more non-zero
1075 bits follow. */
1076 if (numsize >= ttab->arraysize - _FPIO_CONST_OFFSET)
1077 cy = __mpn_mul (pdest, psrc, numsize,
1078 &__tens[ttab->arrayoff
1079 + _FPIO_CONST_OFFSET],
1080 size);
1081 else
1082 cy = __mpn_mul (pdest, &__tens[ttab->arrayoff
1083 + _FPIO_CONST_OFFSET],
1084 size, psrc, numsize);
1085 numsize += size;
1086 if (cy == 0)
1087 --numsize;
1088 (void) SWAP (psrc, pdest);
1090 expbit <<= 1;
1091 ++ttab;
1093 while (exponent != 0);
1095 if (psrc == den)
1096 memcpy (num, den, numsize * sizeof (mp_limb_t));
1099 /* Determine how many bits of the result we already have. */
1100 count_leading_zeros (bits, num[numsize - 1]);
1101 bits = numsize * BITS_PER_MP_LIMB - bits;
1103 /* Now we know the exponent of the number in base two.
1104 Check it against the maximum possible exponent. */
1105 if (__builtin_expect (bits > MAX_EXP, 0))
1107 __set_errno (ERANGE);
1108 return negative ? -FLOAT_HUGE_VAL : FLOAT_HUGE_VAL;
1111 /* We have already the first BITS bits of the result. Together with
1112 the information whether more non-zero bits follow this is enough
1113 to determine the result. */
1114 if (bits > MANT_DIG)
1116 int i;
1117 const mp_size_t least_idx = (bits - MANT_DIG) / BITS_PER_MP_LIMB;
1118 const mp_size_t least_bit = (bits - MANT_DIG) % BITS_PER_MP_LIMB;
1119 const mp_size_t round_idx = least_bit == 0 ? least_idx - 1
1120 : least_idx;
1121 const mp_size_t round_bit = least_bit == 0 ? BITS_PER_MP_LIMB - 1
1122 : least_bit - 1;
1124 if (least_bit == 0)
1125 memcpy (retval, &num[least_idx],
1126 RETURN_LIMB_SIZE * sizeof (mp_limb_t));
1127 else
1129 for (i = least_idx; i < numsize - 1; ++i)
1130 retval[i - least_idx] = (num[i] >> least_bit)
1131 | (num[i + 1]
1132 << (BITS_PER_MP_LIMB - least_bit));
1133 if (i - least_idx < RETURN_LIMB_SIZE)
1134 retval[RETURN_LIMB_SIZE - 1] = num[i] >> least_bit;
1137 /* Check whether any limb beside the ones in RETVAL are non-zero. */
1138 for (i = 0; num[i] == 0; ++i)
1141 return round_and_return (retval, bits - 1, negative,
1142 num[round_idx], round_bit,
1143 int_no < dig_no || i < round_idx);
1144 /* NOTREACHED */
1146 else if (dig_no == int_no)
1148 const mp_size_t target_bit = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
1149 const mp_size_t is_bit = (bits - 1) % BITS_PER_MP_LIMB;
1151 if (target_bit == is_bit)
1153 memcpy (&retval[RETURN_LIMB_SIZE - numsize], num,
1154 numsize * sizeof (mp_limb_t));
1155 /* FIXME: the following loop can be avoided if we assume a
1156 maximal MANT_DIG value. */
1157 MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize);
1159 else if (target_bit > is_bit)
1161 (void) __mpn_lshift (&retval[RETURN_LIMB_SIZE - numsize],
1162 num, numsize, target_bit - is_bit);
1163 /* FIXME: the following loop can be avoided if we assume a
1164 maximal MANT_DIG value. */
1165 MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize);
1167 else
1169 mp_limb_t cy;
1170 assert (numsize < RETURN_LIMB_SIZE);
1172 cy = __mpn_rshift (&retval[RETURN_LIMB_SIZE - numsize],
1173 num, numsize, is_bit - target_bit);
1174 retval[RETURN_LIMB_SIZE - numsize - 1] = cy;
1175 /* FIXME: the following loop can be avoided if we assume a
1176 maximal MANT_DIG value. */
1177 MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize - 1);
1180 return round_and_return (retval, bits - 1, negative, 0, 0, 0);
1181 /* NOTREACHED */
1184 /* Store the bits we already have. */
1185 memcpy (retval, num, numsize * sizeof (mp_limb_t));
1186 #if RETURN_LIMB_SIZE > 1
1187 if (numsize < RETURN_LIMB_SIZE)
1188 # if RETURN_LIMB_SIZE == 2
1189 retval[numsize] = 0;
1190 # else
1191 MPN_ZERO (retval + numsize, RETURN_LIMB_SIZE - numsize);
1192 # endif
1193 #endif
1196 /* We have to compute at least some of the fractional digits. */
1198 /* We construct a fraction and the result of the division gives us
1199 the needed digits. The denominator is 1.0 multiplied by the
1200 exponent of the lowest digit; i.e. 0.123 gives 123 / 1000 and
1201 123e-6 gives 123 / 1000000. */
1203 int expbit;
1204 int neg_exp;
1205 int more_bits;
1206 mp_limb_t cy;
1207 mp_limb_t *psrc = den;
1208 mp_limb_t *pdest = num;
1209 const struct mp_power *ttab = &_fpioconst_pow10[0];
1211 assert (dig_no > int_no && exponent <= 0);
1214 /* For the fractional part we need not process too many digits. One
1215 decimal digits gives us log_2(10) ~ 3.32 bits. If we now compute
1216 ceil(BITS / 3) =: N
1217 digits we should have enough bits for the result. The remaining
1218 decimal digits give us the information that more bits are following.
1219 This can be used while rounding. (Two added as a safety margin.) */
1220 if (dig_no - int_no > (MANT_DIG - bits + 2) / 3 + 2)
1222 dig_no = int_no + (MANT_DIG - bits + 2) / 3 + 2;
1223 more_bits = 1;
1225 else
1226 more_bits = 0;
1228 neg_exp = dig_no - int_no - exponent;
1230 /* Construct the denominator. */
1231 densize = 0;
1232 expbit = 1;
1235 if ((neg_exp & expbit) != 0)
1237 mp_limb_t cy;
1238 neg_exp ^= expbit;
1240 if (densize == 0)
1242 densize = ttab->arraysize - _FPIO_CONST_OFFSET;
1243 memcpy (psrc, &__tens[ttab->arrayoff + _FPIO_CONST_OFFSET],
1244 densize * sizeof (mp_limb_t));
1246 else
1248 cy = __mpn_mul (pdest, &__tens[ttab->arrayoff
1249 + _FPIO_CONST_OFFSET],
1250 ttab->arraysize - _FPIO_CONST_OFFSET,
1251 psrc, densize);
1252 densize += ttab->arraysize - _FPIO_CONST_OFFSET;
1253 if (cy == 0)
1254 --densize;
1255 (void) SWAP (psrc, pdest);
1258 expbit <<= 1;
1259 ++ttab;
1261 while (neg_exp != 0);
1263 if (psrc == num)
1264 memcpy (den, num, densize * sizeof (mp_limb_t));
1266 /* Read the fractional digits from the string. */
1267 (void) str_to_mpn (startp, dig_no - int_no, num, &numsize, &exponent
1268 #ifndef USE_WIDE_CHAR
1269 , decimal, decimal_len, thousands
1270 #endif
1273 /* We now have to shift both numbers so that the highest bit in the
1274 denominator is set. In the same process we copy the numerator to
1275 a high place in the array so that the division constructs the wanted
1276 digits. This is done by a "quasi fix point" number representation.
1278 num: ddddddddddd . 0000000000000000000000
1279 |--- m ---|
1280 den: ddddddddddd n >= m
1281 |--- n ---|
1284 count_leading_zeros (cnt, den[densize - 1]);
1286 if (cnt > 0)
1288 /* Don't call `mpn_shift' with a count of zero since the specification
1289 does not allow this. */
1290 (void) __mpn_lshift (den, den, densize, cnt);
1291 cy = __mpn_lshift (num, num, numsize, cnt);
1292 if (cy != 0)
1293 num[numsize++] = cy;
1296 /* Now we are ready for the division. But it is not necessary to
1297 do a full multi-precision division because we only need a small
1298 number of bits for the result. So we do not use __mpn_divmod
1299 here but instead do the division here by hand and stop whenever
1300 the needed number of bits is reached. The code itself comes
1301 from the GNU MP Library by Torbj\"orn Granlund. */
1303 exponent = bits;
1305 switch (densize)
1307 case 1:
1309 mp_limb_t d, n, quot;
1310 int used = 0;
1312 n = num[0];
1313 d = den[0];
1314 assert (numsize == 1 && n < d);
1318 udiv_qrnnd (quot, n, n, 0, d);
1320 #define got_limb \
1321 if (bits == 0) \
1323 register int cnt; \
1324 if (quot == 0) \
1325 cnt = BITS_PER_MP_LIMB; \
1326 else \
1327 count_leading_zeros (cnt, quot); \
1328 exponent -= cnt; \
1329 if (BITS_PER_MP_LIMB - cnt > MANT_DIG) \
1331 used = MANT_DIG + cnt; \
1332 retval[0] = quot >> (BITS_PER_MP_LIMB - used); \
1333 bits = MANT_DIG + 1; \
1335 else \
1337 /* Note that we only clear the second element. */ \
1338 /* The conditional is determined at compile time. */ \
1339 if (RETURN_LIMB_SIZE > 1) \
1340 retval[1] = 0; \
1341 retval[0] = quot; \
1342 bits = -cnt; \
1345 else if (bits + BITS_PER_MP_LIMB <= MANT_DIG) \
1346 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, BITS_PER_MP_LIMB, \
1347 quot); \
1348 else \
1350 used = MANT_DIG - bits; \
1351 if (used > 0) \
1352 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, quot); \
1354 bits += BITS_PER_MP_LIMB
1356 got_limb;
1358 while (bits <= MANT_DIG);
1360 return round_and_return (retval, exponent - 1, negative,
1361 quot, BITS_PER_MP_LIMB - 1 - used,
1362 more_bits || n != 0);
1364 case 2:
1366 mp_limb_t d0, d1, n0, n1;
1367 mp_limb_t quot = 0;
1368 int used = 0;
1370 d0 = den[0];
1371 d1 = den[1];
1373 if (numsize < densize)
1375 if (num[0] >= d1)
1377 /* The numerator of the number occupies fewer bits than
1378 the denominator but the one limb is bigger than the
1379 high limb of the numerator. */
1380 n1 = 0;
1381 n0 = num[0];
1383 else
1385 if (bits <= 0)
1386 exponent -= BITS_PER_MP_LIMB;
1387 else
1389 if (bits + BITS_PER_MP_LIMB <= MANT_DIG)
1390 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE,
1391 BITS_PER_MP_LIMB, 0);
1392 else
1394 used = MANT_DIG - bits;
1395 if (used > 0)
1396 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, 0);
1398 bits += BITS_PER_MP_LIMB;
1400 n1 = num[0];
1401 n0 = 0;
1404 else
1406 n1 = num[1];
1407 n0 = num[0];
1410 while (bits <= MANT_DIG)
1412 mp_limb_t r;
1414 if (n1 == d1)
1416 /* QUOT should be either 111..111 or 111..110. We need
1417 special treatment of this rare case as normal division
1418 would give overflow. */
1419 quot = ~(mp_limb_t) 0;
1421 r = n0 + d1;
1422 if (r < d1) /* Carry in the addition? */
1424 add_ssaaaa (n1, n0, r - d0, 0, 0, d0);
1425 goto have_quot;
1427 n1 = d0 - (d0 != 0);
1428 n0 = -d0;
1430 else
1432 udiv_qrnnd (quot, r, n1, n0, d1);
1433 umul_ppmm (n1, n0, d0, quot);
1436 q_test:
1437 if (n1 > r || (n1 == r && n0 > 0))
1439 /* The estimated QUOT was too large. */
1440 --quot;
1442 sub_ddmmss (n1, n0, n1, n0, 0, d0);
1443 r += d1;
1444 if (r >= d1) /* If not carry, test QUOT again. */
1445 goto q_test;
1447 sub_ddmmss (n1, n0, r, 0, n1, n0);
1449 have_quot:
1450 got_limb;
1453 return round_and_return (retval, exponent - 1, negative,
1454 quot, BITS_PER_MP_LIMB - 1 - used,
1455 more_bits || n1 != 0 || n0 != 0);
1457 default:
1459 int i;
1460 mp_limb_t cy, dX, d1, n0, n1;
1461 mp_limb_t quot = 0;
1462 int used = 0;
1464 dX = den[densize - 1];
1465 d1 = den[densize - 2];
1467 /* The division does not work if the upper limb of the two-limb
1468 numerator is greater than the denominator. */
1469 if (__mpn_cmp (num, &den[densize - numsize], numsize) > 0)
1470 num[numsize++] = 0;
1472 if (numsize < densize)
1474 mp_size_t empty = densize - numsize;
1475 register int i;
1477 if (bits <= 0)
1478 exponent -= empty * BITS_PER_MP_LIMB;
1479 else
1481 if (bits + empty * BITS_PER_MP_LIMB <= MANT_DIG)
1483 /* We make a difference here because the compiler
1484 cannot optimize the `else' case that good and
1485 this reflects all currently used FLOAT types
1486 and GMP implementations. */
1487 #if RETURN_LIMB_SIZE <= 2
1488 assert (empty == 1);
1489 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE,
1490 BITS_PER_MP_LIMB, 0);
1491 #else
1492 for (i = RETURN_LIMB_SIZE - 1; i >= empty; --i)
1493 retval[i] = retval[i - empty];
1494 while (i >= 0)
1495 retval[i--] = 0;
1496 #endif
1498 else
1500 used = MANT_DIG - bits;
1501 if (used >= BITS_PER_MP_LIMB)
1503 register int i;
1504 (void) __mpn_lshift (&retval[used
1505 / BITS_PER_MP_LIMB],
1506 retval, RETURN_LIMB_SIZE,
1507 used % BITS_PER_MP_LIMB);
1508 for (i = used / BITS_PER_MP_LIMB - 1; i >= 0; --i)
1509 retval[i] = 0;
1511 else if (used > 0)
1512 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, 0);
1514 bits += empty * BITS_PER_MP_LIMB;
1516 for (i = numsize; i > 0; --i)
1517 num[i + empty] = num[i - 1];
1518 MPN_ZERO (num, empty + 1);
1520 else
1522 int i;
1523 assert (numsize == densize);
1524 for (i = numsize; i > 0; --i)
1525 num[i] = num[i - 1];
1528 den[densize] = 0;
1529 n0 = num[densize];
1531 while (bits <= MANT_DIG)
1533 if (n0 == dX)
1534 /* This might over-estimate QUOT, but it's probably not
1535 worth the extra code here to find out. */
1536 quot = ~(mp_limb_t) 0;
1537 else
1539 mp_limb_t r;
1541 udiv_qrnnd (quot, r, n0, num[densize - 1], dX);
1542 umul_ppmm (n1, n0, d1, quot);
1544 while (n1 > r || (n1 == r && n0 > num[densize - 2]))
1546 --quot;
1547 r += dX;
1548 if (r < dX) /* I.e. "carry in previous addition?" */
1549 break;
1550 n1 -= n0 < d1;
1551 n0 -= d1;
1555 /* Possible optimization: We already have (q * n0) and (1 * n1)
1556 after the calculation of QUOT. Taking advantage of this, we
1557 could make this loop make two iterations less. */
1559 cy = __mpn_submul_1 (num, den, densize + 1, quot);
1561 if (num[densize] != cy)
1563 cy = __mpn_add_n (num, num, den, densize);
1564 assert (cy != 0);
1565 --quot;
1567 n0 = num[densize] = num[densize - 1];
1568 for (i = densize - 1; i > 0; --i)
1569 num[i] = num[i - 1];
1571 got_limb;
1574 for (i = densize; num[i] == 0 && i >= 0; --i)
1576 return round_and_return (retval, exponent - 1, negative,
1577 quot, BITS_PER_MP_LIMB - 1 - used,
1578 more_bits || i >= 0);
1583 /* NOTREACHED */
1585 #if defined _LIBC && !defined USE_WIDE_CHAR
1586 libc_hidden_def (____STRTOF_INTERNAL)
1587 #endif
1589 /* External user entry point. */
1591 FLOAT
1592 #ifdef weak_function
1593 weak_function
1594 #endif
1595 __STRTOF (nptr, endptr, loc)
1596 const STRING_TYPE *nptr;
1597 STRING_TYPE **endptr;
1598 __locale_t loc;
1600 return ____STRTOF_INTERNAL (nptr, endptr, 0, loc);
1602 #if defined _LIBC
1603 libc_hidden_def (__STRTOF)
1604 libc_hidden_ver (__STRTOF, STRTOF)
1605 #endif
1606 weak_alias (__STRTOF, STRTOF)
1608 #ifdef LONG_DOUBLE_COMPAT
1609 # if LONG_DOUBLE_COMPAT(libc, GLIBC_2_1)
1610 # ifdef USE_WIDE_CHAR
1611 compat_symbol (libc, __wcstod_l, __wcstold_l, GLIBC_2_1);
1612 # else
1613 compat_symbol (libc, __strtod_l, __strtold_l, GLIBC_2_1);
1614 # endif
1615 # endif
1616 # if LONG_DOUBLE_COMPAT(libc, GLIBC_2_3)
1617 # ifdef USE_WIDE_CHAR
1618 compat_symbol (libc, wcstod_l, wcstold_l, GLIBC_2_3);
1619 # else
1620 compat_symbol (libc, strtod_l, strtold_l, GLIBC_2_3);
1621 # endif
1622 # endif
1623 #endif